

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNIFIED MULTI-MODAL INTERACTIVE & REACTIVE 3D MOTION GENERATION VIA RECTIFIED FLOW

Anonymous authors

Paper under double-blind review

## ABSTRACT

Generating realistic, context-aware two-person motion conditioned on diverse modalities remains a fundamental challenge for graphics, animation and embodied AI systems. Real-world applications such as VR/AR companions, social robotics and game agents require models capable of producing coordinated interpersonal behavior while flexibly switching between interactive and reactive generation. We introduce DualFlow, the first unified and efficient framework for multi-modal two-person motion generation. DualFlow conditions 3D motion generation on diverse inputs, including text, music, and prior motion sequences. Leveraging rectified flow, it achieves deterministic straight-line sampling paths between noise and data, reducing inference time and mitigating error accumulation common in diffusion-based models. To enhance semantic grounding, DualFlow employs a novel Retrieval-Augmented Generation (RAG) module for two-person motion that retrieves motion exemplars using music features and LLM-based text decompositions of spatial relations, body movements, and rhythmic patterns. We use contrastive rectified flow objective to further sharpen alignment with conditioning signals and add synchronization loss to improve inter-person temporal coordination. Extensive evaluations across interactive, reactive, and multi-modal benchmarks demonstrate that DualFlow consistently improves motion quality, responsiveness, and semantic fidelity. DualFlow achieves state-of-the-art performance in two-person multi-modal motion generation, producing coherent, expressive, and rhythmically synchronized motion. Code will be released upon acceptance.

## 1 INTRODUCTION

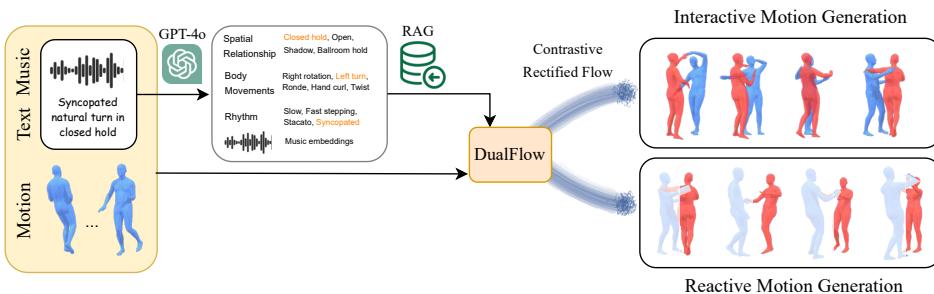


Figure 1: Our DualFlow model unifies two tasks: (a) Interactive Motion Generation, which synthesizes synchronized two-person interactions, (b) Reactive Motion Generation, which generates responsive motions for Person B (red) conditioned on Person A's (blue) movements. The generation process is conditioned jointly on text, music, and the retrieved motion samples.

Generating realistic, context-aware interactive human motion remains a core challenge in computer graphics, animation, and human-computer interaction (Holden et al., 2016). Synthesizing coordinated behavior between multiple individuals requires models to capture mutual responsiveness, physical plausibility, and rich interpersonal dynamics. These capabilities are essential for applications such as immersive virtual experiences, intelligent avatars, VR/AR companions, game character

054 AI, and human–robot collaboration. Since human interactions are inherently driven by multi-modal  
 055 stimuli such as language, music, and physical cues, generative systems must interpret and integrate  
 056 these diverse inputs to operate effectively in embodied systems. In many real-world settings, virtual  
 057 AI or robotic agents must also be able to seamlessly switch between interactive coordination  
 058 with another agent and reactively adapting to a human partner’s motion, making flexible multi-task  
 059 motion generation a crucial requirement rather than an optional capability.

060 Although two-person motion generation has been explored in prior works, existing approaches treat  
 061 the interactive and reactive settings as separate tasks, leading to different architectures with incom-  
 062 patible training objectives, modality constraints, or conditioning signals. Interactive models such  
 063 as Liang et al. (2024) and Ghosh et al. (2025) focus on bidirectional coordination without han-  
 064 dling asymmetric reactive generation, whereas reactive models such as Rahman et al. (2022), Xu  
 065 et al. (2024) and Siyao et al. (2024) specialize solely in predicting reactor’s motion from actor’s  
 066 cues. Furthermore, current two-person methods support only single-modality conditioning: text-  
 067 only (Liang et al., 2024; Xu et al., 2024) or music-only (Siyao et al., 2024; Ghosh et al., 2025). As a  
 068 result, there is no unified model capable of performing both tasks under the same architecture while  
 069 leveraging the multi-modal cues required by real-world applications.

070 To address these gaps, we introduce DualFlow, the first unified multi-modal rectified flow framework  
 071 for both interactive and reactive two-person motion generation as shown in Fig. 1. DualFlow em-  
 072 ploys cascaded DualFlow Blocks that flexibly adapt through a masking mechanism: both branches  
 073 remain active for interactive generation, while the reactor branch alone is conditioned on the actor’s  
 074 motion for reactive synthesis. This unified design enables seamless switching between tasks without  
 075 retraining and allows both settings to learn from shared representations.

076 A key component of DualFlow is a novel adaptation of Retrieval-Augmented Generation (RAG)  
 077 to two-person motion. Unlike prior RAG modules designed for single-person synthesis, our model  
 078 retrieves semantically relevant motion samples using interactive text-based descriptions (spatial re-  
 079 lationships, body movement cues, and rhythm) decomposed using LLM as well as music features.  
 080 These retrieved samples are injected into the model through a retrieval-based cross-attention mech-  
 081 anism in each DualFlow block, grounding the generation process in interaction-aware exemplars  
 082 and improving spatial and semantic alignment. DualFlow further incorporates Contrastive Recti-  
 083 fied Flow generation, where contrastive learning sharpens the motion embedding space, improves  
 084 inter-person relational consistency, and strengthens alignment between generated motion and con-  
 085 ditioning signals. Combined with rectified flow sampling which offers faster convergence and reduced  
 086 error accumulation, these contrastive objectives significantly enhance diversity, coherence, and fine-  
 087 grained semantic fidelity.

088 Our key contributions are: (1) Unified architecture for interactive and reactive two-person motion  
 089 generation with seamless task switching. (2) A Retrieval-Augmented Generation (RAG) framework  
 090 for two-person motion generation leveraging music features and interactive text-based descriptions  
 091 (spatial relationship, body movement, rhythm) decomposed using LLM to guide semantically faith-  
 092 ful motion synthesis. (3) Contrastive Rectified Flow based generation with added synchronization  
 093 loss, improving motion quality, semantic alignment and faster sampling. (4) Extensive quantitative,  
 094 qualitative, and ablation studies on diverse two-person datasets, showing DualFlow generates coher-  
 095 ent, expressive, and contextually appropriate motions with fewer sampling steps. Importantly, our  
 096 approach outperforms state-of-the-art baselines by 2.5% in FID, 76% in R-precision, 3x in Multi-  
 097 Modal Distance for Interactive task, 1.7% in FID, 2.5x in R-precision, 2x in Multi-Modal Distance  
 098 for Reactive task on MDD Dataset requiring only 20 inference steps (2.5x faster) than 50-DDIM  
 099 standard, establishing new benchmark for multi-person, multi-modal motion generation.

## 100 2 RELATED WORK

101 **Two-person Motion Generation.** While single-person motion generation has advanced  
 102 rapidly (Guo et al., 2022; Tevet et al., 2022; Petrovich et al., 2022; Zhang et al., 2024), extending  
 103 these methods to multi-person settings introduces the additional challenge of modeling coordination  
 104 between agents. Early two-person models (Kundu et al., 2020; Xu et al., 2023; Xie et al., 2021)  
 105 demonstrated feasibility but exhibited limited generalization or weak semantic grounding. To ad-  
 106 dress data scarcity and modeling complexity, Liang et al. (2024) introduced a large-scale interaction  
 107 dataset with a text-conditioned diffusion model, later extended by text-guided variants (Shafir et al.,

2024; Yi et al., 2024; Li et al., 2024a). In the domain of dance, specialized frameworks explored  
 109 music-conditioned lead-follower generation (Li et al., 2024b; Wang et al., 2025a; Ghosh et al.,  
 110 2025). Despite these advances, most diffusion-based methods remain slow and restricted to single-  
 111 modality conditioning. For reactive motion generation, early GAN- and transformer-based meth-  
 112 ods (Men et al., 2022; Rahman et al., 2022; Ghosh et al., 2024) have recently been extended with  
 113 text (Xu et al., 2024; Cen et al., 2025) or with joint leader motion and music (Siyao et al., 2024).  
 114 However, existing interactive and reactive models are developed as separate systems with incom-  
 115 patible architectures and training objectives, limited multi-modal support and preventing seamless  
 116 switching between tasks. Our framework, DualFlow, addresses these limitations by unifying inter-  
 117 active and reactive two-person motion generation within a single transformer-based rectified flow  
 118 architecture, jointly conditioned on text, music, and retrieved motion exemplars.

119 **Retrieval-Augmented Generation (RAG).** RAG has significantly improved generative fidelity  
 120 across language models (Gao et al., 2023; Guu et al., 2020; Lewis et al., 2020), image synthe-  
 121 sis (Blattmann et al., 2022; Chen et al., 2022; Sheynin et al., 2022), and video generation (He et al.,  
 122 2023). Within motion generation, retrieval-based approaches have been applied to text-to-motion  
 123 synthesis (Zhang et al., 2023; Kalakonda et al., 2025; Liao et al., 2024; Petrovich et al., 2023; Bens-  
 124 abath et al., 2024), but all existing methods operate exclusively in the single-person setting and do  
 125 not address interactive multi-person dynamics. DualFlow introduces the first RAG framework for  
 126 two-person motion generation, retrieving interaction-aware motion exemplars using music features  
 127 and LLM-based text decompositions capturing spatial relationships, body movements, and rhyth-  
 128 mic structure. These exemplars are integrated through a retrieval-based cross-attention mechanism  
 129 providing fine-grained semantic grounding crucial for coordinated two-person motion generation.

130 **Diffusion and Flow-based Models.** Diffusion-based motion generation models such as  
 131 MDM (Tevet et al., 2022), MotionDiffuse (Zhang et al., 2024), and MoFusion (Dabral et al., 2023)  
 132 have demonstrated strong performance with fewer than a hundred denoising steps, but they remain  
 133 limited to single-person generation. More recent approaches adopt Flow Matching (Lipman et al.,  
 134 2023) to bypass iterative denoising (Hu et al., 2023; Canales Cuba & Gois, 2025). Yet these methods  
 135 face optimization instabilities and scaling difficulties when extended to multi-person motion. Inter-  
 136 Gen (Liang et al., 2024), TIMotion (Wang et al., 2025b) are diffusion models tailored for two-person  
 137 generation needing roughly 50 denoising steps for inference. Our framework builds on Rectified  
 138 Flow (Liu et al., 2022), which introduces a deterministic straight-line transport map between noisy  
 139 and clean samples, yielding simpler training dynamics and significantly faster (20 steps), more stable  
 140 sampling. DualFlow extends this paradigm with a contrastive rectified flow objective that sharpens  
 141 motion representations and strengthens alignment with multi-modal conditioning signals.

### 3 METHODS

#### 3.1 PROBLEM FORMULATION

146 A two-person motion interaction  $\mathbf{x} \in \mathcal{X}_A \times \mathcal{X}_B$  is represented as person A’s motion  $\mathbf{x}_a = \{x_a^i\}_{i=1}^N$   
 147 and person B’s motion  $\mathbf{x}_b = \{x_b^i\}_{i=1}^N$ , where paired frames  $x^j = (x_a^j, x_b^j)$  are naturally synchro-  
 148 nized. For the asymmetric case, person A is the *Actor* and person B the *Reactor*. The motion space  
 149 is  $\mathcal{X} \subset \mathbb{R}^{N \times J \times 3}$ , with  $N$  frames and  $J$  joints. Music features lie in  $\mathcal{M} \subset \mathbb{R}^{N \times d_m}$  with dimension  
 150  $d_m$ , and text embeddings in  $\mathcal{C} \subset \mathbb{R}^{d_c}$  with dimension  $d_c$ .

151 **Interactive Motion Generation.** Given text  $c \in \mathcal{C}$  and/or music  $m \in \mathcal{M}$ , the task is to generate  
 152 synchronized two-person motion  $(\mathbf{x}_a, \mathbf{x}_b)$  aligned with both modalities:  $F(c, m) \mapsto \mathbf{x}$  Special cases  
 153 include text-only ( $m = \phi$ ) (Liang et al., 2024), music-only ( $c = \phi$ ) (Li et al., 2024b; Ghosh et al.,  
 154 2025)), and joint text-music conditioning defined as Text-to-Duet by Gupta et al. (2025).

155 **Reactive Motion Generation.** Given the actor’s motion  $\mathbf{x}_a \in \mathcal{X}$ , text  $c \in \mathcal{C}$ , and/or music  $m \in \mathcal{M}$ ,  
 156 the goal is to generate the reactor’s motion  $\mathbf{x}_b \in \mathcal{X}$  such that  $(\mathbf{x}_a, \mathbf{x}_b)$  are coherent and synchro-  
 157 nized:  $G(c, m, \mathbf{x}_a) \mapsto \mathbf{x}_b$ . Variants include text-only ( $m = \phi$ ) (Xu et al., 2024), music-only  
 158 ( $c = \phi$ ) (Siyao et al., 2024), and joint text-music conditioning defined as Text-to-Dance Accompa-  
 159 niment by Gupta et al. (2025).

160 **Human Motion Representation.** We represent motion in a global coordinate system, where the  
 161 origin is anchored at the root joint of person A. The position of person B is expressed relative to this

162 root, ensuring a unified spatial reference frame for both. Our motion representation is based on the  
 163 format introduced by Liang et al. (2024), and encodes a single frame of an individual’s motion as  
 164  $x^i = [j_g^p, j_g^v, j^r, c^f]$ . Each frame includes global joint positions  $j_g^p \in \mathbb{R}^{3N_j}$ , global joint velocities  
 165  $j_g^v \in \mathbb{R}^{3N_j}$ , local joint rotations  $j^r \in \mathbb{R}^{6(N_j-1)}$  in 6D format within a root-relative coordinate frame,  
 166 and binary foot contact indicators  $c^f \in \mathbb{R}^4$  that specify ground contact status for each foot joint at  
 167 that time step. To model body joint rotations, we use the SMPL model (Loper et al., 2015) with  
 168  $N_j = 22$  joints, resulting in a fixed input dimension of  $x_i \in \mathbb{R}^{262}$ .  
 169

### 170 3.2 MULTI-MODAL MOTION RETRIEVAL

172 **Retrieval Dataset.** Direct retrieval from raw text often overlooks the nuanced dimensions of interactive  
 173 human motion, yielding low diversity or biased matches. To address this, we use GPT-4o (Hurst  
 174 et al., 2024) to decompose each prompt into three focused descriptions, inspired by Laban Movement  
 175 Analysis (Laban, 1950) and aligned with the MDD Dataset (Gupta et al., 2025): **(1) Spatial Rela-**  
 176 **tionship** (proximity, orientation, handholds), **(2) Body Movement** (actions, body parts, posture),  
 177 and **(3) Rhythm** (timing, musicality, stepping). To achieve high-quality and consistent decomposi-  
 178 tion, we design a structured prompting framework for the LLM (details in Appendix). For each  
 179 category, we build retrieval databases using CLIP (Radford et al., 2021) embeddings ( $D^S, D^B, D^R$ )  
 180 and music embeddings ( $D^M$ ) from Jukebox (Dhariwal et al., 2020).  
 181

182 **Similarity Scoring.** We generalize the similarity scoring function introduced by Zhang et al. (2023)  
 183 for any modality  $q$ . For a given query sample  $p$  with modality-specific feature embedding  $f_p^q$ , and a  
 184 candidate database motion sample  $x_i$  with embedding  $f_i^q$  and motion length  $l_i$ , the similarity score  
 $s_i^q$  is computed as:

$$185 s_i^q = \langle f_i^q, f_p^q \rangle \cdot e^{-\lambda \cdot \frac{|l_i - l_p|}{\max\{l_i, l_p\}}} \quad (1)$$

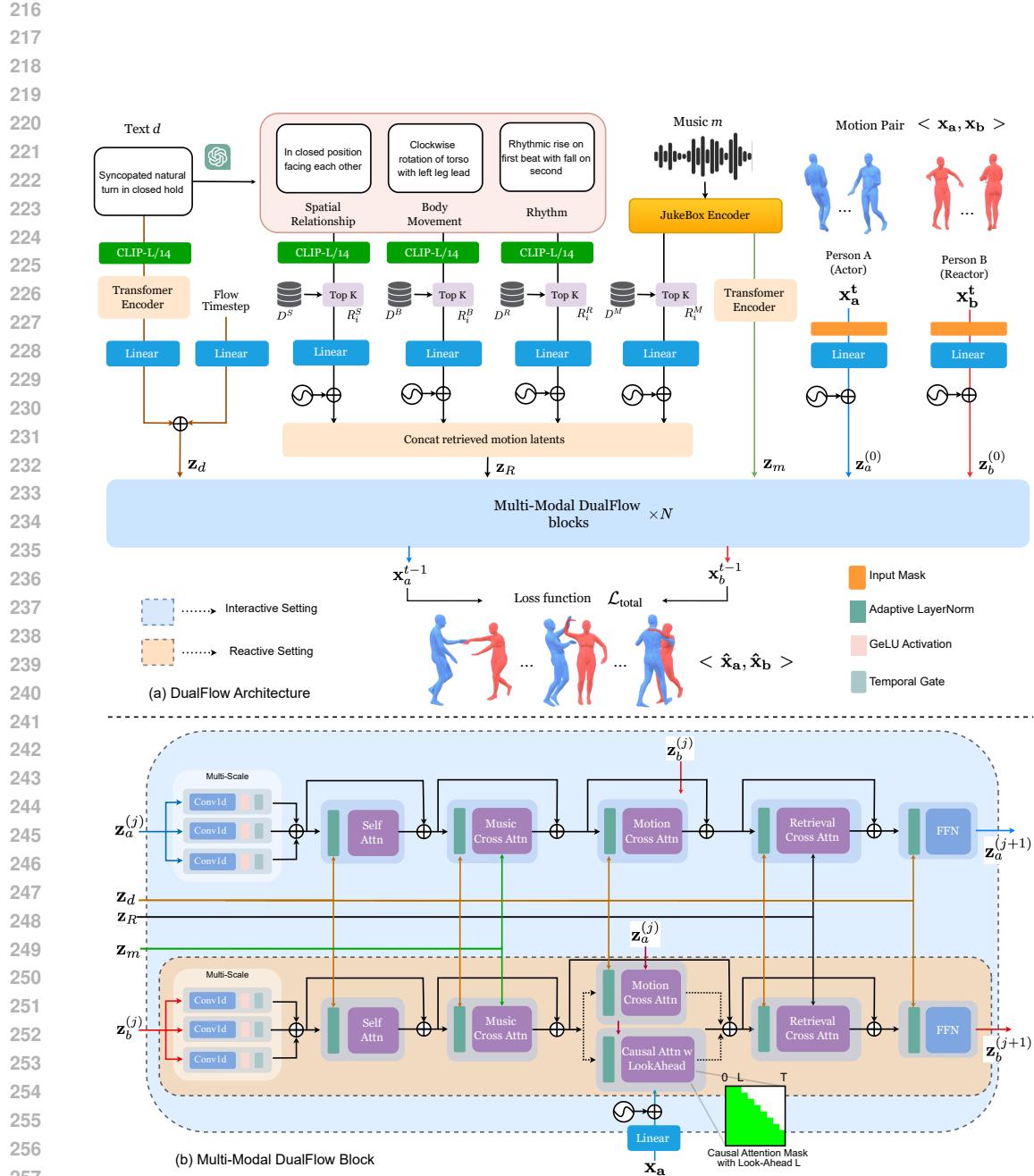
186 where  $\langle \cdot, \cdot \rangle$  is cosine similarity and the exponential term penalizes mismatch across motion length  
 187 with sensitivity  $\lambda$ , allowing retrievals that are semantically aligned and temporally compatible. Us-  
 188 ing this scoring, we retrieve top- $k$  matches from each database for every sample, yielding sets  
 189 ( $R_i^S, R_i^B, R_i^R, R_i^M$ ) as shown in Fig. 2. The retrieved sets collectively offer a diverse yet semanti-  
 190 cally relevant collection of motion exemplars, which are later used to guide generation.  
 191

### 192 3.3 MODEL ARCHITECTURE

193 **Conditioning latents.** The text description  $d$  is encoded using a pretrained CLIP model (Radford  
 194 et al., 2021) followed by a transformer encoder, then linearly projected and fused with time-step  
 195 embeddings to form the text latent  $z_d$ . Similarly, the music input  $m$  is processed by a pretrained  
 196 Jukebox encoder (Dhariwal et al., 2020), linearly transformed, and passed through a transformer en-  
 197 coder to obtain the music latent  $z_m$ . For retrieval-based conditioning, we use four retrieved motion  
 198 sets ( $R_i^S, R_i^B, R_i^R, R_i^M$ ) corresponding to spatial, body, rhythm, and music cues. Positional encod-  
 199 ings and a shared linear projection map these samples to the motion latent space, and the resulting  
 200 features are concatenated into the aggregated retrieval latent  $z_R$ .  
 201

202 **Model Pipeline.** Motion inputs  $x_a^t$  and  $x_b^t$  sampled for time step  $t$  are first projected through in-  
 203 dividual linear layers, followed by the addition of positional encodings, resulting in initial motion  
 204 latents  $\{z_a^{(0)}, z_b^{(0)}\}$ . They are fed into the main pipeline consisting of  $N$  cascaded DualFlow blocks.  
 205 The first block takes the initial motion latents  $\{z_a^{(0)}, z_b^{(0)}\}$  as input. Each subsequent block  $(j+1)$   
 206 takes the outputs from the previous block  $\{z_a^{(j)}, z_b^{(j)}\}$  and produces updated latents  $\{z_a^{(j+1)}, z_b^{(j+1)}\}$ ,  
 207 where  $j \in \{0, 1, \dots, N-1\}$ . All blocks are jointly conditioned on the multi-modal context  
 208  $\{z_d, z_m, z_R\}$ . The output from the last block,  $\{x_a^{t-1}, x_b^{t-1}\}$ , gives the denoised motion.  
 209

210 **DualFlow Block.** Each DualFlow block refines motion representations through temporally-aware  
 211 and context-conditioned operations. It begins with a multi-scale temporal convolution module with  
 212 varying kernel sizes to capture motion patterns at different time resolutions, followed by a GELU  
 213 activation (Hendrycks & Gimpel, 2023). Branch outputs are adaptively fused using learnable gat-  
 214 ing weights  $\gamma_k$ . The representation then passes through a Self-Attention layer to model internal  
 215 temporal dependencies, followed by a structured sequence of Cross-Attention layers: (1) *Music*  
*Cross-Attention* to align motion with music latent  $z_m$ , (2) *Motion Cross-Attention* to capture inter-  
 person interaction which gets replaced by *Casual Cross-Attention with Look-Ahead* during reactive



258 Figure 2: (a) Our framework takes text (CLIP-L/14), music, and motion sequences from an actor (A)  
259 and reactor (B) as inputs. Motion samples are retrieved using music features and LLM-decomposed  
260 text cues (spatial relationship, body movement, rhythm). These modality-specific latents are pro-  
261 cessed by cascaded Multi-Modal DualFlow Blocks that model interactive dynamics. Outputs are  
262 either both actors’ motions (interactive) or only the reactor’s motion (reactive) via a masking mech-  
263 anism. (b) A DualFlow Block: in the interactive setting, both branches operate symmetrically with  
264 Motion Cross Attention coordinating joint motion; in the reactive setting, the actor branch is masked  
265 and the reactor branch employs a Causal Cross Attention module with Look-Ahead  $L$ , replacing Mo-  
266 tion Cross Attention, to condition on the actor’s motion.

270 setting and (3) *Retrieval Cross-Attention* to semantically guide generation using retrieved exemplars.  
 271 All modules use residual connections for stability, and the text latent  $\mathbf{z}_d$  is injected via LayerNorm  
 272 conditioning. Each block thus integrates temporal structure, musical rhythm, and semantic guidance  
 273 from retrieval. Please refer to Appendix for detailed description of each module.

274 **Task settings.** In interactive setting, both  $\mathbf{x}_a^t$  and  $\mathbf{x}_b^t$  are sampled for time step  $t$  as input. In reactive  
 275 setting, only reactor’s motion  $\mathbf{x}_b$  is sampled, while actor’s motion  $\mathbf{x}_a$  is masked on the input side  
 276 and used for conditioning. To enable anticipatory reactor response, the *Motion Cross-attention* is  
 277 switched with Causal Cross Attention Layer having a Look-Ahead parameter  $L$ . It uses an upper  
 278 triangular mask such that reactor’s motion attends to past and only  $L$  future frames of actor’s motion  
 279 (Fig.2). This look-ahead mechanism ensures temporally aligned and context-aware generation.

### 281 3.4 CONTRASTIVE RECTIFIED FLOW

283 To generate realistic and semantically grounded duet motions, we build upon the Rectified Flow  
 284 Matching framework (Liu et al., 2022) and augment it with a contrastive learning objective inspired  
 285 by Contrastive Flow Matching Stoica et al. (2025). Unlike traditional diffusion models that rely on  
 286 stochastic denoising, rectified flow formulates the generation process as a deterministic Ordinary  
 287 Differential Equation (ODE) that transports a noise sample toward a data sample along a straight-  
 288 line path in motion space. Given a ground truth motion sample  $\mathbf{x}_0$  and a noise sample  $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ ,  
 289 the interpolated state at time  $t \in [0, 1]$  is defined as:  $\mathbf{x}_t = (1 - t)\mathbf{x}_0 + t\epsilon$ , and  $\mathbf{v}_t = \epsilon - \mathbf{x}_0$ ,  
 290 where  $\mathbf{x}_t$  lies along the linear path between  $\mathbf{x}_0$  and  $\epsilon$ , and  $\mathbf{v}_t$  is the constant velocity vector guiding  
 291 the transport. We train a time-dependent neural velocity field  $\mathbf{v}_\theta(\mathbf{x}_t, t, c)$  to approximate  $\mathbf{v}_t$ , condi-  
 292 tioned on a multimodal context  $c = (d, m, R_i^S, R_i^B, R_i^R, R_i^M)$ , which includes the text description  
 293  $d$ , music segment  $m$ , and retrieved motion sets. This context is encoded using cross attention layers  
 294 in DualFlow Block. The flow loss  $\mathcal{L}_{\text{flow}}$  is obtained by minimizing the squared error between the  
 295 predicted and target velocity:

$$\mathcal{L}_{\text{flow}} = \mathbb{E}_{\mathbf{x}_0, \epsilon, t} \left[ \|\mathbf{v}_\theta(\mathbf{x}_t, t, c) - \mathbf{v}_t\|_2^2 \right] \quad (2)$$

297 To encourage semantic alignment, we introduce a triplet contrastive loss that enforces proximity in  
 298 velocity space for semantically similar prompts with  $d(\cdot, \cdot)$  denoting cosine distance:

$$\mathcal{L}_{\text{triplet}} = \mathbb{E} [\max (0, d(\hat{\mathbf{v}}, \mathbf{v}^+) - d(\hat{\mathbf{v}}, \mathbf{v}^-) + m)] \quad (3)$$

301 For each batch, we randomly select an anchor sample whose predicted velocity is denoted as  
 302  $\hat{\mathbf{v}} = \mathbf{v}_\theta(\mathbf{x}_t, t, c)$ . We compute the cosine similarity between this anchor and all remaining samples  
 303 in the batch. Positive samples  $\mathbf{v}^+$  are defined as velocities belonging to motions with high  
 304 semantic or structural affinity to the anchor such as those sharing the same movement style, exhib-  
 305 iting similar textual descriptors or aligning in rhythmic structure. Negative samples  $\mathbf{v}^-$  correspond  
 306 to motions that differ substantially in style or exhibit low text similarity ( $> 0.6$ ). This sampling  
 307 strategy leverages the hierarchical structure of our RAG module to construct meaningful triplets that  
 308 emphasize semantically relevant distinctions. We use a margin of  $m = 0.2$  and set the triplet loss  
 309 weight to  $\lambda_{\text{triplet}} = 0.1$ . We define contrastive flow loss  $\mathcal{L}_{\text{CRF}}$  that combines both losses:

$$\mathcal{L}_{\text{CRF}} = \mathcal{L}_{\text{flow}} + \lambda_{\text{triplet}} \mathcal{L}_{\text{triplet}} \quad (4)$$

311 Here,  $\lambda_{\text{triplet}}$  balances reconstruction and semantic alignment objective.

### 313 3.5 REGULARIZATION LOSSES

315 **Geometric Losses.** We adopt the common geometric losses for human motion such as foot contact  
 316 loss  $\mathcal{L}_{\text{foot}}$  and joint velocity loss  $\mathcal{L}_{\text{vel}}$  from MDM Tevet et al. (2022) and bone length loss  $\mathcal{L}_{\text{BL}}$  from  
 317 InterGen Liang et al. (2024). The geometric loss is defined as:

$$\mathcal{L}_{\text{geo}} = \mathcal{L}_{\text{foot}} + \lambda_{\text{vel}} \mathcal{L}_{\text{vel}} + \lambda_{\text{BL}} \mathcal{L}_{\text{BL}} \quad (5)$$

320 where the hyper-parameters  $\lambda_{\text{vel}}, \lambda_{\text{BL}}$  are appropriately calibrated to fix the importance of each term.

321 **Interaction Losses.** We adapt joint distance map loss  $\mathcal{L}_{\text{DM}}$  and relative orientation loss  $\mathcal{L}_{\text{RO}}$  from  
 322 InterGen Liang et al. (2024) that allows close interactions when dancers should be in contact as well  
 323 as maintain proper facing directions and body alignments. To further strengthen inter-person coor-  
 324 dination during duet generation, we introduce a synchronization loss  $\mathcal{L}_{\text{sync}}$  that explicitly enforces

324 spatial relational coherence between the two person. The loss weights pairwise inter-person joint  
 325 distances using anatomically informed and task-relevant importance terms:  
 326

$$327 \quad \mathcal{L}_{\text{sync}} = \sum_{j_1, j_2} w_d(j_1, j_2) w_j(j_1, j_2) \|d_p(j_1, j_2) - d_{\text{gt}}(j_1, j_2)\|^2, \quad (6)$$

$$328$$

329 where  $d_p(j_1, j_2)$  and  $d_{\text{gt}}(j_1, j_2)$  denote the predicted and ground-truth Euclidean distances between  
 330 joint pairs across the two person. The distance-based weight  $w_d(j_1, j_2)$  assigns higher importance  
 331 to joint pairs that are naturally closer during interaction:  
 332

$$333 \quad w_d(j_1, j_2) = e^{(-\alpha \|d_{\text{gt}}(j_1, j_2)\|)}. \quad (7)$$

$$334$$

335 Complementarily,  $w_j(j_1, j_2)$  captures the anatomical & functional relevance of different body parts:  
 336

$$337 \quad w_j(j_1, j_2) = \begin{cases} w_h, & \text{if } j_1, j_2 \in \mathcal{J}_{\text{hands}}, \\ w_u, & \text{if } j_1, j_2 \in \mathcal{J}_{\text{upper}}, \\ w_l, & \text{if } j_1, j_2 \in \mathcal{J}_{\text{lower}}, \\ w_{\text{small}}, & \text{otherwise.} \end{cases} \quad (8)$$

$$338$$

$$339$$

$$340$$

$$341$$

342 Here,  $\mathcal{J}_{\text{hands}}$  (hands, wrists),  $\mathcal{J}_{\text{upper}}$  (shoulders, elbows, torso), and  $\mathcal{J}_{\text{lower}}$  (hips, knees, feet) denote  
 343 anatomically defined joint groups. Together, these weighting terms encourage the model to preserve  
 344 high-frequency synchrony while maintaining the global relational structure across the two bodies.  
 345

346 The interaction loss  $\mathcal{L}_{\text{inter}}$  is obtained as:

$$347 \quad \mathcal{L}_{\text{inter}} = \mathcal{L}_{\text{DM}} + \lambda_{\text{RO}} \mathcal{L}_{\text{RO}} + \lambda_{\text{sync}} \mathcal{L}_{\text{sync}} \quad (9)$$

$$348$$

349 where the hyper-parameters  $\lambda_{\text{RO}}$  and  $\lambda_{\text{sync}}$  are fixed based on importance of each term. For reactive  
 350 setting, ground-truth actor’s motion is used for all Interaction Losses.

351 **Total Loss.** The complete training objective combines all components through balanced weighting:  
 352

$$353 \quad \mathcal{L}_{\text{total}} = \mathcal{L}_{\text{CRF}} + \lambda_{\text{geo}} \mathcal{L}_{\text{geo}} + \lambda_{\text{inter}} \mathcal{L}_{\text{inter}} \quad (10)$$

$$354$$

$$355$$

356 where the hyperparameters  $\lambda_{\text{geo}}$  and  $\lambda_{\text{inter}}$  are meticulously selected to regulate the magnitude of  
 357 their corresponding terms.  
 358

## 4 RESULTS

359 **Datasets.** We train and evaluate DualFlow on three widely used two-person motion datasets  
 360 spanning text-to-motion, music-to-dance, and multi-modal duet generation: **(1) InterHuman-  
 361 AS** (Xu et al., 2024), an asymmetric extension of InterHuman (Liang et al., 2024) with actor-  
 362 reactor labels, over 50K interaction clips across 11 action types (e.g., handshake, hug) and paired  
 363 SMPL-X Pavlakos et al. (2019) sequences for modeling fine-grained interpersonal dynamics. **(2)**  
 364 **DD100** (Siyao et al., 2024), featuring 100 duet dance routines (e.g., salsa, hip-hop, waltz) with  
 365 high-resolution motion capture, paired music, and manually annotated dance structure for rhythm  
 366 and style alignment. **(3) MDD** (Gupta et al., 2025), a large-scale multi-modal duet dance dataset  
 367 with 10.3 hours of marker-based capture and 10K+ text annotations covering spatial relationships,  
 368 choreography, movement quality, and music synchronization. Together, these datasets enable robust  
 369 learning and evaluation of both interactive-reactive motion generation across multiple modalities.

370 **Implementation Details.** DualFlow consists of 20 cascaded blocks with 8 attention heads and  
 371 dropout of 0.1. Both motion and conditioning inputs are projected into a 512-dimensional latent  
 372 space, and each block’s feedforward layer is set to size 1024. We use 4800-d Jukebox (Dhariwal  
 373 et al., 2020) features for music and 768-d CLIP (ViT-L/14) (Radford et al., 2021) text embeddings.  
 374 All cross-attention layers adopt Flash attention for faster processing. The stride values for the  
 375 parallel convolution layers used are 7, 11 and 21. The model is trained with Contrastive Rectified Flow  
 376 using 200 integration steps and a cosine  $\beta$  scheduler. Training uses Adam with  $\text{lr } 2 \times 10^{-4}$ , weight  
 377 decay  $2 \times 10^{-5}$ , 1000 warm-up steps, batch size 32, for 5000 epochs. In the reactive setting, we  
 378 use a 10-frame look-ahead. For classifier-free guidance, both modalities are masked 10% of the

378 time, and text/music individually 20%. All hyperparameters were selected empirically on a held-out  
 379 validation set.

380 **Evaluation Metrics.** We evaluate models using metrics adapted from text-to-motion (Liang et al.,  
 381 2024) and music-to-motion (Siyao et al., 2024): *Frechet Inception Distance (FID)*: Distributional  
 382 similarity between ground truth and generated motions; *Multimodal Distance (MM Dist)*: Text-  
 383 motion alignment via feature distance; *R-Precision*: Text-motion alignment through retrieval accu-  
 384 racies within a batch; *Diversity*: Variety of generated motions regardless of conditions; *Multimodal-  
 385 ity (MModality)*: Diversity of generated motions under identical conditioning; *Beat Echo Degree  
 386 (BED)*: Synchronization index of the both person’s generated motion; *Beat-Alignment Score (BAS)*:  
 387 Alignment between inflection points in motion and musical beats and Average Inference Time per  
 388 Sentence (AITS) (Dai et al., 2024)

#### 390 4.1 QUANTITATIVE METRICS

391 **Text & Music condition Motion Generation on MDD.** We evaluate DualFlow on MDD,  
 392 InterHuman-AS, and DD100 using standard text-motion and music-motion metrics. As shown in  
 393 Table 1, DualFlow consistently outperforms baselines across most metrics for duet and reactive  
 394 tasks. In the interactive task, DualFlow (Both) achieves the highest R-Precision@3 (0.513) and low-  
 395 est MMDist (0.513), indicating strong alignment with multimodal inputs. DualFlow (Text) records  
 396 the best Beat-Align Score (BAS) at 0.215. While InterGen (Text) attains the best FID (0.405) and  
 397 Diversity (1.405), DualFlow (Both) follows closely with an FID of 0.415 and a Diversity score of  
 398 1.307. For the reactive task, DualFlow (Both) leads in all R-Precision scores, FID (0.686), MMDist  
 399 (1.056), and shows strong BAS (0.228). Although DuoLando (Both) has a slightly higher BED  
 400 (0.395), DualFlow remains competitive at 0.215.

401  
 402 Table 1: Duet Generation results on MDD dataset with both text and music modalities. **Bold** for  
 403 best, underline for second best.

| 405 Methods          | R-Precision↑ |              |              | FID↓         | MMDist↓      | Diversity→   | MModal↑      | BED↑         | BAS↑         |
|----------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                      | 406 Top 1    | Top 2        | Top 3        |              |              |              |              |              |              |
| 407 Ground Truth     | 0.231        | 0.398        | 0.522        | 0.065        | 0.077        | 1.387        | -            | 0.327        | 0.170        |
| <b>Duet Task</b>     |              |              |              |              |              |              |              |              |              |
| 409 MDM(Text)        | 0.082        | 0.124        | 0.192        | 1.420        | 2.133        | 1.216        | 0.811        | 0.211        | 0.186        |
| 410 MDM(Music)       | 0.041        | 0.102        | 0.135        | 2.241        | 2.471        | 1.192        | 0.411        | 0.210        | 0.192        |
| 411 MDM(Both)        | 0.061        | 0.108        | 0.163        | 1.739        | 2.244        | 1.235        | 0.787        | 0.194        | 0.190        |
| 412 InterGen(Text)   | 0.113        | 0.223        | 0.305        | <b>0.405</b> | 1.462        | <u>1.405</u> | 1.231        | <b>0.422</b> | 0.194        |
| 413 InterGen(Music)  | 0.023        | 0.067        | 0.088        | 2.014        | 2.526        | 1.300        | <b>1.768</b> | 0.364        | 0.163        |
| 414 InterGen(Both)   | 0.105        | 0.206        | 0.302        | 0.426        | 1.532        | 1.380        | 1.352        | <u>0.385</u> | 0.185        |
| 415 DualFlow(Text)   | <b>0.211</b> | <u>0.365</u> | <u>0.492</u> | 0.657        | <u>0.521</u> | 1.239        | <u>1.569</u> | 0.288        | <b>0.215</b> |
| 416 DualFlow(Music)  | 0.172        | 0.308        | 0.452        | 0.694        | 1.244        | 1.319        | 1.109        | 0.308        | 0.180        |
| 417 DualFlow(Both)   | <u>0.185</u> | <b>0.373</b> | <b>0.513</b> | <u>0.415</u> | <b>0.513</b> | <b>1.392</b> | 1.467        | 0.286        | 0.179        |
| <b>Reactive Task</b> |              |              |              |              |              |              |              |              |              |
| 419 DuoLando(Text)   | 0.047        | 0.121        | 0.182        | 1.538        | 2.811        | 1.422        | -            | 0.311        | 0.195        |
| 420 DuoLando(Music)  | 0.069        | 0.141        | 0.202        | 0.721        | 2.633        | <b>1.390</b> | -            | 0.305        | 0.216        |
| 421 DuoLando(Both)   | 0.078        | 0.156        | 0.219        | <u>0.698</u> | 2.113        | 1.371        | -            | <b>0.395</b> | 0.224        |
| 422 DualFlow(Text)   | <u>0.143</u> | <b>0.284</b> | <u>0.450</u> | 0.741        | <u>1.365</u> | <u>1.379</u> | <u>1.667</u> | 0.229        | <b>0.228</b> |
| 423 DualFlow(Music)  | 0.135        | 0.260        | 0.397        | 0.750        | 1.672        | 1.460        | <b>1.976</b> | 0.195        | 0.202        |
| DualFlow(Both)       | <b>0.189</b> | <b>0.341</b> | <b>0.471</b> | <b>0.686</b> | <b>1.056</b> | 1.203        | 1.473        | 0.215        | <u>0.226</u> |

424 **Text-conditioned Motion Generation on InterHuman-AS.** Table 2 shows DualFlow significantly  
 425 outperforms InterGen on R-Precision (Top-1: 0.437, Top-3: 0.681), with much lower MMDist  
 426 (0.394) and the highest multimodality score (2.729). While InterGen has a slightly better FID (5.918  
 427 vs. 6.296), DualFlow offers better semantic and multimodal alignment. In the reactive task, we train  
 428 our model with L=0 removing access to actor’s intention (completely causal) defined as Uncon-  
 429 strained (UC) for fair comparison with ReGenNet(UC). DualFlow(UC) surpasses ReGenNet(UC)  
 430 in R-Precision@3 (0.572 vs. 0.407), MMDist (6.314 vs. 6.860), Diversity (5.449 vs. 5.214) and  
 431 Multimodality (2.502 vs. 2.391).

432  
433 Table 2: Interactive Two-person Generation results conditioned  
434 on text modality for the InterHuman-AS dataset.

| Methods              | R-Precision↑      |              |              | FID↓         | MMDist↓      | Diverse→     | MModal↑      |
|----------------------|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                      | Top 1 Top 2 Top 3 |              |              |              |              |              |              |
|                      | Ground Truth      | 0.452        | 0.610        | 0.701        | 0.273        | 3.755        | 7.948        |
| <b>Duet Task</b>     |                   |              |              |              |              |              |              |
| InterGen             | 0.371             | 0.515        | 0.624        | <b>5.918</b> | 5.108        | <b>7.387</b> | 2.141        |
| DualFlow             | <b>0.437</b>      | <b>0.558</b> | <b>0.681</b> | 6.296        | <b>4.394</b> | 7.116        | <b>2.729</b> |
| <b>Reactive Task</b> |                   |              |              |              |              |              |              |
| ReGenNet(UC)         | -                 | -            | 0.407        | <b>2.265</b> | 6.860        | 5.214        | 2.391        |
| DualFlow(UC)         | <b>0.381</b>      | <b>0.493</b> | <b>0.572</b> | 2.581        | <b>6.314</b> | <b>5.449</b> | <b>2.502</b> |
| DualFlow             | 0.419             | 0.549        | 0.629        | 2.448        | 6.230        | 4.981        | 2.616        |

445  
446 Table 3: Reactive Motion Generation results conditioned on text  
447 modality for the DD100 dataset.

| Methods      | Solo Metrics       |                    |                    |                    | Interactive Metrics |                     |               | Rhythmic      |
|--------------|--------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------------|---------------|
|              | FID <sub>k</sub> ↓ | FID <sub>g</sub> ↓ | Div <sub>k</sub> ↑ | Div <sub>g</sub> ↑ | FID <sub>cd</sub> ↓ | Div <sub>cd</sub> ↑ | BED(↑)        | BAS(↑)        |
| Ground Truth | 6.56               | 6.37               | 11.31              | 7.61               | 3.41                | 12.35               | 0.5308        | 0.1839        |
| Bailando     | 78.52              | 36.19              | <b>11.15</b>       | 7.92               | 6643.31             | <b>52.50</b>        | 0.1831        | 0.1930        |
| EDGE         | 69.14              | 44.58              | 8.62               | 6.35               | 5894.45             | <b>60.62</b>        | 0.1822        | 0.1875        |
| Duolando     | <b>25.30</b>       | <b>33.52</b>       | 10.92              | <b>7.97</b>        | 9.97                | 14.02               | <b>0.2858</b> | 0.2046        |
| DualFlow     | <b>19.22</b>       | <b>28.85</b>       | <b>11.01</b>       | 7.35               | <b>5.57</b>         | 19.52               | 0.2767        | <b>0.2113</b> |

455  
456  
457  
458 **Reactive Motion Generation on DD100.** Table 3 highlights DualFlow’s performance across all  
459 metrics for reactive motion task. It achieves the best FID<sub>k</sub> (19.22), FID<sub>g</sub> (28.85), and FID<sub>cd</sub> (5.57),  
460 with strong diversity and rhythmic scores (Div<sub>k</sub>: 11.01, BAS: 0.211). While Duolando leads in BED  
461 (0.285), DualFlow follows closely at 0.276, showing generative fidelity and collaborative modeling.  
462

463 **Computational Complexity.** Figure 4 reports FID as a function of inference steps for DualFlow  
464 and InterGen. While InterGen requires more than 50 DDIM steps to reach high-quality performance,  
465 DualFlow achieves better FID with only 20 Rectified Flow (RF) steps. For a 10-second sequence at  
466 30 FPS, the Average Inference Time per Sentence (AITS) on an RTX 5090 GPU is 1.92s for InterGen  
467 (50 DDIM steps) and 1.24s for DualFlow (20 RF steps), demonstrating improved efficiency under  
468 identical hardware and sequence length.

## 4.2 QUALITATIVE EVALUATION

471 Fig. 5 shows a Qualitative Comparison for two samples from MDD Dataset. While samples generated  
472 from both text and music condition-based InterGen and DualFlow models follow the text  
473 prompt, the motion quality of InterGen has reduced motion quality as circled, where the hands are  
474 flipping and the distance is increased. We also conduct a user study to qualitatively evaluate the  
475 motion sequences generated by our DualFlow framework in comparison with baseline methods on  
476 both tasks from the MDD dataset (details in Appendix). As shown in Fig.3, DualFlow outperforms  
477 the baseline methods across most comparisons, demonstrating superior alignment with both text and  
478 music, as well as high-quality motion generation.

## 4.3 ABLATION STUDY

481 We perform an ablation study on both the tasks (Table 4) to assess the impact of key DualFlow com-  
482 ponents. We compare the full model against four variants: (1) replacing Causal Look-Ahead (CLA)  
483 Attention with regular cross-attention (only for reactive setting), (2) removing RAG by replacing  
484 Retrieved Causal Attention with self-attention, (3) removing the triplet loss  $\mathcal{L}_{triplet}$ , and (4) substi-  
485 tuting high-level Jukebox features with Mel-spectrograms. Results show clear performance drops  
across most metrics, highlighting the importance of anticipatory modeling, retrieval grounding, and

Figure 3: User study results

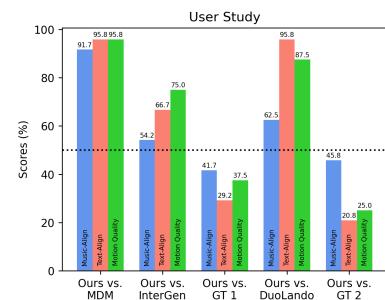
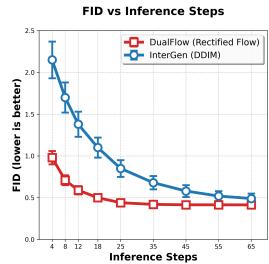


Figure 4: FID vs. Steps



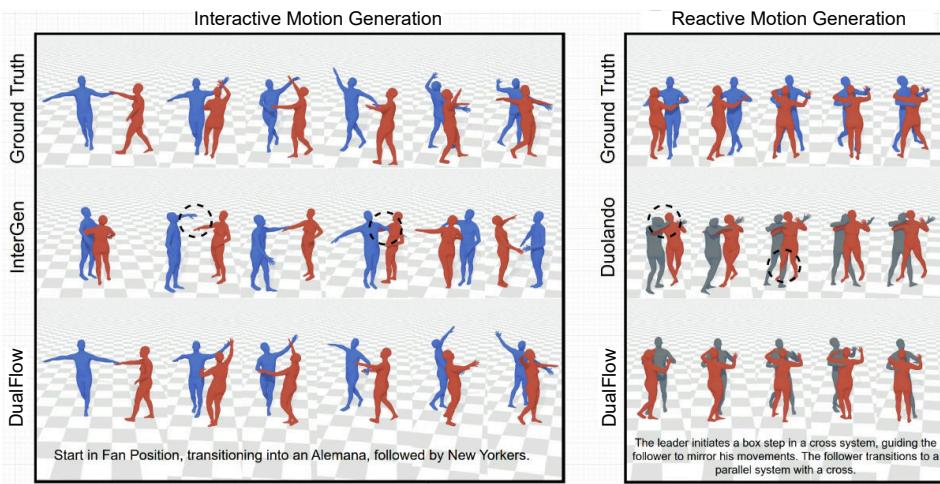


Figure 5: Comparing DualFlow with InterGen (interactive) and DuoLando (reactive) against ground truth on MDD Dataset. Black circles mark regions where baselines lose contact or produce distortions. InterGen shows artifacts like unnatural hand spacing, body interpenetration, and skipping the Alemana (follower’s inside turn), while DuoLando shows incorrect leg initiation and head orientation. In contrast, DualFlow generates smooth, text-aligned choreography and coherent partner responses closely matching the ground truth. Supplementary video provides detailed visualizations.

rich audio features for high-quality reactive motion generation. Please refer to Appendix for more ablation results.

Table 4: Ablation Study on MDD dataset (both text & music).

| Methods                                       | R-Precision $\uparrow$ |              |              | FID $\downarrow$ | MMDist $\downarrow$ | Diverse $\rightarrow$ | MModal $\uparrow$ | BED $\uparrow$ | BAS $\uparrow$ |
|-----------------------------------------------|------------------------|--------------|--------------|------------------|---------------------|-----------------------|-------------------|----------------|----------------|
|                                               | Top 1                  | Top 2        | Top 3        |                  |                     |                       |                   |                |                |
| Ground Truth                                  | 0.231                  | 0.398        | 0.522        | 0.065            | 0.077               | 1.387                 | -                 | 0.327          | 0.170          |
| <b>Interactive Task</b>                       |                        |              |              |                  |                     |                       |                   |                |                |
| DualFlow(w/o RAG)                             | 0.179                  | 0.356        | 0.498        | 0.622            | 0.626               | 1.502                 | 1.224             | 0.254          | 0.162          |
| DualFlow(w/o $\mathcal{L}_{\text{triplet}}$ ) | 0.158                  | 0.297        | 0.412        | 0.783            | 0.818               | 1.433                 | 0.844             | <b>0.291</b>   | 0.169          |
| DualFlow(w/o $\mathcal{L}_{\text{sync}}$ )    | <u>0.182</u>           | <u>0.369</u> | <u>0.509</u> | <u>0.472</u>     | <u>0.590</u>        | 1.224                 | <u>1.340</u>      | 0.277          | <b>0.182</b>   |
| DualFlow(Spectral)                            | 0.172                  | 0.321        | 0.477        | 0.647            | 0.633               | <b>1.383</b>          | 1.114             | 0.255          | 0.158          |
| DualFlow(Jukebox)                             | <b>0.185</b>           | <b>0.373</b> | <b>0.513</b> | <b>0.415</b>     | <b>0.513</b>        | <u>1.392</u>          | <b>1.467</b>      | <u>0.286</u>   | <u>0.179</u>   |
| <b>Reactive Task</b>                          |                        |              |              |                  |                     |                       |                   |                |                |
| DualFlow(w/o CLA)                             | 0.172                  | 0.311        | 0.338        | 0.849            | <b>0.831</b>        | 1.137                 | 1.385             | <u>0.247</u>   | 0.142          |
| DualFlow(w/o RAG)                             | <b>0.192</b>           | <b>0.352</b> | <b>0.479</b> | <u>0.714</u>     | <u>0.933</u>        | <u>1.270</u>          | <u>1.466</u>      | 0.233          | 0.193          |
| DualFlow(w/o $\mathcal{L}_{\text{triplet}}$ ) | 0.153                  | 0.292        | 0.308        | 0.885            | 1.328               | 1.664                 | 1.007             | 0.204          | 0.186          |
| DualFlow(w/o $\mathcal{L}_{\text{sync}}$ )    | 0.166                  | 0.311        | 0.453        | 0.774            | 1.112               | <b>1.429</b>          | 1.233             | 0.235          | <u>0.202</u>   |
| DualFlow(Spectral)                            | 0.162                  | 0.301        | 0.468        | 0.721            | 0.965               | 1.261                 | 1.401             | <b>0.255</b>   | 0.162          |
| DualFlow(Jukebox)                             | <u>0.189</u>           | <u>0.341</u> | <u>0.471</u> | <b>0.686</b>     | 1.056               | 1.203                 | <b>1.473</b>      | 0.215          | <b>0.226</b>   |

## 5 CONCLUSION

We introduced DualFlow, a unified rectified flow-based framework for efficient and expressive two-person 3D motion generation, supporting both interactive and reactive settings with text, music, and retrieved motion exemplars. Leveraging rectified flow enables faster sampling and lower latency than diffusion-based methods. Extensive evaluations on MDD, InterHuman-AS, and DD100 show superior performance in duet generation and reactive motion. DualFlow advances multi-modal two-person motion synthesis, opening new opportunities for immersive avatar interaction, intelligent choreography, and responsive digital humans. Future work will explore improved interactive generation with newer flow-matching methods, real-time motion editing, and few-shot adaptation to novel styles and languages.

540 REFERENCES  
541

542 Léore Bensabath, Mathis Petrovich, and Gul Varol. A cross-dataset study for text-based 3d human  
543 motion retrieval. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern  
544 Recognition*, pp. 1932–1940, 2024.

545 Andreas Blattmann, Robin Rombach, Kaan Oktay, Jonas Müller, and Björn Ommer. Retrieval-  
546 augmented diffusion models. *Advances in Neural Information Processing Systems*, 35:15309–  
547 15324, 2022.

548 Manolo Canales Cuba and João Paulo Gois. Flowmotion: Target-predictive flow matching for real-  
549 istic text-driven human motion generation. *arXiv e-prints*, pp. arXiv–2504, 2025.

550 Zhi Cen, Huaijin Pi, Sida Peng, Qing Shuai, Yujun Shen, Hujun Bao, Xiaowei Zhou, and Ruizhen  
551 Hu. Ready-to-react: Online reaction policy for two-character interaction generation. *arXiv  
552 preprint arXiv:2502.20370*, 2025.

553 Wenhui Chen, Hexiang Hu, Chitwan Saharia, and William W Cohen. Re-imagen: Retrieval-  
554 augmented text-to-image generator. *arXiv preprint arXiv:2209.14491*, 2022.

555 Rishabh Dabral, Muhammad Hamza Mughal, Vladislav Golyanik, and Christian Theobalt. Mo-  
556 fusion: A framework for denoising-diffusion-based motion synthesis. In *Computer Vision and  
557 Pattern Recognition (CVPR)*, 2023.

558 Wenxun Dai, Ling-Hao Chen, Jingbo Wang, Jinpeng Liu, Bo Dai, and Yansong Tang. Motionlcm:  
559 Real-time controllable motion generation via latent consistency model. In *European Conference  
560 on Computer Vision*, pp. 390–408. Springer, 2024.

561 Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya Sutskever.  
562 Jukebox: A generative model for music. *arXiv preprint arXiv:2005.00341*, 2020.

563 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,  
564 Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A  
565 survey. *arXiv preprint arXiv:2312.10997*, 2(1), 2023.

566 Anindita Ghosh, Rishabh Dabral, Vladislav Golyanik, Christian Theobalt, and Philipp Slusallek.  
567 Remos: 3d motion-conditioned reaction synthesis for two-person interactions. In *European Con-  
568 ference on Computer Vision*, pp. 418–437. Springer, 2024.

569 Anindita Ghosh, Bing Zhou, Rishabh Dabral, Jian Wang, Vladislav Golyanik, Christian Theobalt,  
570 Philipp Slusallek, and Chuan Guo. Duetgen: Music driven two-person dance generation via hier-  
571 archical masked modeling. In *Proceedings of the Special Interest Group on Computer Graphics  
572 and Interactive Techniques Conference Conference Papers*, pp. 1–11, 2025.

573 Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li Cheng. Generating  
574 diverse and natural 3d human motions from text. In *Proceedings of the IEEE/CVF conference on  
575 computer vision and pattern recognition*, pp. 5152–5161, 2022.

576 Prerit Gupta, Jason Alexander Fotso-Puepi, Zhengyuan Li, Jay Mehta, and Aniket Bera. Mdd: A  
577 dataset for text-and-music conditioned duet dance generation. In *Proceedings of the IEEE/CVF  
578 International Conference on Computer Vision (ICCV)*, pp. 13932–13941, October 2025.

579 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented  
580 language model pre-training. In *International conference on machine learning*, pp. 3929–3938.  
581 PMLR, 2020.

582 Yingqing He, Menghan Xia, Haoxin Chen, Xiaodong Cun, Yuan Gong, Jinbo Xing, Yong Zhang,  
583 Xintao Wang, Chao Weng, Ying Shan, et al. Animate-a-story: Storytelling with retrieval-  
584 augmented video generation. *arXiv preprint arXiv:2307.06940*, 2023.

585 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023. URL <https://arxiv.org/abs/1606.08415>.

594 Daniel Holden, Jun Saito, and Taku Komura. A deep learning framework for character motion  
 595 synthesis and editing. *ACM Transactions on Graphics (TOG)*, 35(4):1–11, 2016.  
 596

597 Vincent Tao Hu, Wenzhe Yin, Pingchuan Ma, Yunlu Chen, Basura Fernando, Yuki M Asano, Ef-  
 598 stratos Gavves, Pascal Mettes, Bjorn Ommer, and Cees GM Snoek. Motion flow matching for  
 599 human motion synthesis and editing. *arXiv preprint arXiv:2312.08895*, 2023.

600 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-  
 601 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*  
 602 *arXiv:2410.21276*, 2024.

603

604 Sai Shashank Kalakonda, Shubh Maheshwari, and Ravi Kiran Sarvadevabhatla. Morag - multi-  
 605 fusion retrieval augmented generation for human motion. In *Proceedings of the IEEE/CVF Winter*  
 606 *Conference on Applications of Computer Vision (WACV)*, 2025.

607 Jogendra Nath Kundu, Himanshu Buckhash, Priyanka Mandikal, Rahul M V, Anirudh Jamkhandi,  
 608 and R. Venkatesh Babu. Cross-conditioned recurrent networks for long-term synthesis of inter-  
 609 person human motion interactions. In *2020 IEEE Winter Conference on Applications of Computer*  
 610 *Vision (WACV)*, pp. 2713–2722, 2020. doi: 10.1109/WACV45572.2020.9093627.

611

612 Rudolf von Laban. *The mastery of movement on the stage*. Macdonald & Evans, 1950. URL  
 613 <https://cir.nii.ac.jp/crid/1130282272753007360>.

614

615 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,  
 616 Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-  
 617 ation for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:  
 618 9459–9474, 2020.

619

620 Boyuan Li, Xihua Wang, Ruihua Song, and Wenbing Huang. Two-in-one: Unified multi-person  
 621 interactive motion generation by latent diffusion transformer, 2024a. URL <https://arxiv.org/abs/2412.16670>.

622

623 Ronghui Li, Youliang Zhang, Yachao Zhang, Yuxiang Zhang, Mingyang Su, Jie Guo, Ziwei Liu,  
 624 Yebin Liu, and Xiu Li. Interdance: Reactive 3d dance generation with realistic duet interactions.  
 625 *arXiv preprint arXiv:2412.16982*, 2024b.

626

627 Han Liang, Wenqian Zhang, Wenxuan Li, Jingyi Yu, and Lan Xu. Intergen: Diffusion-based multi-  
 628 human motion generation under complex interactions. *International Journal of Computer Vision*,  
 132(9):3463–3483, 2024.

629

630 Zhouyingcheng Liao, Mingyuan Zhang, Wenjia Wang, Lei Yang, and Taku Komura. Rmd: A simple  
 631 baseline for more general human motion generation via training-free retrieval-augmented motion  
 632 diffuse. *arXiv preprint arXiv:2412.04343*, 2024.

633

634 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching  
 635 for generative modeling, 2023. URL <https://arxiv.org/abs/2210.02747>.

636

637 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and  
 638 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

639

640 Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black.  
 641 SMPL: A skinned multi-person linear model. *ACM Trans. Graphics (Proc. SIGGRAPH Asia)*,  
 34(6):248:1–248:16, October 2015.

642

643 Qianhui Men, Hubert PH Shum, Edmond SL Ho, and Howard Leung. Gan-based reactive motion  
 644 synthesis with class-aware discriminators for human–human interaction. *Computers & Graphics*,  
 102:634–645, 2022.

645

646 Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed A. A. Osman, Dim-  
 647 itrios Tzionas, and Michael J. Black. Expressive body capture: 3D hands, face, and body from a  
 648 single image. In *Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)*,  
 649 pp. 10975–10985, 2019.

648 Mathis Petrovich, Michael J Black, and G  l Varol. Temos: Generating diverse human motions from  
 649 textual descriptions. In *European Conference on Computer Vision*, pp. 480–497. Springer, 2022.  
 650

651 Mathis Petrovich, Michael J. Black, and G  l Varol. Tmr: Text-to-motion retrieval using contrastive  
 652 3d human motion synthesis. In *Proceedings of the IEEE/CVF International Conference on Com-  
 653 puter Vision (ICCV)*, pp. 9488–9497, October 2023.

654 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-  
 655 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya  
 656 Sutskever. Learning transferable visual models from natural language supervision. In Marina  
 657 Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine  
 658 Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp. 8748–8763. PMLR,  
 659 18–24 Jul 2021.

660 Md Ashiqur Rahman, Jasorsi Ghosh, Hrishikesh Viswanath, Kamyar Azizzadenesheli, and Aniket  
 661 Bera. Pacmo: Partner dependent human motion generation in dyadic human activity using neural  
 662 operators, 2022. URL <https://arxiv.org/abs/2211.16210>.

663 Yoni Shafir, Guy Tevet, Roy Kapon, and Amit Haim Bermano. Human motion diffusion as a gener-  
 664 ative prior. In *The Twelfth International Conference on Learning Representations*, 2024.

665 Shelly Sheynin, Oron Ashual, Adam Polyak, Uriel Singer, Oran Gafni, Eliya Nachmani, and  
 666 Yaniv Taigman. Knn-diffusion: Image generation via large-scale retrieval. *arXiv preprint  
 667 arXiv:2204.02849*, 2022.

668 Li Siyao, Tianpei Gu, Zhitao Yang, Zhengyu Lin, Ziwei Liu, Henghui Ding, Lei Yang, and  
 669 Chen Change Loy. Duolando: Follower gpt with off-policy reinforcement learning for dance  
 670 accompaniment. *arXiv preprint arXiv:2403.18811*, 2024.

672 George Stoica, Vivek Ramanujan, Xiang Fan, Ali Farhadi, Ranjay Krishna, and Judy Hoffman.  
 673 Contrastive flow matching. *arXiv preprint arXiv:2506.05350*, 2025.

674 Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Daniel Cohen-Or, and Amit H Bermano.  
 675 Human motion diffusion model. *arXiv preprint arXiv:2209.14916*, 2022.

677 Runqi Wang, Caoyuan Ma, Jian Zhao, Hanrui Xu, Dongfang Sun, Haoyang Chen, Lin Xiong, Zheng  
 678 Wang, and Xuelong Li. Leader and follower: Interactive motion generation under trajectory  
 679 constraints, 2025a. URL <https://arxiv.org/abs/2502.11563>.

680 Yabiao Wang, Shuo Wang, Jiangning Zhang, Ke Fan, Jiafu Wu, Zhucun Xue, and Yong Liu. Tim-  
 681 otion: Temporal and interactive framework for efficient human-human motion generation. In  
 682 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 7169–7178, 2025b.

683 Kevin Xie, Tingwu Wang, Umar Iqbal, Yunrong Guo, Sanja Fidler, and Florian Shkurti. Physics-  
 684 based human motion estimation and synthesis from videos. In *Proceedings of the IEEE/CVF  
 685 International Conference on Computer Vision*, pp. 11532–11541, 2021.

687 Liang Xu, Ziyang Song, Dongliang Wang, Jing Su, Zhicheng Fang, Chenjing Ding, Weihao Gan,  
 688 Yichao Yan, Xin Jin, Xiaokang Yang, et al. Actformer: A gan-based transformer towards general  
 689 action-conditioned 3d human motion generation. *ICCV*, 2023.

690 Liang Xu, Yizhou Zhou, Yichao Yan, Xin Jin, Wenhan Zhu, Fengyun Rao, Xiaokang Yang, and  
 691 Wenjun Zeng. Regennet: Towards human action-reaction synthesis. In *Proceedings of the  
 692 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1759–1769, 2024.

693 Hongwei Yi, Justus Thies, Michael J Black, Xue Bin Peng, and Davis Rempe. Generating human  
 694 interaction motions in scenes with text control. In *European Conference on Computer Vision*, pp.  
 695 246–263. Springer, 2024.

697 Mingyuan Zhang, Xinying Guo, Liang Pan, Zhongang Cai, Fangzhou Hong, Huirong Li, Lei Yang,  
 698 and Ziwei Liu. Remodiffuse: Retrieval-augmented motion diffusion model. In *Proceedings of the  
 699 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 364–373, October 2023.

700 Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou Hong, Xinying Guo, Lei Yang, and Ziwei  
 701 Liu. Motiondiffuse: Text-driven human motion generation with diffusion model. *IEEE transac-  
 702 tions on pattern analysis and machine intelligence*, 46(6):4115–4128, 2024.

702 **A LLM DISCLOSURE**  
703704 LLMs were only used to polish the text and proof read the paper for grammatical errors. They were  
705 not used to generate any metrics or citations.  
706707 **B REPRODUCIBILITY**  
708709 Full code for this project along with the trained checkpoints for all tasks will be made open source  
710 and publicly available upon paper acceptance.  
711712 **C LLM-BASED DECOMPOSITION**  
713714 **C.1 PROMPT DESIGN**  
715716 We design a structured prompting framework for the LLM, which is detailed as follows:  
717718 1. **System prompt:** We instruct the model with the following directive:  
719 "As a professional dance movement analyst, please break down the given textual description  
720 of a duet dancing movement for {genre} into three focused descriptions: (1) *Spatial*  
721 *Relationships*: physical positioning, orientation, handhold (2) *Body Movement*: key ges-  
722 *tures*, actions, specific body part movements (3) *Rhythm*: tempo, timing, rhythmic dancing  
723 style and stepping. Please refer to the provided documents for guidance."  
724  
725 2. **Few-shot Examples:** We provide a curated set of genre-specific examples (3 per genre)  
726 illustrating how input descriptions are manually decomposed into the three components.  
727 These examples were crafted by analyzing a diverse subset of textual annotations in the  
728 MDD dataset and annotating their corresponding focused descriptions through expert re-  
729 view.  
730  
731 3. **Reference Guidelines:** To promote interpretive consistency, we supply a supporting doc-  
732 ument containing structured definitions and keyword clusters describing typical language  
733 and semantic categories associated with each duet motion aspect.  
734735 **C.2 GENERATED FOCUSED DESCRIPTIONS**  
736737 To enhance semantic grounding during retrieval, we leverage a Large Language Model (LLM) to  
738 decompose free-form textual prompts into structured, movement-relevant subcomponents. Drawing  
739 inspiration from Laban Movement Analysis (LMA), we extract three focused descriptions: *Spatial*  
740 *Relationship*, *Body Movement*, and *Rhythm*. This decomposition allows the system to perform more  
741 targeted motion retrieval by aligning each aspect of the prompt with corresponding motion features.  
742 By translating ambiguous or abstract user descriptions into focused representations, the objective for  
743 the LLM-based refinement is to improve both retrieval precision and downstream motion generation  
744 quality. Table 5 shows some of the examples for the focused textual descriptions for text prompts  
745 for the MDD Dataset.  
746747 **C.3 VALIDATION OF LLM-BASED SEMANTIC DECOMPOSITION**  
748749 To verify that the LLM-generated spatial, body-movement, and rhythm descriptors accurately re-  
750 flect the original human-written annotations, we randomly sampled 30 descriptions from MDD and  
751 InterHuman-AS and manually compared each decomposed attribute against the ground-truth text.  
752 Using our tuned GPT-4o prompt (Section C.1), two annotators independently evaluated consistency,  
753 correctness, and completeness, scoring each attribute on a 5-point scale (1 = incorrect, 5 = fully  
754 correct) based on consistency, correctness, and completeness. The decompositions showed high fi-  
755 delity to the original descriptions, with accuracies of 96.1% for spatial relationships, 98.3% for body  
756 movement, and 86.9% for rhythm (overall 93.8%). We observed that in a few cases the LLM intro-  
757 duced rhythm-related terms were not explicitly present in the original text leading to lower validation  
758 accuracy. However, the use of music-derived features in our RAG module can help in naturally cor-  
759 recting such deviations by grounding rhythmic information. Overall, the results confirm that the  
760

756 LLM reliably produces semantically aligned decompositions suitable for guiding retrieval in the  
 757 RAG module.  
 758

759 Table 5: Examples of input text decomposed into three fine-grained, semantically focused descrip-  
 760 tions using LLM for MDD Dataset.

| Text Description                                                                                                                                                                             | Spatial Relationship                                                                                                                                                                                    | Body Movement                                                                                                                                                                                                                                                  | Rhythm                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The leader switches the hand hold from left to right, leading the follower into a triple spin, maintaining a strong frame and connection.                                                    | The dancers are in an Open position with a Hand-to-hand connection. The leader switches the hand hold from left to right, maintaining a strong frame. They are facing each other during the transition. | The leader uses a strong frame to guide the follower into a triple spin. The follower's arms and torso are actively involved in the spinning motion, with medium energy.                                                                                       | The movement is executed at a fast tempo, with the triple spin occurring in quick succession, maintaining a continuous flow.                                                                 |
| The dancers perform Jive Spanish Arms, maintaining a strong frame and connection, with the follower executing a controlled turn.                                                             | The dancers are in a Closed position, facing each other with a strong Hand-to-hand connection. The leader maintains a firm frame, guiding the follower through the movement.                            | The leader maintains a steady posture, using arms and shoulders to guide. The follower performs a controlled turn, involving a smooth rotation of the torso and arms, with medium energy.                                                                      | The movement is executed at a fast tempo, characteristic of Jive, with a continuous and lively rhythm, ensuring the turn is seamlessly integrated into the dance sequence.                   |
| From a separated position, the leader draws the follower into a Closed Hand Hold, and they rotate clockwise together.                                                                        | The dancers transition from a separated position to a Closed position with a Hand-to-hand connection. They are facing each other as they move into this position.                                       | The leader initiates a drawing motion, pulling the follower towards him. Both dancers engage in a rotating movement, turning their bodies clockwise together.                                                                                                  | The rotation is performed at a medium tempo, with a continuous and fluid motion as they move in sync with each other.                                                                        |
| The leader brings the follower back with a circular motion, leading a head roll with his left hand, connecting it with a forward body roll for the follower. They then perform a basic step. | The dancers are in an Open position, with the leader facing the follower. They maintain a Hand-to-head connection as the leader guides the follower's head roll.                                        | The leader uses his left hand to guide a head roll, involving the follower's head and neck. The follower transitions into a forward body roll, engaging the shoulders and torso. Both then perform a basic step, involving coordinated leg and foot movements. | The sequence begins with a medium-paced circular motion, transitioning into a fluid head and body roll. The basic step follows a steady, continuous tempo, maintaining rhythmic consistency. |
| The lead pulls the follow towards him, taking three steps, while the follow also takes three steps towards the lead. Both hands of both dancers are now connected.                           | The dancers are in a Closed position, facing each other. They have a Hand-to-hand connection with both hands engaged.                                                                                   | The lead and follow are both taking three steps towards each other. The movement involves the legs and feet, with a medium energy as they close the distance.                                                                                                  | The steps are taken at a medium tempo, with each step evenly spaced, creating a continuous and synchronized rhythm between the dancers.                                                      |

## D MODEL ARCHITECTURE DETAILS

795 The proposed framework for duet and reactive motion generation employs a rectified flow matching  
 796 approach. Our model utilizes transformer-based architectures with multi-scale temporal modeling  
 797 and attention mechanisms, supporting optional text and music conditioning. The following section  
 798 discusses about specific modules used in detail.

### D.1 DUALFLOW BLOCK.

802 The DualFlow block applies multi-scale temporal convolutions with learnable gating:

$$804 \mathbf{f}_b^{(k)} = \text{GELU}(\text{Conv1D}_k(\mathbf{z}_b^{(j)\top}))^\top, \quad k \in \{1, 2, 3\}, \quad \mathbf{z}_b^{(j')} = \mathbf{z}_b^{(j)} + \sum_{k=1}^3 \gamma_k \mathbf{f}_b^{(k)},$$

807 Each block applies a sequence of self- and cross-attention layers with residual connections and  
 808 LayerNorm conditioning using the text latent  $\mathbf{z}_d$ . Let  $\text{LN}(\cdot, \mathbf{z}_d)$  denote LayerNorm with text-  
 809 conditioned shift/scale, and  $\text{Attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{softmax}(\frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{d}})\mathbf{V}$ . The transformations applied are

810 Self-Attention (equation 11), Music Cross Attention (equation 12), Motion Cross Attention (equation 13), Retrieval Cross Attention (equation 14), and Feedforward (FFN) Layer (equation 15):  
 811  
 812

$$813 \quad \mathbf{z}_a^{(j,1)} = \mathbf{z}_a^{(j')} + \text{Attn}(\mathbf{Q} = W_Q^{\text{sa}} \text{LN}(\mathbf{z}_a^{(j')}, \mathbf{z}_d), \mathbf{K} = W_K^{\text{sa}} \text{LN}(\mathbf{z}_a^{(j')}, \mathbf{z}_d), \mathbf{V} = W_V^{\text{sa}} \text{LN}(\mathbf{z}_a^{(j')}, \mathbf{z}_d)) \quad (11)$$

$$817 \quad \mathbf{z}_a^{(j,2)} = \mathbf{z}_a^{(j,1)} + \text{Attn}(\mathbf{Q} = W_Q^{m_1} \text{LN}(\mathbf{z}_a^{(j,1)}, \mathbf{z}_d), \mathbf{K} = W_K^{m_1} \mathbf{z}_m, \mathbf{V} = W_V^{m_1} \mathbf{z}_m) \quad (12)$$

$$819 \quad \mathbf{z}_a^{(j,3)} = \mathbf{z}_a^{(j,2)} + \text{Attn}(\mathbf{Q} = W_Q^{m_2} \text{LN}(\mathbf{z}_a^{(j,2)}, \mathbf{z}_d), \mathbf{K} = W_K^{m_2} \mathbf{z}_b^{(j,2)}, \mathbf{V} = W_V^{m_2} \mathbf{z}_b^{(j,2)}) \quad (13)$$

$$822 \quad \mathbf{z}_a^{(j,4)} = \mathbf{z}_a^{(j,3)} + \text{Attn}(\mathbf{Q} = W_Q^R \text{LN}(\mathbf{z}_a^{(j,3)}, \mathbf{z}_d), \mathbf{K} = W_K^R \mathbf{z}_R, \mathbf{V} = W_V^R \mathbf{z}_R) \quad (14)$$

$$825 \quad \mathbf{z}_a^{(j+1)} = \mathbf{z}_a^{(j,4)} + \text{FFN}(\text{LN}(\mathbf{z}_a^{(j,4)}, \mathbf{z}_d)). \quad (15)$$

827 with symmetric updates for  $\mathbf{z}_b^{(j)}$ .  
 828

## 829 D.2 INTERACTIVE SETTING

830 The flow dynamics are defined as:  
 831

$$832 \quad \mathbf{x}(t) = [\mathbf{x}_a(t); \mathbf{x}_b(t)], \quad \mathbf{v}_\theta(\mathbf{x}(t), t, c) = [\mathbf{v}_{\theta,a}(\mathbf{x}(t), t, c); \mathbf{v}_{\theta,b}(\mathbf{x}(t), t, c)].$$

833 The final motion latents  $\mathbf{z}_a^{(N)}$  and  $\mathbf{z}_b^{(N)}$  are mapped to velocity fields  
 834

$$835 \quad \mathbf{v}_{\theta,a} = \text{Linear}(\mathbf{z}_a^{(N)}), \quad \mathbf{v}_{\theta,b} = \text{Linear}(\mathbf{z}_b^{(N)}), \quad (16)$$

836 concatenated as  
 837

$$838 \quad \mathbf{v}_\theta = [\mathbf{v}_{\theta,a}; \mathbf{v}_{\theta,b}] \in \mathbb{R}^{B \times T \times 524}. \quad (17)$$

## 839 D.3 REACTIVE SETTING

840 For reactive motion generation, our model generates the reactor’s motion  $\mathbf{x}_b$  conditioned on the  
 841 actor’s fixed motion  $\mathbf{x}_a$ , with the flow dynamics defined as:  
 842

$$843 \quad \mathbf{x}(t) = [\mathbf{x}_a; \mathbf{x}_b(t)], \quad \mathbf{v}_\theta(\mathbf{x}(t), t, c) = [\mathbf{0}; \mathbf{v}_{\theta,\text{reactor}}(\mathbf{x}(t), t, c)].$$

844 The Motion Cross Attention gets replaced by Causal Cross Attention in the DualFlow block for this  
 845 setting. The final reactor latent  $\mathbf{z}_b^{(N)}$  is mapped to the velocity field  $\mathbf{v}_{\theta,\text{reactor}} = \text{Linear}_L^{262}(\mathbf{z}_b^{(N)})$ , and  
 846 the output is  $\mathbf{v}_\theta = [\mathbf{0}; \mathbf{v}_{\theta,\text{reactor}}] \in \mathbb{R}^{B \times T \times 524}$ . During inference, the initial state is  $\mathbf{x}(0) = [\mathbf{x}_a; \mathbf{z}_b]$ ,  
 847 where  $\mathbf{z}_b \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ .  
 848

## 849 D.4 CAUSAL CROSS ATTENTION WITH LOOK-AHEAD

850 The Causal Cross Attention module enables the reactor to condition on the actor’s motion while  
 851 preserving temporal causality and allowing limited future anticipation. For reactor motion latent  
 852  $\mathbf{z}_b^{(j,2)}$  and fixed actor motion latent  $\mathbf{z}_a$  from DualFlow block  $j$ , we construct query, key, and value  
 853 matrices as  $\mathbf{Q} = \mathbf{z}_b^{(j,2)} \mathbf{W}_Q$ ,  $\mathbf{K} = \mathbf{z}_a \mathbf{W}_K$ , and  $\mathbf{V} = \mathbf{z}_a \mathbf{W}_V$ , where  $\mathbf{W}_Q$ ,  $\mathbf{W}_K$ , and  $\mathbf{W}_V \in$   
 854  $\mathbb{R}^{L \times d_k}$  are learned projection matrices. The causal mask with look-ahead parameter  $L$  uses an  
 855 upper triangular mask such that reactor’s motion attends to past and only  $L$  future frames of the  
 856 actor’s motion, implemented as  $\mathbf{M}_{i,j} = 1$  if  $j \leq i + L$  and  $\mathbf{M}_{i,j} = 0$  otherwise. The attention  
 857 computation follows:  
 858

$$859 \quad \text{CausalCrossAttention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{softmax} \left( \frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_k}} \odot \mathbf{M} + (1 - \mathbf{M}) \cdot (-\infty) \right) \mathbf{V}$$

860 where  $\odot$  denotes element-wise multiplication. This formulation ensures temporally aligned and  
 861 context-aware reactive generation, enabling natural reactive responses that align with the actor’s  
 862 intended trajectory without violating temporal consistency.  
 863

864 D.5 MODEL PARAMETERS  
865

866 **Loss Weighting Values** We assign higher weights to geometric losses for velocity ( $\lambda_{\text{vel}} = 30$ ) and  
867 foot contact ( $\lambda_{\text{foot}} = 30$ ), moderate weight for bone length consistency ( $\lambda_{\text{BL}} = 10$ ), and emphasize  
868 inter-dancer synchronization ( $\lambda_{\text{sync}} = 5$ ). Affinity and distance are equally weighted ( $\lambda_{\text{DM}} = 3$ ),  
869 while orientation receives a minimal weight ( $\lambda_{\text{RO}} = 0.01$ ). These settings ensure anatomically  
870 plausible, temporally smooth, and well-coordinated duet motions.

871

872

873 E QUANTITATIVE EVALUATION  
874

875 We further conduct ablations to study model design choices in Table. 6: (1) replacing the three  
876 temporally scaled parallel convolutions with a single convolution, (2) reducing the number of trans-  
877 former blocks to 10 and 15 (from 20), (3) lowering the latent dimension to 128 and 256 (from 1024)  
878 and (4) changing the Look-Ahead parameter L to 0 and 20. These variants consistently show per-  
879 formance drops across most metrics, highlighting the benefit of the full architecture. Performance  
880 decrease in different settings shows the importance of 3 parallel temporal Convs, using 20 blocks,  
881 515 Latent dimension and Look-Ahead parameter L = 10 frames. Here, **Bold** indicates the best  
882 result and Underline indicates the second best result.

883

884

Table 6: Ablation study results for Reactive Setting on the MDD dataset

| Methods               | R-Precision↑ |              |              | FID↓         | MMDist↓      | Diversity→   | MModal↑      | BED ↑        | BAS↑         |
|-----------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                       | Top 1        | Top 2        | Top 3        |              |              |              |              |              |              |
| Ground Truth          | 0.231        | 0.398        | 0.522        | 0.065        | 0.077        | 1.387        | –            | 0.327        | 0.170        |
| DualFlow (one conv)   | 0.172        | 0.311        | 0.338        | 0.595        | 0.582        | 1.288        | 1.385        | 0.266        | 0.142        |
| DualFlow (10 blocks)  | 0.160        | 0.313        | 0.452        | 0.683        | 0.654        | 1.215        | 1.222        | 0.259        | 0.159        |
| DualFlow (15 blocks)  | 0.175        | 0.357        | <b>0.521</b> | <u>0.482</u> | 0.627        | 1.211        | <u>1.402</u> | 0.270        | 0.163        |
| DualFlow (128 latent) | 0.108        | 0.284        | 0.414        | 0.966        | 0.834        | 1.277        | 1.091        | 0.273        | 0.141        |
| DualFlow (256 latent) | 0.168        | 0.342        | 0.468        | 0.642        | 0.681        | 1.245        | 1.328        | <b>0.291</b> | 0.163        |
| DualFlow (L=0)        | 0.162        | 0.322        | 0.455        | 0.574        | 0.663        | 1.292        | 1.274        | 0.241        | 0.152        |
| DualFlow (L=20)       | <u>0.181</u> | <u>0.366</u> | 0.507        | 0.497        | <u>0.542</u> | <b>1.322</b> | 1.393        | 0.258        | <u>0.167</u> |
| DualFlow              | <b>0.185</b> | <b>0.373</b> | <u>0.513</u> | <b>0.415</b> | <b>0.513</b> | <u>1.307</u> | <b>1.467</b> | <u>0.286</u> | <b>0.179</b> |

895

896

897 **Ablation for RAG.** We also perform ablations to critically evaluate the role of retrieval-augmented  
898 components across both the settings in driving DualFlow’s performance in Table. 7. For the cases  
899 where different retrieval components are ablated, value of k is set to be 5. For no text-decompose  
900 setting of RAG, we directly perform retrieval on original text descriptions and music features in  
901 order to understand the benefit from text decomposition.

902

903

904 In the interactive setting, removing any individual retrieval cue consistently degrades semantic align-  
905 ment and motion quality, with the largest drops observed when all retrieval components are removed.  
906 Increasing the number of retrieved samples shows a clear sweet spot where k = 5 achieves the best R-  
907 Precision, FID, and Multi-modality scores, indicating that moderately diverse retrieved context helps  
908 the model ground its generation without introducing noise. Interestingly, k = 3 already provides a  
909 substantial boost over no retrieval, but larger retrieval depth (k = 7) offers diminishing returns and  
910 slightly worse fidelity, suggesting an over-saturation of context. Using no textual decomposition set-  
911 ting provides similar results as removing Music-based retrieval but having retrieval on decomposed  
912 text components.

913

914

915

916

917

918 In contrast, the reactive setting exhibits a different trend. Because the follower must respond tightly  
919 to the leader’s motion in real time, excessive retrieval diversity can introduce temporal drift. It can  
920 be seen that k = 3 provides the strongest semantic alignment, outperforming both lower (k = 1) and  
921 higher (k = 5, 7) retrieval depths. Additionally, removing music-based retrieval surprisingly improves  
922 R-Precision and MM-Distance, suggesting that in tightly synchronized partner interactions, leader  
923 motion cues dominate over rhythmic cues for determining the follower’s behavior. Using no textual  
924 decomposition RAG setting performs better than text-retrieval ablated version but performs more  
925 comparable to text rhythm component ablated version.

918 Table 7: Ablation Study on RAG in DualFlow on the MDD dataset

| 919<br>Methods                                     | 920 R-Precision↑ |              |              | FID↓         | MMDist↓      | Diverse→     | MModal↑      | BED ↑        | BAS↑         |
|----------------------------------------------------|------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                                                    | 921 Top 1        | 922 Top 2    | 923 Top 3    | 924          | 925          | 926          | 927          | 928          | 929          |
| 921 Ground Truth                                   | 0.231            | 0.398        | 0.522        | 0.065        | 0.077        | 1.387        | -            | 0.327        | 0.170        |
| <b>Interactive Task</b>                            |                  |              |              |              |              |              |              |              |              |
| w/o RAG ( $R_i^S, R_i^B, R_i^R, R_i^M$ )           | 0.179            | 0.356        | 0.498        | 0.622        | 0.626        | 1.502        | 1.224        | 0.254        | 0.162        |
| w/o Text-based Retrieval ( $R_i^S, R_i^B, R_i^R$ ) | 0.181            | 0.361        | 0.503        | 0.541        | 0.574        | 1.441        | 1.351        | 0.263        | 0.171        |
| w/o $R_i^S$                                        | 0.180            | 0.359        | 0.501        | 0.529        | 0.566        | 1.431        | 1.432        | 0.289        | 0.169        |
| w/o $R_i^B$                                        | 0.182            | 0.364        | 0.506        | 0.520        | 0.559        | 1.422        | 1.419        | 0.272        | 0.172        |
| w/o $R_i^R$                                        | 0.181            | 0.362        | 0.504        | 0.512        | 0.553        | 1.416        | 1.441        | 0.267        | 0.177        |
| w/o Music-based Retrieval ( $R_i^M$ )              | 0.183            | 0.368        | 0.509        | 0.498        | 0.541        | 1.406        | 1.452        | 0.268        | 0.164        |
| w RAG (no text-decompose)                          | 0.183            | 0.352        | 0.501        | 0.508        | 0.552        | 1.409        | 1.444        | 0.287        | 0.178        |
| w RAG (k=1)                                        | 0.181            | 0.360        | 0.503        | 0.449        | 0.535        | 1.381        | 1.437        | 0.279        | 0.176        |
| w RAG (k=3)                                        | 0.184            | 0.372        | 0.512        | 0.418        | 0.521        | <b>1.386</b> | 1.452        | <b>0.291</b> | 0.178        |
| w RAG (k=5)                                        | <b>0.185</b>     | <b>0.373</b> | <b>0.513</b> | <b>0.415</b> | <b>0.513</b> | 1.392        | <b>1.467</b> | 0.286        | <b>0.179</b> |
| w RAG (k=7)                                        | 0.183            | 0.369        | 0.509        | 0.438        | 0.527        | 1.407        | 1.445        | 0.282        | 0.177        |
| <b>Reactive Task</b>                               |                  |              |              |              |              |              |              |              |              |
| w/o RAG ( $R_i^S, R_i^B, R_i^R, R_i^M$ )           | 0.192            | 0.352        | 0.479        | 0.714        | 0.933        | <b>1.270</b> | 1.466        | 0.233        | 0.193        |
| w/o Text-based Retrieval ( $R_i^S, R_i^B, R_i^R$ ) | 0.181            | 0.334        | 0.451        | 0.752        | 0.984        | 1.196        | 1.312        | 0.221        | 0.217        |
| w/o $R_i^S$                                        | 0.182            | 0.321        | 0.449        | 0.703        | 0.956        | 1.243        | 1.429        | <b>0.246</b> | 0.224        |
| w/o $R_i^B$                                        | 0.182            | 0.322        | 0.451        | 0.699        | 0.948        | 1.255        | 1.442        | 0.239        | 0.198        |
| w/o $R_i^R$                                        | 0.186            | 0.334        | 0.468        | 0.697        | 0.932        | 1.249        | 1.451        | 0.231        | 0.208        |
| w/o Music-based Retrieval ( $R_i^M$ )              | <b>0.194</b>     | <b>0.369</b> | <b>0.492</b> | <b>0.692</b> | <b>0.921</b> | 1.238        | 1.438        | 0.228        | 0.189        |
| w RAG (no text-decompose)                          | 0.185            | 0.336        | 0.473        | 0.696        | 0.933        | 1.252        | 1.442        | 0.221        | 0.208        |
| w RAG (k=1)                                        | 0.190            | 0.348        | 0.457        | 0.707        | 0.978        | 1.223        | 1.469        | 0.221        | 0.209        |
| w RAG (k=3)                                        | 0.193            | 0.367        | 0.483        | 0.693        | 0.962        | 1.217        | <b>1.471</b> | 0.224        | 0.212        |
| w RAG (k=5)                                        | 0.189            | 0.341        | 0.471        | <b>0.686</b> | 1.056        | 1.203        | <b>1.473</b> | 0.215        | <b>0.226</b> |
| w RAG (k=7)                                        | 0.188            | 0.336        | 0.459        | 0.699        | 0.989        | 1.229        | 1.470        | 0.218        | 0.223        |

941 Table 8: Ablation Study on Synchronization Loss on the MDD dataset.

| 942<br>Methods                              | 943 R-Precision↑ |              |              | FID↓         | MMDist↓      | Diverse→     | MModal↑      | BED ↑        | BAS↑         |
|---------------------------------------------|------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                                             | 944 Top 1        | 945 Top 2    | 946 Top 3    | 947          | 948          | 949          | 950          | 951          | 952          |
| 945 Ground Truth                            | 0.231            | 0.398        | 0.522        | 0.065        | 0.077        | 1.387        | -            | 0.327        | 0.170        |
| <b>Interactive Task</b>                     |                  |              |              |              |              |              |              |              |              |
| DualFlow(w/o $\mathcal{L}_{sync}$ )         | 0.182            | 0.369        | 0.509        | 0.472        | 0.590        | 1.224        | 1.340        | 0.277        | <b>0.182</b> |
| DualFlow(w $\mathcal{L}_{sync}$ w/o $w_d$ ) | 0.181            | 0.365        | 0.502        | 0.465        | 0.592        | 1.318        | 1.322        | 0.268        | 0.163        |
| DualFlow(w $\mathcal{L}_{sync}$ w/o $w_j$ ) | 0.184            | 0.372        | 0.511        | 0.432        | 0.538        | <b>1.385</b> | 1.435        | <b>0.292</b> | 0.180        |
| DualFlow (w $\mathcal{L}_{sync}$ )          | <b>0.185</b>     | <b>0.373</b> | <b>0.513</b> | <b>0.415</b> | <b>0.513</b> | 1.392        | <b>1.467</b> | 0.286        | 0.179        |
| <b>Reactive Task</b>                        |                  |              |              |              |              |              |              |              |              |
| DualFlow(w/o $\mathcal{L}_{sync}$ )         | 0.166            | 0.311        | 0.453        | 0.774        | 1.112        | 1.429        | 1.233        | 0.235        | 0.202        |
| DualFlow(w $\mathcal{L}_{sync}$ w/o $w_d$ ) | 0.168            | 0.314        | 0.459        | 0.763        | 1.101        | <b>1.381</b> | 1.260        | 0.231        | 0.194        |
| DualFlow(w $\mathcal{L}_{sync}$ w/o $w_j$ ) | 0.181            | 0.334        | 0.467        | 0.712        | 1.064        | 1.312        | 1.431        | 0.212        | 0.214        |
| DualFlow                                    | 0.189            | 0.341        | 0.471        | <b>0.686</b> | <b>1.056</b> | 1.203        | <b>1.473</b> | 0.215        | <b>0.226</b> |

956 **Ablation on Synchronization Loss.** Table. 8 shows further ablation analysis on the proposed Synchronization Loss. It can be seen that having  $\mathcal{L}_{sync}$  plays a crucial role in improving both semantic alignment and inter-person coordination for duet motion generation. Removing the loss entirely leads to clear degradation across all metrics in both interactive and reactive settings, with notably higher FID & MMDist and reduced R-Precision. The distance weighting term  $w_d$  and the anatomical weighting term  $w_j$  contribute complementary benefits. Omitting  $w_d$  harms spatial coherence and leads to greater overall performance degradation, whereas omitting  $w_j$  primarily reduces semantic consistency and relational fidelity reflected in lower BED, BAS, and MModal, and thus performs slightly worse than the complete version. The full formulation consistently achieves the strongest performance, yielding the best balance of retrieval alignment (R-Precision), motion realism (FID), Diversity, Multimodality, and inter-person synchronization. These results validate that both weighting components are necessary and that  $\mathcal{L}_{sync}$  meaningfully strengthens DualFlow’s ability to model coordinated two-person motion.

969 **Model Parameters Comparison.** The adapted InterGen model—augmented with an additional 970 music-attention layer to support both motion and music conditioning—contains 224M trainable 971 parameters. InterGen’s architecture packs two sub-blocks (each comprising two attention layers) into 972 a single block, yielding a total of 8 blocks, i.e.,  $8 \times 2$  sub-blocks  $\times 3$  attention layers per sub-

972 block (after adding music attention), resulting in 48 attention layers overall. In contrast, DualFlow  
 973 employs 20 blocks, each containing four attention layers, amounting to 80 attention layers and a  
 974 total of 456M trainable parameters. The increased capacity in DualFlow primarily arises from the  
 975 added retrieval-augmented generation (RAG) module, which introduces additional attention layers  
 976 and projection components necessary for multi-modal retrieval integration.  
 977

## 978 F QUALITATIVE EVALUATION

980 **User Study Details.** A total of 24 participants were recruited for the study. Each participant is  
 981 shown 15 pairs of rendered videos (3 per experiment), with each video lasting less than 10 seconds.  
 982 Each pair consists of one motion sequence generated by DualFlow and the other by either a baseline  
 983 method or the ground truth (when available). To ensure unbiased evaluation, the order of videos  
 984 within each pair is randomized, and no method labels are revealed. For each video pair, participants  
 985 are asked to answer three key questions: (1) *Which motion better aligns semantically with the textual*  
 986 *description?* (2) *Which motion is better synchronized with the musical beats?* (3) *Which motion has*  
 987 *higher overall quality (e.g., naturalness, smoothness etc)?* Fig.6 shows the User Study Form we  
 988 used.

989 Fig. 6 illustrates the User Study Form presented to participants during the human evaluation study.  
 990 Clear and detailed guidelines were provided at the beginning of the form, explaining the evaluation  
 991 criteria. Participants were then asked to watch two videos: one containing motion from either a  
 992 Baseline model or the Ground Truth, and the other generated using our DualFlow model. The  
 993 identity of each video (i.e., whether it was from the DualFlow model or the comparison method)  
 994 was not disclosed to the participants. For each experimental condition, participants viewed and  
 995 evaluated three distinct pairs of videos.

**User Study For DualFlow Motion Generation**

Dear Participant,

Thank you for taking the time to participate in our user study!

In this study, you will be shown **two motion sequences** for each comparison. Your task is to evaluate these sequences by answering **three questions** based on different aspects of motion quality. The sequences are from 3 different experiments namely **Text Alignment** [T], **Musical Synchronization** [M], **Overall Motion Quality** [O]. You will be shown 15 samples from each experiment.

For each pair of motions, please select the one that you believe performs better on each of the following criteria:

1. **Text Alignment:** *Which motion better reflects the meaning of the accompanying textual description?*

- The motion closely reflects the actions, emotions, or scenario described.
- The meaning is clearly communicated through the body movements.
- The motion is contextually appropriate and logically consistent with the description.

2. **Musical Synchronization:** *Which motion is better synchronized with the rhythm and beats of the music?*

- Key movements occur in sync with musical beats and accents.
- The rhythm and pacing of the motion match the tempo of the music.
- The motion expresses changes in musical energy, such as shifts in mood or intensity.

3. **Overall Motion Quality:** *Which motion looks more natural and visually pleasing overall?*

- Transitions between poses are smooth and continuous.
- Movements follow realistic and believable trajectories.
- The motion is visually coherent, expressive, and aesthetically pleasing.

Please answer thoughtfully based on your perception. Your evaluations will be valuable to our research.

Thank you again for your participation.




T1. Which motion more accurately reflects the meaning of the accompanying textual description?

Sequence 1  
 Sequence 2

M1. Which motion is better synchronized with the rhythm and beats of the background music?

Sequence 1  
 Sequence 2

O1. Which motion looks more natural and visually pleasing overall?

Sequence 1  
 Sequence 2

Figure 6: User Study Google Form

## 1019 G LIMITATIONS AND FUTURE WORK

1021 In this section, we discuss the limitations of the DualFlow model along with several observed failure  
 1022 cases followed by potential avenues for improvement. (1) The effectiveness of RAG-based motion  
 1023 alignment is dependent on the quality and relevance of the retrieved samples. In cases where the  
 1024 input text, leader motion, or music cues are ambiguous or underspecified, the RAG module  
 1025 may retrieve semantically mismatched neighbors. This semantic retrieval misalignment can cause  
 1026 stylistic drift or generate motions that deviate from the intended interaction attributes, particularly

1026 for prompts involving abstract descriptions or uncommon dance style/movement. (2) In the re-  
1027 active setting, DualFlow occasionally struggles to maintain precise physical coordination between  
1028 partners. We observe minor hand–hand or torso–torso penetrations during close-contact sequences  
1029 or under rapid leader movements, likely due to the absence of explicit modeling of contact-based  
1030 physical constraints. (3) Since retrieval operates over short, localized motion segments, directly gen-  
1031 erating long sequences can accumulate temporal drift, leading to weakened structural consistency or  
1032 off-beat rhythmic alignment over extended durations.

1033 The above limitations point to several promising directions for future work. Improving retrieval  
1034 quality through learned semantic re-ranking, cross-modal retrieval scoring, or uncertainty-aware  
1035 retrieval could reduce misalignment and make the system more robust to ambiguous input cues.  
1036 Incorporating contact-based physical constraints as a loss function may help enforce more accu-  
1037 rate hand and body coordination in close-contact motions. Finally, addressing long-term drift may  
1038 benefit from introducing hierarchical temporal modeling, where high-level rhythmic or structural  
1039 constraints guide long-range consistency, while DualFlow refines short-term details. Broadening  
1040 the retrieval corpus to incorporate more diverse styles and partner interaction patterns may further  
1041 enhance robustness. Together, these directions offer a path toward more physically grounded, se-  
1042 mantically aligned and temporally coherent two-person motion generation.

1043  
1044  
1045  
1046  
1047  
1048  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079