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ABSTRACT

Generating realistic, context-aware two-person motion conditioned on diverse
modalities remains a fundamental challenge for graphics, animation and embodied
AI systems. Real-world applications such as VR/AR companions, social robotics
and game agents require models capable of producing coordinated interpersonal
behavior while flexibly switching between interactive and reactive generation. We
introduce DualFlow, the first unified and efficient framework for multi-modal
two-person motion generation. DualFlow conditions 3D motion generation on
diverse inputs, including text, music, and prior motion sequences. Leveraging
rectified flow, it achieves deterministic straight-line sampling paths between noise
and data, reducing inference time and mitigating error accumulation common
in diffusion-based models. To enhance semantic grounding, DualFlow employs
a novel Retrieval-Augmented Generation (RAG) module for two-person motion
that retrieves motion exemplars using music features and LLM-based text decom-
positions of spatial relations, body movements, and rhythmic patterns. We use
contrastive rectified flow objective to further sharpen alignment with conditioning
signals and add synchronization loss to improve inter-person temporal coordina-
tion. Extensive evaluations across interactive, reactive, and multi-modal bench-
marks demonstrate that DualFlow consistently improves motion quality, respon-
siveness, and semantic fidelity. DualFlow achieves state-of-the-art performance in
two-person multi-modal motion generation, producing coherent, expressive, and
rhythmically synchronized motion. Code will be released upon acceptance.

1 INTRODUCTION
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Figure 1: Our DualFlow model unifies two tasks: (a) Interactive Motion Generation, which syn-
thesizes synchronized two-person interactions, (b) Reactive Motion Generation, which generates
responsive motions for Person B (red) conditioned on Person A’s (blue) movements. The generation
process is conditioned jointly on text, music, and the retrieved motion samples.

Generating realistic, context-aware interactive human motion remains a core challenge in computer
graphics, animation, and human–computer interaction (Holden et al., 2016). Synthesizing coor-
dinated behavior between multiple individuals requires models to capture mutual responsiveness,
physical plausibility, and rich interpersonal dynamics. These capabilities are essential for applica-
tions such as immersive virtual experiences, intelligent avatars, VR/AR companions, game character
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AI, and human–robot collaboration. Since human interactions are inherently driven by multi-modal
stimuli such as language, music, and physical cues, generative systems must interpret and integrate
these diverse inputs to operate effectively in embodied systems. In many real-world settings, vir-
tual AI or robotic agents must also be able to seamlessly switch between interactive coordination
with another agent and reactively adapting to a human partner’s motion, making flexible multi-task
motion generation a crucial requirement rather than an optional capability.

Although two-person motion generation has been explored in prior works, existing approaches treat
the interactive and reactive settings as separate tasks, leading to different architectures with incom-
patible training objectives, modality constraints, or conditioning signals. Interactive models such
as Liang et al. (2024) and Ghosh et al. (2025) focus on bidirectional coordination without han-
dling asymmetric reactive generation, whereas reactive models such as Rahman et al. (2022), Xu
et al. (2024) and Siyao et al. (2024) specialize solely in predicting reactor’s motion from actor’s
cues. Furthermore, current two-person methods support only single-modality conditioning: text-
only (Liang et al., 2024; Xu et al., 2024) or music-only (Siyao et al., 2024; Ghosh et al., 2025). As a
result, there is no unified model capable of performing both tasks under the same architecture while
leveraging the multi-modal cues required by real-world applications.

To address these gaps, we introduce DualFlow, the first unified multi-modal rectified flow framework
for both interactive and reactive two-person motion generation as shown in Fig. 1. DualFlow em-
ploys cascaded DualFlow Blocks that flexibly adapt through a masking mechanism: both branches
remain active for interactive generation, while the reactor branch alone is conditioned on the actor’s
motion for reactive synthesis. This unified design enables seamless switching between tasks without
retraining and allows both settings to learn from shared representations.

A key component of DualFlow is a novel adaptation of Retrieval-Augmented Generation (RAG)
to two-person motion. Unlike prior RAG modules designed for single-person synthesis, our model
retrieves semantically relevant motion samples using interactive text-based descriptions (spatial re-
lationships, body movement cues, and rhythm) decomposed using LLM as well as music features.
These retrieved samples are injected into the model through a retrieval-based cross-attention mech-
anism in each DualFlow block, grounding the generation process in interaction-aware exemplars
and improving spatial and semantic alignment. DualFlow further incorporates Contrastive Recti-
fied Flow generation, where contrastive learning sharpens the motion embedding space, improves
inter-person relational consistency, and strengthens alignment between generated motion and condi-
tioning signals. Combined with rectified flow sampling which offers faster convergence and reduced
error accumulation, these contrastive objectives significantly enhance diversity, coherence, and fine-
grained semantic fidelity.

Our key contributions are: (1) Unified architecture for interactive and reactive two-person motion
generation with seamless task switching. (2) A Retrieval-Augmented Generation (RAG) framework
for two-person motion generation leveraging music features and interactive text-based descriptions
(spatial relationship, body movement, rhythm) decomposed using LLM to guide semantically faith-
ful motion synthesis. (3) Contrastive Rectified Flow based generation with added synchronization
loss, improving motion quality, semantic alignment and faster sampling. (4) Extensive quantitative,
qualitative, and ablation studies on diverse two-person datasets, showing DualFlow generates coher-
ent, expressive, and contextually appropriate motions with fewer sampling steps. Importantly, our
approach outperforms state-of-the-art baselines by 2.5% in FID, 76% in R-precision, 3x in Multi-
Modal Distance for Interactive task, 1.7% in FID, 2.5x in R-precision, 2x in Multi-Modal Distance
for Reactive task on MDD Dataset requiring only 20 inference steps (2.5x faster) than 50-DDIM
standard, establishing new benchmark for multi-person, multi-modal motion generation.

2 RELATED WORK

Two-person Motion Generation. While single-person motion generation has advanced
rapidly (Guo et al., 2022; Tevet et al., 2022; Petrovich et al., 2022; Zhang et al., 2024), extending
these methods to multi-person settings introduces the additional challenge of modeling coordination
between agents. Early two-person models (Kundu et al., 2020; Xu et al., 2023; Xie et al., 2021)
demonstrated feasibility but exhibited limited generalization or weak semantic grounding. To ad-
dress data scarcity and modeling complexity, Liang et al. (2024) introduced a large-scale interaction
dataset with a text-conditioned diffusion model, later extended by text-guided variants (Shafir et al.,
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2024; Yi et al., 2024; Li et al., 2024a). In the domain of dance, specialized frameworks explored
music-conditioned lead–follower generation (Li et al., 2024b; Wang et al., 2025a; Ghosh et al.,
2025). Despite these advances, most diffusion-based methods remain slow and restricted to single-
modality conditioning. For reactive motion generation, early GAN- and transformer-based meth-
ods (Men et al., 2022; Rahman et al., 2022; Ghosh et al., 2024) have recently been extended with
text (Xu et al., 2024; Cen et al., 2025) or with joint leader motion and music (Siyao et al., 2024).
However, existing interactive and reactive models are developed as separate systems with incom-
patible architectures and training objectives, limited multi-modal support and preventing seamless
switching between tasks. Our framework, DualFlow, addresses these limitations by unifying inter-
active and reactive two-person motion generation within a single transformer-based rectified flow
architecture, jointly conditioned on text, music, and retrieved motion exemplars.

Retrieval-Augmented Generation (RAG). RAG has significantly improved generative fidelity
across language models (Gao et al., 2023; Guu et al., 2020; Lewis et al., 2020), image synthe-
sis (Blattmann et al., 2022; Chen et al., 2022; Sheynin et al., 2022), and video generation (He et al.,
2023). Within motion generation, retrieval-based approaches have been applied to text-to-motion
synthesis (Zhang et al., 2023; Kalakonda et al., 2025; Liao et al., 2024; Petrovich et al., 2023; Bens-
abath et al., 2024), but all existing methods operate exclusively in the single-person setting and do
not address interactive multi-person dynamics. DualFlow introduces the first RAG framework for
two-person motion generation, retrieving interaction-aware motion exemplars using music features
and LLM-based text decompositions capturing spatial relationships, body movements, and rhyth-
mic structure. These exemplars are integrated through a retrieval-based cross-attention mechanism
providing fine-grained semantic grounding crucial for coordinated two-person motion generation.

Diffusion and Flow-based Models. Diffusion-based motion generation models such as
MDM (Tevet et al., 2022), MotionDiffuse (Zhang et al., 2024), and MoFusion (Dabral et al., 2023)
have demonstrated strong performance with fewer than a hundred denoising steps, but they remain
limited to single-person generation. More recent approaches adopt Flow Matching (Lipman et al.,
2023) to bypass iterative denoising (Hu et al., 2023; Canales Cuba & Gois, 2025). Yet these methods
face optimization instabilities and scaling difficulties when extended to multi-person motion. Inter-
Gen (Liang et al., 2024), TIMotion (Wang et al., 2025b) are diffusion models tailored for two-person
generation needing roughly 50 denoising steps for inference. Our framework builds on Rectified
Flow (Liu et al., 2022), which introduces a deterministic straight-line transport map between noisy
and clean samples, yielding simpler training dynamics and significantly faster (20 steps), more stable
sampling. DualFlow extends this paradigm with a contrastive rectified flow objective that sharpens
motion representations and strengthens alignment with multi-modal conditioning signals.

3 METHODS

3.1 PROBLEM FORMULATION

A two-person motion interaction x ∈ XA × XB is represented as person A’s motion xa = {xi
a}Ni=1

and person B’s motion xb = {xi
b}Ni=1, where paired frames xj = (xj

a, x
j
b) are naturally synchro-

nized. For the asymmetric case, person A is the Actor and person B the Reactor. The motion space
is X ⊂ RN×J×3, with N frames and J joints. Music features lie in M ⊂ RN×dm with dimension
dm, and text embeddings in C ⊂ Rdc with dimension dc.

Interactive Motion Generation. Given text c ∈ C and/or music m ∈ M, the task is to generate
synchronized two-person motion (xa,xb) aligned with both modalities: F (c,m) 7→ x Special cases
include text-only (m = ϕ) (Liang et al., 2024), music-only (c = ϕ) (Li et al., 2024b; Ghosh et al.,
2025)), and joint text-music conditioning defined as Text-to-Duet by Gupta et al. (2025).

Reactive Motion Generation. Given the actor’s motion xa ∈ X , text c ∈ C, and/or music m ∈ M,
the goal is to generate the reactor’s motion xb ∈ X such that (xa,xb) are coherent and synchro-
nized: G(c,m,xa) 7→ xb. Variants include text-only (m = ϕ) (Xu et al., 2024), music-only
(c = ϕ) (Siyao et al., 2024), and joint text-music conditioning defined as Text-to-Dance Accompa-
niment by Gupta et al. (2025).

Human Motion Representation. We represent motion in a global coordinate system, where the
origin is anchored at the root joint of person A. The position of person B is expressed relative to this
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root, ensuring a unified spatial reference frame for both. Our motion representation is based on the
format introduced by Liang et al. (2024), and encodes a single frame of an individual’s motion as
xi = [jpg , j

v
g , j

r, cf ]. Each frame includes global joint positions jpg ∈ R3Nj , global joint velocities
jvg ∈ R3Nj , local joint rotations jr ∈ R6(Nj−1) in 6D format within a root-relative coordinate frame,
and binary foot contact indicators cf ∈ R4 that specify ground contact status for each foot joint at
that time step. To model body joint rotations, we use the SMPL model (Loper et al., 2015) with
Nj = 22 joints, resulting in a fixed input dimension of xi ∈ R262.

3.2 MULTI-MODAL MOTION RETRIEVAL

Retrieval Dataset. Direct retrieval from raw text often overlooks the nuanced dimensions of interac-
tive human motion, yielding low diversity or biased matches. To address this, we use GPT-4o (Hurst
et al., 2024) to decompose each prompt into three focused descriptions, inspired by Laban Movement
Analysis (Laban, 1950) and aligned with the MDD Dataset (Gupta et al., 2025): (1) Spatial Rela-
tionship (proximity, orientation, handholds), (2) Body Movement (actions, body parts, posture),
and (3) Rhythm (timing, musicality, stepping). To achieve high-quality and consistent decompo-
sition, we design a structured prompting framework for the LLM (details in Appendix). For each
category, we build retrieval databases using CLIP (Radford et al., 2021) embeddings (DS , DB , DR)
and music embeddings (DM ) from Jukebox (Dhariwal et al., 2020).

Similarity Scoring. We generalize the similarity scoring function introduced by Zhang et al. (2023)
for any modality q. For a given query sample p with modality-specific feature embedding fq

p , and a
candidate database motion sample xi with embedding fq

i and motion length li, the similarity score
sqi is computed as:

sqi = ⟨fq
i , f

q
p ⟩ · e

−λ· |li−lp|
max{li,lp} (1)

where ⟨·, ·⟩ is cosine similarity and the exponential term penalizes mismatch across motion length
with sensitivity λ, allowing retrievals that are semantically aligned and temporally compatible. Us-
ing this scoring, we retrieve top-k matches from each database for every sample, yielding sets
(RS

i , R
B
i , R

R
i , R

M
i ) as shown in Fig. 2. The retrieved sets collectively offer a diverse yet semanti-

cally relevant collection of motion exemplars, which are later used to guide generation.

3.3 MODEL ARCHITECTURE

Conditioning latents. The text description d is encoded using a pretrained CLIP model (Radford
et al., 2021) followed by a transformer encoder, then linearly projected and fused with time-step
embeddings to form the text latent zd. Similarly, the music input m is processed by a pretrained
Jukebox encoder (Dhariwal et al., 2020), linearly transformed, and passed through a transformer en-
coder to obtain the music latent zm. For retrieval-based conditioning, we use four retrieved motion
sets (RS

i , R
B
i , R

R
i , R

M
i ) corresponding to spatial, body, rhythm, and music cues. Positional encod-

ings and a shared linear projection map these samples to the motion latent space, and the resulting
features are concatenated into the aggregated retrieval latent zR.

Model Pipeline. Motion inputs xt
a and xt

b sampled for time step t are first projected through in-
dividual linear layers, followed by the addition of positional encodings, resulting in initial motion
latents {z(0)a , z

(0)
b }. They are fed into the main pipeline consisting of N cascaded DualFlow blocks.

The first block takes the initial motion latents {z(0)a , z
(0)
b } as input. Each subsequent block (j + 1)

takes the outputs from the previous block {z(j)a , z
(j)
b } and produces updated latents {z(j+1)

a , z
(j+1)
b },

where j ∈ {0, 1, . . . , N − 1}. All blocks are jointly conditioned on the multi-modal context
{zd, zm, zR}. The output from the last block, {xt−1

a ,xt−1
b }, gives the denoised motion.

DualFlow Block. Each DualFlow block refines motion representations through temporally-aware
and context-conditioned operations. It begins with a multi-scale temporal convolution module with
varying kernel sizes to capture motion patterns at different time resolutions, followed by a GELU
activation (Hendrycks & Gimpel, 2023). Branch outputs are adaptively fused using learnable gat-
ing weights γk. The representation then passes through a Self-Attention layer to model internal
temporal dependencies, followed by a structured sequence of Cross-Attention layers: (1) Music
Cross-Attention to align motion with music latent zm, (2) Motion Cross-Attention to capture inter-
person interaction which gets replaced by Casual Cross-Attention with Look-Ahead during reactive

4
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Figure 2: (a) Our framework takes text (CLIP-L/14), music, and motion sequences from an actor (A)
and reactor (B) as inputs. Motion samples are retrieved using music features and LLM-decomposed
text cues (spatial relationship, body movement, rhythm). These modality-specific latents are pro-
cessed by cascaded Multi-Modal DualFlow Blocks that model interactive dynamics. Outputs are
either both actors’ motions (interactive) or only the reactor’s motion (reactive) via a masking mech-
anism. (b) A DualFlow Block: in the interactive setting, both branches operate symmetrically with
Motion Cross Attention coordinating joint motion; in the reactive setting, the actor branch is masked
and the reactor branch employs a Causal Cross Attention module with Look-Ahead L, replacing Mo-
tion Cross Attention, to condition on the actor’s motion.
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setting and (3) Retrieval Cross-Attention to semantically guide generation using retrieved exemplars.
All modules use residual connections for stability, and the text latent zd is injected via LayerNorm
conditioning. Each block thus integrates temporal structure, musical rhythm, and semantic guidance
from retrieval. Please refer to Appendix for detailed description of each module.

Task settings. In interactive setting, both xt
a and xt

b are sampled for time step t as input. In reactive
setting, only reactor’s motion xb is sampled, while actor’s motion xl is masked on the input side
and used for conditioning. To enable anticipatory reactor response, the Motion Cross-attention is
switched with Causal Cross Attention Layer having a Look-Ahead parameter L. It uses an upper
triangular mask such that reactor’s motion attends to past and only L future frames of actor’s motion
(Fig.2). This look-ahead mechanism ensures temporally aligned and context-aware generation.

3.4 CONTRASTIVE RECTIFIED FLOW

To generate realistic and semantically grounded duet motions, we build upon the Rectified Flow
Matching framework (Liu et al., 2022) and augment it with a contrastive learning objective inspired
by Contrastive Flow Matching Stoica et al. (2025). Unlike traditional diffusion models that rely on
stochastic denoising, rectified flow formulates the generation process as a deterministic Ordinary
Differential Equation (ODE) that transports a noise sample toward a data sample along a straight-
line path in motion space. Given a ground truth motion sample x0 and a noise sample ϵ ∼ N (0, I),
the interpolated state at time t ∈ [0, 1] is defined as: xt = (1 − t)x0 + tϵ, and vt = ϵ − x0,
where xt lies along the linear path between x0 and ϵ, and vt is the constant velocity vector guiding
the transport. We train a time-dependent neural velocity field vθ(xt, t, c) to approximate vt, condi-
tioned on a multimodal context c = (d,m,RS

i , R
B
i , R

R
i , R

M
i ), which includes the text description

d, music segment m, and retrieved motion sets. This context is encoded using cross attention layers
in DualFlow Block. The flow loss Lflow is obtained by minimizing the squared error between the
predicted and target velocity:

Lflow = Ex0,ϵ,t

[
∥vθ(xt, t, c)− vt∥22

]
(2)

To encourage semantic alignment, we introduce a triplet contrastive loss that enforces proximity in
velocity space for semantically similar prompts with d(·, ·) denoting cosine distance:

Ltriplet = E
[
max

(
0, d(v̂,v+)− d(v̂,v−) +m

)]
(3)

For each batch, we randomly select an anchor sample whose predicted velocity is denoted as
v̂ = vθ(xt, t, c). We compute the cosine similarity between this anchor and all remaining sam-
ples in the batch. Positive samples v+ are defined as velocities belonging to motions with high
semantic or structural affinity to the anchor such as those sharing the same movement style, exhibit-
ing similar textual descriptors or aligning in rhythmic structure. Negative samples v− correspond
to motions that differ substantially in style or exhibit low text similarity (> 0.6). This sampling
strategy leverages the hierarchical structure of our RAG module to construct meaningful triplets that
emphasize semantically relevant distinctions. We use a margin of m = 0.2 and set the triplet loss
weight to λtriplet = 0.1. We define contrastive flow loss LCRF that combines both losses:

LCRF = Lflow + λtripletLtriplet (4)

Here, λtriplet balances reconstruction and semantic alignment objective.

3.5 REGULARIZATION LOSSES

Geometric Losses. We adopt the common geometric losses for human motion such as foot contact
loss Lfoot and joint velocity loss Lvel from MDM Tevet et al. (2022) and bone length loss LBL from
InterGen Liang et al. (2024). The geometric loss is defined as:

Lgeo = Lfoot + λvelLvel + λBLLBL (5)

where the hyper-parameters λvel,λBL are appropriately calibrated to fix the importance of each term.

Interaction Losses. We adapt joint distance map loss LDM and relative orientation loss LRO from
InterGen Liang et al. (2024) that allows close interactions when dancers should be in contact as well
as maintain proper facing directions and body alignments. To further strengthen inter-person coor-
dination during duet generation, we introduce a synchronization loss Lsync that explicitly enforces

6
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spatial relational coherence between the two person. The loss weights pairwise inter-person joint
distances using anatomically informed and task-relevant importance terms:

Lsync =
∑
j1,j2

wd(j1, j2)wj(j1, j2) ∥dp(j1, j2)− dgt(j1, j2)∥2 , (6)

where dp(j1, j2) and dgt(j1, j2) denote the predicted and ground-truth Euclidean distances between
joint pairs across the two person. The distance-based weight wd(j1, j2) assigns higher importance
to joint pairs that are naturally closer during interaction:

wd(j1, j2) = e

(
−α

∥∥dgt(j1,j2)
∥∥)

. (7)

Complementarily, wj(j1, j2) captures the anatomical & functional relevance of different body parts:

wj(j1, j2) =


wh, if j1, j2 ∈ Jhands,

wu, if j1, j2 ∈ Jupper,

wl, if j1, j2 ∈ Jlower,

wsmall, otherwise.

(8)

Here, Jhands (hands, wrists), Jupper (shoulders, elbows, torso), and Jlower (hips, knees, feet) denote
anatomically defined joint groups. Together, these weighting terms encourage the model to preserve
high-frequency synchrony while maintaining the global relational structure across the two bodies.

The interaction loss Linter is obtained as:

Linter = LDM + λROLRO + λsyncLsync (9)

where the hyper-parameters λRO and λsync are fixed based on importance of each term. For reactive
setting, ground-truth actor’s motion is used for all Interaction Losses.

Total Loss. The complete training objective combines all components through balanced weighting:

Ltotal = LCRF + λgeoLgeo + λinterLinter (10)

where the hyperparameters λgeo and λinter are meticulously selected to regulate the magnitude of
their corresponding terms.

4 RESULTS

Datasets. We train and evaluate DualFlow on three widely used two-person motion datasets
spanning text-to-motion, music-to-dance, and multi-modal duet generation: (1) InterHuman-
AS (Xu et al., 2024), an asymmetric extension of InterHuman (Liang et al., 2024) with actor-
reactor labels, over 50K interaction clips across 11 action types (e.g., handshake, hug) and paired
SMPL-X Pavlakos et al. (2019) sequences for modeling fine-grained interpersonal dynamics. (2)
DD100 (Siyao et al., 2024), featuring 100 duet dance routines (e.g., salsa, hip-hop, waltz) with
high-resolution motion capture, paired music, and manually annotated dance structure for rhythm
and style alignment. (3) MDD (Gupta et al., 2025), a large-scale multi-modal duet dance dataset
with 10.3 hours of marker-based capture and 10K+ text annotations covering spatial relationships,
choreography, movement quality, and music synchronization. Together, these datasets enable robust
learning and evaluation of both interactive-reactive motion generation across multiple modalities.

Implementation Details. DualFlow consists of 20 cascaded blocks with 8 attention heads and
dropout of 0.1. Both motion and conditioning inputs are projected into a 512-dimensional latent
space, and each block’s feedforward layer is set to size 1024. We use 4800-d Jukebox (Dhariwal
et al., 2020) features for music and 768-d CLIP (ViT-L/14) (Radford et al., 2021) text embeddings.
All cross-attention layers adopt Flash attention for faster processing. The stride values for the par-
allel convolution layers used are 7, 11 and 21. The model is trained with Contrastive Rectified Flow
using 200 integration steps and a cosine β scheduler. Training uses Adam with lr 2×10−4, weight
decay 2×10−5, 1000 warm-up steps, batch size 32, for 5000 epochs. In the reactive setting, we
use a 10-frame look-ahead. For classifier-free guidance, both modalities are masked 10% of the
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time, and text/music individually 20%. All hyperparameters were selected empirically on a held-out
validation set.

Evaluation Metrics. We evaluate models using metrics adapted from text-to-motion (Liang et al.,
2024) and music-to-motion (Siyao et al., 2024): Frechet Inception Distance (FID): Distributional
similarity between ground truth and generated motions; Multimodal Distance (MM Dist): Text-
motion alignment via feature distance; R-Precision: Text-motion alignment through retrieval accu-
racies within a batch; Diversity: Variety of generated motions regardless of conditions; Multimodal-
ity (MModality): Diversity of generated motions under identical conditioning; Beat Echo Degree
(BED): Synchronization index of the both person’s generated motion; Beat-Alignment Score (BAS):
Alignment between inflection points in motion and musical beats and Average Inference Time per
Sentence (AITS) (Dai et al., 2024)

4.1 QUANTITATIVE METRICS

Text & Music condition Motion Generation on MDD. We evaluate DualFlow on MDD,
InterHuman-AS, and DD100 using standard text-motion and music-motion metrics. As shown in
Table 1, DualFlow consistently outperforms baselines across most metrics for duet and reactive
tasks. In the interactive task, DualFlow (Both) achieves the highest R-Precision@3 (0.513) and low-
est MMDist (0.513), indicating strong alignment with multimodal inputs. DualFlow (Text) records
the best Beat-Align Score (BAS) at 0.215. While InterGen (Text) attains the best FID (0.405) and
Diversity (1.405), DualFlow (Both) follows closely with an FID of 0.415 and a Diversity score of
1.307. For the reactive task, DualFlow (Both) leads in all R-Precision scores, FID (0.686), MMDist
(1.056), and shows strong BAS (0.228). Although DuoLando (Both) has a slightly higher BED
(0.395), DualFlow remains competitive at 0.215.

Table 1: Duet Generation results on MDD dataset with both text and music modalities. Bold for
best, underline for second best.

Methods R-Precision↑ FID↓ MMDist↓ Diversity→ MModal↑ BED ↑ BAS↑
Top 1 Top 2 Top 3

Ground Truth 0.231 0.398 0.522 0.065 0.077 1.387 - 0.327 0.170

Duet Task
MDM(Text) 0.082 0.124 0.192 1.420 2.133 1.216 0.811 0.211 0.186
MDM(Music) 0.041 0.102 0.135 2.241 2.471 1.192 0.411 0.210 0.192
MDM(Both) 0.061 0.108 0.163 1.739 2.244 1.235 0.787 0.194 0.190

InterGen(Text) 0.113 0.223 0.305 0.405 1.462 1.405 1.231 0.422 0.194
InterGen(Music) 0.023 0.067 0.088 2.014 2.526 1.300 1.768 0.364 0.163
InterGen(Both) 0.105 0.206 0.302 0.426 1.532 1.380 1.352 0.385 0.185

DualFlow(Text) 0.211 0.365 0.492 0.657 0.521 1.239 1.569 0.288 0.215
DualFlow(Music) 0.172 0.308 0.452 0.694 1.244 1.319 1.109 0.308 0.180
DualFlow(Both) 0.185 0.373 0.513 0.415 0.513 1.392 1.467 0.286 0.179

Reactive Task
DuoLando(Text) 0.047 0.121 0.182 1.538 2.811 1.422 - 0.311 0.195
DuoLando(Music) 0.069 0.141 0.202 0.721 2.633 1.390 - 0.305 0.216
DuoLando(Both) 0.078 0.156 0.219 0.698 2.113 1.371 - 0.395 0.224

DualFlow(Text) 0.143 0.284 0.450 0.741 1.365 1.379 1.667 0.229 0.228
DualFlow(Music) 0.135 0.260 0.397 0.750 1.672 1.460 1.976 0.195 0.202
DualFlow(Both) 0.189 0.341 0.471 0.686 1.056 1.203 1.473 0.215 0.226

Text-conditioned Motion Generation on InterHuman-AS. Table 2 shows DualFlow significantly
outperforms InterGen on R-Precision (Top-1: 0.437, Top-3: 0.681), with much lower MMDist
(0.394) and the highest multimodality score (2.729). While InterGen has a slightly better FID (5.918
vs. 6.296), DualFlow offers better semantic and multimodal alignment. In the reactive task, we train
our model with L=0 removing access to actor’s intention (completely causal) defined as Uncon-
strained (UC) for fair comparison with ReGenNet(UC). DualFlow(UC) surpasses ReGenNet(UC)
in R-Precision@3 (0.572 vs. 0.407), MMDist (6.314 vs. 6.860), Diversity (5.449 vs. 5.214) and
Multimodality (2.502 vs. 2.391).
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Table 2: Interactive Two-person Generation results condi-
tioned on text modality for the InterHuman-AS dataset.

Methods R-Precision↑ FID↓ MMDist↓ Diverse→ MModal↑

Top 1 Top 2 Top 3

Ground Truth 0.452 0.610 0.701 0.273 3.755 7.948 -

Duet Task

InterGen 0.371 0.515 0.624 5.918 5.108 7.387 2.141

DualFlow 0.437 0.558 0.681 6.296 4.394 7.116 2.729

Reactive Task

ReGenNet(UC) - - 0.407 2.265 6.860 5.214 2.391
DualFlow(UC) 0.381 0.493 0.572 2.581 6.314 5.449 2.502

DualFlow 0.419 0.549 0.629 2.448 6.230 4.981 2.616

Figure 3: User study results

Table 3: Reactive Motion Generation results conditioned on text
modality for the DD100 dataset.

Solo Metrics Interactive Metrics Rhythmic

Methods FIDk↓ FIDg↓ Divk↑ Divg↑ FIDcd↓ Divcd↑ BED(↑) BAS(↑)

Ground Truth 6.56 6.37 11.31 7.61 3.41 12.35 0.5308 0.1839

Bailando 78.52 36.19 11.15 7.92 6643.31 52.50 0.1831 0.1930
EDGE 69.14 44.58 8.62 6.35 5894.45 60.62 0.1822 0.1875
Duolando 25.30 33.52 10.92 7.97 9.97 14.02 0.2858 0.2046

DualFlow 19.22 28.85 11.01 7.35 5.57 19.52 0.2767 0.2113

Figure 4: FID vs. Steps

Reactive Motion Generation on DD100. Table 3 highlights DualFlow’s performance across all
metrics for reactive motion task. It achieves the best FIDk (19.22), FIDg (28.85), and FIDcd (5.57),
with strong diversity and rhythmic scores (Divk: 11.01, BAS: 0.211). While Duolando leads in BED
(0.285), DualFlow follows closely at 0.276, showing generative fidelity and collaborative modeling.

Computational Complexity. Figure 4 reports FID as a function of inference steps for DualFlow
and InterGen. While InterGen requires more than 50 DDIM steps to reach high-quality performance,
DualFlow achieves better FID with only 20 Rectified Flow (RF) steps. For a 10-second sequence at
30 FPS, the Average Inference Time per Sentence (AITS) on an RTX 5090 GPU is 1.92s for InterGen
(50 DDIM steps) and 1.24s for DualFlow (20 RF steps), demonstrating improved efficiency under
identical hardware and sequence length.

4.2 QUALITATIVE EVALUATION

Fig. 5 shows a Qualitative Comparison for two samples from MDD Dataset. While samples gen-
erated from both text and music condition-based InterGen and DualFlow models follow the text
prompt, the motion quality of InterGen has reduced motion quality as circled, where the hands are
flipping and the distance is increased. We also conduct a user study to qualitatively evaluate the
motion sequences generated by our DualFlow framework in comparison with baseline methods on
both tasks from the MDD dataset (details in Appendix). As shown in Fig.3, DualFlow outperforms
the baseline methods across most comparisons, demonstrating superior alignment with both text and
music, as well as high-quality motion generation.

4.3 ABLATION STUDY

We perform an ablation study on both the tasks (Table 4) to assess the impact of key DualFlow com-
ponents. We compare the full model against four variants: (1) replacing Causal Look-Ahead (CLA)
Attention with regular cross-attention (only for reactive setting), (2) removing RAG by replacing
Retrieved Causal Attention with self-attention, (3) removing the triplet loss Ltriplet, and (4) substi-
tuting high-level Jukebox features with Mel-spectrograms. Results show clear performance drops
across most metrics, highlighting the importance of anticipatory modeling, retrieval grounding, and
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Figure 5: Comparing DualFlow with InterGen (interactive) and DuoLando (reactive) against ground
truth on MDD Dataset. Black circles mark regions where baselines lose contact or produce dis-
tortions. InterGen shows artifacts like unnatural hand spacing, body interpenetration, and skipping
the Alemana (follower’s inside turn), while DuoLando shows incorrect leg initiation and head ori-
entation. In contrast, DualFlow generates smooth, text-aligned choreography and coherent partner
responses closely matching the ground truth. Supplementary video provides detailed visualizations.

rich audio features for high-quality reactive motion generation. Please refer to Appendix for more
ablation results.

Table 4: Ablation Study on MDD dataset (both text & music).
Methods R-Precision↑ FID↓ MMDist↓ Diverse→ MModal↑ BED ↑ BAS↑

Top 1 Top 2 Top 3

Ground Truth 0.231 0.398 0.522 0.065 0.077 1.387 - 0.327 0.170

Interactive Task
DualFlow(w/o RAG) 0.179 0.356 0.498 0.622 0.626 1.502 1.224 0.254 0.162
DualFlow(w/o Ltriplet) 0.158 0.297 0.412 0.783 0.818 1.433 0.844 0.291 0.169
DualFlow(w/o Lsync) 0.182 0.369 0.509 0.472 0.590 1.224 1.340 0.277 0.182
DualFlow(Spectral) 0.172 0.321 0.477 0.647 0.633 1.383 1.114 0.255 0.158
DualFlow(Jukebox) 0.185 0.373 0.513 0.415 0.513 1.392 1.467 0.286 0.179

Reactive Task
DualFlow(w/o CLA) 0.172 0.311 0.338 0.849 0.831 1.137 1.385 0.247 0.142
DualFlow(w/o RAG) 0.192 0.352 0.479 0.714 0.933 1.270 1.466 0.233 0.193
DualFlow(w/o Ltriplet) 0.153 0.292 0.308 0.885 1.328 1.664 1.007 0.204 0.186
DualFlow(w/o Lsync) 0.166 0.311 0.453 0.774 1.112 1.429 1.233 0.235 0.202
DualFlow(Spectral) 0.162 0.301 0.468 0.721 0.965 1.261 1.401 0.255 0.162
DualFlow(Jukebox) 0.189 0.341 0.471 0.686 1.056 1.203 1.473 0.215 0.226

5 CONCLUSION

We introduced DualFlow, a unified rectified flow-based framework for efficient and expressive two-
person 3D motion generation, supporting both interactive and reactive settings with text, music, and
retrieved motion exemplars. Leveraging rectified flow enables faster sampling and lower latency
than diffusion-based methods. Extensive evaluations on MDD, InterHuman-AS, and DD100 show
superior performance in duet generation and reactive motion. DualFlow advances multi-modal two-
person motion synthesis, opening new opportunities for immersive avatar interaction, intelligent
choreography, and responsive digital humans. Future work will explore improved interactive gener-
ation with newer flow-matching methods, real-time motion editing, and few-shot adaptation to novel
styles and languages.
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A LLM DISCLOSURE

LLMs were only used to polish the text and proof read the paper for grammatical errors. They were
not used to generate any metrics or citations.

B REPRODUCIBILITY

Full code for this project along with the trained checkpoints for all tasks will be made open source
and publicly available upon paper acceptance.

C LLM-BASED DECOMPOSITION

C.1 PROMPT DESIGN

We design a structured prompting framework for the LLM, which is detailed as follows:

1. System prompt: We instruct the model with the following directive:
”As a professional dance movement analyst, please break down the given textual descrip-
tion of a duet dancing movement for {genre} into three focused descriptions: (1) Spatial
Relationships: physical positioning, orientation, handhold (2) Body Movement: key ges-
tures, actions, specific body part movements (3) Rhythm: tempo, timing, rhythmic dancing
style and stepping. Please refer to the provided documents for guidance.”

2. Few-shot Examples: We provide a curated set of genre-specific examples (3 per genre)
illustrating how input descriptions are manually decomposed into the three components.
These examples were crafted by analyzing a diverse subset of textual annotations in the
MDD dataset and annotating their corresponding focused descriptions through expert re-
view.

3. Reference Guidelines: To promote interpretive consistency, we supply a supporting doc-
ument containing structured definitions and keyword clusters describing typical language
and semantic categories associated with each duet motion aspect.

C.2 GENERATED FOCUSED DESCRIPTIONS

To enhance semantic grounding during retrieval, we leverage a Large Language Model (LLM) to
decompose free-form textual prompts into structured, movement-relevant subcomponents. Drawing
inspiration from Laban Movement Analysis (LMA), we extract three focused descriptions: Spatial
Relationship, Body Movement, and Rhythm. This decomposition allows the system to perform more
targeted motion retrieval by aligning each aspect of the prompt with corresponding motion features.
By translating ambiguous or abstract user descriptions into focused representations, the objective for
the LLM-based refinement is to improve both retrieval precision and downstream motion generation
quality. Table 5 shows some of the examples for the focused textual descriptions for text prompts
for the MDD Dataset.

C.3 VALIDATION OF LLM-BASED SEMANTIC DECOMPOSITION

To verify that the LLM-generated spatial, body-movement, and rhythm descriptors accurately re-
flect the original human-written annotations, we randomly sampled 30 descriptions from MDD and
InterHuman-AS and manually compared each decomposed attribute against the ground-truth text.
Using our tuned GPT-4o prompt (Section C.1), two annotators independently evaluated consistency,
correctness, and completeness, scoring each attribute on a 5-point scale (1 = incorrect, 5 = fully
correct) based on consistency, correctness, and completeness. The decompositions showed high fi-
delity to the original descriptions, with accuracies of 96.1% for spatial relationships, 98.3% for body
movement, and 86.9% for rhythm (overall 93.8%). We observed that in a few cases the LLM intro-
duced rhythm-related terms were not explicitly present in the original text leading to lower validation
accuracy. However, the use of music-derived features in our RAG module can help in naturally cor-
recting such deviations by grounding rhythmic information. Overall, the results confirm that the

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

LLM reliably produces semantically aligned decompositions suitable for guiding retrieval in the
RAG module.

Table 5: Examples of input text decomposed into three fine-grained, semantically focused descrip-
tions using LLM for MDD Dataset.

Text Description Spatial Relationship Body Movement Rhythm
The leader switches the hand
hold from left to right, lead-
ing the follower into a triple
spin, maintaining a strong
frame and connection.

The dancers are in an Open
position with a Hand-to-
hand connection. The leader
switches the hand hold from
left to right, maintaining a
strong frame. They are fac-
ing each other during the
transition.

The leader uses a strong
frame to guide the follower
into a triple spin. The fol-
lower’s arms and torso are
actively involved in the spin-
ning motion, with medium
energy.

The movement is executed
at a fast tempo, with the
triple spin occurring in quick
succession, maintaining a
continuous flow.

The dancers perform Jive
Spanish Arms, maintaining
a strong frame and connec-
tion, with the follower exe-
cuting a controlled turn.

The dancers are in a Closed
position, facing each other
with a strong Hand-to-
hand connection. The
leader maintains a firm
frame, guiding the follower
through the movement.

The leader maintains a
steady posture, using arms
and shoulders to guide.
The follower performs a
controlled turn, involving a
smooth rotation of the torso
and arms, with medium
energy.

The movement is executed
at a fast tempo, characteris-
tic of Jive, with a continu-
ous and lively rhythm, en-
suring the turn is seamlessly
integrated into the dance se-
quence.

From a separated position,
the leader draws the fol-
lower into a Closed Hand
Hold, and they rotate clock-
wise together.

The dancers transition from
a separated position to
a Closed position with a
Hand-to-hand connection.
They are facing each other
as they move into this
position.

The leader initiates a draw-
ing motion, pulling the fol-
lower towards him. Both
dancers engage in a rotat-
ing movement, turning their
bodies clockwise together.

The rotation is performed
at a medium tempo, with a
continuous and fluid motion
as they move in sync with
each other.

The leader brings the fol-
lower back with a circular
motion, leading a head roll
with his left hand, connect-
ing it with a forward body
roll for the follower. They
then perform a basic step.

The dancers are in an Open
position, with the leader fac-
ing the follower. They main-
tain a Hand-to-head connec-
tion as the leader guides the
follower’s head roll.

The leader uses his left hand
to guide a head roll, involv-
ing the follower’s head and
neck. The follower transi-
tions into a forward body
roll, engaging the shoulders
and torso. Both then per-
form a basic step, involv-
ing coordinated leg and foot
movements.

The sequence begins with a
medium-paced circular mo-
tion, transitioning into a
fluid head and body roll.
The basic step follows a
steady, continuous tempo,
maintaining rhythmic con-
sistency.

The lead pulls the follow
towards him, taking three
steps, while the follow also
takes three steps towards the
lead. Both hands of both
dancers are now connected.

The dancers are in a Closed
position, facing each other.
They have a Hand-to-hand
connection with both hands
engaged.

The lead and follow are both
taking three steps towards
each other. The movement
involves the legs and feet,
with a medium energy as
they close the distance.

The steps are taken at a
medium tempo, with each
step evenly spaced, creating
a continuous and synchro-
nized rhythm between the
dancers.

D MODEL ARCHITECTURE DETAILS

The proposed framework for duet and reactive motion generation employs a rectified flow matching
approach. Our model utilizes transformer-based architectures with multi-scale temporal modeling
and attention mechanisms, supporting optional text and music conditioning. The following section
discusses about specific modules used in detail.

D.1 DUALFLOW BLOCK.

The DualFlow block applies multi-scale temporal convolutions with learnable gating:

f
(k)
b = GELU(Conv1Dk(z

(j)⊤
b ))⊤, k ∈ {1, 2, 3}, z

(j′)
b = z

(j)
b +

3∑
k=1

γkf
(k)
b ,

Each block applies a sequence of self- and cross-attention layers with residual connections and
LayerNorm conditioning using the text latent zd. Let LN(·, zd) denote LayerNorm with text-
conditioned shift/scale, and Attn(Q,K,V) = softmax

(
QK⊤
√
d

)
V. The transformations applied are
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Self-Attention (equation 11), Music Cross Attention (equation 12), Motion Cross Attention (equa-
tion 13), Retrieval Cross Attention (equation 14), and Feedforward (FFN) Layer (equation 15):

z(j,1)a = z(j
′)

a +Attn
(
Q = W sa

Q LN(z(j
′)

a , zd),K = W sa
K LN(z(j

′)
a , zd),V = W sa

V LN(z(j
′)

a , zd)
)

(11)

z(j,2)a = z(j,1)a +Attn
(
Q = Wm1

Q LN(z(j,1)a , zd),K = Wm1

K zm, V = Wm1

V zm
)

(12)

z(j,3)a = z(j,2)a +Attn
(
Q = Wm2

Q LN(z(j,2)a , zd),K = Wm2

K z
(j,2)
b , V = Wm2

V z
(j,2)
b

)
(13)

z(j,4)a = z(j,3)a +Attn
(
Q = WR

Q LN(z(j,3)a , zd),K = WR
K zR, V = WR

V zR
)

(14)

z(j+1)
a = z(j,4)a + FFN

(
LN(z(j,4)a , zd)

)
. (15)

with symmetric updates for z(j)b .

D.2 INTERACTIVE SETTING

The flow dynamics are defined as:
x(t) = [xa(t);xb(t)], vθ(x(t), t, c) = [vθ,a(x(t), t, c);vθ,b(x(t), t, c)].

The final motion latents z(N)
a and z

(N)
b are mapped to velocity fields

vθ,a = Linear(z(N)
a ), vθ,b = Linear(z

(N)
b ), (16)

concatenated as
vθ = [vθ,a;vθ,b] ∈ RB×T×524. (17)

D.3 REACTIVE SETTING

For reactive motion generation, our model generates the reactor’s motion xb conditioned on the
actor’s fixed motion xa, with the flow dynamics defined as:

x(t) = [xa;xb(t)], vθ(x(t), t, c) = [0;vθ,reactor(x(t), t, c)].

The Motion Cross Attention gets replaced by Causal Cross Attention in the DualFlow block for this
setting. The final reactor latent z(N)

b is mapped to the velocity field vθ,reactor = Linear262L (z
(N)
b ), and

the output is vθ = [0;vθ,reactor] ∈ RB×T×524. During inference, the initial state is x(0) = [xa; zb],
where zb ∼ N (0, I).

D.4 CAUSAL CROSS ATTENTION WITH LOOK-AHEAD

The Causal Cross Attention module enables the reactor to condition on the actor’s motion while
preserving temporal causality and allowing limited future anticipation. For reactor motion latent
z
(j,2)
b and fixed actor motion latent za from DualFlow block j, we construct query, key, and value

matrices as Q = z
(j,2)
b WQ, K = zaWK , and V = zaWV , where WQ, WK , and WV ∈

RL×dk are learned projection matrices. The causal mask with look-ahead parameter L uses an
upper triangular mask such that reactor’s motion attends to past and only L future frames of the
actor’s motion, implemented as Mi,j = 1 if j ≤ i + L and Mi,j = 0 otherwise. The attention
computation follows:

CausalCrossAttention(Q,K,V) = softmax
(
QKT

√
dk

⊙M+ (1−M) · (−∞)

)
V

where ⊙ denotes element-wise multiplication. This formulation ensures temporally aligned and
context-aware reactive generation, enabling natural reactive responses that align with the actor’s
intended trajectory without violating temporal consistency.
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D.5 MODEL PARAMETERS

Loss Weighting Values We assign higher weights to geometric losses for velocity (λvel = 30) and
foot contact (λfoot = 30), moderate weight for bone length consistency (λBL = 10), and emphasize
inter-dancer synchronization (λsync = 5). Affinity and distance are equally weighted (λDM = 3),
while orientation receives a minimal weight (λRO = 0.01). These settings ensure anatomically
plausible, temporally smooth, and well-coordinated duet motions.

E QUANTITATIVE EVALUATION

We further conduct ablations to study model design choices in Table. 6: (1) replacing the three
temporally scaled parallel convolutions with a single convolution, (2) reducing the number of trans-
former blocks to 10 and 15 (from 20), (3) lowering the latent dimension to 128 and 256 (from 1024)
and (4) changing the Look-Ahead parameter L to 0 and 20. These variants consistently show per-
formance drops across most metrics, highlighting the benefit of the full architecture. Performance
decrease in different settings shows the importance of 3 parallel temporal Convs, using 20 blocks,
515 Latent dimension and Look-Ahead parameter L = 10 frames. Here, Bold indicates the best
result and Underline indicates the second best result.

Table 6: Ablation study results for Reactive Setting on the MDD dataset

Methods R-Precision↑ FID↓ MMDist↓ Diversity→ MModal↑ BED ↑ BAS↑
Top 1 Top 2 Top 3

Ground Truth 0.231 0.398 0.522 0.065 0.077 1.387 – 0.327 0.170

DualFlow (one conv) 0.172 0.311 0.338 0.595 0.582 1.288 1.385 0.266 0.142
DualFlow (10 blocks) 0.160 0.313 0.452 0.683 0.654 1.215 1.222 0.259 0.159
DualFlow (15 blocks) 0.175 0.357 0.521 0.482 0.627 1.211 1.402 0.270 0.163
DualFlow (128 latent) 0.108 0.284 0.414 0.966 0.834 1.277 1.091 0.273 0.141
DualFlow (256 latent) 0.168 0.342 0.468 0.642 0.681 1.245 1.328 0.291 0.163
DualFlow (L=0) 0.162 0.322 0.455 0.574 0.663 1.292 1.274 0.241 0.152
DualFlow (L=20) 0.181 0.366 0.507 0.497 0.542 1.322 1.393 0.258 0.167

DualFlow 0.185 0.373 0.513 0.415 0.513 1.307 1.467 0.286 0.179

Ablation for RAG. We also perform ablations to critically evaluate the role of retrieval-augmented
components across both the settings in driving DualFlow’s performance in Table. 7. For the cases
where different retrieval components are ablated, value of k is set to be 5. For no text-decompose
setting of RAG, we directly perform retrieval on original text descriptions and music features in
order to understand the benefit from text decomposition.

In the interactive setting, removing any individual retrieval cue consistently degrades semantic align-
ment and motion quality, with the largest drops observed when all retrieval components are removed.
Increasing the number of retrieved samples shows a clear sweet spot where k = 5 achieves the best R-
Precision, FID, and Multi-modality scores, indicating that moderately diverse retrieved context helps
the model ground its generation without introducing noise. Interestingly, k = 3 already provides a
substantial boost over no retrieval, but larger retrieval depth (k = 7) offers diminishing returns and
slightly worse fidelity, suggesting an over-saturation of context. Using no textual decomposition set-
ting provides similar results as removing Music-based retrieval but having retrieval on decomposed
text components.

In contrast, the reactive setting exhibits a different trend. Because the follower must respond tightly
to the leader’s motion in real time, excessive retrieval diversity can introduce temporal drift. It can
be seen that k = 3 provides the strongest semantic alignment, outperforming both lower (k = 1) and
higher (k = 5,7) retrieval depths. Additionally, removing music-based retrieval surprisingly improves
R-Precision and MM-Distance, suggesting that in tightly synchronized partner interactions, leader
motion cues dominate over rhythmic cues for determining the follower’s behavior. Using no textual
decomposition RAG setting performs better than text-retrieval ablated version but performs more
comparable to text rhythm component ablated version.
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Table 7: Ablation Study on RAG in DualFlow on the MDD dataset
Methods R-Precision↑ FID↓ MMDist↓ Diverse→ MModal↑ BED ↑ BAS↑

Top 1 Top 2 Top 3

Ground Truth 0.231 0.398 0.522 0.065 0.077 1.387 - 0.327 0.170

Interactive Task

w/o RAG (RS
i , R

B
i , R

R
i , R

M
i ) 0.179 0.356 0.498 0.622 0.626 1.502 1.224 0.254 0.162

w/o Text-based Retrieval (RS
i , R

B
i , R

R
i ) 0.181 0.361 0.503 0.541 0.574 1.441 1.351 0.263 0.171

w/o RS
i 0.180 0.359 0.501 0.529 0.566 1.431 1.432 0.289 0.169

w/o RB
i 0.182 0.364 0.506 0.520 0.559 1.422 1.419 0.272 0.172

w/o RR
i 0.181 0.362 0.504 0.512 0.553 1.416 1.441 0.267 0.177

w/o Music-based Retrieval (RM
i ) 0.183 0.368 0.509 0.498 0.541 1.406 1.452 0.268 0.164

w RAG (no text-decompose) 0.183 0.352 0.501 0.508 0.552 1.409 1.444 0.287 0.178

w RAG (k=1) 0.181 0.360 0.503 0.449 0.535 1.381 1.437 0.279 0.176
w RAG (k=3) 0.184 0.372 0.512 0.418 0.521 1.386 1.452 0.291 0.178
w RAG (k=5) 0.185 0.373 0.513 0.415 0.513 1.392 1.467 0.286 0.179
w RAG (k=7) 0.183 0.369 0.509 0.438 0.527 1.407 1.445 0.282 0.177

Reactive Task

w/o RAG (RS
i , R

B
i , R

R
i , R

M
i ) 0.192 0.352 0.479 0.714 0.933 1.270 1.466 0.233 0.193

w/o Text-based Retrieval (RS
i , R

B
i , R

R
i ) 0.181 0.334 0.451 0.752 0.984 1.196 1.312 0.221 0.217

w/o RS
i 0.182 0.321 0.449 0.703 0.956 1.243 1.429 0.246 0.224

w/o RB
i 0.182 0.322 0.451 0.699 0.948 1.255 1.442 0.239 0.198

w/o RR
i 0.186 0.334 0.468 0.697 0.932 1.249 1.451 0.231 0.208

w/o Music-based Retrieval (RM
i ) 0.194 0.369 0.492 0.692 0.921 1.238 1.438 0.228 0.189

w RAG (no text-decompose) 0.185 0.336 0.473 0.696 0.933 1.252 1.442 0.221 0.208

w RAG (k=1) 0.190 0.348 0.457 0.707 0.978 1.223 1.469 0.221 0.209
w RAG (k=3) 0.193 0.367 0.483 0.693 0.962 1.217 1.471 0.224 0.212
w RAG (k=5) 0.189 0.341 0.471 0.686 1.056 1.203 1.473 0.215 0.226
w RAG (k=7) 0.188 0.336 0.459 0.699 0.989 1.229 1.470 0.218 0.223

Table 8: Ablation Study on Synchronization Loss on the MDD dataset.
Methods R-Precision↑ FID↓ MMDist↓ Diverse→ MModal↑ BED ↑ BAS↑

Top 1 Top 2 Top 3

Ground Truth 0.231 0.398 0.522 0.065 0.077 1.387 - 0.327 0.170

Interactive Task
DualFlow(w/o Lsync) 0.182 0.369 0.509 0.472 0.590 1.224 1.340 0.277 0.182
DualFlow(w Lsync w/o wd) 0.181 0.365 0.502 0.465 0.592 1.318 1.322 0.268 0.163
DualFlow(w Lsync w/o wj) 0.184 0.372 0.511 0.432 0.538 1.385 1.435 0.292 0.180
DualFlow (w Lsync) 0.185 0.373 0.513 0.415 0.513 1.392 1.467 0.286 0.179

Reactive Task
DualFlow(w/o Lsync) 0.166 0.311 0.453 0.774 1.112 1.429 1.233 0.235 0.202
DualFlow(w Lsync w/o wd) 0.168 0.314 0.459 0.763 1.101 1.381 1.260 0.231 0.194
DualFlow(w Lsync w/o wj) 0.181 0.334 0.467 0.712 1.064 1.312 1.431 0.212 0.214
DualFlow 0.189 0.341 0.471 0.686 1.056 1.203 1.473 0.215 0.226

Ablation on Synchronization Loss. Table. 8 shows further ablation analysis on the proposed Syn-
chronization Loss. It can be seen that having Lsync plays a crucial role in improving both semantic
alignment and inter-person coordination for duet motion generation. Removing the loss entirely
leads to clear degradation across all metrics in both interactive and reactive settings, with notably
higher FID & MMDist and reduced R-Precision. The distance weighting term wd and the anatomi-
cal weighting term wj contribute complementary benefits. Omitting wd harms spatial coherence and
leads to greater overall performance degradation, whereas omitting wj primarily reduces semantic
consistency and relational fidelity reflected in lower BED, BAS, and MModal, and thus performs
slightly worse than the complete version. The full formulation consistently achieves the strongest
performance, yielding the best balance of retrieval alignment (R-Precision), motion realism (FID),
Diversity, Multimodality, and inter-person synchronization. These results validate that both weight-
ing components are necessary and that Lsync meaningfully strengthens DualFlow’s ability to model
coordinated two-person motion.

Model Parameters Comparison. The adapted InterGen model—augmented with an additional
music-attention layer to support both motion and music conditioning—contains 224M trainable pa-
rameters. InterGen’s architecture packs two sub-blocks (each comprising two attention layers) into
a single block, yielding a total of 8 blocks, i.e., 8 × 2 sub-blocks × 3 attention layers per sub-
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block (after adding music attention), resulting in 48 attention layers overall. In contrast, DualFlow
employs 20 blocks, each containing four attention layers, amounting to 80 attention layers and a
total of 456M trainable parameters. The increased capacity in DualFlow primarily arises from the
added retrieval-augmented generation (RAG) module, which introduces additional attention layers
and projection components necessary for multi-modal retrieval integration.

F QUALITATIVE EVALUATION

User Study Details. A total of 24 participants were recruited for the study. Each participant is
shown 15 pairs of rendered videos (3 per experiment), with each video lasting less than 10 seconds.
Each pair consists of one motion sequence generated by DualFlow and the other by either a baseline
method or the ground truth (when available). To ensure unbiased evaluation, the order of videos
within each pair is randomized, and no method labels are revealed. For each video pair, participants
are asked to answer three key questions: (1) Which motion better aligns semantically with the textual
description? (2) Which motion is better synchronized with the musical beats? (3) Which motion has
higher overall quality (e.g., naturalness, smoothness etc)? Fig.6 shows the User Study Form we
used.

Fig. 6 illustrates the User Study Form presented to participants during the human evaluation study.
Clear and detailed guidelines were provided at the beginning of the form, explaining the evaluation
criteria. Participants were then asked to watch two videos: one containing motion from either a
Baseline model or the Ground Truth, and the other generated using our DualFlow model. The
identity of each video (i.e., whether it was from the DualFlow model or the comparison method)
was not disclosed to the participants. For each experimental condition, participants viewed and
evaluated three distinct pairs of videos.

Figure 6: User Study Google Form

G LIMITATIONS AND FUTURE WORK

In this section, we discuss the limitations of the DualFlow model along with several observed failure
cases followed by potential avenues for improvement. (1) The effectiveness of RAG-based mo-
tion alignment is dependent on the quality and relevance of the retrieved samples. In cases where
the input text, leader motion, or music cues are ambiguous or underspecified, the RAG module
may retrieve semantically mismatched neighbors. This semantic retrieval misalignment can cause
stylistic drift or generate motions that deviate from the intended interaction attributes, particularly
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for prompts involving abstract descriptions or uncommon dance style/movement. (2) In the re-
active setting, DualFlow occasionally struggles to maintain precise physical coordination between
partners. We observe minor hand–hand or torso–torso penetrations during close-contact sequences
or under rapid leader movements, likely due to the absence of explicit modeling of contact-based
physical constraints. (3) Since retrieval operates over short, localized motion segments, directly gen-
erating long sequences can accumulate temporal drift, leading to weakened structural consistency or
off-beat rhythmic alignment over extended durations.

The above limitations point to several promising directions for future work. Improving retrieval
quality through learned semantic re-ranking, cross-modal retrieval scoring, or uncertainty-aware
retrieval could reduce misalignment and make the system more robust to ambiguous input cues.
Incorporating contact-based physical constraints as a loss function may help enforce more accu-
rate hand and body coordination in close-contact motions. Finally, addressing long-term drift may
benefit from introducing hierarchical temporal modeling, where high-level rhythmic or structural
constraints guide long-range consistency, while DualFlow refines short-term details. Broadening
the retrieval corpus to incorporate more diverse styles and partner interaction patterns may further
enhance robustness. Together, these directions offer a path toward more physically grounded, se-
mantically aligned and temporally coherent two-person motion generation.
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