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ABSTRACT

Generating realistic, context-aware two-person motion conditioned on diverse
modalities remains a central challenge in computer graphics, animation, and
human-computer interaction. We introduce DualFlow, a unified and efficient
framework for multi-modal two-person motion generation. DualFlow conditions
3D motion synthesis on diverse inputs, including text, music, and prior motion
sequences. Leveraging rectified flow, it achieves deterministic straight-line sam-
pling paths between noise and data, reducing inference time and mitigating error
accumulation common in diffusion-based models. To enhance semantic ground-
ing, DualFlow employs a Retrieval-Augmented Generation (RAG) module that
retrieves motion exemplars using music features and LLM-based text decompo-
sitions of spatial relations, body movements, and rhythmic patterns. We use con-
trastive objective that further strengthens alignment with conditioning signals and
introduce synchronization loss that improves inter-person coordination. Exten-
sive evaluations across text-to-motion, music-to-motion, and multi-modal inter-
active benchmarks show consistent gains in motion quality, responsiveness, and
efficiency. DualFlow produces temporally coherent and rhythmically synchro-
nized motions, setting state-of-the-art in multi-modal human motion generation.
We will release the code upon acceptance.

1 INTRODUCTION
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Reactive Motion Generation

Figure 1: Our DualFlow model unifies two tasks: (a) Interactive Motion Generation, which syn-
thesizes synchronized two-person interactions, (b) Reactive Motion Generation, which generates
responsive motions for Person B (red) conditioned on Person A’s (blue) movements. The generation
process is conditioned jointly on text, music, and the retrieved motion samples.

Generating realistic, context-aware interactive human motion remains a core challenge in computer
graphics, animation, and human-computer interaction (Holden et al.| 2016; [Duan et al.| [2022).
Synthesizing coordinated motion between two individuals introduces unique complexities requir-
ing models to capture mutual responsiveness, physical plausibility, and rich interpersonal dynamics
(Cao et al.| [2023). Since human interactions are often driven by multi-modal stimuli such as lan-
guage, music, and physical cues, generative systems must interpret and integrate diverse inputs to
enable immersive virtual experiences, intelligent avatars, and responsive human-robot collaboration
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(Tevet et al.| 2022). Recent advances in deep generative models, particularly diffusion-based ap-
proaches, have shown strong performance in motion generation (Zhang et al., |2023b)), but remain
limited by high computational cost, error accumulation over long sequences, and weak real-time
reactivity (Guo et al} 2022 [Lu et al., [2022). These constraints hinder their applicability in interac-
tive systems such as virtual avatars, social robotics, and dance simulation, where low-latency and
seamless coordination are essential.

To overcome these challenges, we propose DualFlow, a multi-modal rectified flow framework that
unifies interactive and reactive motion generation within a single architecture. Instead of designing
separate models for each task, DualFlow employs cascaded DualFlow Blocks that flexibly adapt
through a masking mechanism: both branches remain active for interactive generation, while the
reactor branch alone is conditioned on the actor’s motion for reactive synthesis. This design enables
seamless switching between tasks without retraining while preserving temporal coherence and inter-
personal synchronization. By integrating retrieval-augmented conditioning from music and text with
structured cross-attention modules, DualFlow captures fine-grained spatial relationships, rhythmic
cues, and semantic intent. In doing so, it directly addresses the shortcomings of existing diffusion-
based approaches, offering a scalable, context-aware framework capable of real-time responsiveness
in multi-person, multi-modal scenarios.

Our key contributions are: (1) The first unified architecture for interactive two-person and reactive
motion generation. (2) A Retrieval-Augmented Generation (RAG) framework leveraging music fea-
tures and LLM-based text decompositions (spatial relationship, body movement, rthythm) to guide
semantically faithful motion synthesis. (3) Contrastive Rectified Flow generation, improving motion
quality, diversity, and alignment with conditioning signals. (4) Extensive quantitative, qualitative,
and ablation studies on diverse two-person datasets, showing DualFlow generates coherent, expres-
sive, and contextually appropriate motions with fewer steps. Importantly, our approach outperforms
state-of-the-art baselines by 2.5% in FID, 76% in R-precision, and 3x in Multi-Modal Distance for
Interactive task and 1.7% in FID, 2.5x in R-precison and 2x in Multi-Modal Distance for Reactive
task on MDD Dataset, establishing a new benchmark for multi-person, multi-modal motion genera-
tion.

2 RELATED WORK

Two-person Motion Generation. = While single-person motion generation has advanced
rapidly (Guo et al., 2022; [Tevet et al., 2022; |Petrovich et al.l 2022} Zhang et al., 2024), extending
these methods to multi-person settings introduces the additional challenge of modeling coordination
between agents. Early two-person models (Kundu et al., [2020; |Xu et al., [2023}; | Xie et al., [2021])
demonstrated feasibility but exhibited limited generalization. To address data scarcity and modeling
complexity, [Liang et al.| (2024)) introduced a large-scale interaction dataset with a text-conditioned
diffusion model, later extended by text-guided variants (Shafir et al., [2024} |Y1 et al., 2024; L1 et al.}
2024a)). In the domain of dance, specialized frameworks explored music-conditioned lead—follower
generation (Li et al.| [2024bj [Wang et al.l [2025; |Ghosh et al.l [2025). Despite these advances, most
diffusion-based methods remain slow and restricted to single-modality conditioning. For reactive
motion generation, early GAN- and transformer-based methods (Men et al., 2022; Rahman et al.,
2022;|Ghosh et al.,2024) have recently been extended with text (Xu et al.,[2024;|Cen et al.,[2025) or
with joint leader motion and music for dance accompaniment (Siyao et al., 2024). However, these
approaches still suffer from high inference latency and limited multi-modal support. Our frame-
work, DualFlow, addresses these challenges by unifying interactive and reactive motion generation
within a single transformer-based architecture, jointly conditioned on text and music.

Retrieval-Augmented Generation (RAG). Adding RAG has improved generation quality across
LLMs (Gao et al., 2023} |Guu et al.| 20205 [Lewis et al., [2020), image (Blattmann et al., [2022; (Chen
et al.,2022; Sheynin et al., [2022)), and video tasks (He et al., 2023). RAG has been applied to text-
to-motion generation (Zhang et al., 2023a; |Kalakonda et al., {2025} |Liao et al.||2024; |Petrovich et al.}
2023}; Bensabath et al.| [2024); however, these efforts focus on single-person motion. DualFlow is
the first framework to extend RAG to interaction-aware retrieval for multi-person motion generation.

Diffusion and Rectified Flow Models. Diffusion models like MDM (Tevet et al.,|2022)), MotionDif-
fuse (Zhang et al.| 2024), and MoFusion (Dabral et al.| [2023) have succeeded in motion generation
but require hundreds of denoising steps, making real-time use impractical. Alternatives such as
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MotionMatch (Hu et al.| 2023) and FlowMotion (Canales Cuba & Gois| [2025) use Flow Matching
(Lipman et al.} [2023) to avoid iterative sampling but face scaling and optimization challenges. We
introduce DualFlow, built on Rectified Flow (Liu et al., 2022), which simplifies training by using
straight-line transport between noisy and clean data, yielding faster and more stable sampling.

3 METHODS

3.1 PROBLEM FORMULATION

A two-person motion interaction x € X4 x Xjp is represented as person A’s motion x, = {z¢} Y ;
and person B’s motion x1, = {}}Y,, where paired frames 2/ = (zJ,z}) are naturally synchro-
nized. For the asymmetric case, person A is the Actor and person B the Reactor. The motion space
is X ¢ RV*/*3 with N frames and .J joints. Music features lie in M C RV >*4m with dimension
d ., and text embeddings in C C R4 with dimension d,.

Interactive Motion Generation. Given text ¢ € C and/or music m € M, the task is to generate
synchronized two-person motion (x5, Xp,) aligned with both modalities: F'(c, m) — x Special cases
include text-only (m = ¢) (Liang et al., 2024)), music-only (¢ = ¢) (L1 et al., 2024b; |(Ghosh et al.,
2023))), and joint text-music conditioning defined as Text-to-Duet by |Gupta et al.| (2025)).

Reactive Motion Generation. Given the actor’s motion X, € X, text ¢ € C, and/or music m € M,
the goal is to generate the reactor’s motion X, € X' such that (x4, Xp) are coherent and synchro-
nized: G(c,m,X,) — Xp. Variants include text-only (m = ¢) (Xu et al 2024), music-only
(c = ¢) (Styao et al., 2024)), and joint text-music conditioning defined as Text-to-Dance Accompa-
niment by |Gupta et al.|(2025).

Human Motion Representation. We represent motion in a global coordinate system, where the
origin is anchored at the root joint of person A. The position of person B is expressed relative to this
root, ensuring a unified spatial reference frame for both. Our motion representation is based on the
format introduced by |Liang et al.[(2024), and encodes a single frame of an individual’s motion as
xt = [jg 1 Jgrd" cf]. Each frame includes global joint positions Jh € R3N5 | global joint velocities
ju € B3N, local joint rotations j” € RO =1
and binary foot contact indicators ¢/ € R* that specify ground contact status for each foot joint at
that time step. To model body joint rotations, we use the SMPL model (Loper et al.| [2015) with
N; = 22 joints, resulting in a fixed input dimension of x; € R?52,

in 6D format within a root-relative coordinate frame,

3.2 MULTI-MODAL MOTION RETRIEVAL

Retrieval Dataset. Direct retrieval from raw text often overlooks the nuanced dimensions of interac-
tive human motion, yielding low diversity or biased matches. To address this, we use GPT-40 (Hurst;
et al.,[2024) to decompose each prompt into three focused descriptions, inspired by Laban Movement
Analysis (Laban, |1950) and aligned with the MDD Dataset (Gupta et al [2025): (1) Spatial Rela-
tionship (proximity, orientation, handholds), (2) Body Movement (actions, body parts, posture),
and (3) Rhythm (timing, musicality, stepping). To achieve high-quality and consistent decompo-
sition, we design a structured prompting framework for the LLM (details in Appendix). For each
category, we build retrieval databases using CLIP (Radford et al.,2021) embeddings (D, DB, D)
and music embeddings (DM) from Jukebox (Dhariwal et al.,[2020).

Similarity Scoring. We generalize the similarity scoring function introduced by|Zhang et al.|(2023a)
for any modality ¢. For a given query sample p with modality-specific feature embedding f¢, and a
candidate database motion sample x; with embedding f; and motion length /;, the similarity score

s is computed as:
. . =ty
59 = < ; ,fg> .e max{1;,p} (1)

where (-, -) is cosine similarity and the exponential term penalizes mismatch across motion length
with sensitivity A, allowing retrievals that are semantically aligned and temporally compatible. Us-
ing this scoring, we retrieve top-k matches from each database for every sample, yielding sets
(R, RP, R RM) as shown in Fig. 2| The retrieved sets collectively offer a diverse yet semanti-
cally relevant collection of motion exemplars, which are later used to guide generation.
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Figure 2: (a) Our framework takes text (CLIP-L/14), music, and motion sequences from an actor (A)
and reactor (B) as inputs. Motion samples are retrieved using music features and LLM-decomposed
text cues (spatial relationship, body movement, rhythm). These modality-specific latents are pro-
cessed by cascaded Multi-Modal DualFlow Blocks that model interactive dynamics. Outputs are
either both actors’ motions (interactive) or only the reactor’s motion (reactive) via a masking mech-
anism. (b) A DualFlow Block: in the interactive setting, both branches operate symmetrically with
Motion Cross Attention coordinating joint motion; in the reactive setting, the actor branch is masked
and the reactor branch employs a Causal Cross Attention module with Look-Ahead L, replacing Mo-
tion Cross Attention, to condition on the actor’s motion.
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3.3 MODEL ARCHITECTURE

Conditioning latents. The text description d is encoded using a pretrained CLIP model (Radford
et al.l 2021) followed by a transformer encoder, then linearly projected and fused with time-step
embeddings to form the text latent z,4. Similarly, the music input m is processed by a pretrained
Jukebox encoder (Dhariwal et al.,2020), linearly transformed, and passed through a transformer en-
coder to obtain the music latent z,,,. For retrieval-based conditioning, we use four retrieved motion
sets (R, RE, RE, RM) corresponding to spatial, body, rhythm, and music cues. Positional encod-
ings and a shared linear projection map these samples to the motion latent space, and the resulting
features are concatenated into the aggregated retrieval latent z .

Model Pipeline. Motion inputs x/, and x! sampled for time step ¢ are first projected through in-

dividual linear layers, followed by the addition of positional encodings, resulting in initial motion

latents ${ZELO)7 zl()o) }. They are fed into the main pipeline consisting of N cascaded DualFlow blocks.

The first block takes the initial motion latents {z,(lo)7 Zgo)} as input. Each subsequent block (j + 1)

takes the outputs from the previous block {z((f ), zgj )} and produces updated latents {z((lj H), zl(,j +1) },

where j € {0,1,...,N — 1}. All blocks are jointly conditioned on the multi-modal context
{Z4,2m, 2R }. The output from the last block, {x!~!, xi_l}, gives the denoised motion.

DualFlow Block. Each DualFlow block refines motion representations through temporally-aware
and context-conditioned operations. It begins with a multi-scale temporal convolution module with
varying kernel sizes to capture motion patterns at different time resolutions, followed by a GELU
activation (Hendrycks & Gimpel, [2023). Branch outputs are adaptively fused using learnable gat-
ing weights ;. The representation then passes through a Self-Attention layer to model internal
temporal dependencies, followed by a structured sequence of Cross-Attention layers: (1) Music
Cross-Attention to align motion with music latent z,,, (2) Motion Cross-Attention to capture inter-
person interaction which gets replaced by Casual Cross-Attention with Look-Ahead during reactive
setting and (3) Retrieval Cross-Attention to semantically guide generation using retrieved exemplars.
All modules use residual connections for stability, and the text latent z, is injected via LayerNorm
conditioning. Each block thus integrates temporal structure, musical rhythm, and semantic guidance
from retrieval. Please refer to Appendix for detailed description of each module.

Task settings. In the interactive setting, both x!, and x! are sampled for time step ¢ as input. In the
reactive setting, only the reactor’s motion X is sampled, while the actor’s motion x; is masked on
the input side and used for conditioning. To enable anticipatory reactor response, the Motion Cross-
attention is switched with Causal Cross Attention Layer having a Look-Ahead parameter L. It uses
an upper triangular mask such that reactor’s motion attends to past and only L future frames of the
actor’s motion (Fig[2). This look-ahead mechanism esnures temporally aligned and context-aware
reactive generation.

3.4 CONTRASTIVE RECTIFIED FLOW

To generate realistic and semantically grounded duet motions, we build upon the Rectified Flow
Matching framework (Liu et al.,2022) and augment it with a contrastive learning objective inspired
by Contrastive Flow Matching Stoica et al.| (2025). Unlike traditional diffusion models that rely on
stochastic denoising, rectified flow formulates the generation process as a deterministic Ordinary
Differential Equation (ODE) that transports a noise sample toward a data sample along a straight-
line path in motion space. Given a ground truth motion sample x( and a noise sample € ~ N(0, 1),
the interpolated state at time ¢ € [0, 1] is defined as: x; = (1 —t)xo + te, and v = € —X(, Where x;
lies along the linear path between x( and €, and vy is the constant velocity vector guiding the trans-
port. We train a time-dependent neural velocity field vg(x;, t, ¢) to approximate v, conditioned on
a multimodal context ¢ = (d,m, R¥, R?, RI', RM), which includes the text description d, music
segment m, and retrieved motion sets. This context is encoded using cross attention layers in Du-
alFlow Block. The flow loss L,y is obtained by minimizing the squared error between the predicted

and target velocity: Laow = Ex, et [||V9 (x¢,t,¢) — vt||§} , To encourage semantic alignment, we
introduce a triplet contrastive loss that enforces proximity in velocity space for semantically similar
prompts: Lyipier = E [max (0, d(v,v*t) — d(v,v™) + m)], where d(-, -) denotes cosine distance, v
is the predicted velocity, vt and v~ are positive and negative velocity samples drawn from similar
and dissimilar genres or text prompts, and m is the margin. This loss pushes the model to produce
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velocity fields that reflect the temporal structure of motion and the underlying semantics of the in-
put, thereby improving generalization and sample diversity. We define contrastive flow loss Lcrr
that combines both losses: Lcrr = Laow + AwipletLuiplet, Where Agipier is weighting hyperparameter
balancing reconstruction and semantic alignment objective.

3.5 REGULARIZATION LOSSES

Geometric Losses. We adopt the common geometric losses for human motion such as foot contact
loss Lot and joint velocity loss Ly from MDM [Tevet et al.| (2022)) and bone length loss Lgy, from
InterGen [Liang et al.|(2024). The geometric loss is defined as:

Egeo = Efoot + Avelﬁvel + ABLEBL (2)
where the hyper-parameters Ay, ApL are appropriately calibrated to fix the importance of each term.

Interaction Losses. We adapt joint distance map loss Lpy and relative orientation loss Lro from
InterGen |Liang et al.| (2024) that allows close interactions when dancers should be in contact as
well as maintain proper facing directions and body alignments. To further enhance inter-person
coordination in duet generation, we introduce synchronization loss Ly, that explicitly allows spa-
tial coherence between the actor and reactor by weighting pairwise joint distances based on both
anatomical proximity and task-relevant importance:

Lne = > walj, j2) - wi(jr, g2) - | dp(, j2) — deg (1, 52)|I° 3)

J1.J2

Here, dp(j1,j2) and dg(j1,j2) denote the predicted and ground truth Euclidean distances between
joints of both dancers. The distance weight parameter wq(j1, j2) assigns higher importance to spa-
tially closer joint pairs (e.g., hands, shoulders), while joint weighting parameter wjoint(j1, j2) em-
phasizes end-effectors (e.g., feet, hips). The interaction loss Ly is obtained as:

Einter = LDM + AROERO + )\sync‘csync (4)

where the hyper-parameters Ago and Agyyc are fixed based on importance of each term. For reactive
setting, ground-truth actor’s motion is used for all Interaction Losses.

Total Loss. The complete training objective combines all components through balanced weighting:
Elotal = ECRF + )\geoﬁgeo + )\interﬁinter (5)

where the hyperparameters Mg, and Ajper are meticulously selected to regulate the magnitude of
their corresponding terms.

4 RESULTS

Datasets. We train and evaluate DualFlow on three widely used two-person motion datasets
spanning text-to-motion, music-to-dance, and multi-modal duet generation: (1) InterHuman-
AS (Xu et al 2024), an asymmetric extension of InterHuman (Liang et al.| [2024) with actor-
reactor labels, over 50K interaction clips across 11 action types (e.g., handshake, hug) and paired
SMPL-X |Pavlakos et al.| (2019) sequences for modeling fine-grained interpersonal dynamics. (2)
DD100 (Siyao et al.| 2024)), featuring 100 duet dance routines (e.g., salsa, hip-hop, waltz) with
high-resolution motion capture, paired music, and manually annotated dance structure for rhythm
and style alignment. (3) MDD (Gupta et al.| [2025), a large-scale multi-modal duet dance dataset
with 10.3 hours of marker-based capture and 10K+ text annotations covering spatial relationships,
choreography, movement quality, and music synchronization. Together, these datasets enable robust
learning and evaluation of both interactive-reactive motion generation across multiple modalities.

Implementation Details. DualFlow consists of 20 cascaded blocks with 8 attention heads and
dropout of 0.1. Both motion and conditioning inputs are projected into a 512-dimensional latent
space, and each block’s feedforward layer is set to size 1024. We use 4800-d Jukebox (Dhariwal
et al., 2020) features for music and 768-d CLIP (ViT-L/14) (Radford et al.,[2021) text embeddings.
All cross-attention layers adopt Flash attention for faster processing. The stride values for the par-
allel convolution layers used are 7, 11 and 21. The model is trained with Contrastive Rectified Flow
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using 200 integration steps and a cosine 3 scheduler. Training uses Adam with Ir 2x10~%, weight
decay 2x107°, 1000 warm-up steps, batch size 32, for 5000 epochs. In the reactive setting, we
use a 10-frame look-ahead. For classifier-free guidance, both modalities are masked 10% of the
time, and text/music individually 20%. All hyperparameters were selected empirically on a held-out
validation set.

Evaluation Metrics. We evaluate models using metrics adapted from text-to-motion (Liang et al.,
2024)) and music-to-motion (Siyao et al., [2024): Frechet Inception Distance (FID): Distributional
similarity between ground truth and generated motions; Multimodal Distance (MM Dist): Text-
motion alignment via feature distance; R-Precision: Text-motion alignment through retrieval accu-
racies within a batch; Diversity: Variety of generated motions regardless of conditions; Multimodal-
ity (MModality): Diversity of generated motions under identical conditioning; Beat Echo Degree
(BED): Synchronization index of the both person’s generated motion; and Beat-Alignment Score
(BAS): Alignment between inflection points in motion and musical beats.

4.1 QUANTITATIVE METRICS

Text & Music condition Motion Generation on MDD. We evaluate DualFlow on MDD,
InterHuman-AS, and DD100 using standard text-motion and music-motion metrics. As shown in
Table |1, DualFlow consistently outperforms baselines across most metrics for duet and reactive
tasks. In the interactive task, DualFlow (Both) achieves the highest R-Precision@3 (0.513) and low-
est MMDist (0.513), indicating strong alignment with multimodal inputs. DualFlow (Text) records
the best Beat-Align Score (BAS) at 0.215. While InterGen (Text) attains the best FID (0.405) and
Diversity (1.405), DualFlow (Both) follows closely with an FID of 0.415 and a Diversity score of
1.307. For the reactive task, DualFlow (Both) leads in all R-Precision scores, FID (0.686), MMDist
(1.056), and shows strong BAS (0.228). Although DuoLando (Both) has a slightly higher BED
(0.395), DualFlow remains competitive at 0.215.

Table 1: Duet Generation results on MDD dataset with both text and music modalities. Bold for
best, underline for second best.

Methods R-Precision? FID| MMDist| Diversity— MModalf BED T BAS{
Topl Top2 Top3

Ground Truth 0.231 0.398 0.522 0.065 0.077 1.387 - 0.327 0.170
Duet Task

MDM(Text) 0.082 0.124 0.192 1.420 2.133 1.216 0.811 0.211  0.186
MDM(Music) 0.041 0.102 0.135 2.241 2471 1.192 0411 0.210  0.192
MDM(Both) 0.061 0.108 0.163 1.739 2.244 1.235 0.787 0.194  0.190
InterGen(Text) 0.113  0.223 0.305 0.405 1.462 1.405 1.231 0.422 0.194
InterGen(Music) 0.023 0.067 0.088 2.014 2.526 1.300 1.768 0.364 0.163
InterGen(Both) 0.105 0.206 0.302 0.426 1.532 1.380 1.352 0.385 0.185
DualFlow(Text) 0.211 0.365 0.492 0.657 0.521 1.239 1.569 0.288  0.215
DualFlow(Music)  0.172  0.308 0.452 0.694 1.244 1.319 1.109 0.308 0.180
DualFlow(Both) 0.185 0.373 0.513 0415 0.513 1.392 1.467 0.286  0.179
DuoLando(Text) 0.047 0.121 0.182 1.538 2.811 1.422 - 0.311  0.195
DuoLando(Music) 0.069 0.141 0.202 0.721 2.633 1.390 - 0.305 0.216
DuoLando(Both) 0.078 0.156 0.219 0.698 2.113 1.371 - 0.395 0.224
DualFlow(Text) 0.143 0.284 0.450 0.741 1.365 1.379 1.667 0.229  0.228
DualFlow(Music)  0.135 0.260 0.397 0.750 1.672 1.460 1.976 0.195 0.202
DualFlow(Both) 0.189 0.341 0.471 0.686 1.056 1.203 1.473 0.215 0.226

Text-conditioned Motion Generation on InterHuman-AS. Table 2| shows DualFlow significantly
outperforms InterGen on R-Precision (Top-1: 0.437, Top-3: 0.681), with much lower MMDist
(0.394) and the highest multimodality score (2.729). While InterGen has a slightly better FID (5.918
vs. 6.296), DualFlow offers better semantic and multimodal alignment. In the reactive task, Du-
alFlow surpasses ReGenNet in R-Precision@3 (0.629 vs. 0.407), MMDist (6.230 vs. 6.860), and
Multimodality (2.616 vs. 2.391), with a competitive FID (2.448).
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Table 2: Interactive Two-person Generation results condi-
tioned on text modality for the InterHuman-AS dataset.

Figure 3:

User study results
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DualFlow 0419 0.549 0.629 2.448 6.230 4.981 2.616

Oursvs. O
MDM

InterGen

Ours vs.
Duolando

Ours vs.
GT1

urs vs.

Ours vs.
GT 2

Table 3: Reactive Motion Generation results conditioned on text
modality for the DD100 dataset.

Figure 4: FID vs. Steps
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Reactive Motion Generation on DD100. Table [3] highlights DualFlow’s performance across all
metrics for reactive motion task. It achieves the best FID, (19.22), FID,, (28.85), and FIDq (5.57),
with strong diversity and rhythmic scores (Divg: 11.01, BAS: 0.211). While Duolando leads in BED
(0.285), DualFlow follows closely at 0.276, showing generative fidelity and collaborative modeling.

4.2 QUALITATIVE EVALUATION

Fig. [5] shows a Qualitative Comparison for two samples from MDD Dataset. While samples gen-
erated from both text and music condition-based InterGen and DualFlow models follow the text
prompt, the motion quality of InterGen has reduced motion quality as circled, where the hands are
flipping and the distance is increased. We also conduct a user study to qualitatively evaluate the
motion sequences generated by our DualFlow framework in comparison with baseline methods on
both tasks from the MDD dataset (details in Appendix). As shown in Fig[3] DualFlow outperforms
the baseline methods across most comparisons, demonstrating superior alignment with both text and
music, as well as high-quality motion generation. Figure[d]illustrate how DualFlow model generates
a 10 second long, 30 FPS, two person motion sequence with low FID within 200 steps. Mean-
while InterGen with diffusion requires upto 500 steps to achieve similar performance. This efficient
inference allows rectified flow based models with faster sampling and reduced latency..

4.3 ABLATION STUDY

We perform an ablation study on both the tasks (Table[d) to assess the impact of key DualFlow com-
ponents. We compare the full model against four variants: (1) replacing Causal Look-Ahead (CLA)
Attention with regular cross-attention (only for reactive setting), (2) removing RAG by replacing
Retrieved Causal Attention with self-attention, (3) removing the triplet loss Lyyipict, and (4) substi-
tuting high-level Jukebox features with Mel-spectrograms. Results show clear performance drops
across most metrics, highlighting the importance of anticipatory modeling, retrieval grounding, and
rich audio features for high-quality reactive motion generation. Please refer to Appendix for more
ablation results.
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The leader initiates a box step in a cross system, guiding the
Start in Fan Position, transitioning into an Alemana, followed by New Yorkers. follower to mirror his movements. The follower transitions to a
parallel system with a cross,

Figure 5: Comparing DualFlow with InterGen (interactive) and DuoLando (reactive) against ground
truth on MDD Dataset. Black circles mark regions where baselines lose contact or produce dis-
tortions. InterGen shows artifacts like unnatural hand spacing, body interpenetration, and skipping
the Alemana (follower’s inside turn), while DuoLando shows incorrect leg initiation and head ori-
entation. In contrast, DualFlow generates smooth, text-aligned choreography and coherent partner
responses closely matching the ground truth. Supplementary video provides detailed visualizations.

Table 4: Ablation Study on MDD dataset (both text & music).
Methods R-Precisiont FID| MMDist| Diverse—~ MModalf BEDT BAStT
Topl Top2 Top3

Ground Truth 0.231 0.398 0.522 0.065 0.077 1.387 - 0.327 0.170
Interactive Task

DualFlow(w/o RAG)  0.179 0.356 0.498 0.622 0.626 1.502 1.224 0.254  0.162
DualFlow(w/o Lyipie)  0.158  0.297 0412 0.783 0.818 1.433 0.844 0.291 0.169
DualFlow(w/o Lgy,) 0182 0369 0.515  0.412 0.482 1.224 1.340 0.277  0.182
DualFlow(Spectral) 0.172  0.321 477  0.647 0.633 1.383 1.114 0.255 0.158
DualFlow(Jukebox) 0.185 0.373 0.513 0415 0.513 1.392 1.467 0.286 0.179
Reactive Task

DualFlow(w/o CLA) 0.172 0311 0.338 0.849 0.831 1.137 1.385 0.247 0.142
DualFlow(w/o RAG)  0.192 0352 0479 0.714 0.933 1.270 1.466 0.233  0.193
DualFlow(w/o Lyipie)  0.153  0.292  0.308  0.885 1.328 1.664 1.007 0.204 0.186
DualFlow(w/o Lgyy,)  0.166 0311 0.453  0.774 0.882 1.429 1.233 0.235  0.202
DualFlow(Spectral) 0.162 0.301 0.468 0.721 0.665 1.261 1.401 0.255 0.162
DualFlow(Jukebox) 0.189 0.341 0471 0.686 1.056 1.203 1.473 0.215  0.226

5 CONCLUSION

We introduced DualFlow, a unified rectified flow-based framework for efficient and expressive two-
person 3D motion generation, supporting both interactive and reactive settings with text, music, and
retrieved motion exemplars. Leveraging rectified flow enables faster sampling and lower latency
than diffusion-based methods. Extensive evaluations on MDD, InterHuman-AS, and DD100 show
superior performance in duet generation and reactive motion. DualFlow advances multi-modal two-
person motion synthesis, opening new opportunities for immersive avatar interaction, intelligent
choreography, and responsive digital humans. Future work will explore improved interactive gener-
ation with newer flow-matching methods, real-time motion editing, and few-shot adaptation to novel
styles and languages.
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A LLM DISCLOSURE

LLMs were only used to polish the text and proof read the paper for grammatical errors. They were
not used to generate any metrics or citations.

B REPRODUCIBILITY

Full code for this project along with the trained checkpoints for all tasks will be made open source
and publicly available upon paper acceptance.

C LLM-BASED DECOMPOSITION

C.1 PROMPT DESIGN
We design a structured prompting framework for the LLM, which is detailed as follows:

1. System prompt: We instruct the model with the following directive:
”As a professional dance movement analyst, please break down the given textual descrip-
tion of a duet dancing movement for {genre} into three focused descriptions: (1) Spatial
Relationships: physical positioning, orientation, handhold (2) Body Movement: key ges-
tures, actions, specific body part movements (3) Rhythm: tempo, timing, rhythmic dancing
style and stepping. Please refer to the provided documents for guidance.”

2. Few-shot Examples: We provide a curated set of genre-specific examples (3 per genre)
illustrating how input descriptions are manually decomposed into the three components.
These examples were crafted by analyzing a diverse subset of textual annotations in the
MDD dataset and annotating their corresponding focused descriptions through expert re-
view.

3. Reference Guidelines: To promote interpretive consistency, we supply a supporting doc-
ument containing structured definitions and keyword clusters describing typical language
and semantic categories associated with each duet motion aspect.

C.2 GENERATED FOCUSED DESCRIPTIONS

To enhance semantic grounding during retrieval, we leverage a Large Language Model (LLM) to
decompose free-form textual prompts into structured, movement-relevant subcomponents. Drawing
inspiration from Laban Movement Analysis (LMA), we extract three focused descriptions: Spatial
Relationship, Body Movement, and Rhythm. This decomposition allows the system to perform more
targeted motion retrieval by aligning each aspect of the prompt with corresponding motion features.
By translating ambiguous or abstract user descriptions into focused representations, the objective for
the LLM-based refinement is to improve both retrieval precision and downstream motion generation
quality. Table [5]shows some of the examples for the focused textual descriptions for text prompts
for the MDD Dataset.

D MODEL ARCHITECTURE DETAILS
The proposed framework for duet and reactive motion generation employs a rectified flow matching
approach. Our model utilizes transformer-based architectures with multi-scale temporal modeling

and attention mechanisms, supporting optional text and music conditioning. The following section
discusses about specific modules used in detail.

D.1 DuaLFLoOw BLOCK.

The DualFlow block applies multi-scale temporal convolutions with learnable gating:

3
£ = GELU(ConvIDy (2" )T, ke {1,2,3}, 2y’ =27 +> 7t
k=1
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Table 5: Examples of input text decomposed into three fine-grained, semantically focused descrip-
tions using LLM for MDD Dataset.

Text Description

Spatial Relationship

Body Movement

Rhythm

The leader switches the hand
hold from left to right, lead-
ing the follower into a triple
spin, maintaining a strong
frame and connection.

The dancers are in an Open
position with a Hand-to-
hand connection. The leader
switches the hand hold from
left to right, maintaining a
strong frame. They are fac-
ing each other during the
transition.

The leader uses a strong
frame to guide the follower
into a triple spin. The fol-
lower’s arms and torso are
actively involved in the spin-
ning motion, with medium
energy.

The movement is executed
at a fast tempo, with the
triple spin occurring in quick
succession, maintaining a
continuous flow.

The dancers perform Jive
Spanish Arms, maintaining
a strong frame and connec-
tion, with the follower exe-
cuting a controlled turn.

The dancers are in a Closed
position, facing each other

with a strong Hand-to-
hand connection. The
leader maintains a firm

frame, guiding the follower
through the movement.

The leader maintains a
steady posture, using arms
and shoulders to guide.
The follower performs a
controlled turn, involving a
smooth rotation of the torso
and arms, with medium
energy.

The movement is executed
at a fast tempo, characteris-
tic of Jive, with a continu-
ous and lively rhythm, en-
suring the turn is seamlessly
integrated into the dance se-
quence.

From a separated position,
the leader draws the fol-
lower into a Closed Hand
Hold, and they rotate clock-
wise together.

The dancers transition from
a separated position to
a Closed position with a
Hand-to-hand  connection.
They are facing each other
as they move into this
position.

The leader initiates a draw-
ing motion, pulling the fol-
lower towards him. Both
dancers engage in a rotat-
ing movement, turning their
bodies clockwise together.

The rotation is performed
at a medium tempo, with a
continuous and fluid motion
as they move in sync with
each other.

The leader brings the fol-
lower back with a circular
motion, leading a head roll
with his left hand, connect-
ing it with a forward body
roll for the follower. They
then perform a basic step.

The dancers are in an Open
position, with the leader fac-
ing the follower. They main-
tain a Hand-to-head connec-
tion as the leader guides the
follower’s head roll.

The leader uses his left hand
to guide a head roll, involv-
ing the follower’s head and
neck. The follower transi-
tions into a forward body
roll, engaging the shoulders
and torso. Both then per-
form a basic step, involv-
ing coordinated leg and foot
movements.

The sequence begins with a
medium-paced circular mo-
tion, transitioning into a
fluid head and body roll.
The basic step follows a
steady, continuous tempo,
maintaining rhythmic con-
sistency.

The lead pulls the follow
towards him, taking three
steps, while the follow also
takes three steps towards the
lead. Both hands of both
dancers are now connected.

The dancers are in a Closed
position, facing each other.
They have a Hand-to-hand
connection with both hands
engaged.

The lead and follow are both
taking three steps towards
each other. The movement
involves the legs and feet,
with a medium energy as
they close the distance.

The steps are taken at a
medium tempo, with each
step evenly spaced, creating
a continuous and synchro-
nized rhythm between the
dancers.
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Each block applies a sequence of self- and cross-attention layers with residual connections and

LayerNorm conditioning using the text latent z,. Let LN(-,z4) denote LayerNorm with text-
T

conditioned shift/scale, and Attn(Q, K, V) = softmax(%)V. The transformations applied are

Self-Attention (equation @), Music Cross Attention (equation , Motion Cross Attention (equa-

tion[8)), Retrieval Cross Attention (equation [J), and Feedforward (FFN) Layer (equation [T0):

20 = 2{") + Attn(Q = LN(2"), 24), K = LN(2{/",24), V = LN(2{/"),25))  (6)

a

20 = 7000 4 Attn(Q = LN(z0V,24),K = 2z,,, V = Z) @)
203 = 02 4 Attn(Q = LN(z0?,24), K = zgm), V= z[()j’2)) 8)
20 =20 + Attn(Q = LN(2YY, 24), K = 2g, V = z5) 9)
2™ = 20 + FFN(LN(2{", 2,)), (10)

with symmetric updates for zgj ),

D.2 INTERACTIVE SETTING

The flow dynamics are defined as:
x(t) = [xa(t);x6(t)], vo(x(2),t,¢) = [ve,a(x(t),t,¢); vap(x(),t,c)].

The final motion latents z,(lN) and zl()N) are mapped to velocity fields
vg.o = Linear(z(™), vy, = Linear(ng)), (11)
concatenated as
Vo = [Vg’a;V.g,b] S RBXTX524. (12)

D.3 REACTIVE SETTING

For reactive motion generation, our model generates the reactor’s motion x; conditioned on the
actor’s fixed motion x,, with the flow dynamics defined as:

x(t) = [xa;x6(t)], Vo (x(t),t,¢) = [0; Vo reactor(X(t), £, C)].

The Motion Cross Attention gets replaced by Causal Cross Attention in the DualFlow block for this
setting. The final reactor latent zl(,N) is mapped to the velocity field vg reactor = LinearQL62 (ng)), and
the output is vg = [0; Vg reactor] € REXT*524 During inference, the initial state is x(0) = [x4; 2],
where z;, ~ N (0, I).

D.4 CAUSAL CROSS ATTENTION WITH LOOK-AHEAD

The Causal Cross Attention module enables the reactor to condition on the actor’s motion while
preserving temporal causality and allowing limited future anticipation. For reactor motion latent

z[()j 2) and fixed actor motion latent z, from DualFlow block j, we construct query, key, and value

matrices as Q = zl()j’z)WQ, K = z,Wg, and V = z,Wy, where Wg, Wk, and Wy €
RE*dx are learned projection matrices. The causal mask with look-ahead parameter L uses an
upper triangular mask such that reactor’s motion attends to past and only L future frames of the
actor’s motion, implemented as M; ; = 1if j < ¢ + L and M, ; = 0 otherwise. The attention
computation follows:

KT
CausalCrossAttention(Q, K, V) = softmax ((?/CT OM+(1-M)- (—oo)) A%
k
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where © denotes element-wise multiplication. This formulation ensures temporally aligned and
context-aware reactive generation, enabling natural reactive responses that align with the actor’s
intended trajectory without violating temporal consistency.

D.5 MODEL PARAMETERS

Loss Weighting Values We assign higher weights to geometric losses for velocity (Aye; = 30) and
foot contact (Afoor = 30), moderate weight for bone length consistency (Agp = 10), and emphasize
inter-dancer synchronization (Agnc = 5). Affinity and distance are equally weighted (Apm = 3),
while orientation receives a minimal weight (Ao = 0.01). These settings ensure anatomically
plausible, temporally smooth, and well-coordinated duet motions.

E QUANTITATIVE EVALUATION

We further conduct ablations to study model design choices: (1) replacing the three temporally
scaled parallel convolutions with a single convolution, (2) reducing the number of transformer blocks
to 10 and 15 (from 20), and (3) lowering the latent dimension to 128 and 256 (from 1024). These
variants consistently show performance drops across most metrics, highlighting the benefit of the
full architecture.

Table 6: Ablation study results for ReactFlow

Methods R-Precisiont FID| MMDist] Diversity— MModalf BED T BAS?{
Topl Top2 Top3
Ground Truth 0.231 0.398 0.522  0.065 0.077 1.387 - 0.327  0.170
DualFlow (one conv)  0.172  0.311 0.338  0.595 0.582 1.288 1.385 0.266  0.142
DualFlow (10 blocks) 0.160 0.313 0.452 0.683 0.654 1.215 1.222 0.259  0.159
DualFlow (15 blocks) 0.175 0.357 0.521 0.482 0.627 1.211 1.402 0270  0.163
DualFlow (128 latent) 0.108 0.284 0.414  0.966 0.834 1.277 1.091 0273  0.141
DualFlow (256 latent) 0.168 0.342 0.468 0.642 0.681 1.245 1.328 0291 0.163
DualFlow 0.185 0.373 0.513 0415 0.513 1.307 1.467 0.286  0.179

Performance decrease in different settings shows the importance of 3 parallel temporal Convs, using
20 blocks, 515 Latent dimension and Jukebox embeddings for music. Here, Bold indicates the best
result

F  QUALITATIVE EVALUATION

User Study Details. A total of 24 participants were recruited for the study. Each participant is
shown 15 pairs of rendered videos (3 per experiment), with each video lasting less than 10 seconds.
Each pair consists of one motion sequence generated by DualFlow and the other by either a baseline
method or the ground truth (when available). To ensure unbiased evaluation, the order of videos
within each pair is randomized, and no method labels are revealed. For each video pair, participants
are asked to answer three key questions: (1) Which motion better aligns semantically with the textual
description? (2) Which motion is better synchronized with the musical beats? (3) Which motion has
higher overall quality (e.g., naturalness, smoothness etc)? Figlo] shows the User Study Form we
used.

Fig. [6illustrates the User Study Form presented to participants during the human evaluation study.
Clear and detailed guidelines were provided at the beginning of the form, explaining the evaluation
criteria. Participants were then asked to watch two videos: one containing motion from either a
Baseline model or the Ground Truth, and the other generated using our DualFlow model. The
identity of each video (i.e., whether it was from the DualFlow model or the comparison method)
was not disclosed to the participants. For each experimental condition, participants viewed and
evaluated three distinct pairs of videos.
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User Study For DualFlow Motion T T
Generation

Dear Participant,

Thank you for taking the time to participate in our user study!

In this study, you will be shown two motion sequences for each comparison. Your task is
1o evaluate these sequences by answering three questions based on different aspects of

motion quality. The sequences are from 3 different experiments namely Text Alignment

[T], Musical Synchronization [M], Overall Motion Quality [0]. You will be shown 15 samples T1. Which motion more accurately reflects the meaning of the accompanying
from each experiment. textual description?

For each pair of motions, please select the one that you believe performs better on each of

the following criteria: O sequence 1

1. Text Alignment: Which motion better reflects the meaning of the textual description? O sequence2
« The motion closely reflects the actions, emotions, or scenario described.
« The meaning is clearly through the body
« The motion s contextually appropriate and logically consistent with the description.

M1. Which motion is better synchronized with the rhythm and beats of the

2. Musical Synchronization: Which motion is better synchronized with the rhythm and beats background music?
of the music?
uence 1
« Key movements occur in sync with musical beats and accents. O seg
 The thythm and pacing of the motion match the tempo of the musc. O sequence2
« The motion expresses changes in musical energy, such as shifts in mood or
intensity.

3. Overall Motion Quality: Which motion looks more natural and visually pleasing overall?
’ 01. Which motion looks more natural and visually pleasing overall?
« Transitions between poses are smooth and continuous.
« Movements follow realistic and believable trajectories.
« The motion is visually coherent, expressive, and aesthetically pleasing. O sequence

Please answer thoughtfully based on your perception. Your evaluations will be valuable to QO sequence2
our research.

Thank you again for your participation

Figure 6: User Study Google Form

17



	Introduction
	Related Work
	Methods
	Problem Formulation
	Multi-Modal Motion Retrieval
	Model Architecture
	Contrastive Rectified Flow
	Regularization Losses

	Results
	Quantitative Metrics
	Qualitative Evaluation
	Ablation Study

	Conclusion
	LLM Disclosure
	Reproducibility
	LLM-based Decomposition
	Prompt Design
	Generated Focused Descriptions

	Model Architecture Details
	DualFlow Block.
	Interactive Setting
	Reactive Setting
	Causal Cross Attention with Look-Ahead
	Model Parameters

	Quantitative Evaluation
	Qualitative Evaluation

