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Abstract

This paper explores feature prediction as a stand-alone objective for unsupervised learning
from video and introduces V-JEPA, a collection of vision models trained solely using a feature
prediction objective, without the use of pretrained image encoders, text, negative examples,
reconstruction, or other sources of supervision. The models are trained on 2 million videos
collected from public datasets and are evaluated on downstream image and video tasks. Our
results show that learning by predicting video features leads to versatile visual representations
that perform well on both motion and appearance-based tasks, without adaption of the
model’s parameters; e.g., using a frozen backbone. Our largest model, a ViT-H/16 trained
only on videos, obtains 81.9% on Kinetics-400, 72.2% on Something-Something-v2, and 77.9%
on ImageNet1K.

1 Introduction

Humans possess the remarkable ability to map low-level signals originating from the retina into a semantic
spatio-temporal understanding of the world; synthesizing notions such as objects and global motion (Spelke
et al., 1995). A long-standing goal of the machine learning community is to identify the principles or objectives
that may guide such unsupervised learning in humans (Field, 1994; Berkes & Wiskott, 2005; Hinton, 1989).
One related hypothesis is based on the predictive feature principle (Rao & Ballard, 1999), which posits that
representations of temporally adjacent sensory stimuli should be predictive of each other.

In this work, we revisit feature prediction as a stand-alone objective for unsupervised learning of visual
representations from video. Numerous advances in the field — such as the standard use of transformer
architectures in vision (Dosovitskiy et al., 2020), the maturing of masked autoencoding frameworks (Xie et al.,
2021; Bao et al., 2021; He et al., 2021), query-based feature pooling (Chen et al., 2022), joint-embedding
predictive architectures (JEPA) (LeCun, 2022; Assran et al., 2023; Baevski et al., 2022b), and larger datasets

— form a unique arsenal of tools, which we integrate in a modern and conceptually simple method, the video
joint-embedding predictive architecture or V-JEPA, which is based solely on feature prediction, without using
pretrained image encoders, text, negative examples, human annotations, or pixel-level reconstruction.

We seek to answer the simple question:

How effective is feature prediction as a stand-alone objective for unsupervised learning from
video with modern tools?

To that end, we pretrain a family of V-JEPA models on a dataset of 2 million videos collected from publicly
available datasets by combining a masked modeling prediction task with a joint-embedding predictive
architecture (see Figure 2). We measure performance on several downstream image and video tasks, using
both frozen evaluation and end-to-end fine-tuning. Our findings suggest that feature prediction can indeed
serve as an effective stand-alone objective for unsupervised learning from video, while using significantly
shorter training schedules than pixel prediction methods. Specifically:

• Feature prediction leads to versatile visual representations that perform well across downstream image
and video tasks without adaption of the model’s weights; i.e., using a frozen backbone. V-JEPA achieves
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Figure 1: V-JEPA models pretrained on video learn versatile visual representations. It performs well on motion-based
tasks (Something-Something-v2) and appearance-based tasks (Kinetics 400) without adaptation of the model’s
parameters, i.e., using the same frozen backbone for both tasks.

the best performance among methods we consider (+6% accuracy) on the SomethingSomething-v2
task, which requires fine-grained temporal understanding. V-JEPA is also competitive on tasks like
Kinetics400, where appearance-based features are sufficient and hence state-of-the-art image models
such as DINOv2 excel (Figure 1 and Table 6).

• Models trained with feature prediction are superior to pixel prediction approaches under a frozen
evaluation protocol (attentive probing) and are competitive with pixel prediction under full fine-tuning,
while using significantly shorter training schedules (Tables 5 and 6).

• Models trained with feature prediction are more label-efficient than pixel prediction approaches.
Decreasing the available number of labeled examples results in an increase in the performance gap
between V-JEPA and pixel-reconstruction models (Table 8).

2 Related Works

Slow Features. One way to encourage temporally adjacent representations to be predictive of each
other is to ensure that they vary slowly over time. Early works targeting predictive features encouraged
representations of individual video frames to be locally temporally invariant, while preventing representation
collapse by using spectral methods, as in SFA (Wiskott & Sejnowski, 2002), SSA (Kayser et al., 2001), and
Simulated Fixations (Zou et al., 2012). More recently, Goroshin et al. (2015); Wang et al. (2010) train a
siamese convolutional network to map the representations of two subsequent frames to the same point, while
encouraging distant frames to have diverse representations via a pair-wise margin loss and a triplet loss,
respectively. Other works (Oord et al., 2018; Surís et al., 2021; Feichtenhofer et al., 2021) implement temporal
invariance using noise-contrastive estimation (Gutmann & Hyvärinen, 2012). Our exploration in this paper
goes beyond temporal invariance and explores feature prediction using masked modeling.

Predictive Features. Going beyond local invariance, a family of works trains a predictor network to
map the representation of a frame or clip at one time-step to a distinct representation at another time-step.
Srivastava et al. (2015); Vondrick et al. (2016); Wang et al. (2023b) train such a video feature predictor
network on top of a frozen pretrained image or video encoder. Unfreezing the target feature extractor, several
methods train the video encoder and the predictor network simultaneously, while preventing collapse by using
a supervised action forecasting loss (Girdhar & Grauman, 2021), or by using the representations of distant
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clips as negative samples in a contrastive loss (Han et al., 2019; 2020; Tan et al., 2023), often focusing on small
convolutional encoders (Han et al., 2019; 2020). The idea of learning a representation by predicting missing
information in feature space is also core to the joint-embedding predictive architecture (JEPA) (LeCun, 2022),
which combines a siamese encoder with a predictor network. JEPAs have been successfully instantiated in
several modalities, such as with audio data (Baevski et al., 2022b) and image data (Zhou et al., 2021; Oquab
et al., 2023; Assran et al., 2023). In this work, we extend this paradigm to video data by leveraging recent
advances in self-supervised learning.

Advances in Self-Supervised Learning. The use of vision transformers (Dosovitskiy et al., 2020; Li et al.,
2022) has become standard practice in self-supervised learning with joint-embedding architectures (Chen
et al., 2021; Caron et al., 2021; Oquab et al., 2023; Zhou et al., 2021; Assran et al., 2022), and unlocked
masked image modeling in pixel space by parameterizing the pixel decoder as a transformer with learnable
mask tokens (Dosovitskiy et al., 2020; Xie et al., 2021; He et al., 2021; Bao et al., 2021), demonstrating
a step-change in the representation quality of autoencoding methods (Vincent et al., 2010). This line of
generative methods was subsequently extended to video data using spatio-temporal masking (Tong et al.,
2022; Feichtenhofer et al., 2022; Wang et al., 2023a; Kalluri et al., 2023; Gupta et al., 2023). It was also
recently shown that the representations of masked image autoencoders could be significantly improved by
using learnable pooling mechanisms based on cross-attention (Chen et al., 2022). Finally, through careful
selection of design choices, the non-contrastive collapse prevention strategy in BYOL (Grill et al., 2020) was
recently made to work with image feature prediction methods (Baevski et al., 2022b; Assran et al., 2023),
which demonstrated the ability to learn representations that can be leveraged for various downstream tasks
without relying on invariance to hand-crafted image transformations.

Feature Prediction versus Pixel Reconstruction. Approaches that predict in pixel space must dedicate
significant model capacity and compute to capture all the low-level detail in the visual input. By contrast,
approaches that predict in latent space have the flexibility to eliminate irrelevant or unpredictable pixel-
level details from the target representation (Vondrick et al., 2016). Predicting in representation space has
been shown to lead to versatile representations that perform well across many downstream tasks through
linear probing or low-shot adaptation (Assran et al., 2023; Oquab et al., 2023; Assran et al., 2022), while
demonstrating an efficiency gain during pretraining compared to pixel level reconstruction (Assran et al.,
2023; Baevski et al., 2022b;a). The works of Baevski et al. (2022a;b) additionally show that predicting in
representation space results in competitive end-to-end fine-tuning performance in the image, audio and text
domains. In this work, we extend these findings to the video modality.

3 Methodology: Video-JEPA

x

x-encoder
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Figure 2: Joint-Embedding Predictive Architectures are trained to predict the representation of an input y from
the representation of another input x. The additional variable z provides the predictor with information about the
transformation that computes y from x.

Our goal is to explore the effectiveness of feature prediction as a stand-alone objective for learning visual
representations from video. To that end, we use a joint-embedding predictive architecture (JEPA) (LeCun,
2022); see Figure 2. The main idea behind a JEPA is to learn by predicting the representation of an input y
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from the representation of another input x. The basic architecture is made up of an encoder, Eθ(·), which
computes the representation of the inputs, and a predictor, Pϕ(·), which predicts the representation of y from
the representation of x, conditioned on a variable z indicating the transformation (or corruption) between x
and y. Conditioning on z enables the generation of distinct predictions for various transformations of x.

3.1 Training Objective

We train our visual encoder Eθ(·) to satisfy the constraint that representations computed from one part
of the video, y, should be predictable from representations computed from another part of the video, x.
The predictor network Pϕ(·), which maps the representation of x to the representation of y, is trained
simultaneously with the encoder, and is provided specification of the spatio-temporal positions of y through
the conditioning variable z ← ∆y.

Naively implementing the objective using the regression

minimizeθ,ϕ ∥Pϕ(Eθ(x), ∆y)− Eθ(y)∥1,

would admit a trivial solution, where the encoder outputs a constant representation, regardless of its input.
In practice, we use the following modified objective to prevent representation collapse,

minimizeθ,ϕ ∥Pϕ(Eθ(x), ∆y)− sg(Eθ(y))∥1, (1)

where sg(·) denotes a stop-gradient operation, which does not backpropagate through its argument, and
Eθ(·) is an exponential moving average of the network Eθ(·). The use of an exponential-moving average
feature extractor along with a stop-gradient and a predictor has been used as a collapse prevention strategy
for image pretraining (Grill et al., 2020), and studied empirically (Xie et al., 2021) and theoretically (Tian
et al., 2021). In fact, the objective in equation equation 1 is similar to the loss of Assran et al. (2023) used
for image pretraining, but we modify it to use an ℓ1 regression, which we found to be more stable.

Theoretical motivation. A theoretical motivation for the effectiveness of this collapse prevention strategy
was proposed in Grill et al. (2020) for the BYOL method. We provide a simple adaptation of their analysis
for our ℓ1 loss. For ease of exposition, we will disregard the effect of the conditioning variable z and consider
one dimensional representations. Denote the representation Eθ(y) by a random variable Y . The optimal
predictor under equation equation 1 is thus given by the following functional expression,

P ⋆(Eθ(x)) = argminP ∥P (Eθ(x))− Y ∥1

= median(Y |Eθ(x)).

Substituting this expression for the optimal predictor into the loss function and evaluating the expected
gradient of the encoder gives

∇θE∥P ⋆(Eθ(x))− Y ∥1 = ∇θMAD(Y |Eθ(x)),

where MAD(· |Eθ(x)) is the median absolute deviation of a random variable conditioned on Eθ(x). Thus, in
the case where the predictor is optimal, the encoder must learn to capture as much information about the
video as possible to minimize the deviation of the target. The hypothesis is that incorporating an exponential
moving average to compute the representation of y ensures that the predictor evolves faster than the encoder
and remains close to optimal, thereby preventing collapse.

3.2 Prediction Task: Predicting y from x

The feature prediction task is based on a masked modeling formulation (He et al., 2021; Tong et al., 2022);
i.e., regions x and y from the video are sampled using masking. To sample y from a video, we sample
several (possibly overlapping) spatially continuous blocks with various aspect ratios and repeat the spatial
blocks across the entire temporal dimension of the video; x is taken to be the complement. Masking a large
continuous block that covers the full temporal dimension limits information leakage due to the spatial and
temporal redundancy of videos, and results in a harder prediction task (Tong et al., 2022).
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Figure 3: V-JEPA. Training operates on a video clip of T frames with spatial resolution H × W , flattened into
a sequence of L tokens. (Left to right): We first obtain the input of the x-encoder by dropping tokens from the
video clip. The x-encoder then processes the masked video sequence, and outputs an embedding vector for each
input token. Next, the outputs of the x-encoder are concatenated with a set of learnable mask tokens containing
positional embeddings of the masked spatio-temporal patches. The predictor network processes the combined token
sequence, and outputs an embedding vector for each mask token. The outputs of the predictor are then regressed to
the prediction targets using an L1 loss. The prediction targets correspond to the output of the y-encoder.

We leverage two types of masks: short-range masks, where we take the union of 8 randomly sampled target
blocks covering 15% of each frame, and long-range masks, where we take the union of 2 randomly sampled
target blocks covering 70% of each frame. In both cases, the aspect ratio for all sampled blocks is randomly
chosen in the range (0.75, 1.5). Given that both short-range and long-range masks are produced by sampling
many blocks and taking their union, the result is an average masking ratio of ∼ 90%. We refer to our masking
strategy as multi-block and compare it to other possible masking strategies in Section 4. Refer to Appendix B
for more details on the multiblock implementation.

3.3 Network Parameterization

We use a Vision Transformer (ViT) (Dosovitskiy et al., 2020; Arnab et al., 2021) as our video backbone. To
process a video with a transformer network, we split the video clip into a 3D grid of L spatio-temporal patches,
where a patch consists of a 16×16 pixel block spanning 2 consecutive frames; we refer to these spatio-temporal
patches as tokens. This sequence of tokens is then directly processed by the stack of transformer blocks.
Inputs x and y correspond to masked regions of a video, we apply the video masks by simply dropping a
subset of the tokens. We apply masking at the input of the x-encoder, and at the output of the y-encoder
to construct contextualized targets (Baevski et al., 2022b). The encoder is parameterized using standard
ViT networks, while the predictor is a narrow transformer implemented using 12 blocks with an embedding
dimension of 384. Taking inspiration from masked autoencoders (He et al., 2021), our predictor takes as input
the sequence of embeddings produced by the x-encoder as well as a sequence of learnable mask tokens with
positional embeddings indicating the spatio-temporal positions of the y tokens. The sequence of mask tokens
implement the conditioning variable z (see Figure 2) which allows for outputting different representations for
different spatio-temporal positions. The output of the predictor is an embedding vector for each mask token;
see Figure 3 and refer to Appendix B for more details.

3.4 Pretraining Data and Evaluation Setup

Pretraining. We combine several public datasets to construct an unsupervised video pretraining dataset,
which we refer to as VideoMix2M. Specifically, we combine the videos from HowTo100M (HT) (Miech et al.,
2019), Kinetics-400/600/700 (K710) (Kay et al., 2017), and Something-Something-v2 (SSv2) (Goyal et al.,
2017), and remove any overlap with the validation sets of Kinetics-400/600/700 and Something-Something-v2,
resulting in approximately 2 million videos. We train a ViT-L/16, a ViT-H/16, and a ViT-H/16384 transformer
model on VideoMix2M. We use a batch size of 3072 for the ViT-L/16 and ViT-H/16 models, and a batch
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Table 1: Pixels vs. Featurized Targets. We ablate the effect of computing the prediction loss in feature space vs pixel
space. All models are trained on VideoMix2M for 90K iterations with a batch size of 3072 using the multi-block
prediction task. We examine downstream performance using a frozen backbone with attentive probing, and report
top-1 accuracy using a single center view. We also examine end-to-end fine-tuning performance of the models on K400.
Predicting in feature space provides a consistent improvement over pixel space prediction.

Frozen Evaluation Fine-Tuning
K400 SSv2 IN1K K400-ft

Target Arch. (16×1×1) (16×1×1) (16×5×3)

Pixels ViT-L/16 68.6 66.0 73.3 85.4
Features ViT-L/16 73.7 66.2 74.8 85.6

Table 2: Pretraining Data Distribution. We pretrain all models for 90K iterations using a batch size of 3072, and
evaluate downstream performance of the frozen backbones with an attentive probe using a single center view. Average
performance across tasks increases with the pretraining dataset size.

Frozen Evaluation
K400 SSv2 IN1K Avg.

Arch. Data #Samples (16×1×1) (16×1×1)

ViT-L/16

K710 700K 75.8 63.2 73.7 70.9
K710+SSv2 900K 72.9 67.4 72.8 71.0
K710+HT 1900K 74.5 64.2 74.8 71.1
25% of VideoMix2M 500K 72.7 66.1 73.9 70.9
VideoMix2M 2000K 73.7 66.2 74.8 71.5

ViT-H/16 K710+SSv2 900K 75.7 66.8 73.7 72.0
25% of VideoMix2M 500K 73.5 67.6 75.2 72.1
VideoMix2M 2000K 74.0 68.5 75.9 72.8

size of 2400 for the ViT-H/16384 model. Each model takes as input a video clip of 16 frames sampled with a
frame-skip of 4, corresponding to roughly 3 second clips on average. The ViT-L/16 and ViT-H/16 process the
video at a spatial resolution of 224, while the ViT-H/16384 uses an input resolution of 384; cf. Appendix C.

Evaluations. Pretrained models are evaluated on downstream video and image tasks. On video tasks, we
use a subset of the VideoGLUE benchmark (Yuan et al., 2023) to test for various capabilities; specifically, we
investigate action recognition on Kinetics-400 (K400) (Kay et al., 2017), motion classification on Something-
Something-v2 (SSv2) (Goyal et al., 2017), and action localization on AVA (Gu et al., 2018). Action
classification on Kinetics evaluates the appearance-based understanding of the model, as many action classes
in the dataset can be inferred from the presence of specific objects in the video (Sevilla-Lara et al., 2021).
Motion classification on Something-Something-v2 evaluates the temporal understanding of the model, as
action classes in the dataset are decoupled from the appearance/presence of specific objects in the video (Goyal
et al., 2017). Finally, action localization on AVA evaluates the ability of the model to understand and localize
motions in the video. We follow standard practice and report accuracy on K400 and SSv2 by sampling several
spatial and temporal views. For static image tasks, we explore object recognition on ImageNet (Russakovsky
et al., 2015), scene classification on Places205 (Zhou et al., 2014), and fine-grained recognition on iNaturalist
2021 (Van Horn et al., 2018).

4 What Matters for Learning Representations from Video?

In this section, we isolate the contributions of several design choices, including: a) the use of a feature
prediction versus pixel prediction objective, b) the construction of the pretraining data distribution, c) the
feature pooling strategy for leveraging the model’s representations in downstream tasks, and d) the masking
strategy, towards identifying: what to predict from what?
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Table 3: Average Pooling vs. Adaptive Pooling. We pool the feature map output by the frozen V-JEPA encoder using
an attentive probe, which is then fed into a linear classifier for downstream supervised tasks (K400 and SSv2). We
evaluate two pooling strategies: 1) average pooling (Avg.), and attentive pooling (Att.). Results are reported using a
single center view. Using adaptive pooling with a cross-attention layer leads to improvements of +17.3 points on K400
and +16.1 points on SSv2.

Frozen Evaluation
K400 SSv2
(16×1×1) (16×1×1)

Method Arch. Avg. Att. Avg. Att.

V-JEPA ViT-L/16 56.7 73.7 50.1 66.2

4.1 Predicting Representations versus Pixels

We first ablate the effect of computing the prediction loss in representation space. We train a pair of ViT-L/16
models using either a V-JEPA feature prediction loss, or a mean-squared error loss with the normalized
pixel values, as in masked autoencoders (He et al., 2021) and VideoMAE Tong et al. (2022). We perform a
sweep over the learning rate and weight decay schedules for both approaches. All models are pretrained on
VideoMix2M for 90K iterations with a batch size of 3072 using multi-block masking. We examine performance
on Kinetics-400 (K400), Something-Something-v2 (SSv2), and ImageNet-1K (IN1K), using a frozen backbone
with an attentive probe, and report top-1 accuracy using a single center view. We also examine end-to-end
fine-tuning performance of the models on Kinetics-400.

Results of this comparison are reported in Table 1 and indicate that predicting in feature space provides
a consistent performance improvement over pixel space prediction in both frozen evaluation of the video
backbone, as well as end-to-end fine-tuning.

4.2 Pretraining Data Distribution

Next we study the impact of the pretraining data distribution in Table 2. Leveraging large scale datasets has
been critical for enabling the surge of advancements in other modalities, such as text and images (Kaplan
et al., 2020; Cherti et al., 2023). We investigate whether a similar trend holds for video data. To control for
the possible confounding variable of compute budget, we pretrain all models in Table 2 for 90K iterations
using a batch-size of 3072. We report downstream results on K400, SSv2, and IN1K using a frozen backbone
with an attentive probe, and report top-1 accuracy using a single center view.

Table 2 shows that average performance across tasks monotonically increases as we increase the size of
the pretraining dataset, but the best task-specific performance is obtained by independently selecting the
pretraining data for each specific downstream task. For instance, the L/16 obtains its best SSv2 performance
when pretrained on K710+SSv2, its best K400 performance when pretrained only on K710, and its best
IN1K performance when pretrained only on K710+HT. The best average performance across all tasks is
achieved by pretraining VideoMix2M, which combines all the data sources. Similarly, the H/16 pretrained
on K710+SSv2 achieves a greater K400 score than the H/16 pretrained on VideoMix2M, however, the top
performing H/16 on average is pretrained on VideoMix2M.

4.3 Evaluation: Attentive Probing

Next we explore the feature pooling strategy for applying the model’s representations in downstream tasks.
Specifically, when evaluating the frozen pretrained backbone on downstream tasks, we learn a cross-attention
layer with a learnable query token. The output of the cross-attention layer is then added back to the query
token (residual connection), and then fed into two-layer MLP with a single GeLU activation, followed by a
LayerNorm, and finally a linear classifier. The attentive pooling strategy is similar in spirit to the typical use
of a [cls] token in previous works to extract a single embedding from transformer representations in both
vision (Oquab et al., 2023; Dosovitskiy et al., 2020) and language (Devlin et al., 2018).
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Figure 4: Illustration of various video masking strategies for V-JEPA pretraining. Random Tube masking corresponds to
masking a random number of tubelets in the video clip. Causal Multi-Block masking corresponds to masking out the last few
frames of the video clip, as well as a random set of spatio-temporal blocks form the first few frames. Multi-Block masking
corresponds to masking out a random set of spatio-temporal blocks form the entire video clip.

Table 4: Ablating Prediction Task. Models are ViT-L/16 networks pretrained on K710 and SSv2 and evaluated with
an attentive probe using a single center view. The region x is sampled by masking spatio-temporal regions in the
video; y is the mask complement. 1) random-tube[r]: x is obtained by masking a fraction r of tubes (spatial patches
extended across the entire temporal duration) from the video, 2) causal multi-block[p]: x is restricted to the first p
frames of the 16-frame video, which are then masked with a random set of spatio-temporal blocks, 3) multi-block: x
is obtained by masking a random set of spatio-temporal blocks from the entire video. Best performance obtained by
using multiblock masking.

Frozen Evaluation
K400 SSv2 IN1K

Masking (16×1×1) (16×1×1)

random-tube[0.9] 51.5 46.4 55.6
causal multi-block[6] 61.3 49.8 66.9
causal multi-block[12] 71.9 63.6 72.2
multi-block 72.9 67.4 72.8

In Table 3 we see that using adaptive pooling with a learnable cross-attention layer leads to a significant
improvement of +17 points on K400 and +16.1 points on SSv2. Using an attentive-probe is also beneficial
for other baseline models as reported in Appendix E.

4.4 Prediction Task: Predicting y from x

We conduct an ablation on the masking strategy used in V-JEPA pretraining. We examine the following
masking strategies: random-tube[r] in which x is obtained by removing a random fraction r of tubes (spatial
patches extended across the entire temporal duration) from the video, causal multi-block[p] in which
x is restricted to the first p frames of the 16-frame video, which are then masked with a random set of
spatio-temporal blocks, and multi-block in which x obtained by masking a random set of spatio-temporal
blocks from the entire video. Spatio-temporal blocks are sampled using the parameters described in Section 4.4;
an ablation on the size and quantity of masked spatio-temporal blocks is provided in Appendix E.3. All
ablations are constructed by sampling two sets of masks for each input video clip. Figure 4 illustrates the
conceptual differences between the various masking strategies.

Table 4 indicates that the best results are obtained by sampling x using a multi-block strategy, wherein the
network is forced to make predictions after removing large continuous blocks in the video. When x is only
sampled from the first few frames of the video, as in the causal multi-block strategy, we observe a decrease
in downstream performances. Finally, the random-tube strategy, wherein 90% of the tubes in the video
are randomly masked, leads to features of low-semantic quality when combined with our feature prediction
objective.
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Table 5: Comparison with Pixel Prediction Methods. We compare V-JEPA with OmniMAE (Girdhar et al., 2023),
VideoMAE (Tong et al., 2022), and Hiera (Ryali et al., 2023), which leverage a pixel-reconstruction loss. All models are
trained using a ViT-L architecture or a comparable Hiera-L. We evaluate the approaches on downstream image tasks
(IN1K, Places205, iNat201) and video tasks (K400, SSv2, AVA) in both frozen evaluation (with a frozen backbone),
and end-to-end fine-tuning. All models are evaluated at resolution 224. On K400 and SSv2 we follow the standard
practice of reporting accuracy from several spatial and temporal views from the video. In frozen evaluation, V-JEPA
outperforms the baselines on all downstream tasks, except ImageNet, where the model achieves 74.8% compared to
75.1% of an OmniMAE model trained directly on ImageNet. V-JEPA also achieves the best fine-tuning performance
amongst all ViT-L models and matches the Hiera-L on SSv2. The V-JEPA results are achieved while processing
significantly fewer examples during pretraining.

Frozen Evaluation w/ Att. Pooling Fine-Tuning
#Samples K400 SSv2 AVA IN1K Places205 iNat21 K400-ft SSv2-ft

Method Arch. Seen Iter. (16×8×3) (16×2×3) (16×5×3) (16×2×3)

Methods pretrained using pixel prediction
OmniMAE ViT-L/16 2400M 1170K 65.6 60.6 14.4 75.1 59.8 66.1 84.0 74.2
VideoMAE ViT-L/16 410M 400K 77.8 65.5 21.6 71.1 59.3 64.6 85.4 74.3
Hiera Hiera-L 770M 1500K 75.5 64.2 15.8 68.9 58.5 56.9 87.3 75.1

V-JEPA ViT-L/16 270M 90K 80.8 69.5 25.6 74.8 60.3 67.8 85.6 75.1

Table 6: Comparison with State-of-the-Art Models. We compare V-JEPA with state-of-the-art baselines in frozen
evaluation with an attentive probe on downstream image tasks (IN1K, Place205, iNat21) and video tasks (K400, SSv2,
AVA). All models are evaluated at resolution 224, except I-JEPA512 and V-JEPA384 which are evaluated respectively at
resolution 512 and 384. On K400 and SSv2 we follow the standard practice of reporting accuracy from several spatial
and temporal views from the video. Compared to other video baselines, V-JEPA exhibits a consistent improvement
across all downstream tasks. Compared to image-models that excel under the frozen evaluation, V-JEPA shows a
significant performance improvement on tasks requiring motion understanding (+21 points on SSv2), and reduces the
gap between video and image models on tasks requiring static appearance-based features.

Video Tasks Image Tasks
K400 SSv2 AVA IN1K Places205 iNat21

Method Arch. Params. Data (16×8×3) (16×2×3)

Methods pretrained on Images
I-JEPA ViT-H/16512 630M IN22K 79.7 50.0 19.8 84.4 66.5 85.7
OpenCLIP ViT-G/14 1800M LAION 81.8 34.8 23.2 85.3 70.2 83.6
DINOv2 ViT-g/14 1100M LVD-142M 83.4 50.6 24.3 86.2 68.4 88.8

Methods pretrained on Videos
MVD ViT-L/16 200M IN1K+K400 79.4 66.5 19.7 73.3 59.4 65.7
OmniMAE ViT-H/16 630M IN1K+SSv2 71.4 65.4 16.0 76.3 60.6 72.4
VideoMAE ViT-H/16 630M K400 79.8 66.2 20.7 72.3 59.1 65.5
VideoMAEv2 ViT-g/14 1100M Un.Hybrid 71.2 61.2 12.9 71.4 60.6 68.3
Hiera Hiera-H 670M K400 77.0 64.7 17.5 71.4 59.5 61.7

V-JEPA
ViT-L/16 200M

VideoMix2M
80.8 69.5 25.6 74.8 60.3 67.8

ViT-H/16 630M 82.0 71.4 25.8 75.9 61.7 67.9
ViT-H/16384 630M 81.9 72.2 25.0 77.4 62.8 72.6

5 Comparison with Prior Work

In Section 5.1, we investigate the impact of feature prediction by comparing V-JEPA with video approaches
that rely on pixel prediction, while using a similar architecture for all baselines. Subsequently, in Section 5.2,
we remove the architectural constraint and report the best performance across architectures for self-supervised
video and image pretraining approaches. Finally, we explore the label-efficiency of V-JEPA relative to
other self-supervised video pretraining approaches in Section 5.3. We further detail the evaluation setup in
Appendix D.

5.1 Comparison with Pixel Prediction

To investigate the effectiveness of feature prediction pretraining, we first compare V-JEPA to video masked
modeling models relying on a pixel prediction loss. We control for the possible confounding factor of model
architecture by evaluating all models using either a ViT-L/16 encoder, or a Hiera-L encoder, which has a
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Figure 5: Efficiency of pretraining. (a) We report SSv2 fine-tuning for V-JEPA and pixel-reconstruction baselines
using a ViT-L/16 or Hiera-L architecture. V-JEPA outperforms all pixel-reconstruction methods using a ViT-L/16
and matches the Hiera-L performance while seeing significantly less samples during pretraining. (b) Wallclock times
for all methods are measured on a single GPU with a batch size of 10 clips, using the official codebases for VideoMAE
and VideoMAEv2, and linearly extrapolated assuming a global batch size of 2400 samples. However, note that the
SSv2 accuracies of video pixel prediction methods are actually obtained with small batch sizes and significantly longer
training schedules. V-JEPA outperforms pixel-reconstruction methods while training significantly faster.

similar number of parameters. For the pixel prediction baselines we consider VideoMAE (Tong et al., 2022;
Wang et al., 2023a), which trains vision transformer autoencoders exclusively on video, Hiera (Ryali et al.,
2023), which trains a hierarchical transformer autoencoder on video, and OmniMAE (Girdhar et al., 2023),
which trains a vision transformer autoencoder on static images and video simultaneously.

Table 5 examines both frozen evaluation with an attentive probe on downstream video and image tasks, as
well as end-to-end fine-tuning. In frozen evaluation, V-JEPA outperforms the baselines on all downstream
tasks, except ImageNet, where we achieve 74.8% compared to 75.1% of an OmniMAE model trained directly
on ImageNet; hence, V-JEPA achieves comparable ImageNet performance despite only pretraining on video.

Under the fine-tuning protocol, V-JEPA also achieves the best performance of any model trained with a
ViT-L/16, and matches the performance of the Hiera-L on SSv2, which benefits from a hierachical prior (Ryali
et al., 2023). The V-JEPA models achieve this result while processing significantly fewer samples during
pretraining (Figure 5a), demonstrating the efficiency of feature prediction as a learning principle.

5.2 Comparison with State-of-the-Art

Next, in Table 6, we inspect how the V-JEPA models pretrained on video stack up next to the largest state-of-
the-art self-supervised image and video models when freezing the backbone encoder and training an attentive
probe on top. Our image pretrained baselines include OpenCLIP (Cherti et al., 2023), DINOv2 (Oquab
et al., 2023), and I-JEPA (Assran et al., 2023). The OpenCLIP model is trained with a contrastive image-
text alignment objective, DINOv2 and I-JEPA are trained with self-supervision. These models are known
to excel in their frozen-evaluation performance (Oquab et al., 2023); i.e., their ability to produce visual
features that can be applied to many downstream tasks simultaneously, without end-to-end fine-tuning,
and thus provide highly competitive baselines. Our video pretrained baselines include VideoMAE (Tong
et al., 2022), OmniMAE (Girdhar et al., 2023), Hiera (Ryali et al., 2023), VideoMAEv2 (Wang et al., 2023a),
and MVD (Wang et al., 2023b). The OpenCLIP, DINOv2 and VideoMAEv2 models are parameterized as
Giant/Gigantic vision transformer architectures containing over 1B parameters trained on large-scale image
or video datasets.

Comparison with video models. Compared to large-scale video baselines, the V-JEPA models outperform
all previous models on every downstream video and image tasks by a notable margin (see Table 6). Our
H/16 model outperforms the largest publicly available VideoMAE, VideoMAEv2, OmniMAE, MVD, and
Hiera models by at least +5 points in motion understanding (Something-Something-v2), +2 points in
action recognition (Kinetics-400), +5 points on action detection (AVA), +1 point on object recognition
(ImageNet-1K), +2 points in scene recognition (Places205), and +0.2 points on fine-grained recognition
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Table 7: Finetuning results. We evaluate a V-JEPA model with the finetuning protocol on the K400 and SSv2
datasets using 16 frames per clip and multi-view fusion (5×3 or 2×3) for inference. The #Samples Seen entry
corresponds to the number of video clips processed during pretraining, which is larger than the size of the pretraining
dataset for multi-epoch training. We compare V-JEPA with different video self-supervised learning approaches. We
report the VideoMAEv2 results without instruction-turning for consistency with the other approaches. V-JEPA
obtains competitive performance using the finetuning protocol.

Method Arch. Pretraining Data #Samples Seen K400 SSv2
(16×5×3) (16×2×3)

VideoMAEv1 ViT-L/16 K400|SSv2 380M|410M 85.4 74.3
ViT-H/16 K400|SSv2 380M|410M 86.6 74.8

VideoMAEv2 ViT-H/16 Un.Hybrid 1600M 86.9 76.8
MVD ViT-L/16 K400+IN1K 2400M 86.4 76.7

ViT-H/16 K400+IN1K 2400M 87.2 77.3

V-JEPA ViT-L/16 VideoMix2M 270M 85.6 75.1
ViT-H/16 VideoMix2M 270M 86.6 77.0

(iNaturalist). Moreover, when comparing pretraining wallclock time in Figure 5b, we see that V-JEPA achieves
this performance with a roughly 2× speedup compared to the large pixel prediction models.

Comparison with image models. On tasks that require a fine-grained understanding of motion
(Something-Something-v2), the V-JEPA models provide a major improvement (over +21 points) compared
to large-scale image baselines, such as DINOv2, OpenCLIP, and I-JEPA. Self-supervised pretraining from
videos allows to model dynamic concepts that are not easily learned from static image datasets. Similarly, we
observe that the V-JEPA models outperform image-based pretraining on action localization.

On Kinetics-400, we find image models to perform well; e.g., while DINOv2 (Oquab et al., 2023) previously
reported 78.4% on K400 with a linear probe, we improve the frozen evaluation of the g/14 model to 83.4% by
using an attentive probe. In this case, our H/16 model achieves 82.0% top-1 accuracy. It is worth noting
that the label for many Kinetics videos can be inferred using appearance-based cues, without requiring an
understanding of motion (Sevilla-Lara et al., 2021).

The V-JEPA models narrow the gap with image models on image classification tasks. In particular, V-JEPA
achieves a score of 77.4% on ImageNet using a one-layer attentive probe, which can be further improved
to 77.9% using a two-layer attentive probe. More generally, we hypothesize that the datasets used to
train V-JEPA and other video models are too constrained and lack the visual diversity of the internet-scale
pretraining data used by the images models; as such, there is value in focusing future work on building diverse
publicly available video datasets.

Finetuning In Table 7, we evaluate V-JEPA by finetuning (separately) on K400 and SSv2. We compare
V-JEPA with VideoMAEv2 (Wang et al., 2023a), VideoMAE (Tong et al., 2022) and MVD (Wang et al., 2023b)
using a ViT-L/16 and a ViT-H/16 architecture. V-JEPA obtains competitive performance using a finetuning
protocol. With a ViT-H/16 architecture, V-JEPA outperforms VideoMAE by +1.2% and VideoMAEv2
by +0.3% on the SSv2 dataset, while obtaining comparable performance on K400. V-JEPA also obtains
performance similar to MVD on the SSv2 dataset. The MVD model achieves the best performance across
models on the K400 dataset, and is trained using an additional image dataset (ImageNet1K), in contrast to
the other methods in the table, which only use video data. Additionally MVD requires the processing of
significantly more samples during pretraining due to the cost of training the teacher encoder networks in a
pre-pre-training stage.

5.3 Label-efficiency

We examine the label-efficiency of V-JEPA compared to other self-supervised video models by measuring the
ability of the pretrained backbones to adapt to downstream tasks with few labels. Specifically, we investigate
the performance of the frozen models on Kinetics-400 and Something-Something-v2 as we vary the percentage
of labeled examples from each dataset available for training the attentive probe. We train the probes in
several low-shot settings: using either 5% of the train set, 10%, or 50%, and take 3 random splits in each
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Table 8: Low-Shot Frozen Evaluation. Comparing V-JEPA to other video models in frozen evaluation on Kinetics-400
and Something-Something-v2 as we vary the percentage of labeled examples from each dataset available for training
the attentive probe. We train the probes in several low-shot settings: using either 5% of the train set, 10%, or 50%,
and take 3 random splits in each setting to obtain more robust metrics, resulting in 9 different evaluation experiments
for each model. We report the mean performances and standard deviation using the K400 and SSv2 validation sets.
V-JEPA is more label-efficient than other models; specifically, decreasing the available number of labeled examples
from each class increases the performance gap between V-JEPA and the baselines.

Frozen Evaluation
K400 SSv2

(16×8×3) (16×2×3)

5% 10% 50% 5% 10% 50%
Method Arch. (∼29 samples per class) (∼58 samples per class) (∼287 samples per class) (∼48 samples per class) (∼96 samples per class) (∼440 samples per class)

MVD ViT-L/16 62.6 ± 0.2 68.3 ± 0.2 77.2 ± 0.3 42.9 ± 0.8 49.5 ± 0.6 61.0 ± 0.2
VideoMAE ViT-H/16 62.3 ± 0.3 68.5 ± 0.2 78.2 ± 0.1 41.4 ± 0.8 48.1 ± 0.2 60.5 ± 0.4
VideoMAEv2 ViT-g/14 37.0 ± 0.3 48.8 ± 0.4 67.8 ± 0.1 28.0 ± 1.0 37.3 ± 0.3 54.0 ± 0.3

V-JEPA ViT-H/16 67.0 ± 0.2 72.1 ± 0.1 80.2 ± 0.2 51.9 ± 0.3 57.5 ± 0.4 67.3 ± 0.2
ViT-H/16384 68.2 ± 0.2 72.8 ± 0.2 80.6 ± 0.2 54.0 ± 0.2 59.3 ± 0.5 67.9 ± 0.2

setting to obtain more robust metrics, resulting in 9 different evaluation experiments for each model. Table 8
reports the mean performances and standard deviation using the K400 and SSv2 validation sets.

We find V-JEPA to be more label-efficient than other self-supervised video models: decreasing the available
number of labeled examples for training the attentive probe results in an increase in the performance gap
between V-JEPA and the other models. In particular, the performance of the largest V-JEPA model on K400
drops by 12% to 68.2% top-1 when we reduce the number of labeled examples by a factor of 10× (from
roughly 287 examples per class to 29 examples per class). By contrast, VideoMAEv2 drops by 30% to 37.0%
top-1, VideoMAE drops by 15.9% to 62.3% top-1, and MVD drops by 14.6% to 62.6% top-1.

Similar observations hold on SSv2. The performance of the largest V-JEPA model on SSv2 drops by 13.9% to
54.0% top-1 when we reduce the number of labeled examples by a factor of 10× (from roughly 440 examples
per class to 48 examples per class). By contrast, VideoMAEv2 drops by 26% to 28.0% top-1, VideoMAE
drops by 19.1% to 41.4% top-1, and MVD drops by 18.1% to 42.9% top-1.

6 Evaluating the Predictor

Next, we seek to qualitatively inspect the V-JEPA models. Recall that the predictor network in V-JEPA
predicts the representations of a masked spatio-temporal region y from a visible region x, given the positional
information of the masked regions (see Section 3). To qualitatively investigate the grounding of the feature-
space predictions, we freeze the pretrained encoder and predictor networks and train a conditional diffusion
decoder to map the V-JEPA predictions to interpretable pixels (Bordes et al., 2021). Notably, the decoder is
only fed the representations predicted for the missing regions of the video, and does not have access to the
unmasked regions of the video (see Figure 6a).

Given a masked video, we use the V-JEPA pretrained models to predict the representations of the missing
regions, and then use the decoder to project the representations to pixel space. Figure 6b shows decoder
outputs for various random seeds. Qualities that are common across samples represent information that is
contained in the predictor representation.

Figure 6b shows that the V-JEPA feature predictions are indeed grounded, and exhibit spatio-temporal
consistency with the unmasked regions of the video. Specifically, the samples in Figure 6b show that
the V-JEPA predictor correctly captures positional uncertainty and produces a variety of visual objects
at various locations with consistent motion. Some of the samples also demonstrate an understanding of
object-permanence, as the visual objects remain consistent after partial occlusion.
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Frozen

x-encoder predictor decoder

(a) Visualization Methodology. We train a conditional diffusion model to decode the V-JEPA feature-space
predictions to interpretable pixels; the pretrained V-JEPA encoder and predictor networks are kept frozen in this
process. The decoder is only fed the representations predicted for the missing regions of the video, and does not have
access to the unmasked regions of the video.

(b) Visualizations. First Row: Masked videos used as input to the V-JEPA models (a pretrained ViT-H/16 encoder
and its corresponding predictor network). Other rows: Bounding boxes contain various samples from the decoder
overlayed on the original video. V-JEPA is not a generative model and the decoder does not have access to the
context (first row), so we do not expect samples to exactly match the input. This experiment qualitatively illustrates
what information is encoded and predicted by V-JEPA. In particular, characteristics that are common across samples
represent information that is encoded in the V-JEPA predictions. V-JEPA generates predictions that are spatially and
temporally coherent with unmask region of the video. The predictions also capture consistent motion through time.

Figure 6: Qualitative Analysis. Offline visualizations of the V-JEPA feature-space predictions.

7 Limitations

While the focus of this work is on exploring the effectiveness of feature prediction as a stand-alone objective
for unsupervised learning for video, in this section, we highlight current limitations of our instantiation of this
learning objective, V-JEPA. Firstly, V-JEPA performance is sensitive to the masking strategy, as illustrated
in Section 4.4. In future work, we plan to investigate whether scaling the dataset size and pretraining
computation make the approach more robust to this design choice. Secondly, the V-JEPA instantiation
relies on vision transformers as video encoders, which limits the ability to process long or high-resolution
video, because the computational complexity scales quadratically with the input size. We plan to investigate
hierarchical architectures to enable the processing of larger videos. Finally, the V-JEPA instantiation relies on
bootstrapping to prevent representation collapse (Grill et al., 2020). Despite initial results (Tian et al., 2021),
understanding the learning mechanism behind this principle remains an open question.
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8 Conclusion

In this work, we explored the effectiveness of feature prediction as a stand-alone objective for unsupervised
learning from video and introduced V-JEPA, a collection of vision models trained solely using a self-supervised
feature prediction objective. The V-JEPA models demonstrate the ability to solve various downstream image
and video tasks without adaption of the model parameters, and outperform previous video representation
learning approaches in frozen evaluation on action recognition, spatio-temporal action detection, and image
classification tasks. Additionally, we show that pretraining V-JEPA on videos is particularly effective for
solving downstream tasks requiring fine-grained motion understanding, while large-scale image models trained
on internet scale datasets fall short on such tasks. Finally, we empirically observed that V-JEPA models
are label-efficient learners, and exhibit good performance on downstream tasks, even when only few labeled
examples are available.
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A Extended Related Works

We first review approaches for learning visual perception from static images before discussing strategies for
learning from video.

Weakly-Supervised Learning from Static Images

One family of approaches for learning visual perception from static images trains a visual encoder to predict
the representations of text captions often found accompanying images from the Web, as in CLIP (Radford
et al., 2021) or CoCa (Yu et al., 2022). The largest open source CLIP model to date, numbering 2B parameters
and trained on over 2B web-scraped images (Cherti et al., 2023), demonstrates impressive performance on
a wide range of downstream image and video tasks. Notably, this is achieved using only the light-weight
adaptation of task-specific heads, also referred to as frozen-evaluation, and does not require expensive
end-to-end fine-tuning of the pretrained model.

Self-Supervised Learning from Static Images

Other approaches for learning from static images leverage unsupervised objectives. Initial works on self-
supervised approaches are based on sparse coding or hand-crafted pretext tasks, such as colorization (Larsson
et al., 2016; 2017), rotation prediction (Gidaris et al., 2020), and jigsaws (Noroozi & Favaro, 2016). More recent
approaches leverage invariance-based objectives by training a visual encoder to be invariant to hand-crafted
image transformations (Wu et al., 2018; Chen et al., 2020).

Another family of methods learn representations using denoising autoencoders (Vincent et al., 2008); image
inpainting is one popular instantiation of this idea (Pathak et al., 2016). More recently, masked autoen-
coders (He et al., 2021) train an encoder-decoder transformer to predict missing pixels of a masked image.
Follow-up work addresses the indeterminism of pixel reconstruction by exploring instantiations of masked
image modeling in latent space (Baevski et al., 2022b; Assran et al., 2023; Baevski et al., 2022a). These
approaches can be seen as applications of the predictive feature principle in the image modality.

There are also various methods that combine both masked image modeling and invariance criteria to learn
visual representations from static images, such as iBOT (Zhou et al., 2021) and DINOv2 (Zhou et al., 2021;
Oquab et al., 2023), the latter is currently the most competitive instantiation of self-supervised learning with
static images, scaled to a model with over 1.1B parameters trained on a curated dataset of 142M images.

Weakly-Supervised Learning from Videos

One family of approaches for learning visual perception from videos relies on weakly-supervised guidance
from closed captioning, often computed from an ASR transcription of audio data accompanying internet
videos. For instance, VideoBERT (Sun et al., 2019; Xu et al., 2021) trains a video encoder to predict masked
spans in the textual closed captions. Similarly, VideoCLIP (Xu et al., 2021) trains a video encoder to predict
the representation of video captions computed by a text encoder. Follow-up work such as MERLOT (Zellers
et al., 2022), VATT (Akbari et al., 2021), and InternVideo (Wang et al., 2022) extended VideoCLIP by
incorporating additional unsupervised objectives.
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Self-Supervised Learning from Videos

Similar to unsupervised learning from images, a family of unsupervised video representation learning
approaches enforces a spatio-temporal representation of a video clip to be invariant to hand-crafted spatio-
temporal data augmentations (Parthasarathy et al., 2022). However, one obvious insight is that the temporal
ordering of visual information in video can provide implicit supervision. Indeed, this insight is the key
insight leveraged by many works on unsupervised video learning. Towards leveraging temporal information as
supervision, some approaches train a visual encoder by predicting the temporal ordering of frames (Xu et al.,
2019; Lee et al., 2017). Other approaches seek to predict low-level motion vectors computed from optical
flow (Pintea et al., 2014), or to predict mixing pixels in video frames, using either a frame-interpolation
objective (Kalluri et al., 2023) or a denoising autoencoder (Tong et al., 2022; Feichtenhofer et al., 2022; Wang
et al., 2023a).

B Extended Description of V-JEPA

In this section, we provide an in-depth description of our approach V-JEPA that is illustrated in Figure 3.

Input. Unless stated otherwise, during during pretraining, we always randomly sample a clip of 16 frames
from each input video with a temporal stride of 4 between sampled frames. An input video clip therefore
covers 64 frames in total, or roughly 2 seconds of a given video running at 30 frames per second. We then
resize the video’s spatial dimensions to 224× 224, resulting in an overall shape of 16× 224× 224× 3 for the
entire clip. Since ViT networks process a 1D sequence of tokens, we must convert an input video clip into
a 1D token sequence. To do so, we apply a 3D convolution comprising d filters of size 2× 16× 16 with a
temporal stride of 2 and a spatial stride of 16, resulting in a tensor of shape 8× 14× 14× d. Next we add
absolute 3D sin-cos positional embeddings to the spatio-temporal feature map and flatten it, resulting in a
1D token sequence of shape 1568× d. This process is demonstrated in Figure 7.

[16 x 224 x 224 x 3]

3D Conv
[2 x 16 x 16 x d]

[8 x 14 x 14 x d]

3D sin-cos absolute position 
embeddings

[8 x 14 x 14 x d]

[1568 x d]

+16 video frames
resolution 224 x 224

flatten

Figure 7: V-JEPA training operates on a video clip flattened into a sequence of tokens. To convert a video clip of
size 16 × 224 × 224 × 3 into a 1D token sequence, we apply a 3D convolution comprising d filters of size 2 × 16 × 16
with a temporal stride of 2 and a spatial stride of 16, resulting in a tensor of shape 8 × 14 × 14 × d. Next we add
absolute 3D sin-cos positional embeddings to the spatio-temporal feature map and flatten it, resulting in a 1D token
sequence of shape 1568 × d.

V-JEPA. We sample both a video clip, and a video mask in each iteration. We denote a video clip
represented as a 1D token sequence of length L = 1568 by xL = (x1, . . . , xL). Similarly, given a mask
of M < L patches, leaving N = L −M patches unmasked, we denote the indices of masked patches by
(i1, . . . , iM ) and its complement (the indices of unmasked patches) by (j1, . . . , jN ).

Computing the x-representations. To compute the V-JEPA loss, we first produce the x-representations by
masking the video clip and feeding it into the x-encoder; we denote the masked video by xN = (xj1 , . . . , xjN

).
Applying the x-encoder Eθ(·) to the masked clip gives a sequence of patch representations, denoted as
hN = Eθ(xN ) = (hj1 , . . . , hjN

).
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Predicting the target. Next, the V-JEPA predictor network Pϕ(·, ·) takes as input the tokens produced by
the x-encoder and predicts the missing regions in the video clip, which are specified by a set of learnable
mask tokens. Specifically, the mask tokens are parameterized as the sum of a shared learnable vector and an
absolute 3D sin-cos positional embedding, denoted by mM = (mi1 , . . . , miM

). The output of the predictor is
thus given by, ŝM = Pϕ(zN , mM ) = (ŝi1 , . . . , ŝiM

), corresponding to a d-dimensional output for each of the
M masked patches.

Computing the y-representations. Finally to compute the prediction targets, the entire unmasked video clip is
processed by the y-encoder to obtain a set of target representations, denoted by sL = Eθ(xL) = (s1, . . . , sL).
The V-JEPA loss is now computed as

Loss = 1
M

∑
k∈(i1,...,iM )

∥ŝk − sk∥1, (2)

which is simply the average L1 distance between the output of the predictor and the y-encoder. We then
compute a gradient update with respect to the parameters of the x-encoder, θ, and the predictor, ϕ, and
subsequently update the parameters of the y-encoder as an exponential moving average of the context encoder
weights (Polyak average).

Multi-Mask Prediction. To increase the efficiency of V-JEPA, we use a multi-masking strategy (Caron
et al., 2020; Baevski et al., 2022a), which enables us to amortize the cost of the target computation. As
mentioned in Section 3, for a given video clip, we sample 2 different masks: short-range and long-range.
While we need to forward propagate the x-encoder and predictor separately for each mask, we only need
to compute the y-representation once. Specifically, we forward propagate the unmasked video through the
y-encoder once to compute the target representations, and forward propagate through the x-encoder and
predictor twice, one time using long-range masks, and a second time using short-range masks; since roughly
90% of the video clip is masked, the two forward passes through the x-encoder are reasonably efficient and
amortize the cost of target computation.

C Pretraining details

In section, we report V-JEPA pretraining details. Table 9 summarizes the main hyperparameters used during
pretraining.

Architectures. We use Vision Transformer (Dosovitskiy et al., 2020) (ViT) architectures for the x-encoder
and y-encoder. We train three V-JEPA encoders: a ViT-L/16224, a ViT-H/16224 and a ViT-H/16384. All
three encoders take as input a short video clip of 16 frames with a temporal stride of 4 between consecutive
frames. The subscripts, 224 and 384, indicate the spatial resolution of the video clip. V-JEPA flattens the
video clip into a sequence of non-overlapping spatio-temporal patches of size 16×16×2 (see Figure 7). For all
three models, the predictor is designed as a narrow ViT architecture, consisting of 12 transformer blocks with
an embedding dimension of 384. For simplicity, we keep the number of self-attention heads in the predictor
equal to that of the backbone used for the context-encoder/target-encoder. V-JEPA is pretrained without
using a [cls] token.

Optimization. We use AdamW (Loshchilov & Hutter, 2017) to optimize the x-encoder and predictor
weights. The ViT-L/16224 and ViT-H/16224 models use a batch size of 3072 while the ViT-H/16384 uses a
batch size of 2400. Models are trained for a total of 90,000 iterations. The learning rate is linearly increased
from 2× 10−4 to 6.25× 10−4 during the first 12, 000 iterations of pretraining, and decayed to 10−6 following
a cosine schedule. Weight-decay is also linearly increased from 0.04 to 0.4 throughout pretraining. The
y-encoder weights are initialized identically to the x-encoder, and subsequently updated as an exponential
moving average (EMA) (Tarvainen & Valpola, 2017) of the x-encoder weights using a momentum value which
starts at 0.998 and is linearly increased to 1.0 during training (Caron et al., 2021; Assran et al., 2022). We
scale all hyper-parameter schedules 25% beyond the actual training schedule. Specifically, the learning rate
schedule, weight-decay schedule, and EMA schedule are computed assuming a training length of 112,500
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Table 9: pretraining hyper-parameters for V-JEPA.

Hyper-parameter ViT-L/16224 ViT-H/16224 ViT-H/16384

data
datasets VideoMix2M VideoMix2M VideoMix2M
resolution 224 224 384
num_frames 16 16 16
temporal_stride 4 4 4
horizontal_flip true true true
random_resize_scale (0.3, 1.0) (0.3, 1.0) (0.3, 1.0)
random_resize_aspect_ratio (0.75, 1.35) (0.75, 1.35) (0.75, 1.35)
masking
block_aspect_ratio (0.75, 1.5) (0.75, 1.5) (0.75, 1.5)
shortrange_mask_num_blocks 8 8 8
shortrange_mask_spatial_scale 0.15 0.15 0.15
longrange_mask_num_blocks 2 2 2
longrange_mask_spatial_scale 0.7 0.7 0.7
optimization
batch_size 3072 3072 2400
total_number_of_iterations 90000 90000 90000
warmup_iterations 12000 12000 12000
lr 6.25e-4 6.25×10−4 6.25×10−4

start_lr 2×10−4 2×10−4 2×10−4

final_lr 1×10−6 1×10−6 1×10−6

start_momentum 0.998 0.998 0.998
final_momentum 1.0 1.0 1.0
start_weight_decay 0.04 0.04 0.04
final_weight_decay 0.4 0.4 0.4
scheduler_scale_factor 1.25 1.25 1.25
architecture
patch_size 16 16 16
tubelet_size 2 2 2
pred_depth 12 12 12
pred_embed_dim 384 384 384
hardware
dtype bfloat16 bfloat16 bfloat16
accelerator A100 80G A100 80G A100 80G
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Table 10: Frozen Evaluation hyper-parameters.

Hyper-parameter K400 SSv2 IN1K Place205 iNat21
data
num_clips 8 1 N.A. N.A. N.A.
num_frames 16 16 N.A. N.A. N.A.
temporal_stride 4 4 N.A. N.A. N.A.
horizontal_flip true true true true true
random_resize_scale (0.08, 1.0) (0.08, 1.0) (0.08, 1.0) (0.08, 1.0) (0.08, 1.0)
random_resize_aspect_ratio (0.75, 1.33) (0.75, 1.33) (0.75, 1.33) (0.75, 1.33) (0.75, 1.33)
auto_augment false false true true true
optimization
batch_size 256 256 1024 1024 1024
epochs 20 20 20 20 20
lr 1e-3 1e-3 1e-3 1e-3 1e-3
final_lr 0 0 0 0 0
weight_decay 0.01 0.01 0.01 0.01 0.01

iterations, although we only train our model for 90,000 iterations. We found the last 25% of the default
scheduler period to update hyper-parameters too aggressively, and simply truncating the schedulers improved
performance. To find the optimal values v for the learning rate (scheduled from 2× 10−4 to v), weight decay
(scheduled from v to 0.4), and momentum (scheduled from v to 1.0), we performed a grid search with the
following values, learning rate: 3e − 3, 1e − 3, 7.5e − 4, 6.25e − 4, 5e − 4, 3.75e − 4, 2e − 4, weight decay:
0.04, 0.004, 0.0004, 0.00004, momentum: 0.99, 0.995, 0.996, 0.997, 0.998, 0.999.

Masking. As described in Section 3, we propose a 3D Multi-Block masking strategy. We use two types of
masks: short-range masks, where we take the union of 8 randomly sampled target blocks with a spatial scale
of 0.15, and long-range masks, where we take the union of 2 randomly sampled target blocks with a spatial
scale of 0.7. In both cases, the aspect ratio for all sampled blocks is randomly chosen in the range (0.75, 1.5).

D Evaluation details

D.1 Frozen classification

Attentive Probing. Given an input video, xL, the V-JEPA target encoder Eθ(·) outputs a sequence
of L tokens, Eθ(xL) = (s1, . . . , sL), where si ∈ Rd. To pool this sequence of tokens into a single feature
vector, we apply a lightweight non-linear cross-attention block which replaces the self-attention operation of a
transformer block with cross attention. Specifically, cross-attention performs the following computation:

L∑
i=1

exp(q⊤Wksi)∑
j exp(q⊤Wksj)Wvsi,

where Wk, Wv ∈ Rd×d are the key and value matrices, and q ∈ Rd is a learnable query token. The output
of the cross-attention is then added back to the query token (residual connection), and then fed into two-layer
MLP with a single GeLU activation, followed by a LayerNorm, and finally a linear classifier. The parameters
of the cross-attention block are jointly learned with that of the linear classifier for the downstream task,
while the encoder parameters are kept frozen. Note that in practice, we actually use an attentive probe with
12 heads, each of dimension 12. In Appendix E we show that baselines benefit from the attentive probing
protocol.

Optimization. For all the tasks, we use AdamW optimizer with a cosine scheduler (no warmup) that decays
the learning rate from 0.001 to 0. We use a fixed weight-decay of 0.01 and apply simple data augmentations
(random resized crops and horizontal flips) during training of the attentive probe, except on image tasks,
where we apply AutoAugment (Dogus Cubuk et al., 2019). Table 10 reports the hyperparameters for each
downstream evaluation.
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Table 11: Frozen Detection hyper-parameters.

Hyper-parameter ViT-L/16 ViT-H/16
out_layers [18, 20, 22, 24] [26, 28, 30, 32]
batch_size 64 64
epochs 30 30
opt AdamW AdamW
opt_eps 0.00000001 0.00000001
momentum 0.9 0.9
weight_decay 0.05 0.05
lr 0.0001 0.0001
warmup_lr 0.000001 0.000001
min_lr 0.000001 0.000001
warmup_epochs 2 2
warmup_steps 1 1

Extension to multiple clips. Unless stated otherwise, our attentive probe takes 8 clips of 16 frames as
input on Kinetics, and 2 clips of 16 frames on Something-Somethingv2 to increase the temporal coverage
of the video. Specifically, we first divide a video in 8 (or 2) equal-length temporal segments, and sample 1
clip at random per segment. The video encoder Eθ processes each clip separately and produces a clip-level
feature map. The feature maps for each clip are then concatenated together and fed to the attentive probe.
At test time, we average the prediction of 3 spatial views following standard practice in video classification.

Application of video models to images. To evaluate the video models on image tasks, we simply
duplicate input images to generate still video clips of 16 frames. We perform this duplication operation
simply for convenience in evaluation of the video models, however we find this step to be unnecessary in
general. Given a video tokenizer implemented as a 3D-conv with a temporal stride of 2, it is sufficient to
simply duplicate the image into a 2 frame video clip. This would result in the same number of input tokens
as that produced by a static image model with a 2D-conv tokenizer.

Application of image models to videos. To evaluate image models such as DINOv2 and OpenCLIP on
video tasks, we simply process each frame independently with the image encoder to produce a frame-level
feature map. The feature maps for each frame are then concatenated and fed to the attentive probe, just as
we do with the clip-level feature maps when evaluating video models.

D.2 Frozen detection

We evaluate our model on the AVA (Gu et al., 2018) spatio-temporal localization of human actions dataset,
containing 211k training and 57k validation video segments. We follow the experimental protocol of (Feicht-
enhofer et al., 2021), and use precomputed masks from a pretrained Faster-RCNN adapted to videos, which
uses a ResNeXt-101-FPN backbone and is pretrained on ImageNet and COCO. We train a linear classifier
on top of the frozen V-JEPA features to classify the extracted regions of interest and report mean Average
Precision (mAP) on the 60 most common classes. Hyper-parameters are provided in Table 11. Our frozen
features are obtained by concatenating the last layer of the transformer encoder with three intermediate
layers. We use a batch size of 64 and pretrain for 30 epochs with AdamW using a learning rate of 0.0001
with 2 epochs of warmup and a weight decay of 0.05.

D.3 Finetuning

Following Tong et al. (2022), we finetune a linear layer on top of our model, using a layer decay schema
and mixup as the data augmentation pipeline. We provide all hyper-parameters for both K400 and SSv2 in
Table 12.
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Table 12: Finetuning Evaluation hyper-parameters.

Hyper-parameter K400 SSv2
data
num_segments 1
num_frames 16
sampling_rate 4
resolution 224
model
model_name ViT-L/16 ViT-H/16 ViT-L/16 ViT-H/16
drop_path 0.1 0.2 0.2 0.2
head_drop_rate 0. 0. 0.5 0.5
optimization
batch_size 256 1024 256 256
epochs 35 25 15 15
opt adamw
opt_eps 0.00000001
momentum 0.9
weight_decay 0.05
lr 0.002 0.0005 0.0005 0.0005
layer_decay 0.75 0.75 0.75 0.75
warmup_lr 1e-6 1e-8 1e-6 1e-6
min_lr 1e-6 1e-5 1.5e-4 1.5e-3
warmup_epochs 5
augmentations
color_jitter 0.4
horizontal_flip True True False False
num_sample 2
aa rand-m7-n4-mstd0.5-inc1
smoothing 0.1
train_interpolation bicubic
test_num_segment 5 5 2 2
test_num_crop 3 3 3 3
erase
prob 0.25
mode pixel
count 1
split False
mixup
mixup 0.8
cutmix 1.0
mixup_prob 1.0
mixup_switch_prob 0.5
mixup_mode batch
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E Extra Results

E.1 Frozen Evaluation.

Table 13: Linear vs. Attentive Probe Evaluation for V-JEPA and VideoMAE. We evaluate the effect of
linear (Lin.) and attentive (Att.) probing when adapting V-JEPA to the K400 (16 × 5 × 3) and SSv2 (16 × 2 × 2)
tasks. V-JEPA and VideoMAE benefit from using a non-linear attentive probe.

K400 SSv2
Method Arch. Lin. Att. Lin. Att.
VideoMAE ViT-L/16 52.5 77.8 41.3 61.2
V-JEPA ViT-L/16 56.7 80.8 50.1 69.5

Table 14: Linear vs. Attentive Probe Evaluation for DINOv2 and OpenCLIP. We evaluate the effect of
linear (Lin.) and attentive probing (Att.) when adapting DINOv2 and OpenCLIP. Image-baselines benefit from using
an attentive probing strategy. Results shown in gray are reported from the linear probe evaluation in Oquab et al.
(2023).

K400 SSv2 IN1K Place205 iNat21
Method Arch. Lin. Att. Lin. Att. Lin. Att. Lin. Att. Lin. Att.
DINOv2 ViT-g/14 78.4 83.4 38.3 50.0 86.5 86.2 67.5 68.4 85.7 88.8
OpenCLIP ViT-G/14 78.3 81.8 35.8 34.8 86.2 85.3 69.8 70.2 76.0 83.6

Linear vs. Attentive probe Table 13 shows that V-JEPA and VideoMAE benefit from using a non-linear
attentive probe and multiple clips on the K400 and SSv2 downstream tasks. Additionally, Table 14 shows
that attentive probing leads to better performance on average for DINOv2 and OpenCLIP models. Since
attentive probing and multiclips eval improves the performance of all models, we use it as our default protocol
in frozen evaluation.

Table 15: Temporal Coverage on Kinetics-400. We evaluate the effect of temporal coverage on K400. We train
an attentive probe on K400 using either 1 clip (≈ 2 seconds of a video) or 8 clips (≈ 16 seconds of a video). To sample
N clips, we first divide a video in N equal-length temporal segments and sample one clip at random per segment.
The video encoder processes each clip in parallel and all the encoder output tokens are concatenated at the input
of the attentive probe. Increasing the temporal coverage from 1 clip per video to 8 clips significantly improves the
performance for both our VideoMAE baseline and V-JEPA.

Method Arch. 1 Clip 8 Clips
VideoMAE ViT-L/16 69.4 77.8
V-JEPA ViT-L/16 73.7 80.9

One Clip vs Multiple clips. We examine the impact of changing the temporal coverage of a model
during downstream evaluation on K400 action classification. In Table 15, we evaluate VideoMAE and V-JEPA
models using an attentive probe with access to either the feature map of 1 clip randomly sampled from the
video, or the concatenated feature map of 8 clips randomly sampled from the video. To sample 8 clips from a
video, we first divide the video into 8 equal length temporal segments, and sample 1 clip at random from
each segment. A single clip corresponds to ≈ 2 seconds of a video on average, while 8 clips correspond to ≈
16 seconds. The video encoders processes each clip separately to produce a clip-level feature map, which are
then concatenated at the input to the attentive probe.

Increasing the temporal coverage from 1 clip per video to 8 clips improves the performance of both V-JEPA
and VideoMAE on K400 action classification. We therefore use the multiclip attentive probing setup as our
default evaluation pipeline.

E.2 Sample Efficiency of pretraining

We compare the sample efficiency of pretraining various state-of-the-art image and video models. Specifically,
we look at the number of samples (image or video clips) processed by the network during pretraining, which
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Figure 8: Masking Strategy Ablation. Evaluating a linear probe on a ViT-B/16 pretrained with V-JEPA on
K400 under various 3D Multi-Block masking settings. We examine the impact of (a) sampling several masks per
video, (b) varying the number of blocks in a mask, and (c) varying the average spatial and temporal masking ratio.
A temporal masking ratio of 100% extends the spatial mask across all the frames in the clip. We find it important to
maintain a high spatial and temporal masking ratio during pretraining.

is larger than the size of the pretraining dataset for multi-epoch training. Notably, our results with V-JEPA
are obtained while processing an order of magnitude fewer samples than previous methods, and notably two
orders of magnitude fewer samples than OpenCLIP. We believe that further investment towards improving
the video pretraining data distribution could lead to substantial gains in downstream image and video tasks.

Table 16: Sample efficiency. We compare the sample efficiency of pretraining various state-of-the-art image and
video models. The #Samples Seen entry corresponds to the number of samples (image or video clips) processed
by the network during pretraining, which is larger than the size of the pretraining dataset for multi-epoch training.
The V-JEPA results in this paper are obtained while processing an order of magnitude fewer samples than previous
methods.

Method Arch. Data #Samples Seen
OpenCLIP ViT-G/14 LAION-2B 39000M
DINOv2 ViT-g/14 LVD 142M 1900M
VideoMAEv2 ViT-g/14 UnlabeledHybrid 1600M
V-JEPA ViT-H/16384 VideoMix2M 210M

E.3 Masking Strategy

An important component of the V-JEPA pretraining strategy is the 3D clip masking strategy. In this section,
we detail 26 ablation experiments exploring different masks. For all the experiments, we pretrain a ViT-B/16
pretrained on K400. Figure 8 presents a summary of those results.

Figure 8c shows the effect of changing the spatial and temporal masking ratio. Figure 8b ablates the number
of sampled blocks used to construct the masks given a fixed effective masking ratio of 90%. Finally, in
Figure 8a we examine our multi-masking strategy and find that sampling two masks for each clip (long-range
and short-range) to be more effective than sampling just a single mask for each clip.

In Figure 8c, we explore different average spatial and temporal masking ratio, i.e. the spatial/temporal ratio
of the area that is covered by a mask on average for a clip. Recall that each mask is constructed by sampling
several (possibly overlapping) blocks and taking their union. We change the average spatial or temporal
masking ratio by changing a block spatial or temporal size, as well as the overall number of blocks. We
found that low spatial or temporal coverage results in a trivial prediction task, which degrades downstream
performance. Based on those results, we sample masks that remove roughly 90% of the frame and extend
along the entire temporal dimension of the clip by default.

In Figure 8b , we explore different block size given an effective spatial masking ratio of 90% and temporal
ratio of 100%. We keep the masking ratio approximately constant by changing the block size and the number
of block at the same time. We find that sampling several blocks to perform better than sampling a single
large block. Figure 9 visually illustrates the effect of sampling several smaller blocks to construct a mask.
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(a) Num. Blocks: 8, Spatial Block Size: 32 × 32

(b) Num. Blocks: 4, Spatial Block Size: 80 × 80

(c) Num. Blocks: 2, Spatial Block Size: 160 × 160

Figure 9: Illustration of mask with number of blocks and block size. Each mask is constructed by sampling several
(possibly overlapping) blocks and taking their union.

In Figure 8a, we explore the effect of sampling various number of masks per sample. We find that sampling
two masks for each clip, with different spatial block sizes for each, to be more effective than sampling just a
single mask. We hypothesize that this masking strategy induces complementary tasks. In our experiment, we
use this as our default masks sampling.

F Predictor Visualization Details

To visualize V-JEPA predictions in pixel space, we use the RCDM framework Bordes et al. (2021). Given an
input pair (x, y), we train a generative diffusion model to reconstruct y from Pϕ(Eθ(x))1, a prediction of y
given x in representation space, and a noisy version of y: ŷ := y + ϵ, where ϵ is an additive noise vector.

Specifically, we train a decoder network Dω to minimize the loss function ∥Dω(ŷ, Pϕ(Eθ(x)))− ϵ∥2
2, where x

is a masked video and y is a sequence of 16 frames at resolution 64× 64 corresponding to the masked region.
The parameters of the V-JEPA predictor Pϕ and encoder Eθ are kept frozen when training the decoder. We
use a V-JEPA ViT-H/16224 model.

Dω is parameterized as a 3D-Unet composed by 4 downsampling blocks with 3 residual layers per downsampling
block. The base channel dimension of Dω is set to 192. We train our decoder for 450,000 iterations. All other
hyperparameters (architecture, optimization, noise schedule. . . ) are identical to the one used in RCDM.

After training the decoder, one can subsequently feed the prediction vector of unseen test videos into the
decoder along with various random noise vectors to generate several pixel-level visualizations of the predictions.

1we drop the mask tokens in the notation for simplicity.

28


	Introduction
	Related Works
	Methodology: Video-JEPA
	Training Objective
	Prediction Task: Predicting y from x
	Network Parameterization
	Pretraining Data and Evaluation Setup

	What Matters for Learning Representations from Video?
	Predicting Representations versus Pixels
	Pretraining Data Distribution
	Evaluation: Attentive Probing
	Prediction Task: Predicting y from x

	Comparison with Prior Work
	Comparison with Pixel Prediction
	Comparison with State-of-the-Art
	Label-efficiency

	Evaluating the Predictor
	Limitations
	Conclusion
	Extended Related Works
	Extended Description of V-JEPA
	Pretraining details
	Evaluation details
	Frozen classification
	Frozen detection
	Finetuning

	Extra Results
	Frozen Evaluation.
	Sample Efficiency of pretraining
	Masking Strategy

	Predictor Visualization Details

