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Abstract
Equality reasoning is ubiquitous and purely abstract: same-
ness or difference may be evaluated no matter the nature
of the underlying objects. As a result, same-different (SD)
tasks have been extensively studied as a starting point for un-
derstanding abstract reasoning in humans and across animal
species. With the rise of neural networks that exhibit strik-
ing apparent proficiency for abstractions, equality reasoning
in these models has also gained interest. Yet despite exten-
sive study, conclusions about equality reasoning vary widely
and with little consensus. To clarify the underlying principles
in learning SD tasks, we develop a theory of equality reason-
ing in multi-layer perceptrons (MLP). Following observations in
comparative psychology, we propose a spectrum of behavior
that ranges from conceptual to perceptual outcomes. Con-
ceptual behavior is characterized by task-specific representa-
tions, efficient learning, and insensitivity to spurious percep-
tual details. Perceptual behavior is characterized by strong
sensitivity to spurious perceptual details, accompanied by the
need for exhaustive training to learn the task. We develop a
mathematical theory to show that an MLP’s behavior is driven
by learning richness. Rich-regime MLPs exhibit conceptual
behavior, whereas lazy-regime MLPs exhibit perceptual be-
havior. We validate our theoretical findings in vision SD exper-
iments, showing that rich feature learning promotes success
by encouraging hallmarks of conceptual behavior. Overall,
our work identifies feature learning richness as a key parame-
ter modulating equality reasoning, and suggests that equality
reasoning in humans and animals may similarly depend on
learning richness in neural circuits.

Keywords: equality reasoning; same-different; neural network;
conceptual and perceptual behavior

1 Introduction
The ability to reason abstractly is a hallmark of human intel-
ligence. Fluency with abstractions drives both our highest
intellectual achievements and many of our daily necessities
like telling time, navigating traffic, and planning leisure. At
the same time, neural networks have grown tremendously in
sophistication and scale. The latest examples exhibit increas-
ingly impressive competency, and the potential to automate
the reasoning process itself seems imminent (OpenAI, 2024,
2023; Bubeck et al., 2023; Guo et al., 2025). Nonetheless, it
remains unclear to what extent these models are able to rea-
son abstractly, and how consistently they behave (McCoy et

al., 2023; Mahowald et al., 2024; Ullman, 2023). To begin an-
swering these questions, we require a principled understand-
ing of how neural networks can reason.

A particularly simple and salient form of abstract reasoning
is equality reasoning: determining whether two objects are
the same or different. The “sense of sameness is the very
keel and backbone of our thinking,” (James, 1905) promoting
its study as a tractable viewport into abstract reasoning across
humans and animals (E. A. Wasserman & Young, 2010). De-
spite many decades of study, the history of equality reasoning
abounds with widely varying conclusions. Success at same-
different (SD) tasks have been documented in a large num-
ber of animals, including non-human primates (Vonk, 2003),
honeybees (Giurfa et al., 2001), pigeons (E. A. Wasserman
& Young, 2010), crows (Smirnova et al., 2015), and parrots
(Obozova et al., 2015). Others, however, have argued that
animals employ perceptual shortcuts to solve these tasks like
using stimulus variability, and lack a true conception of same-
ness or difference (Penn et al., 2008). Competence at equal-
ity reasoning may require exposure to language or some form
of symbolic training (Premack, 1983). Meanwhile, pre-lingual
human infants have demonstrated sensitivity to same-different
relations (G. F. Marcus et al., 1999; Saffran & Thiessen, 2003;
Rabagliati et al., 2019).

Equality reasoning in neural networks is no less debated.
G. F. Marcus et al. (1999) discovered that seven-month-old
infants succeed at an SD task where neural networks fail,
launching a lively debate that continues to present day (Sei-
denberg et al., 1999; Seidenberg & Elman, 1999; Alhama &
Zuidema, 2019). Others have demonstrated severe shortcom-
ings in neural networks directed to solve visual same-different
reasoning and relational tasks (Kim et al., 2018; Stabinger et
al., 2021; Vaishnav et al., 2022; Webb et al., 2023). Such
failures motivate a growing literature in bespoke architectural
advancements geared towards relational reasoning (Webb et
al., 2023, 2020; Santoro et al., 2017; Battaglia et al., 2018). At
the same time, modern large language models routinely solve
complex reasoning problems (Bubeck et al., 2023). Their
surprising success tempers earlier categorical claims against
neural networks’ reasoning abilities. Even simple models like
multi-layer perceptrons (MLPs) have recently been shown to
solve equality and relational reasoning tasks with surprisingly
efficacy (A. Geiger et al., 2023; Tong & Pehlevan, 2024).

The lack of consensus on equality reasoning in either or-
ganic or silicate brains speaks to the need for a stronger theo-
retical foundation. To this end, we present a theory of equality



reasoning in MLPs that highlights the central role of a hith-
erto overlooked parameter: learning richness, a measure of
how much internal representations change over the course
of training (Chizat et al., 2019). We find that MLPs in a rich
learning regime exhibit conceptual behavior, where they de-
velop salient, conceptual representations of sameness and
difference, learn the task from few training examples, and re-
main largely insensitive to spurious perceptual details. In con-
trast, lazy regime MLPs exhibit perceptual behavior, where
they solve the task only after exhaustive training and show
strong sensitivity to perceptual variations. Our specific contri-
butions are the following.

Contributions

• We hand-craft a solution to our same-different task that is
expressible by an MLP, demonstrating the possibility for our
model to solve this task. Our solution suggests what con-
ceptual representations may look like, guiding subsequent
analysis.

• We argue that an MLP trained in a rich feature learning
regime attains the hand-crafted solution, and exhibits three
hallmarks of conceptual behavior: conceptual representa-
tions, efficient learning, and insensitivity to spurious per-
ceptual details.

• We prove that an MLP trained in a lazy learning regime
can also solve an equality reasoning task, but exhibits per-
ceptual behavior: it requires exhaustive training data and
shows strong sensitivity to spurious perceptual details.

• We extend our results to same-different tasks with noise,
calculating Bayes optimal performance under priors that ei-
ther generalize to arbitrary inputs or memorize the training
set. We demonstrate that rich MLPs attain Bayes optimal
performance under the generalizing prior.

• We validate our results on complex visual SD tasks, show-
ing that our theoretical predictions continue to hold.

Our theory clarifies the understudied role of learning richness
in driving successful reasoning, with potential implications for
both neural network design and animal cognition.

1.1 Related work

In studying same-different tasks comparatively across animal
species, E. Wasserman et al. (2017) observe a continuum be-
tween perceptual and conceptual behavior. Some animals fo-
cus on spurious perceptual details in the task stimuli like im-
age variability, and slowly gain competence through exhaus-
tive repetition. Other animals and humans appear to develop
a conceptual understanding of sameness, allowing them to
learn the task quickly and ignore irrelevant percepts. Many
others fall somewhere in between, exhibiting behavior with
both perceptual and conceptual components. These obser-
vations lend themselves to a theory where representations

and learning mechanisms operate over a continuous domain
(Carstensen & Frank, 2021).

Neural networks offer a natural instantiation of such a con-
tinuous theory. However, the extent to which neural networks
can reason at all remains a hotly contested topic. Famously,
Fodor & Pylyshyn (1988) argue that connectionist models are
poorly equipped to describe human reasoning. G. F. Marcus
(1998) further contends that neural networks are altogether
incapable of solving many simple symbolic tasks (see also
G. F. Marcus et al. (1999); G. F. Marcus (2003); G. Marcus
(2020)). Boix-Adsera et al. (2023) have also argued that MLPs
are unable to generalize on relational problems like our same-
different task, though this finding has been contested (Tong &
Pehlevan, 2024; A. Geiger et al., 2023).

Negative assertions about neural network reasoning ap-
pear to weaken when considering modern LLMs, which rou-
tinely solve complex math and logic problems (Bubeck et
al., 2023; OpenAI, 2024; Guo et al., 2025). But even here,
doubts remain about whether LLMs truly reason or merely
reproduce superficial aspects of their enormous training set
(McCoy et al., 2023; Mahowald et al., 2024). Nonetheless,
A. Geiger et al. (2023) found that simple MLPs convincingly
solve same-different tasks after moderate training. Tong &
Pehlevan (2024) further showed that MLPs solve a wide va-
riety of relational reasoning tasks. We support these findings
by arguing that MLPs solve a same-different task, but their
performance is modulated by learning richness. In resonance
with E. Wasserman et al. (2017), varying richness pushes an
MLP along a spectrum between a perceptual and conceptual
solutions to the task.

Learning richness itself refers to the degree of change in
a neural network’s internal representations during training. A
number of network parameters were recently discovered to
control learning richness, including the readout scale, initial-
ization scheme, and learning rate (Chizat et al., 2019; Wood-
worth et al., 2020; Yang & Hu, 2021; Bordelon & Pehlevan,
2022). In the brain, learning richness may correspond to form-
ing adaptive representations that encode task-specific vari-
ables, in contrast to fixed representations that remain task
agnostic (Farrell et al., 2023). Studies have used learning
richness to understand the neural representations underlying
diverse phenomena like context-dependent decision making
(Flesch et al., 2022), multitask cognition (Ito & Murray, 2023),
generalizing knowledge to new tasks (Johnston & Fusi, 2023),
and even consciousness (Mastrovito et al., 2024).

2 Setup
We consider the following same-different task, inspired by the
setup in A. Geiger et al. (2023). The task consists of input
pairs z1,z2 ∈ Rd , where zi = si +ηi. The labeling function y
is given by

y(z1,z2) =

{
1 s1 = s2

0 s1 ̸= s2
.

Quantities s correspond to “symbols,” perturbed by a small
amount of noise η. Noise is distributed as η ∼ N (0,σ2I/d),



for some choice of σ2. Initially we will take σ2 = 0 so z= s, but
we will allow σ2 to be nonzero when considering a noisy exten-
sion to the task. Our definition of equality implies exact iden-
tity, up to possible noise. Other commonly studied variants in-
clude equality up to transformation (Fleuret et al., 2011), hier-
archical equality (Premack, 1983), context-dependent equality
(Raven, 2003), among many others. We pursue exact identity
for its tractability and ubiquity in the literature, and investigate
more general notions of equality later with experiments in the
noisy case and in vision tasks.

The model consists of a two-layer MLP without bias param-
eters

f (x) =
1

γ
√

d

m

∑
i=1

ai φ(wi ·x) , (1)

where φ is a ReLU activation applied point-wise to its in-
puts. We use the standard logit link function to produce
predictions ŷ = 1/(1 + e− f ). Inputs are concatenated as
x = (z1;z2) ∈ R2d before being passed to f . The model is
trained using binary cross entropy loss with a learning rate
α = γ2d α0, for a fixed α0. Hidden weight vectors are initial-
ized as wi ∼N (0,I/m), and readouts as ai ∼N (0,1/m). To
enable interpolation between rich and lazy learning regimes,
the MLP is centered such that f (x) = 0 at initialization, for
all inputs x. We use a standard procedure for centering, de-
scribed in Appendix F. Occasionally, we gather all readouts a
and hidden weights w into a single set θ, and write f (x;θ) to
mean an MLP f parameterized by weights θ. We avoid con-
sidering bias parameters to simplify the analysis. In practice,
because the task is symmetric about the origin, we find that
bias plays little role.

The parameter γ controls learning richness, where higher
values of γ correspond to greater richness (Chizat et al.,
2019; M. Geiger et al., 2020; Woodworth et al., 2020; Bor-
delon & Pehlevan, 2022). A neural network trained in a rich
regime experiences significant changes to its hidden activa-
tions φ(wi ·x), resulting in task-specific representations. In
contrast, a neural network trained in a lazy regime retains
task-agnostic representations determined by their initializa-
tion. The limit γ→ 0 induces lazy behavior. Increasing γ in-
creases learning richness. For our tasks, we find that γ = 1
produces sufficiently rich learning1, and increasing γ beyond
1 does not qualitatively change our results (Figure C3). Ap-
pendix F elaborates on our scaling scheme.

Crucially, the training set consists of a finite number of sym-
bols s1,s2, . . . ,sL. These L symbols are sampled before train-
ing begins as s∼N (0,I/d), then used exclusively to train the
model. Training examples are balanced such that half con-
sist of same examples and half consist of different examples.
During testing, symbols s are sampled afresh for every input,

1γ = 1 produces a scaling that is similar to µP or mean-field
parametrization common elsewhere in the rich learning literature
(Yang & Hu, 2021; Mei et al., 2018; Rotskoff & Vanden-Eijnden,
2022). However, these scalings technically consider an infinite width
limit. Our setting considers an infinite input dimension limit (Biehl &
Schwarze, 1995; Saad & Solla, 1995; Goldt et al., 2019), resulting in
an extra 1/

√
d prefactor that is not present in these other scalings.

measuring the model’s ability to generalize on unseen test ex-
amples. If a model has learned equality reasoning, then it
should attain perfect test accuracy despite having never wit-
nessed the particular inputs. When σ2 = 0, this procedure is
precisely equivalent to using one-hot encoded symbol inputs
with a fixed embedding matrix, where the model is trained on a
subset of all possible symbols. Additional details on our model
and setup are enumerated in Appendix G.

2.1 Conceptual and perceptual behavior
Central to our framework is the distinction between conceptual
and perceptual behavior. Conceptual behavior refers to a fa-
cility with abstract concepts, enabling the reasoner to learn an
abstract task quickly and generalize with limited dependency
on spurious details. Perceptual behavior refers to the oppo-
site, where the reasoner solves a task through sensory asso-
ciation. Such learning is typically characterized by exhaustive
training and marked sensitivity to spurious perceptual details.

We posit that learning richness moves an MLP between
conceptual and perceptual behavior. We identify three spe-
cific characteristics of a conceptual outcome:

1. Conceptual representations. We look for evidence of
task-specific representations that denote sameness or dif-
ference. Such representations should be crucial to solving
the task, and contribute towards the model’s efficiency and
insensitivity to spurious perceptual details (below).

2. Efficiency. We measure learning efficiency using the num-
ber of different symbols L observed during training. A con-
ceptual reasoner should solve the task with a smaller L than
a perceptual reasoner.

3. Insensitivity to spurious perceptual details. Spurious
perceptual details refer to aspects of the task that influence
the input but not the correct output. A readily measurable
example is the input dimension d. Sameness or difference
can be evaluated regardless of d. A conceptual reasoner
should perform equally well when training on tasks across
a variety of d, whereas a perceptual reasoner may find cer-
tain d harder to learn with than others. We therefore evalu-
ate this insensitivity by comparing the test accuracy of mod-
els trained across a large range of input dimensions.

A perceptual solution is characterized by the negation of each
point: it does not develop task-specific representations, it re-
quires a large L to solve the task, and test accuracy changes
substantially with d. While potentially possible to have a mixed
solution that exhibits a subset of these points, we do not ob-
serve them in practice, and the conceptual/perceptual distinc-
tion is sufficiently descriptive of our model.

3 Same-different task analysis
We present our analysis of the SD task. We first hand-craft a
solution that is expressible by our MLP, and in the process sug-
gest what conceptual representations of sameness and differ-
ence may look like (Section 3.1). We proceed to argue that
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Figure 1: Rich and lazy regime simulations. We confirm our theoretical predictions with numeric simulations. (a). Hidden
weight alignment plotted against readout weights for a rich model. Weights become parallel or antiparallel, with generally higher
magnitudes among negative readouts. (b) Test accuracy across different input dimensions and training symbols for a rich model
(m = 4096). Accuracy is not affected by input dimension. (c) Test accuracy across different numbers of training symbols, for
varying learning richness (d = 256, m = 1024). Richer models attain high performance with substantially fewer training symbols.
The theoretically predicted rich test accuracy shows excellent agreement with our richest model. Finer-grain validation is plotted
in Figure C3. (d) Hidden weight alignment plotted against readout weights for a lazy model. There is some correlation between
alignment and readout weight, but the weights are nowhere near as close to being parallel/antiparallel as in the rich regime. (e)
Test accuracy across input dimensions and training symbols for a lazy model (m = 4096). Accuracy is substantially affected
by input dimension. Theory predicts that the number of training symbols required to maintain high accuracy scales at worst as
L ∝ d2, plotted in black. (f) Test accuracy across different input dimensions, for varying learning richness (L = 16,m = 1024).
Richer models show less performance decay with increasing dimension. (all) Results are computed across six runs. Shading
corresponds to empirical 95 percent confidence intervals.

a rich-regime MLP attains the hand-crafted solution through
training. It leverages its conceptual representations to learn
the task with few training symbols and insensitivity to the input
dimension (Section 3.2), exhibiting conceptual behavior. In
contrast, a lazy-regime MLP is unable to adapt its representa-
tions to the task, and consequently incurs a high training cost
and substantial sensitivity to input dimension (Section 3.3),
exhibiting perceptual behavior. In an extension to a noisy ver-
sion of our task, we show that a rich MLP approaches Bayes
optimal performance under a generalizing prior across differ-
ent noise variance σ2 (Section 3.3). We validate our results on
more complex, image-based tasks in Section 4, and discuss
broader implications in Section 5.

3.1 Hand-crafted solution

To establish whether an MLP can solve the same-different
task at all, we first outline a hand-crafted solution using m = 4
hidden units. Let 1 = (1,1, . . . ,1) ∈ Rd . Define the weight
vector w+

1 by concatenation: w+
1 = (1;1) ∈ R2d . Further de-

fine w+
2 = (−1;−1), w−1 = (1;−1), and w−2 = (−1;1). Let

a+ = 1 and a− = ρ, for some value ρ > 0. Our MLP is given
by

f (x) = a+
(
φ(w+

1 ·x)+φ(w+
2 ·x)

)
−a−

(
φ(w−1 ·x)+φ(w−2 ·x)

)
. (2)

Note that the weight vectors w+
1 ,w

+
2 , which correspond to the

positive readout a+, are parallel : their components point in the
same direction with the same magnitude. Meanwhile, weight
vectors w−1 ,w

−
2 corresponding to the negative readout a− are

antiparallel : their components point in exact opposite direc-
tions with the same magnitude. Only the sign of f impacts the
classification, so we assign a+ = 1 and a− = ρ to represent
the relative magnitude of a− against a+.

To see how this weight configuration solves the same-
different task, suppose we receive a same example x = (z,z).
Plugging this into Eq (2) reveals that the negative terms vanish
through our antiparallel weights, leaving f (x) = 2 |1 · z| > 0,
correctly classifying this example.

Now suppose we receive a different example x′ = (z,z′).
Recall that these quantities are sampled independently as



z,z′ ∼ N (0,I/d). As a result, we can no longer rely on a
convenient cancellation. The quantity φ(w+

1 · x′)+φ(w+
2 · x′)

is equal in distribution to the quantity φ(w−1 · x′)+φ(w−2 · x′),
with respect to the randomness in x′. Hence, to implement a
consistent negative classification, we need to raise the rela-
tive magnitude ρ of our negative readout weight. Indeed, we
calculate p( f (x′)< 0) = 2

π
tan−1(ρ), which approaches 1 for

ρ≫ 1.2 Hence, by maintaining a large negative readout, we
classify negative examples correctly with high probability. An
illustration of this solution is provided in Figure B1.

An MLP need not implement this precise weight configura-
tion to solve the SD task. Rather, our hand-crafted solution
suggests two general conditions:

1. Parallel/antiparallel weight vectors. Weights associated
with positive readouts must be parallel, and weight asso-
ciated with negative readouts must be antiparallel. This
allows us to classify any same example by canceling the
contribution from negative readouts.

2. Large negative readouts. The cumulative magnitude of
the negative readouts must be larger than that of the posi-
tive readouts. This allows us to classify any different exam-
ple by raising the contribution from negative readouts.

Observe also that parallel and antiparallel weights are sug-
gestive of conceptual representations for sameness and dif-
ference. Parallel weights contribute to a same classification,
and exemplify the structure of a same example: the two com-
ponents point in the same direction. Antiparallel weights con-
tribute to a different classification, and exemplify the structure
of a different example: the two components point as far apart
as possible. We look for parallel/antiparallel weight vectors as
evidence for conceptual representations of our SD task.

3.2 Rich regime
The rich learning regime is characterized by substantial weight
changes throughout the course of training. For the MLP given
in Eq (1), larger values of γ lead to rich learning behavior. We
allow γ to vary between 0 and 1. The range γ> 1 is considered
in Figure C3, where we see that no qualitative changes to our
results occur for larger values of γ.

To study the rich regime, we take two approaches. First,
recent theoretical work (Morwani et al., 2023; Wei et al., 2019;
Chizat & Bach, 2020) suggest that MLPs trained in a rich
learning regime on a classification task discover a max margin
solution: the weights maximize the distance between training
points of different classes. We derive the max margin weights
for an MLP with quadratic activations in Theorem 1, finding
that the max margin solution consists of parallel/antiparallel
weight vectors, just as required from our hand-crafted solu-
tion. We defer the proof of this theorem to Appendix C.

Theorem 1. Let D = {xn,yn}P
n=1 be a training set consisting

of P points sampled across L training symbols, as specified in
Section 2. Let f be the MLP given by Eq 1, with two changes:

2Full details are recorded in Appendix B.

1. Fix the readouts ai =±1, where exactly m/2 readouts are
positive and the remaining are negative.

2. Use quadratic activations φ(·) = (·)2.

For weights θ = {wi}m
i=1, define the max margin set ∆(θ) to

be

∆(θ) = argmax
θ

1
P

P

∑
n=1

[(2yn−1) f (xn;θ)] ,

subject to the norm constraints ||wi||= 1. If P,L→∞, then for
any wi = (v1

i ;v2
i ) ∈ ∆(θ) and ℓi =

∣∣∣∣v1
i

∣∣∣∣ ∣∣∣∣v2
i

∣∣∣∣, we have that
v1

i ·v2
i /ℓi = 1 if ai = 1 and v1

i ·v2
i /ℓi =−1 if ai =−1. Further,∣∣∣∣v1

i

∣∣∣∣= ∣∣∣∣v2
i

∣∣∣∣.
However, the max margin result does not use ReLU MLPs,

relies on fixed readouts ai, and says nothing about learning
efficiency or insensitivity to spurious perceptual details, two
additional properties we require from a conceptual solution.
To address these shortcomings, we extend the analysis by
proposing a heuristic construction that approximates a rich
ReLU MLP as an ensemble of independent Markov processes
(Section C.2). Doing so enables a deeper characterization of
rich learning dynamics, resulting in the following approxima-
tion of the test accuracy. Given an unseen test point x,y, and
prediction ŷ,

p(y = ŷ(x))≈ 1
2
+

1
2

Φ

(√
2(L2−L)
13(π−2)

)
, (3)

where L is the number of training symbols and Φ is the CDF of
a standard normal distribution.3 This estimate suggests that
the model attains over 95 percent test accuracy with as few
as L = 5 training symbols, and test accuracy does not change
with different d.

We confirm our theoretical predictions with simulations in
Figure 1. At the end of training, the hidden weights indeed be-
come parallel and antiparallel, with negative coefficients gain-
ing larger magnitude (Figure 1a). Figures 1b and c show that
the rich model learns the same-different task with substantially
fewer training symbols than lazier models, and exhibits excel-
lent agreement with our theoretical test accuracy prediction.
As predicted, the rich model’s performance does not vary with
input dimension (Figure 1b).

Altogether, the rich model develops conceptual representa-
tions, learns the same-different task given only a small num-
ber of training symbols, and exhibits clear insensitivity to input
dimension. In this way, it exhibits conceptual behavior on the
same-different task.

3.3 Lazy regime
The lazy learning regime is characterized by vanishingly small
change in the model’s hidden representations after training.
Smaller values of γ lead to lazy learning behavior. The
limit γ→ 0 corresponds to the Neural Tangent Kernel (NTK)

3This estimate is for L ≥ 3. For L = 2, p(y = ŷ) = 3/4. See
Section C.5 for details.



Figure 2: Bayesian simulations. Test accuracy across different numbers of training symbols, for varying richness and noise
(d = 64, m = 1024). Bayes optimal accuracy for both generalizing and memorizing priors are plotted with dashed lines. In all
cases, rich models attain the Bayes optimal test accuracy under a generalizing prior after sufficiently many training symbols.
Shaded error regions are computed across six runs and correspond to empirical 95 percent confidence intervals.

regime, where the network is well-described by a linearization
around its initialization (Jacot et al., 2018). In our numerics,
we approximate this limit by using γ = (1×10−5)/

√
d.

Because a lazy neural network cannot adapt its represen-
tations to an arbitrary pattern, it is impossible for a lazy MLP
to learn parallel/antiparallel weights. However, because the
statistics of a same example differ from that of a different ex-
ample, it may still be possible for a lazy MLP to succeed at the
task given enough training data4. Using standard kernel argu-
ments (Cho & Saul, 2009; Jacot et al., 2018), we bound the
test error of a lazy MLP in Theorem 2. The proof is deferred
to Appendix D.

Theorem 2 (informal). Let f be an infinite-width ReLU MLP.
If f is trained on a dataset consisting of P points constructed
from L symbols with input dimension d, then the test error of
f is upper bounded by O

(
exp
{
−L/d2

})
.

This bound suggests that to maintain a consistently low test
error (or equivalently, high test accuracy), the number of train-
ing symbols L needs to scale quadratically (at worst) with the
input dimension: L ∝ d2.

We support our theoretical predictions with simulations in
Figure 1. Because the model is in a lazy regime, the hidden
weights do not move far from initialization, and no clear paral-
lel/antiparallel structure emerges (Figure 1d). Figure 1c shows
how models require increasingly more training data as rich-
ness decreases. Lazier models are also substantially more
impacted by changes in input dimension (Figure 1e and f),
and the scaling of training symbols with input dimension is
consistent with our theory (Figure 1e).

Altogether, the lazy model is unable to learn conceptual
representations, instead relying on statistical associations that
require a large amount of training data to learn and exhibit
strong sensitivity to input dimension. In this way, the lazy
model exhibits perceptual behavior on the same-different task.

3.4 Same-different with noise
Up until now, we defined equality by exact identity: even a
minuscule deviation in a single coordinate is enough to break

4For example, for a same input x = (z;z) and a different input
x′ = (z1,z2), the variance of 1 · x is twice that of 1 · x′. Leveraging
distinct statistics like this may still allow the lazy model to learn this
task.

equality and classify an example as different. Reality is far
less clean, and real-world objects are rarely equal up to exact
identity. As a first step towards this broader setting, we relax
our dependence on exact identity and consider a noisy SD
task. In the notation of our setup (Section 2), we allow σ2 > 0.

To understand optimal performance under noise, we apply
the following Bayesian framework. As a baseline, we con-
sider a prior corresponding to an idealized model which mem-
orizes the training symbols. This memorizing prior assumes
every input symbol is distributed uniformly among the train-
ing symbols. To contrast this baseline, we consider a gold-
standard prior corresponding to a model which generalizes to
novel symbols. This generalizing prior assumes every input
symbol follows the true underlying distribution. By compar-
ing the test accuracy of the trained models to the posteriors
computed in these two settings, we identify which prior more
closely reflects the models’ operation. The calculation of these
posteriors are recorded in Appendix E.

Results are plotted in Figure 2. In all cases, we find that
the rich model approaches Bayes optimal under the gener-
alizing prior. Lazier models tend to plateau at lower test ac-
curacies; they nonetheless tend to exceed the performance
of the memorizing prior at higher noise, indicating some level
of generalization. Overall, learning richness appears to sup-
port convincing generalization to novel training symbols in the
noisy SD task.

4 Validation in vision tasks
To validate our theoretical findings in a more complex, natu-
ralistic setting, we turn to visual same-different tasks. Specif-
ically, we examine three datasets designed originally to study
visual reasoning and computer vision: 1) PSVRT (Kim et
al., 2018), 2) Pentomino (Gülçehre & Bengio, 2016), and 3)
CIFAR-100 (Krizhevsky & Hinton, 2009). These tasks offer
significantly more challenge over the simple SD task we ex-
amine before. Rather than reason over symbol embeddings,
a model must now reason over complex visual objects. Inputs
are now images, and equality is no longer exact identity: in-
puts can be equal up to translation (in PSVRT), rotation (in
Pentomino), or merely share a class label (CIFAR-100). All
additional details on model and task configurations are enu-
merated in Appendix G.
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Figure 3: Visual same-different results. (a) PSVRT examples for same (left) and different (right). (b,c) Test accuracy on
PSVRT across different numbers of training bit-patterns and image widths. Richer models learn the task with fewer patterns
and exhibit less sensitivity to larger sizes. (d) Pentomino examples for same (left) and different (right). (e,f) Test accuracy
on Pentomino across training shapes and image widths. As before, richer models learn the task with fewer training shapes
and exhibit less sensitivity to larger sizes, though performance across models tends to diminish somewhat with increasing image
size. (g) CIFAR-100 examples for same (left) and different (right). (h) Test accuracy on CIFAR-100 same-different across training
classes. Richer models tend to perform better with fewer classes, though the richest model in this example performs worse. For
this task, very rich models may overfit, necessitating an optimal richness level. (all) Shaded error regions are computed across
six runs and correspond to empirical 95 percent confidence intervals.

We continue to use the same MLP model as before. Images
are flattened before input to the model. Though better perfor-
mance may be attained using CNNs or Vision Transformers,
our ultimate goal is to study learning richness rather than max-
imize performance.5 To validate our theoretical findings, we
should continue to see the three hallmarks of a conceptual
solution (conceptual representations, efficiency, and insensi-
tivity to spurious perceptual details), but only in rich MLPs.

4.1 PSVRT
The parameterized-SVRT (PSVRT) dataset is a version of the
Synthetic Visual Reasoning Test (SVRT), a collection of chal-
lenging visual reasoning tasks based on abstract shapes (Kim
et al., 2018). PSVRT replaces the original shapes with ran-
dom bit-patterns in order to better control image variability.
The task input consists of an image that has two blocks of bit-

5Nonetheless, as we will soon see, an MLP performs astonish-
ingly well on these tasks despite its simplicity — provided it remains
in a rich learning regime.

patterns, placed randomly on a blank background. The model
must determine whether the blocks contain the same bit pat-
tern, or different patterns. The training set consists of a fixed
number of predetermined bit patterns. The test set consists of
novel bit-patterns never encountered during training.

Bit-patterns are patch-aligned : they occur in non-
overlapping locations that tile the image. The width of an im-
age may be specified by the number of patches. Figure 3a
illustrates examples from PSVRT that are three patches wide.

Results. Figure 3b plots a model’s test accuracy on PSVRT
as a function of the number of training patterns. As our theory
suggests, richer models learn the task more easily and gen-
eralize after substantially fewer training patterns. To test our
models under perceptual variation, we consider larger image
sizes. We keep the same size of bit-patterns, but increase the
number of patches to make a bigger input. Figure 3c indicates
that a rich model continues to perform perfectly irrespective of
image size, whereas lazier models exhibit a performance de-



cay with larger inputs.
Finally, we identify parallel/antiparallel analogs for PSVRT

in the weights of a rich model (Figure A1a). The presence of
these conceptual representations suggests that our theory re-
mains a reasonable description for how a rich MLP may learn
a conceptual solution to the PSVRT same-different task.

4.2 Pentomino
The Pentomino task uses inputs that are pentomino polygons:
shapes consisting of five squares glued by edge (Gülçehre
& Bengio, 2016). The input consists of an image with two
pentominoes, placed arbitrarily on a blank background. The
pentominoes may either be the same shape, or different. In
contrast with the PSVRT task, sameness in this task implies
equality up to rotation. After training on a fixed set of pen-
tomino shapes, the model must generalize to entirely novel
shapes. Like with PSVRT, shapes are patch-aligned. Fig-
ure 3d illustrates example inputs from this task that are three
patches wide.

Results. Figure 3e plots a model’s test accuracy on Pen-
tomino as a function of the number of training shapes. Con-
sistent with our theory, richer models learn the task more eas-
ily and generalize after substantially fewer training shapes. To
test our models under perceptual variation, we consider larger
image sizes. Like with PSVRT, we add additional patches to
enlarge the input. Figure 3f indicates that a rich model contin-
ues to perform well on larger image sizes, though its perfor-
mance does start to decay somewhat. Performance decays
substantially faster for lazier models.

We again identify parallel/antiparallel analogs for Pen-
tomino in the weights of a rich model (Figure A1c). The pres-
ence of these conceptual representations continues to sup-
port our theoretical perspective. Notably, Gülçehre & Bengio
(2016) introduced this task to motivate curriculum learning,
finding that their MLP fails to perform above chance. We found
that curriculum learning is unnecessary in the presence of suf-
ficient richness.

4.3 CIFAR-100
The CIFAR-100 dataset consists of 60 thousand real-world im-
ages, each 32 by 32 pixels (Krizhevsky & Hinton, 2009). Im-
ages belong to one of 100 different classes. In this task, the
input consists of two different unlabeled images that belong
either to the same or different classes. After training on im-
ages from a fixed set of labels, the model must generalize to
entirely novel labels. The sets of train and test labels are dis-
joint, making this an extremely challenging task. The labels
themselves are not provided in any form during training. Ex-
ample inputs are illustrated in Figure 3g. We also experiment
with providing features from VGG-16 pretrained on ImageNet
(Simonyan & Zisserman, 2014). We pass CIFAR-100 images
to VGG-16, then use intermediate features as inputs to our
MLP. The weights of VGG-16 are fixed throughout the whole
process. Note also that ImageNet is disjoint from CIFAR-100,
so there is limited possibility of contamination in the test im-
ages.

Results. Figure 3h plots a model’s test accuracy on CIFAR-
100 images as a function of the number of training classes.
We use outputs from VGG-16 block 4, layer 3, which per-
formed the best with our model. As before, richer models tend
to perform better with fewer training classes, but with a curi-
ous exception: in contrast to the previous two tasks, the rich-
est model does not always perform decisively the best. This is
particularly evident using the activations from other intermedi-
ate VGG layers, plotted in Figure G1. For certain layers and
number of training classes, the optimal γ appears to be some-
what less than 1. This outcome may be in part an artifact of
overfitting. Given the complexity of the task and the limited
data, richer models are plausibly more susceptible to idiosyn-
cratic features of the training set that generalize poorly, anal-
ogous to overfitting effects in classical statistics that degrade
the performance of powerful models. In this case, slightly less
learning richness may be the optimal setting. Since CIFAR-
100 images are fixed to 32 by 32 pixels, we skipped testing
variable image size for this task.

As before, we identify parallel/antiparallel analogs for this
task in the weights of a rich model (Figure A1e). The gen-
eral benefit of richness together with the presence of con-
ceptual representations continues to align with our theoretical
perspective. Across our three visual same-different tasks, we
identified generally consistent relationships between learning
richness, conceptual solutions, and good performance, sup-
porting our theoretical findings.

5 Discussion

We studied equality reasoning using a simple same-different
task. We showed that learning richness drives the develop-
ment of either conceptual or perceptual behavior. Rich MLPs
develop conceptual representations, learn from few training
examples, and remain largely insensitive to perceptual vari-
ation. Meanwhile, lazy MLPs require exhaustive training ex-
amples and deteriorate substantially with spurious perceptual
changes.

Varying learning richness recapitulates E. Wasserman et
al. (2017)’s continuum between perceptual and conceptual
behavior on same-different tasks. Perhaps a pigeon’s com-
petency at equality reasoning may be broadly comparable to
a lazy MLP’s, requiring a great deal of training and exhibit-
ing persistent sensitivity to spurious details. Perhaps equality
reasoning in human or even language-trained great apes may
be comparable to a rich MLP, where learning is faster, less
sensitive to spurious details, and presumably involves concep-
tual abstractions. We suggest that a key parameter underlying
these behavioral differences may be learning richness.

Learning richness is a concept imported from machine
learning theory, and it is not altogether clear how to measure
richness in a living brain. Since richness specifies the degree
of change in a neural network’s hidden representations, the
most direct analogy in the brain is to look for adaptive repre-
sentations that seem to encode task-specific variables. Such
approaches have implicated richness as an essential prop-



erty for context-dependent decision making, multitask cogni-
tion, generalizing knowledge, among many other phenomena
(Flesch et al., 2022; Ito & Murray, 2023; Johnston & Fusi,
2023; Farrell et al., 2023). Our theory predicts that greater
learning richness relates to faster generalization in equality
reasoning, and look forward to possible experimental valida-
tion of this principle.

Our work also contributes to the longstanding debate on a
neural network’s facility with abstract reasoning. Rich MLPs
demonstrate successful generalization to unseen symbols ir-
respective of input dimension or even high noise variance.
Further, the rich MLP’s development of parallel/antiparallel
components suggests the formation of abstractions, support-
ing the account that neural networks may indeed learn to de-
velop and manipulate symbolic representations.

Practically, we demonstrate that learning richness is a vital
hyperparameter. Increasing richness generally increases test
performance substantially, improves data efficiency, and re-
duces sensitivity to spurious details. For complex tasks tuned
with a large range of γ, there may be an optimal level of rich-
ness. Indeed, for CIFAR-100, we observed that more richness
is not always better, and an optimal level exists. We encour-
age more widespread application of richness parametrizations
like µP, and advocate for adding γ to the list of tunable hyper-
parameters that every practitioner must consider when devel-
oping neural networks (Atanasov et al., 2024).
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Appendix

A Conceptual representations in visual
same-different

In Section 4, we experimented with three different visual
same-different tasks to validate our theoretical predictions in
more complex settings. We found that richer models tend
to learn the task with fewer training examples, and display
some insensitivity to spurious details. The final signature of
a conceptual solution is the presence of conceptual repre-
sentations. In this appendix, we examine the hidden weights
learned by rich and lazy models on these tasks, and present
evidence for conceptual representations.

PSVRT Recall our MLP given in Eq (1). To interrogate the
hidden weights wi for conceptual representations, we reshape
the weights to match the input shape and visualize them di-
rectly. The results are plotted in Figure A1a and b. For ease of
visualization, this task consists of images that are two patches
wide.

The rich model learns an interesting analog of paral-
lel/antiparallel weights. Recall for our MLPs trained on the
simple same-different task, weight vectors associated with
negative readouts tend to develop antiparalllel components.
Weight vectors associated with positive readouts tend to de-
velop parallel components.

We witness a similar development for PSVRT. For the ex-
ample weights with a negative readout, adjacent patches are
exactly the opposite, learning a negative weight where the
neighboring patch has a positive weight. This structure mirrors
the antiparallel weights learned in the simple same-different
task. One difference is that for PSVRT, while two pairs of re-
gions are precisely the opposite, the other two pairs are the
same. While it is impossible to have every region become an-
tiparallel to every other region, it is not obvious why two pairs
should become parallel despite the negative readout weight.

Meanwhile, the example weights with a positive readout
feature identical patches, matching weights exactly across the
four regions of the input. These parallel regions are exactly
what we would expect from our consideration of the simple
same-different task.

In the lazy regime, the model learns no discernible struc-
ture. The magnitudes of both the readout and hidden weights
are also significantly smaller. Altogether, the existence of
parallel/antiparallel analogs for PSVRT strongly suggests that
only the rich model has learned conceptual representations.

Pentomino We perform the same analysis of the hidden
weights wi for the Pentomino task. The results are visual-
ized in Figure A1c and d. For ease of visualization, this task
consists of images that are two patches wide.

As we saw for PSVRT, the rich model learns analogs of
parallel/antiparallel weights. For the example weights corre-
sponding to a negative readout, the top regions are precisely

the opposite of the bottom regions, suggestive of the antipar-
allel weight components we characterized in the simple same-
different task. For example weights corresponding to a posi-
tive readout, all four regions are the same, suggestive of par-
allel weight components.

These structure emerge only in the rich regime. For the lazy
regime model, no discernible structure is learned. The over-
all magnitudes of the readouts and hidden weights are also
much smaller. Altogether, the existence of parallel/antiparallel
analogs for Penotmino strongly suggests only the rich model
has learned conceptual representations.

A.1 CIFAR-100
For the CIFAR-100 task, we visualize the hidden weights in the
same way as we did for the simple same-different task in Fig-
ure 1. We separate the weight vector wi into two components,
corresponding to the two flattened input images, and measure
their alignment. The results are plotted in Figure A1e and f.

For the rich case, alignment associated with negative read-
outs tends to be negative, and alignment associated with posi-
tive readouts tends to be positive, suggestive of the right paral-
lel/antiparallel structure. The alignment is quite similar to what
we saw for the rich model on the simple same-different task,
though the antiparallel alignment is not as strong. The lazy
model shows no apparent correlation at all between readouts
and alignment. Altogether, the relationship between readouts
and alignment witnessed only in the rich model strongly sug-
gests only the rich model has learned conceptual representa-
tions.

B Hand-crafted solution details
We outline in full detail how our hand-crafted solution solves
the same-different task. Recall that the hand-crafted solution
is given by the following weight configuration:

w+
1 = (1;1) ,

w+
2 = (−1;−1) ,

w−1 = (1;−1) ,
w−2 = (−1;1) ,
a+ = 1 ,

a− = ρ ,

for 1 = (1,1, . . . ,1) ∈ Rd and some ρ > 0. The MLP is given
by

f (x) = a+
(
φ(w+

1 ·x)+φ(w+
2 ·x)

)
−a−

(
φ(w−1 ·x)+φ(w−2 ·x)

)
.

Upon receiving a same example x+ = (z,z), our model re-
turns

f (x+) = φ(1 · z+1 · z)+φ(−1 · z−1 · z)
− ρ(φ(1 · z−1 · z)+φ(−1 · z+1 · z))
= |1 · z+1 · z|
= 2|1 · z| ,
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Figure A1: Conceptual representations in visual same-different tasks. (a) Visualization of representative hidden weights as-
sociated with maximal positive and negative readout weights, for a rich model training on PSVRT. Parallel/antiparallel structures
are visible in how regions are either the same or precisely the opposite of their neighbors. (b) Visualization of representative hid-
den weights associated with maximal positive and negative readouts, for a lazy model training on PSVRT. There is no discernible
structure, and the magnitudes of both readouts and hidden weights are small. (c) The same as (a), but for a rich model on the
Pentomino task. Parallel/antiparallel structures are likewise visible. (d) The same as (b), but for a lazy model on the Pentomino
task. There is no discernible structure, and the magnitudes of both readouts and hidden weights are small. (e) For a rich model
trained on the CIFAR-100 task, we plot the alignment between weight components corresponding to the two images. There is a
distinct parallel/antiparallel-like structure visible in the weight alignment, as we saw for MLPs trained on our simple SD task. (f)
For a lazy model trained on the CIFAR-100 task, we plot the alignment between weight components corresponding to the two
images. There are no discernible parallel/antiparallel structures at all.



which is certainly a positive quantity. Hence, the model clas-
sifies all positive examples correctly.

Upon receiving a different example x− = (z,z′), our model
returns

f (x−) = φ(1 · z+1 · z′)+φ(−1 · z−1 · z′)
− ρ(φ(1 · z−1 · z′)+φ(−1 · z+1 · z′))

Since training symbols are sampled as z ∼ N (0,I/d), we

have that z d
=−z. Furthermore, a sum of independent Gaus-

sians remains Gaussian, so 1 · z± 1 · z′ ∼ N (0,2). Hence,

f (x−) d
= u− ρv, where u,v ∼ HalfNormal(0,2). Note, the

ReLU nonlinearity ensures these quantities are distributed
along a Half-Normal distribution, rather than a Gaussian. Fur-
ther, u and v are independent since 1 ·z+1 ·z′ is independent
from 1 · z−1 · z′ (the two sums are jointly Gaussian with zero
covariance).

The test accuracy of the model on x− is given by p( f (x−)<
0), which can be expressed as an integral over the joint PDF
of u,v:

p( f (x−)< 0) = p(u−ρv < 0)

=
1

2π

∫
∞

0

∫
∞

u/ρ

exp
{
−u2 + v2

8

}
dvdu .

To compute this quantity, we convert to polar coordinates. Let
u = r cos(θ) and v = r sin(θ). Under this change of variables,
we have

p( f (x−)< 0) =
1

2π

∫
π/2

tan−1(1/ρ)

∫
∞

0
r expe−r2/8 dr dθ

=
2
π

(
π

2
− tan−1(1/ρ)

)
=

2
π

tan−1(ρ) .

For ρ→∞, this quantity approaches 1. Since ρ cancels in the
result for the same input, ρ can be arbitrarily large without im-
pacting the classification accuracy on same inputs. Hence,
the hand-crafted solution overall solves the same-different
task provided the relative magnitude of the negative readouts
is large.

A technical detail required for both successful positive and
negative classifications is that the test example is not precisely
orthogonal to the parallel/antiparallel vectors, in which case
the relevant dot products would be zero. However, a test ex-
ample is exactly orthogonal to the weight vectors with prob-
ability zero, so this eventuality does not impact the solution’s
overall test accuracy.

Figure B1 illustrates how parallel/antiparallel weight vectors
may correctly classify a same or different example.

C Rich regime details
We conduct our analysis of the rich regime in two parts. We
begin with a derivation of the max margin solution to our
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Figure B1: Illustration of hand-crafted solution. Paral-
lel/antiparallel weight vectors w+,w− are represented picto-
rially as sets of two vectors. The dot product operation is
represented by conjoining the corresponding vectors: the dot
product equals the cosine angle scaled by the magnitudes of
the component vectors. For a same test example, the w+ · x
remains positive while w− · x cancels to zero. For a different
test example, the relative magnitude ρ enables a successful
negative classification.

same-different task in Section C.1. Doing so requires us to re-
place our model’s ReLU activations with quadratic activations.
The max margin solution also does not demonstrate the rich
model’s learning efficiency or insensitivity to perceptual de-
tails. To address these shortcomings, we extend our analysis
by considering a heuristic construction in which we approxi-
mate a rich MLP using an ensemble of independent Markov
processes (Section C.2). Using this construction, we derive a
finer-grain characterization of the MLP’s weight structure, and
apply it to estimate the model’s test accuracy for varying L and
d.

C.1 Max margin solution
An MLP trained on a classification objective often learns a
max margin solution over the dataset (Morwani et al., 2023;
Chizat & Bach, 2020; Wei et al., 2019). While this outcome
is not guaranteed in our setting, studying the structure of the
max margin solution nonetheless reveals critical details about
how our MLP may be solving the same-different task. Follow-
ing Morwani et al. (2023), we adopt two conditions to expedite
our analysis:

1. We replace a strict max margin objective with a max aver-
age margin objective over a dataset D = {xn,yn}P

n=1

max
θ

1
P

P

∑
n=1

[(2yn−1) f (xn;θ)] ,



where xn,yn are sampled over a training distribution with
L symbols and the objective is subject to some norm con-
straint on θ. Given the symmetry of the task, a max average
margin objective forms a reasonable proxy to the strict max
margin.

2. We consider quadratic activations φ(·) = (·)2 rather than
ReLU. Doing so alters our model from Eq (1), but we later
use a heuristic construction to argue that the resulting solu-
tion is recovered under ReLU activations in a rich learning
regime.

We further allow P,L→∞. Following these simplifications, we
derive the max average margin solution.

Theorem 1. Let D = {xn,yn}P
n=1 be a training set consisting

of P points sampled across L training symbols, as specified in
Section 2. Let f be the MLP given by Eq 1, with two changes:

1. Fix the readouts ai =±1, where exactly m/2 readouts are

positive and the remaining are negative.

2. Use quadratic activations φ(·) = (·)2.

For weights θ = {wi}m
i=1, define the max margin set ∆(θ) to

be

∆(θ) = argmax
θ

1
P

P

∑
n=1

[(2yn−1) f (xn;θ)] ,

subject to the norm constraints ||wi||= 1. If P,L→∞, then for
any wi = (v1

i ;v2
i ) ∈ ∆(θ) and ℓi =

∣∣∣∣v1
i

∣∣∣∣ ∣∣∣∣v2
i

∣∣∣∣, we have that
v1

i ·v2
i /ℓi = 1 if ai = 1 and v1

i ·v2
i /ℓi =−1 if ai =−1. Further,∣∣∣∣v1

i

∣∣∣∣= ∣∣∣∣v2
i

∣∣∣∣.
Proof. Let D+ be the subset of D consisting of same exam-
ples and D− be the subset of different examples. Let I+ be
the set of indices i such that the readout weight ai > 0. Let
I− be the set of indices j such that a j < 0. Then our max
average margin solution becomes

max
θ

1
P

P

∑
n=1

[(2yn−1) f (xn;θ)] = max
θ

1
P

[
∑

x+∈D+

[
f (x+;θ)

]
− ∑

x−∈D−

[
f (x−;θ)

]]

= max
θ

1
P

[
∑
D+

[
∑

i∈I+
|ai|(wi ·x+)2

]
−∑

D−

[
∑

i∈I+
|ai|(wi ·x−)2

]]

+
1
P

[
∑
D−

[
∑

j∈I−
|a j|(w j ·x−)2

]
−∑

D−

[
∑

j∈I−
|a j|(w j ·x+)2

]]
.

Suppose we stack all same training examples x+ into a
large matrix X+ ∈ R|D+|×2d and stack all different training
examples x− into a large matrix X− ∈ R|D−|×2d . Applying
the norm constraints ||wi|| = 1, our max margin solution is
resolved by the following objectives

w+
∗ =argmax

w

1
P

[∣∣∣∣X+w
∣∣∣∣2− ∣∣∣∣X−w

∣∣∣∣2] such that ||w||= 1 ,

w−∗ =argmin
w

1
P

[∣∣∣∣X+w
∣∣∣∣2− ∣∣∣∣X−w

∣∣∣∣2] such that ||w||= 1 ,

where w+
∗ and w−∗ represent the hidden weights of the max

average margin solution.
Maximizing (or minimizing) this objective is equivalent to

finding the largest (or smallest) eigenvector of the matrix X =
1
P

[
(X+)

⊺ X+− (X−)⊺ X−
]
. In the limit P,L→ ∞, this matrix

becomes circulant. Let us see how. Note that X ∈ R2d×2d .
Suppose there are exactly P/2 same examples and P/2 dif-
ferent examples. Along the diagonal of X are terms

Xii =
1
P

P/2

∑
j=1

[
(x+i j)

2− (x−i j)
2
]
,

where x+i j corresponds to the ith index of the jth same exam-
ple, and x−i j is the same for the jth different example. Because
L→ ∞, we have that x+i, j ∼N (0,1/d) and x−i, j ∼N (0,1/d),
where x+i, j is independent of x−i, j. Hence, Xii→ 0 as P→ ∞.

Now let us consider the diagonal of the first quadrant

Xi,2i =
1
P

P/2

∑
j=1

[
x+i j x+2i, j− x−i j x−2i, j

]
.

For same examples, x+i j = x+2i, j, so

1
P

P/2

∑
j=1

x+i jx
+
2i, j =

1
P

P/2

∑
j=1

(
x+i j

)2
→ 1

2
E
[(

x+i j

)2
]
=

1
2d

For different examples, x−i j remains independent of x−2i, j, so

1
P

P/2

∑
j=1

x+i jx
+
2i, j→ 0 .

We therefore have overall that Xi,2i→ 1/2d. The same argu-
ment applies for the diagonal of the third quadrant, revealing
that X2i,i→ 1/2d.



Figure C1: Example ideal and empirical X. The matrix does
indeed become circulant with nonzero values on the diagonal
of the first and third quadrants. The empirical X is computed
from a batch of 3000 examples sampled from a training set
consisting of 64 symbols.

For all other terms Xik where i ̸= k, i ̸= k/2, and i/2 ̸= k,
we must have that xi j is independent of xk j for both same and
different examples, so Xik→ 0.

Hence, X is circulant with nonzero values 1/2d only on the
diagonals of the first and third quadrant. Figure C1 plots an
example X. In the remainder of this section, we multiply X by
a normalization factor 2d. Doing so does not impact the max
margin weights, but changes the value along the quadrant di-
agonals to 1.

The eigendecomposition of a circulant matrix is well stud-
ied, and can be given in terms of Fourier modes. In particular,
the ℓth eigenvector uℓ is given by

uℓ =
1√
2d

(1,rℓ,r2ℓ, . . . ,r(2d−1)ℓ) ,

where
r = e

πi
d

and ℓ ranges from 0 to 2d−1. The corresponding eigenvalues
λℓ are

λℓ = rdℓ = eℓπi .

This expression implies that λℓ = 1 for even ℓ and λℓ = −1
for odd ℓ. Hence, w+

∗ lies in the subspace spanned by uℓ for
even ℓ, and w−∗ lies in the subspace spanned by eigenvectors
with odd ℓ.

To characterize this solution further, suppose we partition a
weight vector w ∈ R2d into equal halves w = (v1;v2), where
v1 ∈ Rd . Considering the even case first, suppose w ∈ U2
where U2 = span

{
u0,u2, . . . ,u2(d−1)

}
. Then there exist co-

efficients c0,c2, . . .c2(d−1) such that

w =
d−1

∑
n=0

c2nu2n .

Note that
rkℓ1 · rkℓ2+d = e

kπi
d (ℓ1−ℓ2) · e−πiℓ2 .

If we partition our set of eigenvectors as uℓ = (s1
ℓ ,s

2
ℓ), then

s1
ℓ1
· s2

ℓ2
= e−πiℓ2

d−1

∑
k=0

e
kπi
d (ℓ1−ℓ2) .

This quantity is 0 when ℓ1 ̸= ℓ2. Otherwise, it is 1 if ℓ1 = ℓ2
are even and −1 if they are odd. Hence, for (v1;v2) ∈U2, we
have that

v1 ·v2 =
1

2d

(
c2

0 + c2
2 + . . .+ c2

2(d−1)

)
.

Observe also that∣∣∣∣v1∣∣∣∣= ∣∣∣∣v2∣∣∣∣= 1√
2d

√
c2

0 + c2
2 + . . .+ c2

2(d−1) ,

so we must have
v1 ·v2

||v1|| ||v2||
= 1 .

In this way, we see that the components of w+
∗ must be parallel

and share the same mangitude. We may repeat the same
calculation for w ∈ U1, where U1 = span{u1,u3, . . . ,u2d−1}.
Doing so reveals that

v1 ·v2

||v1|| ||v2||
=−1 ,

so the components of w−∗ must be antiparallel.

C.2 Heuristic construction
By examining the max average margin solution, we witness
the emergence of parallel/antiparallel weight vectors. In Sec-
tion 3.1, we discussed how parallel/antiparallel weights allow
an MLP to solve the SD task. However, it remains unclear how
to characterize the learning efficiency and insensitivity to spu-
rious perceptual details in the resulting model, and whether
these results apply at all to a ReLU MLP trained on a finite
dataset. To begin answering these questions, we develop a
heuristic construction that summarizes the learning dynamics
of a ReLU MLP over the subsequent sections. We will demon-
strate that

1. The hidden weights w become parallel (or antiparallel) for
correspondingly positive (or negative) readout weights a

2. The magnitude of the readout weights are such that |a−|>
|a+|, where a− denotes the average across negative read-
out weights and a+ denotes the average across positive
readout weights

We then leverage our understanding of the weight structure to
estimate a rich model’s test accuracy on our SD task. The
remainder of this appendix is dedicated to developing this
heuristic approach.

We proceed using a Markov process approximation to the
full learning dynamics in the noiseless setting (σ2 = 0). Ob-
serve that the gradient updates to the readout and hidden
weights take the following form. For a batch containing N
training examples,

∆ai =−
c
N

N

∑
j=1

∂L j

∂ f
φ(wi ·x j) ,

∆wi =−
c
N

N

∑
j=1

∂L j

∂ f
ai φ
′(wi ·x j)x j ,



where c = α

γ
√

d
, α is the learning rate, and

−
∂L j

∂ f
=−∂L(y, f (x))

∂ f

∣∣∣∣∣
y j , f (x j)

=
y j

1+ e f (x j)
−

1− y j

1+ e− f (x j)
. (C.1)

Focusing on ∆wi, we rewrite its gradient update as

∆wi =
N

∑
j=1

ξi jx j ,

where

ξi j =−
c
N

∂L j

∂ f
ai φ
′(wi ·xi) .

When written in this form, it becomes clear that the hidden
weight gradient updates lie in the basis of the training exam-
ples x j. If the initialization of the hidden weights wi is small,
then wi lies approximately in the basis of training examples
also. Specifically, we require that

wi(0) ̸= 0 and
1

ξi j
wi(0) ·x j→ 0 as d→ ∞ , (C.2)

where wi(0) refers to wi at initialization (generally, wi(t) is
the value of wi after t gradient steps). The requirement that
wi(0) ̸= 0 ensures that the initial gradient update is nonzero.

Suppose our training set consists of L symbols
z1;z2, . . . ,zL. If we partition wi = (v1

i ;v2
i ), then after t

gradient steps and in the infinite limit d→ ∞

v1
i (t) = ω

1
i,1(t)z1 +ω

1
i,2(t)z2 + . . .+ω

1
i,L(t)zL ,

v2
i (t) = ω

2
i,1(t)z1 +ω

2
i,2(t)z2 + . . .+ω

2
i,L(t)zL , (C.3)

where ω
p
i,k(t) corresponds to the overlap wp

i (t) ·zk.6 Note, for
these relations to hold, we require that zi · z j = δi j as d→ ∞.
In this way, we may consider the ω’s to be the coordinates of
w in the basis of the training symbols z.

Note that ω is a function of the update coefficients ξi j. If

wi · x j < 0, then ξi j = 0. Otherwise, ξi j depends on
∂L j
∂ f

and ai, introducing many additional and complex couplings
to other parameters in the model. Our ultimate goal is to un-
derstand the general structure of the hidden weights wi, rather
than to obtain exact formulas, so we apply the following coarse
approximation

ξi j =

{
sign

(
− ∂L j

∂ f ai

)
wi ·x j > 0 ,

0 wi ·x j ≤ 0 .
(C.4)

Such an approximation resembles sign-based gradient meth-
ods like signSGD (Bernstein et al., 2018) and Adam (Kingma,
2014). We also verify empirically that this approximation de-
scribes rich regime learning dynamics well.

6The large number of indices on ω is unwieldy, so we will omit
some or all of them where context allows.

From Eq (C.1), observe that sign
(
− ∂L j

∂ f

)
= 1 given a la-

bel y j = 1, and sign
(
− ∂L j

∂ f

)
= −1 for the label y j = 0. Re-

call from our hand-crafted solution that ai > 0 implies that wi
should align with same examples, and ai < 0 implies that wi
should align with different examples. Hence, if wi · x j > 0,
we conclude that ξi j = 1 if the example x j matches the corre-
sponding readout weight ai — that is, x j is same and ai > 0,
or x j is different and ai < 0. Otherwise, if there is a mismatch,
ξi j = −1. In this way, we may interpret wi as a “state vector”
to which we add or subtract examples x j based on a simple
set of update rules. We proceed to study the limiting form of
wi by treating it as a Markov process. Our approximation in
Eq (C.4) decouples the dependency between hidden weight
vectors. The set of hidden weights can be treated as an en-
semble of independent Markov processes evolving in parallel,
allowing us to understand the overall structure of the hidden
weights.

C.3 Markov process approximation

Altogether, we summarize the learning dynamics on w
through the following Markov process. In the remainder of
this section, we drop the index i from wi and ai, and w and
a should be understood as a representative sets of weights.
Similarly, we write ω

p
k (t) to represent the coefficient of vp (the

pth partition of w, p ∈ {1,2}) for the kth training symbol after
t steps. The set of coefficients ω represent the state of the
Markov process, which proceeds as follows.

Step 1. Initialize ω
p
k (0) = 0 for all k, p. Initialize the time

step t = 0. Initialize batch updates bp
k = 0 and batch counter

n = 0. Set the batch size N.

Step 2. Sample an integer u uniformly at random from the
set [L] = {1,2, . . . ,L}.

With probability 1/2, set v = u.
Otherwise, sample v uniformly from [L]\{u}.

Step 3. Compute ρ = ω1
u(t)+ω2

v(t).
If ρ > 0, proceed to step 4.
If ρ = 0, with probability 1/2 proceed to step 4. Otherwise,

proceed to step 5.
If ρ < 0, proceed to step 5.

Step 4. If a > 0, u = v, or a < 0, u ̸= v, update

b1
u← b1

u +1 ,

b2
v ← b2

v +1 .

Otherwise, update

b1
u← b1

u−1 ,

b2
v ← b2

v−1 .



Step 5. Increment the batch counter n← n+1.
If n = N, Set ω

p
k (t + 1)← ω

p
k (t) + bp

k and increment the
time step t← t +1. Reset n← 0,bp

k ← 0.
Proceed to step 2.

Remarks. This Markov process approximates the learning
dynamics of an MLP given the simplification in Eq (C.4). We
elaborate on the link below.

In step 1, we initialize the weight vector to zero. In practice,
weight vectors are initialized as w ∼ N (0,I/d). For large d,
the condition required in Eq (C.2) allows us to approximate
this as zero, with some caveats described below.

In step 2, we sample a training example. Because we op-
erate in the basis spanned by training examples, we discard
the vector content of a training symbol and consider only its
index. With half the training examples being same and half
being different, we sample indices accordingly.

In step 3, we consider the overlap w ·x, where x = (zu,zv).
Given the assumptions in Eq (C.2), we have that

ρ = w ·x

= ω
1
u ||zu||2 +ω

2
v ||zv||2

= ω
1
u +ω

2
v .

If the overlap ρ is positive, then the update coefficient ξ ̸= 0,
so we branch to the step where the state is updated. If ρ

is negative, we must have that ξ = 0, so we skip the up-
date. If ω1

u+ω2
v = 0, the overlap still picks up the initialization,

w ·x = w(0) ·x. In the limit d→∞, we have that w(0) ·x→ 0.
However, w(0) ·x ̸= 0 almost surely for any finite d. Because
w(0) and x are radially symmetric about the origin, their over-
lap is positive with probability 1/2. Thus, when ρ = 0, we
branch to the corresponding positive or negative overlap steps
each with probability 1/2.

In step 4, we apply the updates from ξ = ±1, based
on whether the training example zu,zv matches the readout
weight a. We conclude the training loop in step 5, and restart
with a fresh example.

C.4 Limiting weight structure
With the setup now complete, we analyze the Markov process
proposed above to understand the limiting structure of w and
a. Specifically, we will show that for large L and as t→ ∞,

1. If a > 0, then ||v1||= ||v2|| and v1 ·v2/(
∣∣∣∣v1

∣∣∣∣ ∣∣∣∣v2
∣∣∣∣) = 1

2. If a < 0, then ||v1||= ||v2|| and v1 ·v2/(
∣∣∣∣v1

∣∣∣∣ ∣∣∣∣v2
∣∣∣∣) =−1

3. Suppose a+ is the average over all weights a > 0, and a−
is the average over all weights a < 0. Then |a−|> |a+|.

Our general approach will involve factorizing the Markov pro-
cess into an ensemble of random walkers with simple depen-
dencies, then reason about the long time-scale behavior of
these walkers. For simplicity, we will focus on the single batch
case N = 1. Generalizing to N > 1 is straightforward but no-
tationally cluttered, and does not change the final result.

C.4.1 Same case We begin by examining weights w such
that the corresponding readout a > 0. Recall that these
weights favor same examples. Consider a random walker on
R whose position at time t is given by su(t) = ω1

u(t)+ω2
u(t).

Then the following rules govern the walker’s dynamics:

1. If su(t)> 0 and the model receives a same training example
(zu,zu), then su(t +1) = su(t)+2.

2. If the model receives a different training example (zu,zv),
where u ̸= v then su(t +1)≥ s(t)−1.

3. If su(T )< 0, then su(t)< 0 for all t > T .

Rules 1 and 2 reflect the update dynamics of the Markov
process. Since su(t) > 0, upon receiving a same exam-
ple (zu,zu), we witness updates ω1

u(t + 1) = ω1
u(t) + 1 and

ω2
u(t + 1) = ω2

u(t) + 1, so su(t + 1) = su(t) + 2. Similarly,
upon receiving a different example (zu,zv), we have that
ω1

u(t + 1) = ω1
u(t)− 1 if ωu(t)+ωv(t) > 0, so su decreases

at most by 1. Finally, for rule 3, if su ever falls below 0, then
it will never increment. Hence, su will remain negative for all
subsequent steps.

Together, these rules partition our ensemble of walkers
su into two sets: walkers with positive position S+(t) =
{su : su(t)> 0} and walkers with negative position S−(t) =
{sv : sv(t)< 0}. We will show that under typical conditions,
members of S+ grow continually more positive, while mem-
bers of S− grow continually more negative. We denote
n+(t) = |S+(t)| and n−(t) = |S−(t)|. Where the meaning
is unambiguous, we drop the indices t.

We first make the following counterintuitive observation
about the relative occurrence of same and different examples.
Although training examples are sampled from each class with
equal probability, the probabilities of observing a same or dif-
ferent pair when conditioned on observing a particular train-
ing symbol are not equal. Suppose we would like to count all
training pairs that contain at least one occurrence of zu. Out
of all same examples, we would expect roughly 1

L of such ex-
amples to contain zu. Out of all different examples, we would
expect roughly 2

L(L−1) occurrences of the pair (zu,zv), for a
specific v ̸= u. Across all L− 1 possible v, this proportion
rises to 2

L(L−1) · (L−1) = 2
L . Hence, the probability of observ-

ing a same example conditioned on containing zu is actually
1/L

1/L+2/L = 1
3 , while the probability of observing different is 2

3 .
Suppose we allow our Markov process to run for t time

steps, after which there are n+ walkers in a positive position
and n− walkers in a negative position, among L = n++n− ≡
n total walkers. Upon receiving the next training example
(zu,zv), there are four possible outcomes.

Case 1. The walker su(t) > 0 and we receive a same ex-
ample (so u = v). In this case, su(t + 1) = su(t) + 2. The
probability of observing a same pair containing zu is 1

3 , so we
summarize this case as

p(su← su +2 |su > 0) =
1
3
. (C.5)



Case 2. The walker su(t)> 0 and we receive a different ex-
ample (so u ̸= v). Whether su decrements in this case is com-
plex to determine, and depends on the precise coordinates ωu
and ωv. We treat this issue coarsely by modeling the proba-
bility of decrement through an average case approximation: if
sv > 0, we assume that su will always decrement; if sv < 0, we
assume that su will decrement with some mean probability µ.
Since p(sv > 0) = n+−1

n−1 and p(sv < 0) = n−
n−1 , and the proba-

bility of selecting a different example overall remains 2/3, we
summarize this case as

p(su← su−1 |su > 0) =
2
3

(
n+−1
n−1

+
n−

n−1
µ
)
. (C.6)

This average case approximation is similar in flavor to the
mean field ansatz common in physics, and we employ it for
similar reasons: it simplifies a complex many-bodied interac-
tion into a simple interaction between a single body and an
average field. We validate the accuracy of this approximation
later below.

Case 3. The walker su(t) < 0 and we receive a same ex-
ample. No updates occur in this case. For completeness, we
summarize it as

p(su← su +2 |su < 0) = 0 . (C.7)

Case 4. The walker su(t)< 0 and we receive a different ex-
ample. We again apply a coarse, average case approximation
to model the probability of decrementing. If sv < 0, we as-
sume that su will never decrement. If sv > 0, the probability
of decrementing again depends on our mean quantity µ. The
probability of selecting a different example overall remain 2/3,
so we summarize this case as

p(su← su−1 |su < 0) =
2
3

(
n+

n−1
µ
)
. (C.8)

To gain greater insight into µ, we consider how much a
walker’s position may drift as it encounters different training
examples. Define a walker’s expected drift to be the quan-
tity ∆s(t) = E[s(t + 1)− s(t)], averaged over possible walker
states s. Then under Eq (C.5) and Eq (C.6), considering a
positive walker s+ > 0

∆s+(t) = 2 p(s+ > 0) p(s+← s++2 |s+ > 0)

− p(s+ > 0)p(s+← s+−1 |s+ > 0)

=
2n+

3n

(
1− n++n−µ−1

n−1

)
=

2n+n−(1−µ)
3n(n−1)

. (C.9)

Similarly, under Eq (C.7) and Eq (C.8), a negative walker s−

has expected drift

∆s−(t) =− p(s− < 0) p(s−← s−−1 |s− < 0)

=− 2n−n+µ
3n(n−1)

. (C.10)

Suppose µ = 1. In this case, if we encounter a different ex-
ample (zu,zv) such that su > 0 and sv < 0, then su will always
decrement. On average, ∆su = 0 while ∆sv is a negative quan-
tity, indicating that su will on average remain around the same
position while sv decreases. However, if sv decreases without
bound, there comes a point where ωu +ωv < 0, preventing
further decrements. This situation implies that µ = 0, resulting
in ∆su > 0 and ∆sv = 0. However, if su now increases with-
out bound, there comes a point where ωu +ωv > 0, allowing
again further decrements, raising our mean update probability
back to µ = 1.

In general, if |∆su| < |∆sv|, we experience further incre-
ments until |∆su|> |∆sv|, at which point we experience further
decrements, returning us back to |∆su| < |∆sv|. Over a long
time period, we might therefore expect our dynamics to settle
around an average point |∆su|= |∆sv|. If this is true, then we
employ the relation |∆s+| = |∆s−| as a self-consistency con-
dition to solve for µ. Equating (C.9) and (C.10) reveals that
µ = 1

2 .
Altogether, we arrive at the following picture of the walkers’

dynamics. Walkers su at a positive position drift with an aver-
age rate

∆su =
n+n−

3n(n−1)
. (C.11)

Meanwhile, walkers sv at a negative position drift with an av-
erage rate ∆sv = −∆su. Over long time periods, su → ∞

while sv → −∞. Because positive updates increment both
coordinates ω1

u and ω2
u equally, we have that ω1

u ≈ ω2
u > 0.

Meanwhile, because negative updates have a higher chance
of decrementing a more positive coordinate, we also have
that ω1

v ≈ ω2
v < 0. In this way, we must have overall that

||v1|| = ||v2|| and v1 · v2/(
∣∣∣∣v1

∣∣∣∣ ∣∣∣∣v2
∣∣∣∣) = 1 at long time

scales, confirming that a weight vector aligned with same ex-
amples adopts parallel components.

To validate our key assumption on µ, we simulate the
Markov process 100 times with L = 16 and a batch size of
512. We empirically find that µ = 0.508± 0.056 (given by
two standard deviations), matching closely our conjecture that
µ = 1

2 .
One caveat we have not addressed is the case where n− =

n. In this case, no further updates occur and the weights are
frozen in their current position. However, as we suggest later
in Section C.4.3, the corresponding readout of these weights
will be relatively small, reducing its impact. In practice, “dead”
weights like these that are negatively aligned with all training
symbols appear to be rare in trained models.

C.4.2 Different case For weights w corresponding to a
readout a < 0, similar rules hold but now with flipped signs.
Considering again a random walker with position su(t) =
ω1

u(t)+ω2
u(t), the following rules govern the walker’s dynam-

ics:

1. If su(t) > 0 and the model receives a training example
(zu,zu), then su(t +1) = su(t)−2.



2. If the model receives a training example (zu,zv) or its re-
verse (zv,zu), where u ̸= v then su(t +1)≤ s(t)+1.

The rules follow from the update dynamics of the Markov pro-
cess precisely as before, now for weights sensitive to differ-
ent examples. Note, there is no equivalence to Rule 3 in this
case, since a walker may (in most cases) continue to receive
either positive or negative updates regardless of the sign of
its position. Indeed, this added symmetry to the different case
simplifies the analysis somewhat compared to the same case,
where it was necessary to study the interactions between two
ensembles of random walkers that evolve in different ways.
Here, we may treat all walkers uniformly.

Our general approach for analyzing this case is the same.
Conditioned on training examples containing the uth training
symbol, recall that observing a same pair (zu,zu) has proba-
bility 1/3, and observing a different pair (zu,zv) has probability
2/3. Then we have the following cases:

Case 1. The walker su(t)> 0 and receives a same example.
In this case, su(t+1) = su(t)−2. The probability of observing
a same pair containing zu is 1/3, so we summarize this case
as

p(su← su−2 |su > 0) =
1
3
. (C.12)

Case 2. The walker su(t)> 0 and we receive a different ex-
ample. Whether su increments is complex to determine, and
depends on the precise coordinates ωu and ωv. As before, we
treat this issue coarsely by approximating the probability of in-
crementing through an average case parameter µ. The prob-
ability of selecting a different example overall remains 2/3, so
we summarize this case as

p(su← su +1 |su > 0) =
2
3

µ . (C.13)

Case 3. The walker su(t) < 0 and we receive a same ex-
ample. No updates occur in this case. For completeness, we
summarize it as

p(su← su−2 |su < 0) = 0 . (C.14)

Case 4. The walker su(t)< 0 and we receive a different ex-
ample. We again use our average case parameter to describe
the probability of incrementing. The probability of selecting a
different example overall remains 2/3, so we summarize this
case as

p(su← su +1 |su < 0) =
2
3

µ . (C.15)

To obtain a self-consistent condition for µ, we consider
again the expected drift of walkers at positive or negative po-
sitions. After t timesteps have elapsed, suppose the number
of walkers with position s+ > 0 is n+, and the number of walk-
ers with position s− < 0 is n−, where L = n++n− ≡ n. Then

combining Eq (C.12) and (C.13), the expected drift for positive
walkers is

∆s+ =
2n+

3n
(µ−1) . (C.16)

Combining Eq (C.14) and (C.15), the expected drift of the neg-
ative walkers is

∆s− =
2n−

3n
µ (C.17)

Note, unlike the same case, the expected drift for positive
walkers is negative, and the expected drift for negative walk-
ers is positive. Hence, for µ ∈ (0,1), if |∆s+| > |∆s−|, the
number of positive walkers decreases faster than it increases,
so we eventually reach a point where |∆s+| ≤ |∆s+|. How-
ever, when |∆s+| < |∆s−|, the number of negative walkers
decreases faster than it increases, so we oscillate back to
|∆s+| ≥ |∆s−|. Over a long time period, we assume our walk-
ers settle around an average point |∆s+| = |∆s−|. If this is
true, then as before, we employ the relation |∆s+|= |∆s−| as
a self-consistency condition to solve for µ. Equating (C.16)
and (C.17) indicates that µ = n+

n .
There are three potential settings for n+ to consider: 0 <

n+ < n, n+ = n, or n+ = 0. Let us begin with 0 < n+ < n. Be-
cause n+ < n, the average position of positive walkers expe-
riences a net negative drift, gradually bringing them closer to
zero. Because n+ > 0, the average position of negative walk-
ers experiences a net positive drift, gradually bringing them
closer to zero also. Over a long period of time, we would
therefore expect n+ ≈ n− (and µ≈ 1

2 ).
If n+ = n, then all walkers are in a positive position and

∆s+ = 0. Over a long period of time, as the variance in walker
position grows, through random chance at least one walker
will eventually drift to a negative position, returning us to the
case where 0 < n+ < n. If n+ = 0, then all walkers are in a
negative position, and ∆s− > 0. Over time, the walkers’ aver-
age position grows more positive, until at least one becomes
positive and we again re-enter the case 0 < n+ < n.

Altogether, we arrive at the following picture of the walker’s
dynamics. Walkers at a positive position drift with a negative
rate down to zero, and walkers at a negative position drift with
a positive rate up to zero. After sufficient time has elapsed, we
would therefore expect the position of all walkers to be close to
zero. However, for a walker su, positive updates increment the
underlying coordinates ω1

u and ω2
u asymmetrically. Further-

more, a more positive coordinate receives a positive update
with greater probability. Hence, we must have that ω1

u ≫ ω2
u

or ω1
u ≪ ω2

u. Because their sum must remain close to zero,
it must be true that ω1

u ≈ −ω2
u. Thus, we have overall that

||v1||= ||v2|| and v1 ·v2/(
∣∣∣∣v1

∣∣∣∣ ∣∣∣∣v2
∣∣∣∣) =−1, confirming that

a weight vector aligned with different examples adopts an-
tiparallel components.

To validate our key assumption on µ, we simulate the
Markov process 100 times with L = 16 and a batch size of
512. We empirically find that µ = 0.499± 0.009 (given by
two standard deviations), matching closely our conjecture that
µ = 1

2 .



C.4.3 Magnitude of readouts The final piece to demon-
strate in our study of the rich regime is that |a+|< |a−|, where
a+ corresponds to the average across all positive readout
weights and a− corresponds to the average across all nega-
tive readout weights. Exactly characterizing these magnitudes
is difficult, so we apply a heuristic argument based what we
learned about the structure of parallel and antiparallel weights
above and support it with numeric evidence.

Recall that the update rule for a readout weight ai is given
by

∆a =− c
N

N

∑
j=1

∂L j

∂ f
φ(w ·x j),

where c = α

γ
√

d
and α is the learning rate. Suppose x j =

(zu,zv). Then the update rule becomes

∆a =− c
N ∑

u,v

∂Lu,v

∂ f
φ(ω1

u +ω
2
v) .

If ∂L
∂ f is about the same in magnitude across all training exam-

ples, then our readout updates are proportional to

∆a ∝ ∑
u,v

S(u,v)φ(ω1
u +ω

2
v) .

where

S(u,v) =

{
1 u = v
−1 u ̸= v .

Let us first consider the case where w corresponds to a
negative readout weight a−. From above, we know that w
is antiparallel. Hence, when encountering a same example,
ωu +ωu ≈ 0. If the magnitude of all coordinates are roughly
equal, when encountering a different example, ωu +ωv > 0
about 1/4 of the time. Comparing Eq (C.11) to Eq (C.16),
we see that the expected drift for antiparallel weight vec-
tors is roughly twice that of parallel weight vectors over long
timescales. Altogether, since the number of same and differ-
ent examples is balanced, we have overall that |∆a−|∝ 2 · 1

4 =
1
2 for a− < 0.

Now consider the case where w corresponds to a positive
readout weight a+. From above, we know that w is paral-
lel. For large batch sizes N, the expected drift of a walker at
initialization is 07, so we expect n+ ≈ n−. If the magnitude
of all coordinates are roughly equal and L is large, when en-
countering a same example, ωu +ωv > 0 about 1/2 of the
time. When encountering a different example, ωu +ωv > 0
about 1/4 of the time. Altogether, we would therefore ex-
pected |∆a+| ∝ 1

2 −
1
4 = 1

4 .

From this rough estimate, we find that |∆a−|
|∆a+| ≈ 2 for average

negative and positive readouts. Since the rate of increase for
negative readouts tends to be larger than that of positive read-
outs, we would expect the magnitude of negative readouts to

7There is a 1/3 chance of observing a same example, which incre-
ments by 2. There is a 2/3 chance of observing a different example,
which decrements by 1. Hence, the expected drift at initialization
must be zero overall.

Figure C2: Rich-regime weight structure when L = 2.
The model continues to develop parallel/antiparallel weights,
though the magnitude of negative readouts is now about the
same as the magnitude of positive readouts.

be similarly larger. In fact, if readouts start with small initializa-

tion, we may conjecture that |a
−|
|a+|
≈ 2. In practice, this quantity

turns out to be about 1.56±0.09 (with 2 standard deviations),
computed from 10 runs 8.

Note in the case that L is small (for instance, L = 2), our
estimate |∆a+| ∝ 1

4 breaks down since there may be only a
single set of positive coordinates and no penalty is incurred
on negative examples. In this case, we would have |∆a+|∝ 1

2 ,

so |∆a−|
|∆a+| = 1. Indeed, this is exactly what we observe in the

case where L = 2. Computing this quantity empirically yields
0.99± 0.07 (with 2 standard deviations), computed from 10
runs 9. This outcome seems to be part of the reason why the
model does not generalize well on the SD task with only 2
symbols, despite developing parallel/antiparallel weights (Fig-
ure C2). For L≥ 3, there seems to be sufficient pairs of posi-
tive coordinates in parallel weight vectors to restore the situa-
tion where |∆a−|> |∆a+|.

C.5 Test accuracy prediction

We apply our knowledge on the structure of w and a to esti-
mate the test accuracy of the rich regime model. Our deriva-
tion is heuristic, but seeks to capture broad phenomena rather
than achieve exact precision. We validate our predicted test
accuracy in Figure C3, demonstrating excellent agreement.

Recall from Section 3.1 that a model achieving the hand-
crafted solution exhibits perfect classification of same exam-
ples. Any errors are therefore accumulated from misclassify-
ing different examples. The crux of our estimate stems from
approximating the classification accuracy of different exam-
ples.

Define I+ to be the set of weight indices i such that ai > 0,
and define I− to be the set of weight indices j where a j < 0.
Let x be a different example. Dropping constants that do not

8The MLP has width m = 1024, and inputs have dimension d =
512. There are L = 32 training symbols

9As before, the MLP has width m = 1024, and inputs have dimen-
sion d = 512. There are L = 2 training symbols



affect the outcome of a classification, our model becomes

f (x) = ∑
i∈I+
|ai|φ(wi ·x)− ∑

j∈I−
|a j|φ(w j ·x) .

Define the weighted sums

a+∗ =
∑i∈I+ |ai|φ(wi ·x)

∑i∈I+ φ(wi ·x)
,

a−∗ =
∑ j∈I− |a j|φ(w j ·x)

∑i∈I+ φ(w j ·x)
.

Then

f (x) = a+∗ ∑
i∈I+

φ(wi ·x)−a−∗ ∑
j∈I−

φ(w j ·x) .

If the magnitudes of φ(wi · x) are the same for all i and all x,
then a+∗ = a+ = 1

|I+| ∑i∈I+ ai. Since x is an unseen differ-

ent example, by symmetry we conclude that a+∗ = a+ is a
reasonable approximation. The same applies for a−∗ = a−.

Since the magnitude of f (x) does not affect its classifica-
tion, we divide through by a+ to redefine our model as

f (x) = ∑
i∈I+

φ(wi ·x)−ρ ∑
j∈I−

φ(w j ·x) ,

where ρ = |a−|
|a+|

. To calculate the probability of classifying an

unseen different example, we would like to estimate p( f (x)<
0), for x = (z,z′) and z,z′ ∼N (0,I/d).

Then from Eq C.3

φ(wi ·x) = φ

(
L

∑
k=1

[
ω

1
i,k zk · z±ω

2
i,k zk · z′

])
.

Over the distribution of an unseen symbol z

zk · z
d
=−zk · z ,

so we replace ± with simply + in the summation. Summing
across all weight vectors corresponding to the same class
yields

∑
i∈I+

φ(wi ·x) = ∑
i∈I+

φ

(
L

∑
k=1

[
ω

1
i,k zk · z+ω

2
i,k zk · z′

])

= ∑
wi·x>0

L

∑
k=1

[
ω

1
i,k zk · z+ω

2
i,k zk · z′

]
.

Since wi · x > 0, it is likely that ω1
i,k zk · z > 0. Since zk · z

is approximately Normal at high d, we approximate the term
c1

i,k ≡ ω1
i,kzk · z as a Half-Normal random variable. We there-

fore focus on characterizing the distribution of a sum over Half-
Normal random variables, which we denote by c+:

∑
i∈I+

φ(wi ·x)
d
= c+ ≡

|I+|

∑
i=1

L

∑
k=1

[
c1

i,k + c2
i,k
]
.

The individual c1
i,k and c2

i,k are learned from a finite set of
training symbols, so they cannot be independently distributed.
However, since training symbols are sampled independently,
we would expect for any particular weight index i = i0, the
corresponding c1

i0,k
and c2

i0,k
are indeed independent. Hence,

we have at least 2L independent terms for a particular index
i = i0.

The dependency structure across weight indices i is more
subtle, but we make a reasonable guess at their structure and
later validate this heuristic with numerics. While our analysis
in Appendix C assumed each weight vector evolves indepen-
dently, in a training model they evolve based on the same set
of inputs. As a result, significant correlations emerge across
weight vectors. To understand these correlations, let us fix
our training symbol index to k = k0 and consider all terms
c1

i,k0
= ω1

i,k0
zk0 · z. Since they all share zk0 · z, these quan-

tities are not strictly independent. However, after T training
steps, we have that ω1

i,k0
= O(T ) and c1

i,k0
= O(T ) while

zk0 · z = O(1), so for our approximation we will consider the
dependency incurred from zk0 · z as negligible.

Let us therefore turn our attention to the coordinates ω1
i,k0

.
If the model only ever received same inputs (zk0 ,zk0), all
ω1

i,k0
would be identical or zero across indices i. However,

if we allow the model to witness different inputs (zk0 ,zℓ) for
some ℓ ̸= k0, we would expect a distribution of ω1

i,k0
driven by

the underlying initialization of wi and the number of symbols
L. Coordinates where ω1

i,k0
(0)+ω1

i,1(0) > 0 and ω1
i,k0

(0)+
ω1

i,2(0) < 0 would evolve differently from coordinates where

ω1
i,k0

(0)+ω1
i,1(0)< 0 and ω1

i,k0
(0)+ω2

i,1(0)> 0. If the num-
ber of training symbols increases, we would expect the num-
ber of independent coordinates ω1

i,k0
to also increase. Given

L training symbols, we might therefore guess that the num-
ber of independent coordinates to be proportional to L−1, for
L− 1 symbols where ℓ ̸= k0. However, we also need to ac-
count for the sign of zℓ · z′. If this quantity is positive and the
corresponding readout is positive, then correlations resulting
from the symbol zℓ would be unimportant since they lower the
probability that wi ·x > 0, filtering them from the sum. (The re-
verse is true for weights corresponding to negative readouts.)
Hence, roughly half the L− 1 symbols contribute to unique
coordinates. The total number of unique coordinates ω1

i,k0
is

therefore approximately 1
2 (L−1).

If each of our 1
2 (L−1) independent coordinates carries 2L

independent dot-product terms, we have

c+ d
=

L(L−1)

∑
ℓ=1

cℓ ,

where cℓ is distributed Half-Normal with mean 0 and some
variance σ2, which will cancel in the final calculation.

Applying the central limit theorem together with the first and
second moments of a Half-Normal distribution reveals that

c+ ∼N

(
(L2−L)σ

√
2
π
, (L2−L)

(
1− 2

π

))
.



Figure C3: Rich-regime test accuracy. We demonstrate
close agreement between the theoretically predicted and em-
pirically measured rich-regime test accuracy. The rich-regime
parametrization explored in the main text corresponds to γ =
1. To confirm that our results hold for arbitrarily rich models,
we also plot accuracies attained in the ultra-rich regime γ≫ 1
(Atanasov et al., 2024). In all cases, our predictions continue
to hold.

As we noted before, zk ·z
d
= zkz′ for large d, so the distribution

of ∑φ(w · x) is the same regardless if the weight vectors w
are parallel or antiparallel. Hence, c+ d

= c−. The distribution
of our output is therefore

f (x) d
= c+−ρc− .

Our final probability of classifying an unseen different example
correctly is

p( f (x)< 0) = Φ

(√
(2L2−2L)(ρ−1)2

(π−2)(ρ2 +1)

)
, (C.18)

where Φ is the CDF of a standard Normal.
From Section C.4.3, we found that ρ ≈ 1.5 for L ≥ 3 and

ρ = 1 for L = 2. Plugging this value into Eq (C.18) allows us
to compute the probability of classifying an unseen different
example. If the model classifies all unseen same examples
correctly, the total test accuracy of the rich regime model is
given by 1

2 +
1
2 p( f (x)< 0), yielding the expression we report

in Eq (3). We validate this prediction in Figure C3, showing
excellent agreement with the measured test accuracy of a rich
model.

Two important details to note:

• The test accuracy of the rich model rises rapidly with L.
By L = 3, the model already attains over 90 percent test
accuracy.

• The test error does not depend on the input dimension d.
The impact of d is captured in the variance of σ2 of our
Half-Normal random variables c, which cancels in the final
calculation.

In this way, we see how the conceptual parallel/antiparallel
representations of the same-different model lead to highly effi-
cient learning and insensitivity to input dimension, completing
our analysis of the rich regime.

D Lazy regime details
In the lazy regime, we will demonstrate that the model requires
1) far more training symbols than in the rich regime to learn the
SD task, and 2) the model’s test accuracy depends explicitly
on the input dimension d.

A lazy MLP’s learning dynamics can be described using
kernel methods. In particular, the case where γ→ 0 corre-
sponds to using the Neural Tangent Kernel (NTK) (Jacot et
al., 2018), in which weights evolve linearly around their initial-
ization. We demonstrate that the number of training symbols
required to generalize using the NTK grows quadratically with
the input dimension.

Recall that our model has form

f (x) =
m

∑
i=1

ai φ(wi ·x) .

If there are P unique training examples in our dataset, we may
rewrite our model in its dual form

f (x) =
P

∑
j=1

b j K(x,x j) , (D.1)

for the kernel

K(x,x j) =
1
m

m

∑
i=1

φ(wi ·x)φ(wi ·x j) .

For ease of exposition, we assume that inputs x lie on the
unit sphere x ∈ S2d−1. This is exactly true (up to a constant
radius) as d→ ∞. For width m→ ∞ and ReLU activations φ,
the analytic form of the NTK kernel K is known to be

K(u) = u
(

1− 1
π

cos−1(u)
)
+

1
2π

√
1−u2 .

where u = x ·x′ (Cho & Saul, 2009).
With the setup complete, we present our central result.

Theorem 2. Let f be an infinite-width ReLU MLP as given in
Eq D.1, with an NTK kernel. Suppose inputs x are restricted
to lie on the unit sphere x ∈ S2d−1. If f is trained on a dataset
consisting of P points constructed from L symbols with input
dimension d, then the test error of f is upper bounded by

O
(

exp
{
− L

d2

})
.

Proof. Our proof strategy proceeds as follows. We restrict the
space over which our dual coefficients b can vary to a conve-
nient subset, and upper bound the achievable test error of f
over this restricted parameter space. Because the restricted
parameter space is a subset of the full parameter space, our
derived upper bound applies to the unrestricted model as well.

We restrict the dual coefficients b as follows. Let I+ be the
set of all indices i such that xi is a same example, and I− be
the set of all indices j such that x j is different. Then for all
i ∈ I+, we fix bi = b+ > 0. For all j ∈ I−, we fix b j = b− < 0.
Hence, we effectively tune just two parameters: b+ and b−.



We also set a number of coefficients b to zero.
Given a dataset with symbols z1,z2, . . . ,zL, partition the
symbols such that set S1 =

{
z1,z2, . . .zL/3

}
and S2 ={

zL/3+1,zL/3+2, . . .zL
}

. Consider the kernel coefficient bk,
which corresponds to a training example xk = (zℓ1 ;zℓ2). If
zℓ1 = zℓ2 and zℓ1 /∈ S1, then we fix bk = 0. If zℓ1 ̸= zℓ2 , then we
check three conditions: (1) zℓ1 ∈ S2, (2) ℓ2− ℓ1 = 1, and ℓ1 is
odd. If any one of these conditions is violated, we set bk = 0.

This procedure for deciding whether bk = 0 ensures that
the remaining nonzero terms in Eq (D.1) are independent, and
that there are an equal number of same and different exam-
ples remaining. The set S1 determines the symbols that con-
tribute to same examples. The disjoint set S2 determines the
symbols that contribute to different examples. We further stip-
ulate that different examples do not contain overlapping sym-
bols, leading to the three conditions enumerated above. Note,
to construct a dataset such that there are P nonzero terms in
our kernel sum, we require L ∝ P symbols.

First, suppose x is a same test example. Since we re-
stricted the summands to be independent in our kernel func-
tion, the probability of mis-classifying x can bounded through
a straightforward application of Hoeffding’s inequality

p( f (x)< 0)≤ exp
{
−2E[ f (x)]2

Pc2

}
(D.2)

where P is the size of the training set and c is a constant
related to the range of individual summands b jK(x,x j). Note,
b j can be arbitrarily small without changing the classification
and 0 ≤ K(u) < 3, so c is finite. Distributing the expectation,
we have

E[ f (x)] = ∑
i∈I+

b+E[K(x,xi)]+ ∑
j∈I−

b−E[K(x,x j)] . (D.3)

Taylor expanding K to second order in u reveals that

E[K(u)] =
1

2π
+

E[u]
2

+
3E[u2]

4π
+o(E[u2]) (D.4)

Since input symbols are normally distributed with mean zero,
we know that E[u] = 0 and E[u2]∝ 1/d. Furthermore, if x j is a
same training example and xk is a different training example,
inspecting second moments reveals that E[(x ·x j)

2] = 2E[(x ·
xk)

2], for an unseen same example x. Thus, provided that
|b−/b+|< 2, substituting (D.4) into (D.3) yields

E[ f (x)] = O
(

P
d

)
,

which implies that

p( f (x)< 0)≤ O
(

exp
{
− P

d2

})
.

Now suppose x is a different test example. If x+ is a same
training example and x− is a different training example, then
the first and second moments of x · x+ are equal to that of

x · x−. Hence, (D.4) and (D.3) suggest that if |b−| − |b+| =
O(1), then E[ f (x)] =−O(P). Applying Hoeffding’s a second
time suggests that

p( f (x)> 0) = O (exp{−P}) .

Note, it is possible to satisfy both |b−|−|b+| and |b−/b+|< 2,
for example with b+ = 1 and b− = 1.1.

The test error overall is dominated by the contribu-
tion from mis-classifying same examples p( f (x) < 0) =
O(exp

{
−P/d2

}
). Because of our independence restric-

tion on the dual coefficients b, in order to produce P train-
ing examples, we require L ∝ P training symbols. The test
error of the model overall is therefore upper bounded by

O
(

exp
{
− L

d2

})
.

Hence, in order to maintain a constant error rate, our bound
suggests that the number of training symbols L should scale
as L ∝ d2. While this scaling is an upper bound on the true er-
ror rate of a lazy model, Figure 1f suggests that this quadratic
relationship remains descriptive of the full model. There are
two important consequences of this result:

1. For a large d, the lazy model requires substantially more
training symbols to learn the SD task than the rich model.
In Appendix D, we found that the rich model can gener-
alize with as few as L = 3 symbols. In contrast, Figure 1f
suggests the lazy model will often require hundreds or thou-
sands of training symbols to generalize.

2. For a fixed number of training symbols, a lazy model’s per-
formance decays as d increases. Unlike in the rich case,
there is an explicit dependency on d in the test error for the
lazy model, hurting its performance as d grows larger.

In this way, we see how a lazy model can leverage the differing
statistics of same and different examples to accomplish the
SD task, but at the cost of exhaustive training data and strong
sensitivity to input dimension.

E Bayesian posterior calculations

In Section 3.4, we compute with the posteriors corresponding
to two different idealized models: one that generalizes to novel
symbols based on the true underlying symbol distribution, and
one that memorizes the training symbols. Below, we present
the Bayes optimal classifier for our noisy same different, and
derive the posteriors associated with these two settings.



E.1 Generalizing prior
We define the following data generating process that consti-
tutes a prior which generalizes to arbitrary, unseen symbols.

r ∼ Bernoulli

(
p =

1
2

)
s1 ∼N

(
0,

1
d

)
s2 ∼

{
δ(s1) r = 1
N
(
0, 1

d

)
r = 0

z1 ∼N
(

s1,
σ2

d

)
z2 ∼N

(
s2,

σ2

d

)
The quantity r represents either a same or different relation.
Variables s1,s2 are symbols matching their description in Sec-
tion 2. The notation δ(s1) denotes a Delta distribution cen-

tered at s1. Hence, s1 = s2 if r = 1, and differ otherwise. Typ-
ically, we consider the noiseless case σ2 = 0, but to develop
a Bayesian treatment, we allow σ2 > 0. We approximate the
noiseless case by considering σ2→ 0.

The Bayes optimal classifier is

ŷbayes =

{
1 p(r = 1 |z1,z2)≥ 1

2
0 otherwise

(E.1)

From Bayes rule, we know that

p(r |z1,z2) ∝ p(z1,z2 |r) p(r) .

Since r is sampled with equal probability 1 or 0, we have sim-
ply

p(r |z1,z2) ∝ p(z1,z2 |r) .

We use the notation N (x;µ,σ2) to mean the PDF of a Normal
distribution evaluated at x, with mean µ and covariance σ2I.
We then compute

p(z1,z2 |r = 1) =
∫

N
(

z1;s,
σ2

d

)
N
(

z2;s,
σ2

d

)
N
(

s;0,
σ2

d

)
ds

=

(
d

2π
√

σ2(2+σ2)

)d

exp
{
− d

2σ2

(
1+σ2

2+σ2

(
||z1||2 + ||z2||2

)
− 2

2+σ2 (z1 · z2)

)}
, (E.2)

p(z1,z2 |r = 0) =
∫ ∫

N
(

z1;s1,
σ2

d

)
N
(

z2;s2,
σ2

d

)
N
(

s1;0,
σ2

d

)
N
(

s2;0,
σ2

d

)
ds1 ds2

=

(
d

2π(1+σ2)

)d

exp
{
−d

2

(
1

1+σ2

)(
||z1||2 + ||z2||2

)}
. (E.3)

Using Eq (E.2) and (E.3), we compute

p(r = 1 |z1,z2) =
p(z1,z2 |r = 1)

p(z1,z2 |r = 1)+ p(z1,z2 |r = 0)
,

which we plug back into Eq (E.1) to obtain our Bayes classifier
under a generalizing prior.

E.2 Memorizing prior

The data generating process for a model that memorizes the
training data is similar to the generalizing model, but the cru-
cial difference is that the symbols s are now distributed uni-
formly across the training symbols rather than sampled from
their population distribution.

Let ŝ1, ŝ2, . . . , ŝL be the set of L training symbols. Then the

data generating process is given by

r ∼ Bernoulli

(
p =

1
2

)
s1 ∼ Uniform{ŝ1, ŝ2, . . . , ŝL}

s2 ∼

{
δ(s1) r = 1
Uniform{ŝ1, ŝ2, . . . , ŝL}\{s1} r = 0

z1 ∼N
(

s1,
σ2

d

)
z2 ∼N

(
s2,

σ2

d

)
As before, we compute the probabilities p(z1,z2 |r = 1) and

p(z1,z2, |r = 0), which are given by



p(z1,z2 |r = 1) =
1
L

L

∑
i=1

p(z1,z2 | ŝi)

=
1
L

L

∑
i=1

N
(

z1; ŝi,
σ2

d

)
N
(

z2; ŝi,
σ2

d

)

=

(
d

2πσ2

)d

exp
{
− d

2σ2

(
1
2

(
||z1||2 + ||z2||

)2
− z1 · z2

)}(
1
L

L

∑
i=1

exp

{
− d

σ2

∣∣∣∣∣∣∣∣ŝi−
z1 + z2

2

∣∣∣∣∣∣∣∣2
})

, (E.4)

p(z1,z2 |r = 0) =
1

L(L−1) ∑
i ̸= j

p(z1 | ŝi) p(z2 | ŝ j)

=
1

L(L−1)

L

∑
i ̸= j

N
(

z1; ŝi,
σ2

d

)
N
(

z2; ŝ j,
σ2

d

)

=
1

L(L−1) ∑
i ̸= j

(
d

2πσ2

)d

exp
{
− d

2σ2 ||z1− ŝi||2
}

exp
{
− d

2σ2

∣∣∣∣z2− ŝ j
∣∣∣∣2} . (E.5)

Using Eq (E.4) and (E.5), we compute Eq (E.1) to obtain
our Bayes classifier under a memorizing prior.

F Rich and lazy scaling
We review rich and lazy regime scaling in our setting. In partic-
ular, we consider learning dynamics as we increase the input
dimension d (Saad & Solla, 1995; Biehl & Schwarze, 1995;
Goldt et al., 2019). This setting differs from other rich-regime
studies, where scaling is considered with respect to increas-
ing width m. In particular, maximal update (µP) and the re-
lated mean-field parameterizations consider an infinite-width
limit (Yang & Hu, 2021; Mei et al., 2018; Rotskoff & Vanden-
Eijnden, 2022). Our analysis holds m fixed.

Recall that our model is given by

f (x;θ) =
1

γ
√

d

m

∑
i=1

ai φ(wi ·x) .

Let θ(t) be the value of the parameters θ at time-step t. Cru-
cially, to permit a valid interpolation between rich and lazy
learning regimes, our MLP is centered : f (x;θ(0)) = 0. Fol-
lowing Chizat et al. (2019), we enforce centering by subtract-
ing the initial logit from every prediction. Hence, our classifier
takes the form

f̃ (x;θ) = f (x;θ)− f (x;θ(0)) .

We use f̃ as our centered MLP in all experiments.
To see how changing γ interpolates between rich and lazy

learning regimes, recall that learning richness is a description
of activation change over the course of training. One way to
operationalize this description is to define rich learning as the
case in which parameters θ change substantially in compar-
ison with changes in the model output f̃ , and lazy learning

as the case in which θ change very little with respect to the
model output.

Consider the change in f̃ after one step of gradient descent.
For a learning rate α and training set size P, we update our
parameters as

θ(1) = θ(0)−α∇θ

(
1
P

P

∑
p=1

L(yp, f̃ (xp;θ))

)

= θ(0)− α

P

P

∑
p=1

(yp−σ( f̃ (xp;θ))∇θ f̃ (xp;θ) .

Note that for an input x,

∂ f̃
∂ai

=
1

γ
√

d
φ(wi ·x) ,

∂ f̃
∂wi

=
1

γ
√

d
ai φ
′(wi ·x)x .

Define

∆ai ≡
1
P

P

∑
p=1

(yp−σ( f̃ (xp;θ)))
∂ f̃
∂ai

,

∆wi ≡
1
P

P

∑
p=1

(yp−σ( f̃ (xp;θ)))
∂ f̃
∂wi

.

Substituting our weight updates into our model reveals that

f̃ (x;θ(1)) =
α

γ2d

m

∑
i=1

[
∆ai φ(∆wi ·x)/(γ

√
d)

+∆ai φ(w(0) ·x)

+ai(0)φ(∆wi ·x)
]
. (F.1)



Figure F1: Activation scales with γ and d. We plot the average absolute activation change across 6000 test examples as a
function of γ (for m = 4096), normalized by the initial activation size |w(0) · x|. Higher γ leads to more activation change. In
the absence of a 1/

√
d prefactor, the activation change scales inversely with d. Including the 1/

√
d prefactor suppresses this

change.

Observe that |∆ai φ(w(0) · x)| = Od(1) and |ai(0)φ(∆wi ·
x)| = Od(1/

√
d) for a test point x. If we adopt a learning

rate α = γ2d, then we have overall

| f̃ (x;θ(1))|= Od(1) . (F.2)

In this way, we find that the model output changes by a con-
stant amount relative to the input dimension d. Meanwhile,
the parameters change by a total magnitude

||θ(1)−θ(0)||= Od(α(|∆ai|+ ||∆wi||) = Od(γ
√

d) .

At initialization, we have that

||θ(0)||= Od(|ai(0)|+ ||wi(0)||) = Od(
√

d) ,

so the change in weights relative to the scale of their initializa-
tion is simply

||θ(1)−θ(0)||/||θ(0)||= Od(γ) . (F.3)

All together, after one gradient step, while the model output
changes by a constant amount with respect to d, the model
parameters change by γ relative to their initialization. For
γ→ 0, the initialization dominates (even as the model output
changes), resulting in lazy learning. For increasing γ, the pa-
rameters move proportionally further from their initialization,
resulting in progressively rich learning.

Peculiar to our setting is the additional 1/
√

d factor in the
output scale of the MLP, not found in other rich-regime stud-
ies that consider width scaling (Yang & Hu, 2021; Mei et al.,
2018; Rotskoff & Vanden-Eijnden, 2022). In the absence of
the 1/

√
d factor, Eqs (F.1) and (F.2) suggest that we should

adjust our learning rate to be α = γ2 in order to maintain a
stable Od(1) output change with increasing d. However, the
relative weight change in Eq (F.3) now becomes Od(γ/

√
d).

For fixed γ, a model becomes lazier as d increases. Hence, to
maintain consistent richness, we require an additional 1/

√
d

prefactor on the MLP (along with the corresponding α = γ2d
learning rate).

Figure F1 illustrates these conclusions. Increasing γ in-
creases the change in activations |w̃(t) ·x| for a test example
x. In the absence of the 1/

√
d prefactor, increasing d also

decreases the change in activations.

G Model and task details
We enumerate all model and task configurations in this Ap-
pendix. Exact details are available in our code, https://
github.com/wtong98/equality-reasoning, which can
be run to reproduce all plots in this manuscript.

G.1 Model
In all experiments, we use a two-layer MLP without biases that
takes inputs x ∈ Rd and outputs

f (x) =
1

γ
√

d

m

∑
i=1

ai φ(wi ·x) ,

where φ is a point-wise ReLU nonlinearity and γ is a hyper-
paramter that governs learning richness. Our MLP is centered
using the procedure described in Appendix F. To produce a
classification, f is passed through a standard logit link func-
tion

ŷ =
1

1+ e− f .

Parameters are initialized based on µP (Yang et al., 2022).
Specifically, we initialize our weights as

ai ∼N (0,1/m) ,

wi ∼N (0,I/m) .

We train the model using stochastic gradient descent on bi-
nary cross entropy loss. Following Atanasov et al. (2024), we
set the learning rate α as α= γ2d α0 for γ≤ 1 and α= γ

√
d α0

for γ > 1. The base learning rate α0 is task-specific, and
varies from 0.01 to 0.5. To measure a model’s performance,
we train for a large, fixed number of iterations past conver-
gence in training accuracy, and select the best test accuracy
from the model’s history.

G.2 Same-Different
The same-different task consists of input pairs z1,z2 ∈ Rd ,
where zi = si +ηi. The labeling function y is given by

y(z1,z2) =

{
1 s1 = s2

0 s1 ̸= s2
.

https://github.com/wtong98/equality-reasoning
https://github.com/wtong98/equality-reasoning


We sample these quantities as

s∼N (0,I/d) ,

η∼N (0,σI/d) .

A training set is sampled such that half the training examples
belong to class 1, and half belong to class 0. Crucially, the
training set consists of L fixed symbols s1,s2, . . . ,sL sampled
prior to the experiment. All training examples are constructed
from these L symbols. During testing, symbols are sampled
afresh, forcing the model to generalize. If the noise variance
σ is not explicitly stated, then we take it to be σ = 0. We use
a base learning rate α0 = 0.1 with batches of size 128.

G.3 PSVRT
The PSVRT task consists of a single-channel square image
with two blocks of bit-patterns. If the bit-patterns match ex-
actly, then the image belongs to the same class. If the bit-
patterns differ, then the image belongs to the different class.
Images are flattened before being passed to the MLP.

Images are patch-aligned to prevent overlapping bit-
patterns. An image is tiled by non-overlapping square re-
gions which may be filled by bit-patterns. No two bit-patterns
may share a single patch. Unless otherwise stated, we use
patches that are 5 pixels to a side, and images that are 5
patches to a side, for a total of 25 by 25 pixels.

One important feature of PSVRT is that the inputs do not
grow in norm as their dimension increases. Because there
are only ever two patches in an image, regardless of its size,
the total norm of the input remains constant regardless of the
image dimensions. As a result, the 1/

√
d scaling on the MLP

output is extraneous for PSVRT, and we remove it in these
experiments.

A subset of all possible bit-patterns are used for training.
The remaining unseen bit-patterns are used for testing. We
use a base learning rate α0 = 0.5 with batches of size 128.

G.4 Pentomino
The Pentomino task consists of a single-channel square im-
age with two pentomino shapes. If the shapes are the same
(up to rotation, but not reflection), then the image belongs to
the same class. If the bit-patterns differ, then the image be-
longs to the different class. Images are flattened before being
passed to the MLP.

Like before, images are patch-aligned. To provide a border
around each pentomino, patches are 7 pixels to a side. Unless
otherwise stated, images are 2 patches to a side, for a total of
14 by 14 pixels.

As with PSVRT, the inputs for Pentomino do not grow in
norm as their dimension icnreases. There are only ever two
pentomino shapes in an image, regardless of its dimension, so
the total norm of the input remains constant. Like with PSVRT,
we remove the 1/

√
d output scaling on the MLP for these ex-

periments.
There are a total of 18 possible pentomino shapes. A sub-

set of these 18 is held out for testing, and the model trains

on the remainder. To improve training stability, mild Gaussian
blurs are randomly applied to training images, but not testing
images. We use a base learning rate α0 = 0.5 with batches
of size 128.

G.5 CIFAR-100
The CIFAR-100 same-different task consists of full-color im-
ages taken from the CIFAR-100 dataset. Images are 32 by 32
pixels, and depict 1 of among 100 different classes. To form
an input example, we place two images side-by-side, form-
ing a larger 64 by 32 pixel image. If the images come from
the same class (but are not necessarily the same exact im-
age), the example belongs to the same class. If the images
come from different classes, the example belong to the differ-
ent class.

To separate an MLP’s ability to reason about equality from
its ability to extract meaningful visual features, we first pass
the image through a VGG-16 backbone pretrained on Ima-
geNet. Activations are then taken from an intermediate layer,
flattened, and passed to the MLP. Because VGG-16 activa-
tions are coordinate-wise O(1) in magnitude, we normalize
them by 1/

√
d before input to the model. The resulting perfor-

mance of the MLP from activations of each layer are plotted in
Figure G1.

Of the 100 total classes, a subset is held out for testing, and
the model trains on the remainder. We use a base learning
rate α0 = 0.01 with batches of size 128.



Figure G1: CIFAR-100 same-different accuracy across different VGG-16 activations. Activations are named by
relu[block] [layer] The plot with name id corresponds to using the raw images directly without first preprocessing in
VGG-16. Earlier and later layers demonstrate an interesting collapse where learning richness does not seem to impact classi-
fication accuracy very strongly. Intermediate layers suggest that greater learning richness tends to perform better, though the
richest model tends to do poorly. Shaded error regions correspond to 95 percent confidence intervals estimated from 6 runs.
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