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ABSTRACT

Multi-agent pathfinding (MAPF) is a widely used abstraction for multi-robot tra-
jectory planning problems, where multiple homogeneous agents move simulta-
neously within a shared environment. Although solving MAPF optimally is NP-
hard, scalable and efficient solvers are critical for real-world applications such as
logistics and search-and-rescue. To this end, the research community has proposed
various decentralized suboptimal MAPF solvers that leverage machine learning.
Such methods frame MAPF (from a single agent perspective) as Dec-POMDP
when at each time step an agent has to decide an action based on the local ob-
servation and typically solve the problem via reinforcement learning or imitation
learning. We follow the same approach but additionally introduce a learnable com-
munication module tailored to increase the level of cooperation between the agents
via efficient feature sharing. We present the Local Communication for Multi-agent
Pathfinding (LC-MAPF), a foundation model that applies multi-round communi-
cation between neighboring agents to exchange information and improve their
coordination. Our experiments show that the introduced method outperforms the
existing learning-based MAPF solvers, including IL and RL based approaches,
across diverse metrics in a diverse range of (unseen) test scenarios. Remark-
ably, the introduced communication mechanism does not compromise the scala-
bility LC-MAPF, which is a common bottleneck for communication-based MAPF
solvers.

1 INTRODUCTION

Modern robotic systems often involve multiple mobile agents that must navigate and operate within
shared environments, such as robots transporting goods in automated warehouses (Li et al., 2021a) or
autonomous vehicles on public roads (Li et al., 2023). A key abstraction for modeling and solving
the challenge of coordinating such agents safely is multi-agent pathfinding (MAPF) (Stern et al.,
2019).

In MAPF, time is divided into discrete steps, and agents move on a graph structure (typically a 4-
connected grid). Each agent acts synchronously, with each action, either moving to a neighboring
vertex or waiting in place, taking exactly one time step. The goal is to compute a set of individual
plans, one for each agent, that ensures no collisions occur as the agents execute them.

Many challenges of real-world robotics are not directly captured by the MAPF abstraction, including
continuous space and time, asynchronous agent behavior, limited communication and observation,
and various perception constraints. Despite these simplifications, MAPF successfully models the
central difficulty in multi-robot navigation: coordinating agents to avoid collisions while aiming to
optimize a specific cost function. As a result, MAPF has attracted substantial interest from both the
robotics and AI research communities. Furthermore, a number of studies have demonstrated the suc-
cessful application of MAPF-based methods to the continuous, noisy, and uncertain environments
faced by real-world robotic systems (Hönig et al., 2016; Ma et al., 2019a).

MAPF is most commonly approached in a centralized setting, where a single planner with full
knowledge of the environment is responsible for generating plans for all agents. A wide range of
both optimal and suboptimal centralized solvers have been proposed (Standley, 2010; Sharon et al.,
2015; Wagner & Choset, 2011; Surynek et al., 2016; Okumura et al., 2022; Okumura, 2023; Li et al.,
2022; Veerapaneni et al., 2024; Wang et al., 2025).
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Figure 1: Overview of LC-MAPF communication process. At each step, the environment provides
local observations to all agents. Based on the observation, each agent generates a message and
exchanges it with neighboring agents over multiple communication rounds. After the discussion
phase, the agent selects an action based on the aggregated information. This iterative process enables
decentralized coordination through learned communication.

It is well established that optimal MAPF solvers scale poorly with the increasing numbers of agents,
as the problem is NP-hard (Surynek, 2010). Suboptimal solvers, on the other hand, can scale to thou-
sands of agents, but their solution quality may degrade significantly. Consequently, a central focus
of MAPF research is striking the balance between computational efficiency and solution quality.

One promising strategy for addressing this challenge is to adopt a decentralized approach. Here,
MAPF is modeled as a decentralized sequential decision-making problem, where each agent inde-
pendently selects and executes actions at every time step based on local observations. The resulting
decision-making policy may be fully learned or designed as a hybrid, combining learnable and fixed
components (Liu et al., 2020; Li et al., 2021b; Wang et al., 2023; Ma et al., 2021a;b; Tang et al.,
2024; Skrynnik et al., 2024; 2023; Sagirova et al., 2025; Phan et al., 2025). A recent survey provides
a comprehensive overview of developments in this area (Alkazzi & Okumura, 2024).

One of the recent advancements in decentralized, learnable MAPF is MAPF-GPT (Andreychuk
et al., 2025), which relies entirely on supervised learning using a transformer-based neural network
trained on an extensive dataset of approximately one billion observation-action pairs. Despite its
simplicity, MAPF-GPT outperforms most of the state-of-the-art learning-based MAPF methods.

However, a major limitation of MAPF-GPT is its lack of agent-to-agent communication. While
it learns collaborative behavior through the data, it does so without any communication between
agents, as the training data is generated by a centralized solver that does not include communication
signals. This means that MAPF-GPT cannot explicitly facilitate interaction or collaboration between
agents during problem-solving, which could be a key factor in improving performance.

Several existing decentralized MAPF methods, such as SCRIMP, PICO, DCC, and DHC use com-
munication mechanism. However, it is mostly limited to sharing local observations or internally
known state information in one round of communication (Alkazzi & Okumura, 2024). These mech-
anisms often fall short of enabling agents to engage in more meaningful coordination.

We argue that effective communication in decentralized MAPF should extend beyond single-
message exchange and involve multiple rounds of agent interaction. Such iterative communication
enables agents to negotiate, resolve conflicts, and build consistent joint plans that are crucial for
robust multi-agent coordination in complex environments. Motivated by this, we explore how to
equip a large transformer-based imitation learning model with the ability to perform effective local
communication.

Our main contributions are the following:

• We introduce a novel communication learning framework (see Figure 1 for an overview)
called LC-MAPF1, which enables agents to communicate using only the expert demon-
strations of selected actions, without requiring explicit communication supervision.

1Source code: https://anonymous.4open.science/r/LC-MAPF-18734
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• We present a transformer-based model with 2 million parameters that significantly im-
proves performance and sets a new state-of-the-art among learnable decentralized MAPF
solvers. We conduct extensive evaluations and compare it with existing learning-based
approaches.

• Additionally, we extensively study how the number of communication rounds influences
the performance of the agents, as shown in the ablation study. Moreover, we show that
despite incorporating communication, the proposed mechanism maintains linear scalability
as the number of agents grows.

2 RELATED WORK

The related work section covers three categories relevant to the proposed approach: foundation mod-
els for multi-agent systems, communication-based learning in MAPF, and multi-agent pathfinding.

2.1 FOUNDATION MODELS FOR MULTI-AGENT SYSTEMS

Foundation models are typically trained on large-scale datasets, enabling generalization through
zero-shot or few-shot learning (Bommasani et al., 2021; Yang et al., 2023). For autonomous agents,
demonstrations of task execution in the environment are used as a dataset, and generalization implies
the execution of new tasks that were not in the training data distribution without additional demon-
strations or with a minimal number of them (Firoozi et al., 2023). Demonstration-based pretraining
is not commonly used in multi-agent settings, but there are some examples, including games such as
chess (Silver et al., 2016; Ruoss et al., 2024), cooperative video games via self-play (Berner et al.,
2019), and multi-agent pathfinding, as in SCRIMP (Wang et al., 2023).

A key strength of foundation models is their fine-tuning capability, which supports rapid adaptation
to task-specific requirements. While widely adopted in robotics, particularly in multimodal tasks
involving text-based instructions (Firoozi et al., 2023; Team et al., 2024; Kim et al., 2024), their
use in multi-agent systems remains relatively limited. Notable examples include the Magnetic-One
model for language and multimodal tasks in WebArena (Fourney et al., 2024) and MAPF-GPT for
decentralized pathfinding (Andreychuk et al., 2025).

2.2 MULTI-AGENT PATHFINDING

A variety of approaches have been proposed for solving MAPF. Rule-based solvers are designed
for fast computation but lack guarantees on solution quality (Okumura, 2023; Li et al., 2022).
Reduction-based methods convert MAPF into classical problems such as minimum-cost flow or
SAT, leveraging existing solvers to compute optimal solutions (Surynek et al., 2016). Search-based
solvers, such as CBS and its variants (Sharon et al., 2015; 2013; Wagner & Choset, 2011), apply
graph search techniques and often offer optimality or bounded-suboptimality guarantees. Simpler
methods like prioritized planning (Ma et al., 2019b) trade off optimality for efficiency and scalabil-
ity.

2.3 COMMUNICATION-BASED MAPF METHODS

More recently, learning-based approaches have emerged. PRIMAL (Sartoretti et al., 2019) was
among the first to demonstrate decentralized MAPF solving via learning. In case of PRIMAL the
only communication between agents is their corresponding targets. One of the first learnable MAPF
solvers that has a specific learnable communication block was DHC (Ma et al., 2021a) that demon-
strate significant improvement over PRIMAL. Subsequent methods such as DCC (Ma et al., 2021b)
utilize the ideas proposed by DHC, but enhance the communication mechanism by training selec-
tive communication. Another approach, SCRIMP (Wang et al., 2023), combines imitation learning,
reinforcement learning and communication mechanism and improves the efficiency even further.
Another example of a decentralized communication approach coming from the online MAPF is
the SRMT (Sagirova et al., 2025). It allows agents to implicitly exchange information by generat-
ing and broadcasting agents’ working memory representations learned by the memory-augmented
transformer (Burtsev et al., 2020). The memory states used for communication, are updated recur-
rently (Bulatov et al., 2022) to preserve the historical information and improve agents coordination.
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3 BACKGROUND

3.1 PROBLEM STATEMENT

MAPF problem is a tuple (G, s1, ..., sn, g1, ..., gn), where G = (V,E) is a graph representing the
environment, si ∈ V is the start vertex of the i-th agent, and gi ∈ V is its goal vertex. Totally
n agents (A = {u1, . . . , un}) are presented in the environment. The task is to find a set of plans
Pl = {pli} composed of the actions that can be either move to an adjacent vertex or stay at the
current vertex. Additionally, the plans should be conflict-free, i.e., no two agents occupy the same
vertex or traverse the same edge at the same time. The solution cost is typically measured by either
the Sum-of-Costs, SOC(Pl) =

∑n
i=1 cost(pl

i), or the makespan, msn(Pl) = maxni=1 cost(pl
i),

where cost(pli) is the timestep at which agent i reaches its goal and remains there.

MAPF can also be formulated as a sequential decision-making problem, where the task is to con-
struct a centralized policy πcentralized that selects a joint, conflict-free action a = a1 × · · · × an at
each timestep, with ai denoting agent i’s action. Such a policy can be hand-crafted or learned.

Finally, MAPF can also be treated as a decentralized decision-making problem where the goal is
to learn a homogeneous individual policy π shared by all agents, which selects an action for each
agent based solely on local observations and, possibly, communication. The observations typically
include information about nearby obstacles and agents, rather than the full global state.

3.2 IMITATION LEARNING FOR MAPF

Imitation learning seeks to approximate an expert policy π̂ by training a parameterized policy πθ.
A dataset T of expert trajectories is first collected: T̂ = {τ̂i}Ki=1, where each trajectory τ̂i =
{(s1,a1), . . . , (sL,aL)} of length L consists of state and joint action pairs. In MAPF, π̂ is typically
a centralized solver, for example, LaCAM* (Okumura, 2024).

To enable decentralized learning, individual agent trajectories τ π̂u = {(o1u, a1u), . . . , (oLu , aLu )} are
extracted, where otu is the local observation of agent u at time t, and atu is the corresponding expert
action. Observations may be represented as tensors or token sequences (e.g., in transformer-based
models (Ruoss et al., 2025)). The resulting dataset D = {τ π̂u }nu=1 is then used to train the policy.

The learning objective minimizes the negative log-likelihood of expert actions:

θ⋆ = argmin
θ

E(ou,aπ̂
u)∼D

[
− log πθ(a

π̂
u | ou)

]
. (1)

After training, actions are sampled as au ∼ πθ(ou).

4 METHOD

4.1 LOCAL COMMUNICATION MAPF

The scheme for the proposed communication workflow is presented in Figure 2. At each time step
t ∈ [1, . . . , L] for each agent u ∈ [1, . . . , U ], the models takes as input an observation otu

otu = [cost-to-gotu, i
t
u, n

t
u,1, . . . , n

t
u,k], (2)

presented by the tokenized sequence of egocentric cost-to-go matrix cost-to-got
u, information itu

about the agent u and its k local neighboring agents n1
t
u, . . . , nk

t
u. Information about agents con-

tains relative coordinates of current and goal locations, action history for previous k steps, and a
greedy action. The model also takes as input a communication round chat ctu:

ctu = [mt
i,m

t
n1
, . . . ,mt

nk
], (3)

where mt
i refers to the agent u message and mt

n1
, . . . ,mt

nk
are the neighboring agents mes-

sages. The communication is presented by the cycle of several consecutive rounds of mes-
sage generation and exchange, resulting in the prediction of the actions used for training on ex-
pert data. This type of multi-round communication is conceptually similar to message pass-
ing in graph neural networks. In our case, though, each round is implemented by a multi-
layer Transformer that jointly attends to dynamically selected local neighbors and the agent’s

4
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egocentric observation history. The backbone model used for data processing is a transformer
(GPT) with non-causal attention mask, with linear layers for message and action prediction heads.

GPT

observation messages

GPT

observation  messages 

training with 
cross-entropy 
loss on expert 

data

applying positional and 
agent id encoding

LC-MAPF

message

providing observation
N rounds of 

communication 

providing messages

collecting 
messages from 

the agents

Figure 2: Local Communication for MAPF approach.
At each communication round, agents firstly generate the
current chat round messages based on the observation and
the previous round chat, including messages from the con-
sidered agent and its neighbors. Secondly, the generated
messages from all agents are used to update each individ-
ual agent chat state. Updated chat along with observation
are used to predict the action and compute the cross-entropy
loss for training. The chat update and action generation pro-
cedure repeats until the desired number of communication
rounds is reached. The action distribution predicted in the
final communication round is used to sample actions and ap-
ply them in the environment during the execution phase.

Each agent generates its message
based on the information about it-
self and the nearby ones. Consid-
ering that agents with adjacent lo-
cations independently use informa-
tion about each other to generate their
messages, we augment otu with posi-
tional encoding and embedded repre-
sentations of global agent identifiers
idu:

õtu = otu+PosEnc(otu)+Embo(idu).
(4)

In the same way, we enrich chat
representations ctu with the specified
agent identifiers embeddings to spec-
ify to which agent belongs each mes-
sage:

c̃tu = ctu + Embc(idu). (5)

To create such identifiers for a sys-
tem of L agents interacting in the en-
vironment, we sample L unique h-
dimensional vectors randomly sam-
pled from a uniform distribution over
[0, 1), where h is the GPT hidden di-
mensionality. Such vectorized iden-
tifiers do not depend on the overall
number of agents in the particular
episode, providing a flexible instru-
ment for unique ’naming’ of agents’
populations of various sizes, which is
important for the method’s scalabil-
ity.

After all the preparations, we start the first round of communication. At start, agents have observa-
tions and no messages to exchange, so to initialize the communication cycle, we use a set of zero
message vectors c0tu modeling the empty chat history, and pass the concatenated inputs to the GPT:

gtu = GPT([õtu, c̃0
t
u]). (6)

Next, we use the i-th element of gtu corresponding to the considered agent message mt
i slot in the

GPT output sequence to recurrently update it via the message generation head:

m1
t
u = MsgHead(gtu[i]). (7)

As a result, we obtain the m1
t
u - the current round message representation for the agent u. As soon

as the messages for all L agents are generated, we construct the first round chat c1tu that will be
processed by the GPT with action prediction head:

a1
t
u = ActionHead(GPT([õtu, c̃1

t
u])). (8)

The predicted action is used to calculate the cross-entropy loss for this round. On the next round of
communication, we will repeat the process described in Equations 6-8 using the same observation otu
and the updated chat c1tu as inputs. As a result, at each communication round, we use the observation
and the historical information about agents’ conversation from previous rounds to update the chat
state with the current round of messages and make the decision about actions based on the actual
information. Such sequential procedure of message generation followed by the action prediction
instead of parallel generation of messages and actions after a single GPT forward pass allows to
train the model without supervision on the message predictions using only the action prediction loss
to update all the model weights including the message generation head.

5
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After the given number of chat rounds, we aggregate the loss values to perform the optimization step
and backpropagate the gradients. The end-to-end pathfinding objective optimization affects the mes-
sage content and, consequently, the communication through: the parameters generating messages
are updated only through backpropagation of the action prediction loss, with no explicit supervision
on message content. The network learns to encode information most beneficial for coordination.
Below, the model backward pass is provided to better illustrate the gradient flow that enables the
network to learn effective communication.

At time step t (we omit time step marker in formulas below for readability) and communication
round r ∈ [1, . . . , R], an agent u uses the previous round chat c̃r−1

u generates transformer output
representation gru (Eq. 6). Then gru is used to update the message vector mr

u (Eq. 7). Finally, agents
construct current round chats c̃ru and concatenate them with observations õu to predict action logits
aru (Eq. 8). The training objective is the summed cross-entropy loss:

L =
∑

r∈[1,...,R]

CE (aru, a
∗
u) (9)

During the backward pass message mr
u receives no direct supervision. However, it is included into

the transformer input sequence for round (r+1) for each agent in the system that considers agent u
as a neighbor. This is how each agent’s message affects the action logits. The chain rule gives:

∂L
∂mr

u

=
∑
v∈Nu

∑
ρ∈[r+1,...,R]

∂L
∂aρv

× ∂aρv
∂c̃ρv

× ∂cρv

∂mρ−1
u

(10)

where Nu is the set of agents receiving mr
u. Substitution of mr

u definition from Equation 7 gives:

∂L
∂gru[i]

=
∂L
∂mr

u

× ∂MsgHead(gru[i])
∂gru[i]

. (11)

The gradients continue back into the GPT parameters, allowing the single shared loss L to sculpt
each mr

u to carry exactly the information that reduces downstream action error, so agents learn the
communication content purely via end-to-end backpropagation.

During the execution phase, the action generated at the last communication round is used to update
the agent’s state in the environment. For our experiments, we used 4 rounds of communication.

4.2 DATASET

To train LC-MAPF we have collected a new dataset with expert data. The way of collecting dataset
mainly repeats the one made for MAPF-GPT. The dataset is collected on random and maze-like
maps with size varying from 17x17 to 21x21 and 32 agents. The ratio between samples obtained
on maze-like and random maps is 9:1, i.e. most of the data in the dataset is obtained from maze-
like maps as they are more challenging than random maps. As an expert we utilized LaCAM*
approach with 10 seconds timelimt. In contrast to the dataset of MAPF-GPT, that contains 1 billion
samples, the collected dataset contains 32 million samples. The difference is explained by the fact
that one sample in dataset of MAPF-GPT is an observation-action pair for a single agent, while
in the dataset for LC-MAPF each sample contains observations and ground-truth actions for all 32
agents presented in the state. In addition, each sample in the collected dataset contains information
about IDs of the observed agents to identify which of them need to communicate.

4.3 TRAINING AND TECHNICAL DETAILS

The training of LC-MAPF was performed on a server with 4xNVIDIA H100 GPUs for 100,000
iterations with batch size 30 (actual batch size is 960, as each sample has information about 32
agents) and 16 gradient accumulation steps. Thus, during training LC-MAPF has processed 1.5 bil-
lion single-agent observations within ˜95 hours. During training LC-MAPF performed 4 rounds of
communication. The same number of rounds was used in experimental evaluation. The communi-
cation is possible only with agents, information about which is presented in the observation, which
contains information about 13 nearest observable agents at most. Thus, each agent can receive up to
13 messages. More details and an explanation of the chosen limit are provided in the Appendix B.

Table 1 provides more details about hyperparameters used for training and the model.

6
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5 EMPIRICAL EVALUATION

5.1 EXPERIMENTAL SETUP

Parameter Value
Minimum learning rate 6e-5
Maximum learning rate 6e-4
Learning rate decay cosine
Warm-up iterations 2000
AdamW optimizer beta1 0.9
AdamW optimizer beta2 0.95
Gradient clipping 1.0
Weight decay 1e-1
Data type for computations float16
Gradient accumulation steps 16
Block size 256

Number of GPT layers 5
Number of attention heads 5
Hidden size 160

Table 1: Values of hyperparameters used
for training and the model of LC-MAPF.

The experimental evaluation was conducted on the
POGEMA benchmark (Skrynnik et al., 2025) – a
benchmark specifically designed to perform a com-
parison of learning-based MAPF solvers. It con-
tains a variety of different types of maps – Random,
Mazes, Warehouse, Cities-tiles, Cities
and Puzzles. Each of them has its own specific which
is able to demonstrate different aspects of the solvers,
such as ability to efficiently coordinate hundreds of
agents, to resolve complex collisions, to demonstrate
generalization to unseen types of environments, etc.
The benchmark also has an evaluation protocol and
a set of high-level metrics, described below. Perfor-
mance (OOD, Cooperation) is defined as SoCbest

SoC if the
instance is solved and 0 otherwise. Scalability is de-
fined as runtime(|A1|)

runtime(|A2|) ×
|A2|
|A1| . Coordination is defined

as 1 − Number of collisions
|A|×episode length . Finally, Pathfinding is defined

as cost(best path)
cost(found path) if a path is found and 0 otherwise.

Performance, Out-of-Distribution (OOD) and Coop-
eration metrics have the same formula but differ in the set of maps used to evaluate them.
For Performance metric Mazes and Random maps are utilized, for OOD – Warehouse and
Cities-tiles, while for Cooperation – Puzzles. Most of the metrics are relative and de-
pends on the best-found solution cost (SoCbest). To save the consistency of the results with the ones
presented in the benchmark, we have utilized the results of LaCAM* (Okumura, 2024) – centralized
search-based solver, which shows best results among all the approaches presented in the benchmark.
We have also utilized the results of evaluation of multiple state-of-the-art learning-based MAPF
solvers that utilize communication – SCRIMP (Wang et al., 2023) and DCC (Ma et al., 2021b). Out
of the other approaches, presented in the benchmark, we took the MAMBA approach (Egorov &
Shpilman, 2022) as it shows the best results among all the presented pure MARL approaches. In
addition to the proposed method, LC-MAPF, we have also evaluated MAPF-GPT. For evaluation of
MAPF-GPT we utilized the trained model provided by its authors2 with comparable size – 2 million
parameters.

To obtain the results required to compute all metrics, each of the solvers is evaluated on 3376 dif-
ferent scenarios with up to 256 agents. In each run the episode length was set to the default values
of POGEMA benchmark (128 in the most cases, except Cities-tiles – 256, and Cities –
2048). More details about number of instances, sizes of the maps, etc. can be found in (Skrynnik
et al., 2025).

5.2 EXPERIMENTAL RESULTS

The results of the main experiment are depicted in Figure 3. Despite LaCAM*, LC-MAPF substan-
tially outperforms all baselines including MAPF-GPT in terms of Performance and Cooperation.
In contrast to DCC and SCRIMP, whose communication mechanisms heavily depend on the total
number of agents, LC-MAPF strictly considers only limited observable number of agents that allows
scaling linearly to the number of agents and demonstrate perfect Scalability like its predecessor –
MAPF-GPT. In terms of the rest metrics, such as Coordination, Pathfinding and Out-of-Distribution,
LC-MAPF demonstrates comparable results.

All the approaches except MAMBA demonstrate high value of Coordination metric. However, it’s
worth noting that the number of collisions for SCRIMP is actually undefined as it has its own in-
tegrated environment and extra collision resolution technique that guarantees collision-free actions

2https://github.com/Cognitive-AI-Systems/MAPF-GPT
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in the output. A scalability score of 1.0 for LC-MAPF, MAPF-GPT, and MAMBA indicates that
the runtime grows proportionally with the number of agents, demonstrating that these learnable
approaches scale linearly.

20
40

60
80

100

Cooperation

CoordinationOut-of-Distribution

Pathfinding

Performance Scalability

LaCAM
SCRIMP

DCC
MAMBA

MAPF-GPT
LC-MAPF

Figure 3: Experimental results. Each met-
ric is shown relative to LaCAM*, which is a
fully-centralized MAPF solver that utilizes full
knowledge of the environment.

Noteworthy, among the communication-based
learnable MAPF approaches (such as DCC and
SCRIMP) only ours demonstrates linear scalabil-
ity.

Further we investigate the influence of communi-
cation to the cooperative behavior of the agents
and total number of collisions.

Ablation study During the ablation study of
LC-MAPF we wanted to investigate the influence
of the communication mechanism on the perfor-
mance of the approach. To this end, we varied
the number of communication rounds employed
by LC-MAPF (from 1 to 6), as well as turned
off the communication at all. The experiments
were conducted on Mazes maps with number of
agents varying from 8 to 64. For each number
of agents all 128 testing instances provided by
the POGEMA Behcnmark (Skrynnik et al., 2025)
were used. The length of the episode was set to
128. Two performance indicators were tracked: success rate (the ratio of the successfully solved
instances) and number of collisions. The results are shown in Table 2.

Success rate across different LC-MAPF communication rounds

Agents Rounds=0 Rounds=1 Rounds=2 Rounds=3 Rounds=4 Rounds=5 Rounds=6

8 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
16 0.98 ± 0.03 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
24 0.95 ± 0.04 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
32 0.81 ± 0.07 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
48 0.45 ± 0.09 0.87 ± 0.06 0.93 ± 0.04 0.92 ± 0.04 0.95 ± 0.04 0.97 ± 0.03 0.93 ± 0.04
64 0.20 ± 0.07 0.60 ± 0.09 0.69 ± 0.08 0.73 ± 0.07 0.72 ± 0.07 0.72 ± 0.08 0.70 ± 0.08

Collision counts across different LC-MAPF communication rounds

Agents Rounds=0 Rounds=1 Rounds=2 Rounds=3 Rounds=4 Rounds=5 Rounds=6

8 4.8 ± 2.2 0.7 ± 0.3 0.6 ± 0.3 0.6 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 0.5 ± 0.2
16 26.9 ± 5.8 5.1 ± 1.2 4.6 ± 1.0 3.9 ± 0.8 3.6 ± 0.7 3.7 ± 0.7 3.6 ± 0.7
24 75.4 ± 21.1 17.5 ± 3.6 13.1 ± 2.3 12.4 ± 2.1 12.0 ± 1.6 12.1 ± 1.8 13.2 ± 2.3
32 207.2 ± 54.7 42.0 ± 6.5 34.3 ± 5.4 33.1 ± 4.9 31.7 ± 4.1 34.2 ± 4.9 33.4 ± 5.5
48 805.2 ± 131.1 246.2 ± 53.0 193.2 ± 49.3 155.6 ± 24.0 141.2 ± 22.2 149.5 ± 24.1 152.0 ± 27.4
64 2186.7 ± 237.2 904.7 ± 149.7 669.4 ± 119.0 559.8 ± 90.8 562.5 ± 97.0 539.2 ± 105.5 536.6 ± 86.6

Table 2: Success rate and number of collisions of different versions of LC-MAPF and MAPF-GPT
on Mazes map. The provided values are average ± 95% confidence interval. Tan boxes highlight
the best mean values for visibility purposes.

Clearly the ratio of successfully solved instances as well as the amount of occurred collisions de-
pends on the type of map and number of agents presenting in the scenario. The worst results, as
expected, demonstrates LC-MAPF with disabled communication (rounds=0). The absence of any
messages in the input leads to a heavy out-of-distribution for the model. As a result the model
performs significantly worse that any other version. The rest LC-MAPF versions have communica-
tion but differ in the number of communication rounds. Looking at the results, it’s evident, that a
single round of communication is not enough and the performance of LC-MAPF can be enhanced
by raising its number to at least 2. Further increase of number of communication rounds doesn’t
provide such evident profit in terms of success rate, but for sure reduces the number of collisions.
The last fact indicates that communication mechanism trained by the model of LC-MAPF allows
to choose more coordinated joint-actions with less collisions. As a part of the ablation study, in
Appendix A and Appendix B we provide two additional experiments: the former demonstrates the
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robustness of LC-MAPF to the communication errors, and the latter discusses the importance of
the proposed communication bandwidth in terms of the communicating neighborhood size and the
message vector size for the model performance.

Scalability Analysis To better demonstrate the superior scalability of LC-MAPF, we present the
actual decision times of all evaluated learning-based approaches with communication capabilities:
DCC, SCRIMP, and LC-MAPF. These measurements were used to compute the Scalability metric.
Table 3 shows the average time required for all agents to determine their next action across varying
numbers of agents in the Warehouse map scenarios.

Algorithm 32 agents 64 agents 128 agents 192 agents

DCC 48.0 ± 1.0 164.0 ± 2.0 (×3.4) 619.0 ± 2.0 (×12.9) 1314.0 ± 3.0 (×27.4)
SCRIMP 47.0 ± 1.0 106.0 ± 1.0 (×2.3) 388.0 ± 7.0 (×8.3) 1190.0 ± 25.0 (×25.3)
LC-MAPF 117.0 ± 3.0 237.0 ± 1.0 (×2.0) 462.0 ± 2.0 (×3.9) 690.0 ± 1.0 (×5.9)

Table 3: Decision time (in milliseconds) in the instances with different numbers of agents on
Warehouse map.

Although LC-MAPF exhibits higher absolute values for small agent populations, its linear scaling
properties become advantageous as complexity increases. When handling 192 agents, SCRIMP and
DCC require 25.3 and 27.4 times more computation time, respectively, compared to their perfor-
mance with 32 agents. The initially higher decision time of LC-MAPF in scenarios with fewer
agents can be attributed to its multiple rounds of communication.

In practice, to mitigate the negative effect of LC-MAPF decision time in scenarios with smaller
number of agents, the number of communication rounds can be decreased down to 2 rounds (or
less, depending on the actual size of the considered agent population) without performance loss (as
empirically shown in Table 2).

6 CONCLUSION

We introduced LC-MAPF, a novel communication learning framework for decentralized multi-
agent pathfinding that leverages expert demonstrations without explicit communication supervi-
sion. The communication is organized in rounds to increase the level of cooperation between the
agents. Our transformer-based model outperforms state-of-the-art learning-based MAPF solvers on
the POGEMA benchmark, improving coordination and cooperation across diverse scenarios.

LC-MAPF maintains linear scalability with the number of agents, overcoming a common limitation
of communication-based approaches. Ablation studies confirm that multi-round local communica-
tion enhances performance without sacrificing scalability or generalization. These results highlight
LC-MAPF as a foundation model that offers an effective and scalable solution for decentralized
multi-agent pathfinding through multi-round local communication.

LIMITATIONS

The selection of agents for communication within the local field of view may be suboptimal, and
alternative strategies for deciding communication participants could yield better results in certain
scenarios. Another limitation is the use of a fixed number of communication rounds; ideally, this
number should adapt to the complexity of the situation. For instance, when no other agents are
nearby, communication might be unnecessary. While it can still benefit single-agent reasoning, this
does not apply in the context of MAPF. Communication also introduces additional computational
overhead, though it results in a more capable model. Finally, the method assumes homogeneous
agents, not because of a methodological constraint but due to the specific MAPF formulation used.
Supporting heterogeneous agents would likely require a more structured communication protocol,
as communication in the latent space may no longer be feasible.

9
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REPRODUCIBILITY STATEMENT

Metrics are reported with 95% confidence intervals. All hyperparameters are specified in Ta-
ble 1. We describe training details and used hardware in Section 4.3. We also release the full
codebase to ensure reproducibility of results: https://anonymous.4open.science/r/
LC-MAPF-18734.
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APPENDIX

A MESSAGE FAILURE TEST

There is a line of research where the communication in Dec-POMDPs is considered under various
realistic circumstances, such as delay, failure, and cost (Wu et al., 2009; Lauri et al., 2019). In this
section, we evaluate how LC-MAPF handles message transmission failures. For each agent, with
the given probability, we replace the agent’s updated message on each round with a random vector
sampled from the standard normal distribution. We test the LC-MAPF with 20% and 50% message
failure on a set of Random maps from the POGEMA benchmark and compared the results to the
original model. The results are presented in the Table 4.

0% failure 20% failure 50% failure

Agents Success Collisions Success Collisions Success Collisions

8 1.00 ± 0.00 0.5 ± 0.2 1.00 ± 0.00 1.6 ± 0.6 1.00 ± 0.00 2.4 ± 0.8
16 1.00 ± 0.00 2.7 ± 0.5 1.00 ± 0.00 8.2 ± 1.4 1.00 ± 0.00 12.9 ± 2.2
24 1.00 ± 0.00 9.5 ± 2.0 0.99 ± 0.01 35.7 ± 7.3 0.98 ± 0.03 56.4 ± 12.5
32 1.00 ± 0.00 28.9 ± 8.4 0.95 ± 0.04 106.5 ± 25.7 0.94 ± 0.04 163.5 ± 32.3
48 0.98 ± 0.03 133.7 ± 41.2 0.81 ± 0.07 441.4 ± 96.4 0.61 ± 0.09 645.3 ± 90.2
64 0.92 ± 0.05 412.4 ± 101.9 0.51 ± 0.09 1099.5 ± 161.9 0.10 ± 0.05 1468.1 ± 157.5

Table 4: Communication failure test results on Random maps. Zero message failure means the
original LC-MAPF performance. The provided values are average ± 95% confidence interval. Best
results are marked with background color per row.

The success rates comparison demonstrates the negative effect of random noise messages compared
to the LC-MAPF, proving the importance of the information communicated in LC-MAPF messages
for achieving performance improvement. However, despite the extreme experimental setup with
50% message failure probability, the agents can successfully solve simple tasks with 8 and 16 agents,
and obtain partial success in cases with larger agent populations.

B COMMUNICATION BANDWIDTH

LC-MAPF enables communication between an agent and a fixed set of 12 local neighbors. This
limit was chosen because a collision is possible only with an agent that occupies one of the 12 cells
closest to the current location. Communication is not strictly restricted to agents within these cells;
other agents within the observable area can still participate in communication. However, agents in
these cells are prioritized due to their proximity.

For clarity, Figure 4 illustrates the relevant locations and actions that may result in a collision. The
first four agents are positioned in the cardinally adjacent cells, and a collision with them is possible
if both agents attempt to swap positions or if one agent chooses to wait. The next four potentially
colliding agents are located in the diagonally adjacent cells; each of these has two possible actions
that could lead to a collision, specifically in cases where both agents choose to enter the same
cell. The final four agents are located two cells away, but a collision with them remains possible
depending on the chosen actions. Regardless of the actions taken by agents in any other location, a
collision with them in the current step is impossible.

We acknowledge that limited communication can affect performance. However, this constraint is
motivated by practical considerations: in real-world applications, the bandwidth of communica-
tion channels is typically limited. Additionally, communication incurs costs; for instance, sending
messages can significantly drain a robot’s battery. Thus, there is an inherent trade-off between per-
formance and communication bandwidth or cost.

On the one hand, in our approach, this limitation can be partially mitigated through chain commu-
nication. That is, agent A may communicate with agent B at communication round t, and agent B
may subsequently communicate with agent C at round t+ 1. As a result, information from agent A
can be propagated to agent C (with some delay), even though A and C do not directly communicate.
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Figure 4: All agents and the corresponding actions that may result in a collision with the reference
agent (marked as green).

Agents Limit = 1 Limit = 2 Limit = 4 Limit = 8 Limit = 13

8 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
16 0.93 ± 0.04 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
24 0.80 ± 0.07 0.97 ± 0.03 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
32 0.55 ± 0.09 0.90 ± 0.05 1.00 ± 0.00 0.99 ± 0.01 1.00 ± 0.00
48 0.16 ± 0.06 0.47 ± 0.09 0.88 ± 0.05 0.95 ± 0.04 0.98 ± 0.03
64 0.07 ± 0.04 0.20 ± 0.07 0.48 ± 0.09 0.73 ± 0.08 0.73 ± 0.08

Table 5: Success rates for different sizes of the communication neighborhood evaluated on Mazes
maps. The Limit value shows the number of communicating agents. Limit = 13 refers to the original
LC-MAPF. The provided values are average ± 95% confidence interval. Best results are marked
with background color per row.

On the other hand, to prove the effectiveness and efficiency of the proposed neighborhood size,
we test more restrictive neighborhood sizes on the Mazes maps from the POGEMA benchmark.
We limit the number of communicating agents in LC-MAPF to 1, 2, 4, 8, and 13. For example,
Limit = 2 means that each agent receives messages from at most 2 agents (including itself). The
agents are sorted based on their distance to the current agent. Thus, when there are 5 agents in
observation, an agent will receive only two messages from the closest ones. The same logic applies
to the upper bound. If the actual number of agents present in the local field of view is greater than
13, only the closest 13 will be taken into account. The results are presented in Table 5.

The results clearly demonstrate that limiting the number of communicating agents significantly re-
duces the success rate, especially when the most strict limitations (4 agents or fewer) are applied
to instances with larger agent populations (48 and 64 agents). The absence of significant influence
from tighter limits on instances with fewer agents is explained by the fact that the actual number
of agents present in the observations on such instances satisfies the reduced limit in most cases.
This experiment highlights the importance of communication for LC-MAPF and demonstrates that
limiting it can negatively impact performance.

Another dimension of LC-MAPF communication bandwidth is the size of the message vector that
is used by the agents for information exchange. To test how the message vector size affects the
LC-MAPF performance, we modified the message generation process so that the generated message
vector is projected to a space with 4 times less dimensionality and then projected to the original
size, as message vectors are required to have a size equal to the model hidden size to be processed
correctly. The results of the experiment on Mazes maps are presented in Table 6.

Both success rate and number of collisions become worse after reducing the inner dimensionality of
the message vector, which demonstrates the effectiveness of the proposed LC-MAPF configuration.

C LARGE-SCALE EVALUATION
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Success Rate Number of Collisions

Agents Msg=160 Msg=40 Msg=160 Msg=40

8 1.00 ± 0.00 1.00 ± 0.00 0.48 ± 0.16 0.60 ± 0.21
16 1.00 ± 0.00 1.00 ± 0.00 3.63 ± 0.66 4.84 ± 1.05
24 1.00 ± 0.00 1.00 ± 0.00 11.99 ± 1.57 12.91 ± 2.01
32 1.00 ± 0.00 1.00 ± 0.00 31.73 ± 4.11 35.08 ± 5.17
48 0.95 ± 0.04 0.90 ± 0.05 141.23 ± 22.22 183.42 ± 36.07
64 0.72 ± 0.07 0.71 ± 0.08 562.46 ± 97.01 638.62 ± 98.22

Table 6: Effect of the message vector size on LC-MAPF performance on Mazes maps. Each
metric is reported for message size 160 (proposed) and 40 (reduced). Decreasing the message size
negatively affects both success rate and number of collisions. The reported values are mean ± 95%
confidence interval.

Density

Agents 0% 10% 20%

1000 448 462 456
2000 456 480 480
3000 471 494 516
4000 475 481 598
5000 504 614 1024

Table 7: Number of steps required to
solve the corresponding instance de-
pending on obstacle density and the
number of agents in the instance.

The main series of experiments was conducted on the
POGEMA benchmark, where the maximum number of
agents in the instances varies from 64 to 256 depending on
the type of map. Although we have already demonstrated
that LC-MAPF scales linearly with the number of agents,
we also wanted to show that LC-MAPF can scale to thou-
sands of agents and solve instances with such large numbers
of agents. However, the exponential growth in runtime of
other learning-based approaches with communication, such
as SCRIMP and DCC, prevents us from making comparisons
with them on large maps containing thousands of agents. We
evaluated LC-MAPF on 256×256 random maps (with obsta-
cle densities of 10% and 20%) and empty maps (0% density)
with up to 5,000 agents. The results of this experiment are
shown in Table 7. The reported numbers correspond to the
makespan, i.e., the number of steps required for all agents to reach their goal locations (and occupy
them simultaneously). When the value 1024 is reported, the corresponding instance was not success-
fully solved and was terminated. The scalability of LC-MAPF remained linear in this experiment –
it requires approximately 0.5 seconds per step for instances with 1,000 agents and 2.5 seconds for
instances with 5,000 agents.

D DETAILED RESULTS

In Figure 5 and Figure 6 we provide the detailed comparisons of LC-MAPF and baselines in success
rates and sum-of-costs ratios, rspectively, for each map type used in experimental evaluation.
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Figure 5: The detailed success rates of LC-MAPF and baselines for each map type. The shaded area
indicates 95% confidence intervals.

Table 8 we list the aggregated (i.e. based on the all evaluated instances with 8-64 agents for Maze
and 2-4 agents for Puzzles) results for the Maze and Puzzle environments support the Figure 3 and
demonstrate the performance trade-offs against existing baselines.
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Figure 6: The comparison of LC-MAPF and baselines’ sum-of-costs for each map configuration.
Whiskers indicate 95% confidence intervals.

Algorithm Success Rate SoC Makespan Collisions

Mazes
LC-MAPF-2M 0.94 ± 0.02 1214.16 ± 94.86 53.40 ± 2.03 125.26 ± 23.41
MAPF-GPT-2M 0.78 ± 0.03 1452.79 ± 116.50 69.20 ± 2.69 242.24 ± 40.10
SCRIMP 0.61 ± 0.03 1519.17 ± 120.06 76.47 ± 3.09 0.0
DCC 0.47 ± 0.03 1994.17 ± 139.76 90.27 ± 3.18 84.82 ± 8.05
MAMBA 0.10 ± 0.02 3177.16 ± 178.27 119.92 ± 1.83 744.22 ± 64.43
LaCAM* 0.98 ± 0.01 767.11 ± 58.30 38.11 ± 1.33 0.0

Puzzles
LC-MAPF-2M 0.98 ± 0.01 41.10 ± 6.73 15.02 ± 2.07 2.80 ± 0.86
MAPF-GPT-2M 0.94 ± 0.02 63.31 ± 10.58 21.44 ± 3.07 7.73 ± 2.21
SCRIMP 0.85 ± 0.03 77.86 ± 11.20 30.29 ± 4.14 0.0
DCC 0.74 ± 0.04 93.50 ± 11.44 43.62 ± 4.92 1.99 ± 0.69
MAMBA 0.40 ± 0.04 173.60 ± 14.74 81.14 ± 5.41 29.61 ± 4.88
LaCAM* 1.00 ± 0.00 20.84 ± 1.63 8.38 ± 0.50 0.0

Table 8: The detailed results on success rates, sum-of-costs (SoC), makespan, and the number of
collisions on Maze and Puzzles maps. LaCAM* and SCRIMP have zero collisions due to their
usage of centralized solvers. The reported values are mean ± 95% confidence interval.

E DYNAMIC OBSTACLES

In this section, we demonstrate the robustness and adaptability of LC-MAPF in the case of a dynamic
obstacle configuration. We modified both the Random and Mazes environments by introducing the
following stochastic dynamics. At each time step, every obstacle in the environment could be either
removed or re-added with a probability of 0.05. To preserve feasibility and prevent deadlocks, we
ensured that an agent’s current cell is never converted into an obstacle. The resulting success rates
and number of collisions are presented in Table 9.

Random Mazes
Agents Success Rate Collisions Success Rate Collisions

8 1.00 ± 0.00 0.89 ± 0.29 1.00 ± 0.00 1.10 ± 0.33
16 1.00 ± 0.00 4.76 ± 0.79 1.00 ± 0.00 5.07 ± 0.72
24 1.00 ± 0.00 12.57 ± 1.68 1.00 ± 0.00 14.16 ± 1.61
32 1.00 ± 0.00 27.26 ± 2.73 1.00 ± 0.00 30.39 ± 2.95
48 0.98 ± 0.03 88.73 ± 7.46 0.98 ± 0.02 100.82 ± 8.31
64 0.93 ± 0.04 216.58 ± 18.40 0.95 ± 0.04 235.39 ± 15.28

Table 9: Success rates and number of collisions for LC-MAPF in dynamic obstacles scenario on
Random and Mazes maps. The reported values are mean ± 95% confidence interval.

For this experiment, we do not re-train LC-MAPF in dynamic settings and employ the dynamic
scenario only for execution. LC-MAPF maintains high success rates with only minor degradation
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as the number of agents increases. These results highlight the strengths of a learnable, decentralized
approach.

To note, success rates in the Mazes environment with dynamic obstacles are marginally higher than
in the static execution scenario reported in the main paper. This is because the occasional removal of
obstacles can create shortcuts or open alternative paths, reducing congestion and making navigation
easier in structured maze layouts.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used exclusively for text polishing and editing (e.g., grammar, spelling, word choice).
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