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ABSTRACT

This paper proposes a framework that applies reinforcement learning to multi-
stage interval-censored data processing to develop an intelligent decision system
capable of offering personalized behavioral recommendations based on observers’
state and action variables. Interval-censored data is a common form of data
encountered in practical data analysis, where observed results are only known
to lie within certain intervals rather than exact values. This approach not only
adapts to individual heterogeneity but also provides valuable decision support
for personalized treatment. Experimental results demonstrate that this integrated
approach effectively enhances individuals’ longevity, providing a new method
for personalized interventions and recommendations. This research is significant
for the development of intelligent and personalized health management systems,
offering valuable insights for future health sciences and intelligent decision systems.

1 INTRODUCTION

Motivation. With the advancement of medical research and clinical data analysis, interval-censored
data has become an important component of survival analysis. However, existing reinforcement
learning and policy optimization methods have mostly focused on right-censored data, neglecting the
unique characteristics of interval-censored data. Interval-censored data is more complex than right-
censored data because it involves greater uncertainty in the information. In practical medical research,
particularly in cancer treatment and clinical follow-up studies, interval-censored data is commonly
encountered. Effectively handling such data, especially when optimizing treatment strategies, remains
a pressing challenge.

Example 1. In cancer treatment, due to periodic assessments (such as checking the status of cancer
cells every month or every three months), doctors cannot precisely determine the exact time of cancer
progression or transformation. They can only know the state of cancer between two successive
assessments, making the survival time or disease progression time interval-censored rather than
censored at a specific point. This interval-censored data is more complex to handle than right-
censored data, as it involves uncertainty within a time range. It requires the integration of existing
treatment information to optimize decision-making, ultimately aiming to improve patient survival
rates and treatment outcomes more effectively.

Example 2. In clinical follow-up studies on hypertension, patients’ blood pressure is typically
measured once a week or every two weeks. However, the exact moment when a patient’s blood
pressure exceeds a certain threshold (i.e., the “conversion” event) cannot be accurately measured.
Researchers can only know that the blood pressure exceeded the threshold between two measurements,
but the exact moment of the increase remains undetermined. As a result, this conversion event
constitutes interval-censored data.

Challenges. The application of reinforcement learning (RL) to interval-censored data presents several
key challenges. These challenges arise primarily from the inherent complexities of interval-censored
data and the limitations of existing methods designed for right-censored data. Firstly, interval-
censored data introduces uncertainty as the event time is only known to lie within a specific time
interval. This makes it difficult to directly apply RL methods, which typically rely on precise event
times. To address this, we replace instantaneous rewards with the logarithm of the survival function
to better capture this uncertainty. Secondly, individuals may have different observations at various
stages, and some may exit or re-enter the study at different times. Incorporating this individual
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heterogeneity and stage variability into the RL model is crucial for providing personalized treatment
recommendations. Finally, optimizing decision strategies and ensuring that the value functions have
desirable properties is a significant challenge. The value functions must account for the uncertainty
in event times and converge to the true optimal strategy despite the noise in the data.

Proposed Method. This paper proposes an innovative reinforcement learning method to address op-
timal strategy estimation under interval-censored data structures. In contrast to traditional approaches
that rely on instantaneous rewards, which are unavailable due to the nature of interval-censored data,
we replace the instantaneous reward with the logarithm of the survival function. This adaptation
allows the model to better account for the inherent characteristics of censored data. The method is ap-
plied to multi-stage decision problems, providing a robust solution to real-life challenges where such
data issues arise. By leveraging this approach, the model can effectively optimize decision-making
strategies across multiple stages, making it particularly suited for practical scenarios, such as clinical
data analysis or other settings involving interval-censored data.

Contribution. The main contributions of this paper are as follows:
(1) Development of a Reinforcement Learning Framework for Interval-Censored Data. This
paper introduces a novel reinforcement learning approach tailored to handle interval-censored data
structures. By replacing instantaneous rewards with the logarithm of the survival function, the method
accounts for the challenges posed by censored data, which are typically unaddressed in traditional
approaches.
(2) Application to Multi-Stage Decision Problems. The proposed method is extended to multi-stage
decision-making problems, providing a robust framework for optimizing strategies in real-world
scenarios. This allows for dynamic and adaptive decision-making across various stages, making
it highly applicable to fields such as clinical research, personalized healthcare, and other settings
involving censored data.
(3) Practical Impact on Personalized Health Management. The framework’s ability to effectively
model personalized treatment decisions and optimize long-term outcomes is demonstrated, showing
its potential for enhancing personalized interventions in medical settings.

2 RELATED WORK

RL for Censored Survival Data. Reinforcement learning (RL) has already been applied to survival
data analysis, particularly in optimizing treatment strategies. These applications are especially
relevant when dealing with censored survival data, which plays a critical role in personalized
treatment decision-making. For example, Goldberg & Kosorok (2012) developed a Q-learning
method for censored survival data to estimate optimal dynamic treatment regimes, and derived finite
sample risk bounds associated with the generalization error of the estimated regime. Zhao et al.
(2015) proposed a doubly robust estimator for expected survival time based on censored data, using
outcome-weighted learning to estimate the optimal treatment regime. Jiang et al. (2017a) proposed
two non-parametric estimators for the survival function of patients following a given treatment regime
involving one or more decisions. Simoneau et al. (2019) extended the dynamic weighted ordinary
least squares (dWOLS) approach to the censored data. Zhang et al. (2022) further extended DWSurv
to estimate optimal DTRs of the censored data with multiple treatment options, which also inherits the
shortcomings of DWSurv. Cho et al. (2023) developed a general dynamic treatment regime estimator
for censored data, which allows the failure time to be conditionally independent of censoring and
dependent on the treatment decision times.

Gap in RL for Interval-Censored Data. In the aforementioned literature, the focus is primarily
on methods developed for right-censored data. However, in medical research and survival analysis,
interval-censored data is often encountered, where the exact event time cannot be precisely observed,
and only the time interval in which the event occurs is known Finkelstein (1986). For example, in
clinical and medical follow-up studies, the failure time of interest is usually only known to lie between
two examination times or within a certain time interval (Finkelstein, 1986; Sun, 2006). Compared to
right-censored data, interval-censored data presents a more complex structure. While right-censored
data typically includes some precisely observed failure times, interval-censored data introduces higher
uncertainty in the information. This uncertainty poses significant challenges in identifying optimal
treatment strategies in precision medicine. To the best of our knowledge, the application of RL to
interval-censored data has not been extensively explored, particularly in the context of developing
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individualized treatment strategies. Our research aims to fill this gap by developing a novel RL
approach that can effectively handle interval-censored data. We propose a method that incorporates
the inherent uncertainty in the event times and leverages the strengths of RL to identify optimal
treatment policies. This innovative approach has the potential to significantly advance the field of
personalized medicine by providing more accurate and tailored treatment recommendations.

3 NOTATION AND BACKGROUND

Data Background. Assume that at each stage, the response variable of interest is subject to interval
censoring. Specifically, for the i-th individual (e.g., patient) at the k-th stage, the researchers can only
observe that the event of interest occurs between two monitoring times, Ui,k and Vi,k. More precisely,
at time Ui,k, the event has not yet occurred, while at time Vi,k, the event is observed to have occurred,
with the condition Ui,k < Vi,k. Due to the inability to conduct continuous real-time monitoring for
each individual across multiple stages, the researchers are unable to pinpoint the exact time of the
event’s occurrence. Instead, they only know that it occurs within the interval (Ui,k, Vi,k]. The study
involves n individuals (patients), and the research problem is divided into K distinct stages.

(a) Example 1 of multi-stage interval-censored data (b) Example 2 of multi-stage interval-censored data

Figure 1: Examples of multi-stage interval-censored data

In particular, we consider situations in which individuals may enter the study at different stages, as well
as situations in which they may leave the study for some reason. Therefore, we define the characteristic
function ξi,k = 1 if the individual i exists in the stage k in the research experiment, otherwise ξi,k = 0.
Specifically, there may be instances of stage skipping. For example, in cancer research, when the
number of cancer cells does not significantly increase at the original site, but a phenomenon such
as bone metastasis occurs, the patient may progress directly from stage 2 to stage 4. In such cases,
ξi,3 = 0. Moreover, for individuals whose first observation upon entering stage k reveals that the event
has already occurred, the event time is within the interval [0, U ], a scenario referred to as left censoring.
This corresponds to the indicator function δ1,i,k = 1, δ2,i,k = 0, δ3,i,k = 0. When the event time in
stage k falls within the interval (U, V ], it is referred to as interval censoring, with the corresponding
indicator values δ1,i,k = 0, δ2,i,k = 1, δ3,i,k = 0. In particular, if a patient exits the study for any
reason (excluding death) during stage k, and the detection at time V in stage k shows that the event
has not yet occurred, the event time is considered to be within the interval (V,∞), which is known as
right censoring. In this case, the indicator function is δ1,i,k = 0, δ2,i,k = 0, δ3,i,k = 1. Additionally,
for individuals in stage k with ξi,k = 1, it is always the case that δ1,i,k + δ2,i,k + δ3,i,k = 1, ensuring
that each individual’s data at each stage is categorized into one of the three types of censoring: left,
interval, or right censoring.

Multi-Stage Interval-Censored Data. Let’s first briefly review the basic concepts and notation
of reinforcement learning in the context of complete data. Let X0,t ∈ X be the time-varying
covariates collected at time point t, A0,t ∈ A denote the action taken at time t, and Y0,t stand for
the immediate reward observed. Here, X and A denote the state and action space respectively. We
assume X is a subspace of Xp where p is the number of state vectors and A is a discrete space
{0, 1, . . . ,m−1} where m denotes the number of actions. Suppose the system satisfies the following
Markov Assumption (MA), Pr(X0,t+1|X0,t = x, A0,t = a, {X0,j , A0,j}0≤j<t) = P (X0,t+1|x, a),
for some transition function P . That is, the above formula is the conditional probability of the next
state given the condition of the current state-action pair.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Assuming that a total of K stages of study are conducted, then individual trajectories can be ex-
pressed as D = {X0,k, A0,k, U0,k, V0,k, δ1,0,k, δ2,0,k, δ3,0,k, ξ0,k}Kk=1. Note that the dataset D for
the individual includes observations collected over K time points, with actions selected according to
a behavior policy. Define the conditional survival function for failure time Y given covariates (state
and action) as SY (y|x, a) = P (Y ≥ y|X = x, A = a), which is the probability that Y ≥ y given
X, A.

4 EVALUATION FOR INTERVAL-CENSORED DATA

Summary. This section discusses the development of a reinforcement learning framework based
on the MDP assumption for multi-stage interval-censored data, aiming to find the optimal decision
policy. Additionally, to effectively estimate the immediate reward in the context of interval-censored
data, a Sieve-based maximum likelihood estimation method is proposed for constructing the reward
estimates.

4.1 METHODOLOG

We assume that the dataset, Dn, consists of n trajectories, Dn =
{
Di
}n
i=1

, with Di =

{Xi,k, Ai,k, Ui,k, Vi,k, δ1,i,k, δ2,i,k, δ3,i,k, ξi,k}Kk=1. Each trajectory, Di, is an i.i.d. copy of D de-
scribed in Section 3. Recall that {Ai,t}Kt=1, the actions in D, are selected by the behavior policy, π.
In the following, the expectation, E, without the subscript is with respect to the distribution of the
trajectory, D, under the behavior policy. The transition probability, denoted by P , is defined for any
measurable set B ∈ X as P (B | x, a) = Pr(X0,t+1 ∈ B | X0,t = x, A0,t = a) where X0,t and A0,t

represent the state and action at time t, respectively. This transition probability is time-invariant, in
accordance with the Markov assumption (MA). Let p(x′ | x, a) denote the transition density with
respect to a chosen reference measure (e.g., the counting measure when X is discrete).

The Reward in Interval-Censored Data. To evaluate cumulative rewards under a pre-specified
time-invariant Markovian policy π, we need to define an appropriate immediate reward. If the
rewards were precisely observed, these exact values could naturally serve as the reward. However,
due to the interval-censored nature of the data, such precise observations are unavailable. To address
this, we define the immediate reward as the logarithm of the conditional probability Y0,k ≥ Tk

given X0,k, A0,k, i.e., log
(
SY0,k

(Tk|X0,k, A0,k)
)
= −ΛY0,k

(Tk|X0,k, A0,k), where ΛY0,k
denotes

the cumulative hazard function of Y0,k, and Tk represents the ideal duration for which an individual
should remain in stage k without transitioning to the next stage. Since the survival function takes
values in the range [0, 1], it is evident that the immediate reward defined above is bounded. The
choice of the logarithmic survival function as the immediate reward is not only a practical substitution
but also offers several advantages. It effectively quantifies the likelihood of achieving a threshold
survival time, aligning with the study’s objective of maximizing survival time. Additionally, the
survival function and its logarithm are widely used in survival analysis, making them mathematically
tractable for policy optimization.

The Action-Value Function in Interval-Censored Data. Using the definition of the
above reward function, the cumulative discounted reward beyond stage t may be written as
−
∑K

k=t γ
k−tΛY0,k

(Tk|X0,k, A0,k). The goal is to identify an optimal policy that maximizes the
probability of the survival time exceeding a specified threshold. With this definition of immediate
reward, the action-value function (Q-function) Qπ(x, a) under policy π(x) for x ∈ X, is expressed
as the expected discounted cumulative reward:

−Eπ

[
K∑
k=t

γk−tΛY0,k
(Tk|X0,k, A0,k)

∣∣∣X0,t = x, A0,t = a

]

where γ is the discount factor. This is the expected cumulative discounted reward if taking treatment
a at state x at stage t and then following π(x) until the end of the study.

The Bellman Equation. Let us denote immediate reward −ΛY0,k
(Tk|X0,k, A0,k) = Rk. For

γ < 1, the optimal action-value function is defined as Q∗(x, a) = maxπ Q
π(x, a), and satisfies the
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following recursive relationship:

Q∗(x, a) = E

{
Rt+1+γmax

a′∈A
Q∗ (Xt+1, a

′) | Xt=x, At=a

}
, (1)

where x ∈ X, and a ∈ A. The function Q∗(x, a) is influenced by the transition probability distribu-
tion, specifically the probability of reaching state c given that (Xt, At) = (x, a). A policy π∗(x),x ∈
X, is called an optimal dynamic treatment regime if it satisfies Q∗(x, a) = Qπ∗

(x, a). For a given
x ∈ X, he optimal policy can equivalently be determined as π∗(x) = argmaxa∈A Q∗(x, a).

Equation (1) is referred to as the Bellman equation for Q∗(x, a) (Sutton & Barto, 1999; Si et al.,
2004). The discount factor γ determines the trade-off between immediate and long-term effects
of treatments on the action-value function. When γ = 0, the focus is solely on maximizing the
immediate reward, disregarding any impact the action may have on future rewards or outcomes. As
γ → 1, greater weight is placed on future rewards.

4.2 ESTIMATION OF THE SURVIVAL FUNCTION

The Maximum Likelihood Function. First, we can solve the survival function estimation of each
stage by maximum likelihood estimation. For this part of processing, we can first construct the
likelihood function corresponding to stage k as follows:

Lk =

n∏
i=1

{(
1− S(Ui,k|Xi,k, Ai,k)

)ξi,kδ1,i,k(S(Ui,k|Xi,k, Ai,k)− S(Vi,k|Xi,k, Ai,k)
)ξi,kδ2,i,k

(
S(Vi,k|Xi,k, Ai,k)

)ξi,kδ3,i,k} ,

and the logarithmic likelihood function is expressed as Lk:
n∑

i=1

{
ξi,kδ1,i,k log

(
1− S(Ui,k|Xi,k, Ai,k)

)
+ ξi,kδ2,i,k log

(
S(Ui,k|Xi,k, Ai,k)− S(Vi,k|Xi,k, Ai,k)

)
+ξi,kδ3,i,k log

(
S(Vi,k|Xi,k, Ai,k)

)}
=

n∑
i=1

ξi,k log
(
S(Y L

i,k|Xi,k, Ai,k)− S(Y R
i,k|Xi,k, Ai,k)

)
,

where Y L
i,k = δ1,i,k × 0 + δ2,i,k × Ui,k + δ3,i,k × Vi,k, and Y R

i,k = δ1,i,k × Ui,k + δ2,i,k × (Vi,k) +
δ3,i,k ×∞.

Bernstein polynomial parameterization. Here we considers the use of Bernstein polynomials
to approximate the baseline cumulative hazard function Λ0(·) in survival analysis, as discussed
below by following Zhou et al. (2017). The corresponding method for estimating the survival
function is referred to as the sieve method. The sieve method, which approximates the survival
function through successive refinement, is effective for estimating survival functions in most survival
data models. Define the parametric space of ϑ to be Θ = {ϑ = (η,Λ0) ∈ B ⊗ M}, where
B = {η|η ∈ R2p+1, ∥η∥ ≤M} with M is a positive constant andM is the collection of all bounded
and continuous nondecreasing, nonnegative functions over the interval [u, v] with 0 ≤ u < v <∞.
In general, the values of u and v are the minimum and maximum values of the observed data. Also
define the sieve space Θn = {ϑn = (η,Λn) ∈ B ⊗Mn}, where

Mn =

Λn=

m∑
k=0

ϕ∗
kBk(t,m, u, v) :

∑
0≤k≤m

|ϕ∗
k|≤Mn, 0≤ϕ∗

0≤ϕ∗
1≤ . . .≤ϕ∗

m


with the ϕ∗

k’s being some parameters, Mn = O(na) for some a > 0 controlling the size of Θn, and
the Bernstein basis polynomials of degree m = o(ns) for some s ∈ (0, 1) is

Bk(t,m, u, v) =

(
m

k

)( t− v

u− v

)k(
1− t− v

u− v

)m−k

,

with k = 0, . . . ,m. Note that due to the nonnegativity and monotonicity features of Λ0(·), we need
the constraint 0 ≤ ϕ∗

0 ≤ ϕ∗
1 ≤ . . . ≤ ϕ∗

m, but it can be easily attained by the reparameterization
ϕ∗
0 = eϕ0 and ϕ∗

k =
∑k

i=0 e
ϕi , 1 ≤ i ≤ m.
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5 THEORETICAL RESULTS

Summary.In this section, we examine the theoretical properties of action-value function estimation in
the context of interval-censored data. We begin by presenting the essential regularization conditions
that form the foundation of our analysis.
Assumption 5.1. For each stage k, there exists a constant η > 0 such that Pr(Vk − Uk ≥ η) = 1.
Additionally, the union of the supports of Uk and Vk is contained in the interval [σ, τ ], where
0 < σ < τ < +∞.
Assumption 5.2. The distribution of X has bounded support and is not concentrated on any proper
subspace of X. Also, E{var(X | U)} and E{var(X | V )} are positive definite;
Assumption 5.3. For r = 1 or 2, the function Λ0 ∈M is continuously differentiable up to order r
in [σ, τ ], with the first derivative being strictly positive, and satisfies α−1 < Λ0(σ) < Λ0(τ) < α for
some positive constant α.

Assumption 5.4. The sample trajectories
{
Di
}n
i=1

are generated from (possibly n different) Markov
decision processes satisfying
(1) (Markovianity) For any i ∈ {1, . . . , n} and k ∈ {1, . . . ,K}, it holds that Xi,k

is independent of {Hj}0≤s≤k−1, conditional on (Xi,k−1, Ai,k−1), where {Hj} denots
{(Xi,s, Ai,s, Ui,s, Vi,s, δ1,i,s, δ2,i,s, δ3,i,s, ξi,s)}.
(2) (Time-Homogeneity) The conditional density Pr (Xi,k+1 | Xi,k, Ai,t) is the same over k for any
i ∈ {1, . . . , n}.
(3) (Conditional Mean Independence(CMI)) For any i ∈ {1, . . . , n} and k ∈ {1, . . . ,K}, it holds
that

E
[
Ri,k | Xi,k = x, Ai,k = a, {Hs}0≤s<k

]
= E [Ri,k | Xi,k = x, Ai,k = a] = ri(x, a),

where Ri,k = logSY0,k
(t | Xi,k, Ai,k), for some bounded reward function ri(x, a).

Assumptions 5.1-5.3 are widely adopted in the study of interval-censored data (Huang & Rossini,
1997; Zhang et al., 2010) and are generally satisfied in practical scenarios. Assumptions 5.4 is
commonly seen in the reinforcement learning framework, as demonstrated in the works of Chen et al.
(2022); Shi et al. (2022). Estimating SY0,k

(·|X̃k, Ãk) can be challenging because there are at least two
potential treatments at each stage, and Y0,k can not be observed accurately due to interval censoring.
Here, we can adopt various estimation methods, including but not limited to the traditional Cox
proportional hazards model, accelerated failure time model, and neural network-based approaches.
We summarize the asymptotic normality property of the proposed Q-function based on the estimation
error in the following Theorem.

Theorem 5.5. Under the Assumption 5.1-5.4, we denote Λ̂Tk
(t|X̃k, Ãk)−ΛTk

(t|X̃k, Ãk) = ζk(Dn)

and Q̂π(x̃t, ãt)−Qπ(xt, at) = δπt . If ζk(Dn) are mutually independent and satisfy E[ζk(Dn)] = 0
and E[ζ2k(Dn)] < +∞, ∀k,Dn, then ∀π ∈ Π we have

E [δπt ] = 0, and V ar [δπt ] ≤
K̄∑
k=t

γ2k−2t sup
k

E[ζ2k(Dn)]. (2)

Remark.This theorem establishes that under the given assumptions, the estimator Q̂π∗
(x̃, ã) is

unbiased, with its expected value equal to the true action-value function. Additionally, it quantifies
the variance of the estimator, which depends on the underlying distribution, the optimal policy, and
the discount factor. The results provide insight into the reliability and behavior of the estimator, with
the variance influenced by the temporal dynamics and transition probabilities in the model.

6 A SIMULATION STUDY

In this paper, the data structure observed by the researchers should be
(Ui,k, Vi,k, δ1,i,k, δ2,i,k, δ3,i,k, ξi,k,Xi,k), the true response variable Yi,k located between
Y L
i,k = δ1,i,k× 0+ δ2,i,k×Ui,k + δ3,i,k×Vi,k and Y R

i,k = δ1,i,k×Ui,k + δ2,i,k× (Vi,k)+ δ3,i,k× η,
where η is a sufficiently large constant that we take the value of 106 here. In the simulation study,
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we consider that there are K = 10 stages. For the initial phase (i.e. k = 1), we generate the
two-dimensional covariates Xi,1 from the standard normal distribution N(0, I2). For each phase,
you can choose an action from 0 or 1. The iterative formula for k = 1, 2, . . . , 9,Xi,k+1 is as follows:

Xi,k+1 =

[
3
4 (2Ai,k − 1) 0

0 3
4 (2Ai,k − 1)

]
Xi,k + ϵi,k,

where ϵi,k is the random error term and its distribution satisfies the multivariate normal distribution
N(0, 1/4I2).

Cox Proportional Hazards model. Assume that the response variable Yi,k follows the fol-
low Cox Proportional Hazards model Λ(Yi,k|Xi,k, Ai,k) = Λ0(t) exp(Z

⊤
i,kη), where Zi,k =

(X⊤
i,k, Ai,k, Ai,kX

⊤
i,k)

⊤, the corresponding parameter set as η = (−2, 1,−0.5, 4,−2)⊤, and the
cumulative hazard function set as Λ0(t) = t.

Accelerated Failure Time Model. Assume that the response variable Yi,k was generated under the
transformation model

log Yi,k = −(Z⊤
i,kη) + ϵi,k, (3)

where Zi,k = (X⊤
i,k, Ai,k, Ai,kX

⊤
i,k)

⊤, the corresponding parameter set as η =

(−2, 1,−0.5, 4,−2)⊤, and the error ϵ0,k follows the standard normal distribution.

(a) Cox PH Model (b) AFT Model

Figure 2: Average Accuracy of each Stage to Episodes

To simulate the time boundary for each stage, we impose an upper bound of 4 on the generated
Yi,k, meaning the generated Yi,k will be truncated at 4. Subsequently, we generate Ji,k following a
uniform distribution U(0.5, 1.5) and Hi,k following a uniform distribution U(3, 4.5− 0.1k). This
setup is intended to simulate right-censoring caused by an increasing number of people choosing not
to wear the device as the order increases. We then define:

• When Yi,k ≤ Ji,k: δ1,i,k = 1 and Ui,k = Ji,k.

• When Ji,k ≤ Yi,k ≤ Ji,k +Hi,k: δ2,i,k = 1 and Ui,k = Ji,k, Vi,k = Ji,k.

• When Yi,k ≥ Ji,k +Hi,k: δ3,i,k = 1 and Ui,k = Ji,k +Hi,k.

We set α = 1
2 . For DDPG-based neural networks, we use a reinforcement learning agent with a batch

size of 32, a replay buffer of 6400, a learning rate of 0.001, a soft update τ of 0.01, and a discount
factor γ of 0.99.We use the DDPG algorithm, with the detailed steps provided in Algorithm 1 in the
appendix A.2.The network is updated at every step and torrents are used to ensure repeatability. We
did 100 episodes in each condition. The results of our analysis are presented as follows:

As shown in Figure 2, it can be observed that the accuracy of the formulated strategies increases
with the number of training iterations. Moreover, the AFT model demonstrates higher accuracy, and
as the sample size increases, the accuracy stabilizes and improves. From Figure 3, we can see that
the rewards obtained also increase with training, corresponding to the improvement in accuracy. In
Figure 6, the change in the right-censoring rate in our simulation is illustrated. It is evident that the
censoring rates under the two models are close to each other. Furthermore, as the number of training
iterations increases and the formulated strategies stabilize, the right-censoring rate also stabilizes.
Additionally, with larger sample sizes, the censoring rate becomes more stable. Next, we will present
the results at different sample sizes in phases.

7
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(a) Cox PH Model (b) AFT Model

Figure 3: Total Scores of each Stage to Episodes, which demonstrates that our method converges as
the number of training episodes increases.
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(a) N = 50
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(b) N = 1000
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(c) N = 5000

Figure 4: Interval censoring rates of all episodes for each stage under different N using Aft and Cox
Model

In Figure 4, we can observe that whether using the Cox PH Model or the AFT Model, the interval
censoring rate at each stage tends to stabilize as the sample size increases, and the ratios under the
fitting of the two models are similar. In Figure 7, we can see that regardless of whether the Cox PH
Model or the AFT Model is used, the left censoring rate at each stage tends to stabilize as the sample
size increases, and the ratios under the fitting of the two models are similar. In our simulated scenario,
the initial stage shows a higher interval censoring rate, approximately 65%, which later decreases to
around 40%. As shown in Figure 8 and Figure 9, the accuracy of decision-making tends to stabilize
as the training sample size increases. The accuracy when using the Cox PH Model is consistently
above 75%, and when using the AFT Model, it is consistently above 90%. Moreover, when the
sample size reaches 5000, the accuracy for both models exceeds 95%. This indicates that under this
simulation, the fitting effect of the AFT Model is relatively better, as it more accurately reflects the
relationship between the reward values, allowing for the formulation of correct strategies. Based on
the experimental results, our proposed method demonstrates excellent performance in learning the
specified strategy for both large and small sample sizes, achieving high accuracy. We also provide the
left censoring rate and a comparison of the accuracy of the two methods at each stage in a boxplot in
Appendix A.4.

7 AN APPLICATION

In this section, we apply the framework proposed in earlier sections to analyze survival time data
from breast cancer patients in the Surveillance, Epidemiology, and End Results (SEER) program,
a widely recognized resource in cancer research (https://seer.cancer.gov). The SEER
program was established as one of the first steps in the War on Cancer declared by President Nixon’s
Administration and began collecting information on January 1, 1973 in some of US states with
other areas added to the SEER database over the years. After the year 2000, the SEER captured
approximately 25% of all cancers diagnosed in the United States each year.

The data considered in the following analysis were submitted in November 2020 and released in
April 2021. The dataset includes information on 95,056 breast cancer patients diagnosed between
2010 and 2015, along with 11 covariates, including sex, year of diagnosis, race, primary site, tumor
size, breast T stage, and others. For the analysis here, we are mainly interested in the survival time of
this stage, the failure time of interest, of the cancer patient, on which only interval-censored data are
available due to the periodic collection nature of the data. In this study, breast cancer was classified

8
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into stages based on immunohistochemical results. Specifically, the following stages were identified:
Stage 1, HR+/HER2+ (Luminal B); Stage 2, HR+/HER2- (Luminal A); Stage 3, HR-/HER2+ (HER2
enriched); Stage 4, HR-/HER2- (Triple Negative). In addition, the focus of this study is on the action
of radiation. Based on the official documentation, we define Xi,k as the information of the i-th
individual at the k-th stage, Ai,k as a binary variable indicating treatment (1 for treated, 0 for not
treated), Ui,k as the left endpoint of the observed event interval, and Vi,k as the right endpoint of the
observed event interval.

We applied the Cox proportional hazards model to estimate the survival function and subsequently
used reinforcement learning methods, including Deep Q-Network (DQN) (Mnih et al., 2015), Dis-
crete Conservative Q-Learning (DiscreteCQL) (Kumar et al., 2020), Discrete Batch-Constrained
Q-Learning (DiscreteBCQ) (Fujimoto et al., 2019), and Double Deep Q-Network (DoubleDQN)
Van Hasselt et al. (2016), through the d3rlpy library for fitting.

Figure 5: Trajectories of the average Q-
value in week 1 over expect time based
on different methods.

Table 1: Significant Variables with p-value < 0.005 in Each
Stage

Variable Stage 1 Stage 2 Stage 3 Stage 4
X1 1.53e-29 3.06e-04
X10 0 2.04e-29 4.73e-40 1.10e-81
X11 3.61e-26 2.70e-03
X2 1.52e-12 7.37e-06 3.23e-07
X6 0 1.11e-14 2.24e-20 1.11e-33

X1 to X11 represent the following variables: X1 indicates race (e.g., White, Black, Asian, etc.), X2
represents the original ethnicity classification (e.g., Hispanic and Non-Hispanic), X6 refers to tumor
size and external evaluation, and X10 and X11 pertain to clinical features and staging of breast cancer.
According to the results shown in Table 1, X1 is significant in stages 1 and 3, X10 is significant
across all four stages, X11 is significant in stages 1 and 3, X2 is significant in stages 1, 3, and 4,
and X6 is significant in all stages. Overall, X10 and X6 are significant in all stages, suggesting
that their influence is consistent and important throughout the different stages. The significance
of X2, X1, and X11 appears only in certain stages, indicating that their impact may vary across
stages. The specific code can be referenced in our supplementary material. In summary, our method
provides a probabilistic analysis of interval-censored data under reinforcement learning and presents
the significant features at each stage.

8 CONCLUSION

This paper presents a novel reinforcement learning approach for handling multi-stage interval-
censored data. In such data structures, exact reward signals are unavailable, requiring indirect
methods for decision-making optimization. To address this, we define the immediate reward as the
logarithmic survival function, transforming incomplete reward information into a usable form within
survival analysis. Additionally, we replace the traditional survival function with a sieve estimate to
better handle the challenges of interval censoring, improving the model’s robustness and predictive
capability. Building on this, we construct a Q-function tailored to this framework, optimizing
treatment policies and identifying the best strategies across multiple decision stages. Overall, the
proposed method provides a new solution for dealing with uncertainty in interval-censored data,
combining reinforcement learning with survival analysis to enhance decision-making in medical
research. This approach offers promising potential for improving treatment strategies and precision
in clinical decision-making.

However, we are cognizant of the limitations inherent in our study. The model’s effectiveness may be
subject to the specificities of the data and may require further validation across various cancer types
and patient populations. Future work should explore the integration of this system with emerging
technologies such as digital twins to push the boundaries of precision medicine in oncology.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Elynn Y Chen, Rui Song, and Michael I Jordan. Reinforcement learning with heterogeneous data:
estimation and inference. arXiv preprint arXiv:2202.00088, 2022.

H. Cho, S. T. Holloway, D. J. Couper, and M. R. Kosorok. Multi-stage optimal dynamic treatment
regimes for survival outcomes with dependent censoring. Biometrika, 110(2):395–410, 2023.

David M. Finkelstein. A proportional hazards model for interval-censored failure time data. Biomet-
rics, 42(4):845–854, 1986.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062. PMLR, 2019.

Yair Goldberg and Michael R. Kosorok. Q-learning with censored data. The Annals of Statistics, 40
(1):529–560, 2012.

Jian Huang and Anthony J. Rossini. Sieve estimation for the proportional-odds failure-time regression
model with interval censoring. Journal of the American Statistical Association, 92(439):960–967,
1997.

R. Jiang, W. Lu, R. Song, and M. Davidian. On estimation of optimal treatment regimes for
maximizing t-year survival probability. Journal of the Royal Statistical Society Series B: Statistical
Methodology, 79:1165–1185, 2017a.

Runchao Jiang, Wenbin Lu, Rui Song, and Marie Davidian. On estimation of optimal treatment
regimes for maximizing t-year survival probability. Journal of the Royal Statistical Society Series
B: Statistical Methodology, 79(4):1165–1185, 2017b.

J. Kalbfleisch and R. Prentice (eds.). The statistical analysis of failure time data. John Wiley & Sons,
New Jersey, 2011.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
CoRR, abs/1509.02971, 2015. URL https://api.semanticscholar.org/CorpusID:
16326763.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

David Pollard. Convergence of Stochastic Processes. Springer, New York, 1984.

Chengchun Shi, Sheng Zhang, Wenbin Lu, and Rui Song. Statistical inference of the value function
for reinforcement learning in infinite-horizon settings. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 84(3):765–793, 2022.

Jian Si, Andrew G. Barto, Warren B. Powell, and Donald Wunsch (eds.). Handbook of Learning and
Approximate Dynamic Programming. Wiley/IEEE Press, Hoboken, 2004.

G. Simoneau, E. E. M. Moodie, J. S. Nijjar, R. W. Platt, and The Scottish Early Rheumatoid Arthritis
Inception Cohort Inv. Estimating optimal dynamic treatment regimes with survival outcomes.
Journal of the American Statistical Association, 115(531):1531–1539, 2019.

J. Sun. The Statistical Analysis of Interval-Censored Failure Time Data. Springer, New York, NY,
2006.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. Robotica, 17(2):
229–235, 1999.

Sara A. Van de Geer. Applications of Empirical Process Theory. Cambridge University Press,
Cambridge, 2000.

10

https://api.semanticscholar.org/CorpusID:16326763
https://api.semanticscholar.org/CorpusID:16326763


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

Ying Zhang, Lei Hua, and Jian Huang. A spline-based semiparametric maximum likelihood estimation
method for the cox model with interval-censored data. Scandinavian Journal of Statistics, 37(2):
338–354, 2010.

Z. Zhang, D. Yi, and Y. Fan. Doubly robust estimation of optimal dynamic treatment regimes with
multicategory treatments and survival outcomes. Statistics in Medicine, 41(23):4903–4923, 2022.

Yichen Zhao, Donglin Zeng, Eric Laber, Ruan Song, Meng Yuan, and Michael Kosorok. Doubly
robust learning for estimating individualized treatment with censored data. Biometrika, 102(1):
151–168, 2015.

Q. Zhou, H. Zhou, and J. Cai. Case-cohort studies with interval-censored failure time data. Biometrika,
104:17–29, 2017.

A APPENDIX

A.1 TWO EXAMPLE MODELS FOR SIEVE ESTIMATION

Here, We give two common examples, namely the Cox proportional hazards model and the Acceler-
ated Failure Time model.

1. Cox proportional hazards model

Suppose that the reward at time stage k satisfies the Cox PH model of the current state X0,k and the
current processing A0,k. In this section, we will assume that given X0,k and A0,k, Y0,k follows the
proportional hazards model or its cumulative hazard function has the form

Λ(Y0,k|X0,k, A0,k) = Λ0(Y0,k) exp(Z
⊤
0,kη),

where Λ0 is the cumulative baseline hazard function, Z0,k = (X⊤
0,k, A0,k, A0,kX

⊤
0,k)

⊤ as in Jiang
et al. (2017b) and η = (β⊤

1 , β2,β
⊤
3 )

⊤.

With the use of the Bernstein polynomials method, the log-likelihood function can be rewritten as

Lk(η,ϕ) =

n∑
i=1

ξi,k log
(
exp

(
− Λn(Y

L
i,k) exp(Z

⊤
0,kη)

)
− exp

(
− Λn(Y

R
i,k) exp(Z

⊤
0,kη)

))
,

where ϕ = (ϕ0, . . . , ϕm)⊤. Thus,

(η̂, ϕ̂) = argmax
η,ϕ
Lk(η,ϕ),

and
Λ̂(y|Xi,k, Ai,k) = Λ̂n(y) exp(Z

⊤
0,kη̂).

2. Accelerated Failure Time Model

Suppose that the reward at time stage k satisfies the Accelerated Failure Time (AFT) model of the
current state X0,k and the current processing A0,k. In this section, we will assume that

log Y0,k = −(Z⊤
0,kη) + ϵ0,k, (4)

where Z0,k = (X⊤
0,k, A0,k, A0,kX

⊤
0,k)

⊤,η = (β⊤
1 , β2,β

⊤
3 )

⊤ and ϵ0,k
i.i.d.∼ f are the error, such

models are also sometimes referred to as log-linear models. The equivalent hazard-based specification
of the AFT model is

Λ(Y0,k|X0,k, A0,k) = Λ0(exp(Z
⊤
0,kη)Y0,k) exp(Z

⊤
0,kη)

where Λ0(·) is the baseline hazard function corresponding to X0,k = 0, A0,k = 0, and (β⊤
1 , β2,β

⊤
3 )

is the same log(time ratio) vector as in equation 4 (Kalbfleisch & Prentice, 2011).
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Similarly, the Bernstain polynomial can be used to parameterize the baseline cumulative hazard
function, and the log-likelihood function Lk(η,ϕ) can be rewritten as

n∑
i=1

ξi,k log
(
exp

(
− Λ0(exp(Z

⊤
0,kη)Y

L
i,k) exp(Z

⊤
0,kη)

)
− exp

(
− Λ0(exp(Z

⊤
0,kη)Y

R
i,k) exp(Z

⊤
0,kη)

))
,

where ϕ = (ϕ0, . . . , ϕm)⊤. Thus,

(η̂, ϕ̂) = argmax
η,ϕ
Lk(η,ϕ),

and
Λ̂(y|Xi,k, Ai,k) = Λ̂n(exp(Z

⊤
0,kη)y) exp(Z

⊤
0,kη).

A.2 ALGORITHM DDPG FOR INTERVAL-CENSORED DATA

Algorithm 1 DDPG for interval-censored Data

1: Randomly initialize action-value network Q with parameter θQ.
2: Initialize target network Q′ with weights θQ′ ← θQ.
3: Initialize replay buffer R, set soft update weight τ and learning rate α.
4: for episode = 1 to M do
5: Initialize a random process ϵ for action exploration.
6: Receive initial observation state {Xi,1}Ni=1.
7: for k = 1 to K do
8: With probability ϵ select a random action Ai,k.
9: Otherwise select Ai,k = argmax

a∈A
Q(Xi,k, a;θ

Q).

10: Execute action Ai,k in emulator and observe Ui,k, Vi,k, δ1,i,k, δ2,i,k, δ3,i,k, ξi,k and Xi,k+1.

11: Store transition
(
X̃i,k, Ãi,k, Ũi,k, Ṽi,k, δ̃1,i,k, δ̃2,i,k, δ̃3,i,k, ξ̃i,k, X̃i,k+1

)
in R.

12: Sample a random mini-batch of

(X̃i,t, Ãi,t, Ũi,t, Ṽi,t, δ̃1,i,t, δ̃2,i,t, δ̃3,i,t, ξ̃i,t, X̃i,t+1)

from R, with the batch size set to n.
13: Estimate Λ̂(Tk|X̃i,t, Ãi,t) with

{X̃i,t, Ãi,t, Ũi,t, Ṽi,t, δ̃1,i,t, δ̃2,i,t, δ̃3,i,t, ξ̃i,t}ni=1

using the MLE.
14: Calculate Gi,t = −Λ̂(α̃tTt | X̃i,t, Ãi,t) + γmaxA′ Q′(X̃i,t+1, Ã

′;θQ′
)

15: Update θQ by minimizing the loss:

L =
1

n

n∑
i=1

(
Gi,t −Q(X̃i,t, Ãi,t;θ

Q)
)2

.

16: Update the target networks:

θQ′
← τθQ + (1− τ)θQ′

.

17: end for
18: end for

The Deep Deterministic Policy Gradient (DDPG) algorithm is a widely used actor-critic, off-policy
reinforcement learning method, particularly effective in high-dimensional, continuous action spaces
(Lillicrap et al., 2015). It combines policy-based and value-based approaches, providing a balanced
framework for optimal policy learning. At its core, DDPG uses two networks: the actor network
selects actions based on the state, while the critic network evaluates actions by estimating the action-
value function. A key feature of DDPG is the replay buffer, which stores past experiences to reduce

12
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the correlation between consecutive samples, improving learning efficiency (Mnih et al., 2015). The
algorithm refines its policy over time, updating the networks with minibatches from the buffer until
an optimal policy is found.

A.3 PROOF OF THEOREM 5.5.

Lemma A.1. Assume that Assumptions 5.1-5.3 hold. Then the covering number of the class Ln =
{logSY (ϑn,Dn) : ϑn ∈ Θn} satisfies

N {ϵ,Ln, L1 (Pn)} ≤ K1M
(m+1)
n ϵ−(p+m+1),

for some constant K1, where m = o (nν) with ν ∈ (0, 1) is the degree of Bernstein polynomials,
Mn = O (na) with a > 0 controls the size of the sieve space Θn, and p is the dimension of β.

Proof of Lemma A.1. To investigate the covering number, first note that for any ϑ1
n =

(
β1,Λ1

)
,

ϑ2
n =

(
β2,Λ2

)
∈ Θn, one can easily obtain that under Assumptions 5.1-5.3,∣∣logSY

(
ϑ1
n,Dn

)
− logSY

(
ϑ2
n,Dn

)∣∣ ≤ K∗ (∥∥β1 − β2
∥∥+ ∥∥Λ1 − Λ2

∥∥
∞

)
,

for some constant K∗, where ∥f∥∞ = supt |f(t)| for a function f . Denote ϕj =
(
ϕj
0, · · · , ϕj

m

)′
the Bernstein coefficients corresponding to Λj , j = 1, 2. It is easy to show∥∥Λ1 − Λ2

∥∥
∞ =sup

t

∣∣∣∣∣
m∑

k=0

ϕ1
kBk(t,m, σ, τ)−

m∑
k=0

ϕ2
kBk(t,m, σ, τ)

∣∣∣∣∣
≤ max

0≤k≤m

∣∣ϕ1
k − ϕ2

k

∣∣ ≡ ∥∥ϕ1 − ϕ2
∥∥
∞ .

Combining these results, we obtain∣∣logSY

(
ϑ1
n,Dn

)
− logSY

(
ϑ2
n,Dn

)∣∣ ≤ K∗ ∥∥β1 − β2
∥∥+K∗ ∥∥ϕ1 − ϕ2

∥∥
∞ .

It thus follows that for any ϑn ∈ Θn,

1

n

n∑
i=1

∣∣logSY

(
ϑ1
n,Dn

)
− logSY

(
ϑ2
n,Dn

)∣∣ ≤ K∗
∥∥∥β − β(j)

∥∥∥+K∗
∥∥∥ϕ− ϕ(j)

∥∥∥
∞

.

By Lemma 2.5 of Van de Geer (2000), one can show that {β ∈ Rp, ∥β∥2 ≤M} is covered by
(5M/ (ϵ/ (2K∗)))

p balls with radius ϵ/ (2K∗) and
{
ϕ ∈ Rm+1,

∑
0≤k≤m |ϕk| ≤Mn

}
is covered

by (5Mn/ (ϵ/ (2K
∗)))

m+1 balls with radius ϵ/ (2K∗). Therefore, the covering number of Ln

satisfies

N {ϵ,Ln, L1 (Pn)} ≤
(
10K∗M

ϵ

)p

·
(
10K∗Mn

ϵ

)m+1

≤ KM (m+1)
n ϵ−(p+m+1).

This completes the proof of Lemma A.1.

Proof of theorem 5.5 Here we give the proof when π is a common policy. Replace π with π∗ in the
result can get the Theorem 5.5.

Proof. Here we give the proof when π ∈ Π is a common policy.

Q̂π(xt, at)−Qπ(xt, at)

=EP0,π


K̄∑
k=t

γk−t
[
log ŜTk

(αkGk|Xk, Ak)− logSTk
(αkGk|Xk, Ak)

] ∣∣∣∣Xt = xt, At = at


=EP0,π


K̄∑
k=t

γk−t
[
ΛTk

(gk|Xk, Ak)− Λ̂Tk
(gk|Xk, Ak)

] ∣∣∣∣Xt = xt, At = at

 .

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

We can write gk = αkGk for simplicity, and due to the definitions of X̃k and Ãk, the equation holds
in the above expression. With the assumption, we can obtain

Λ̂Tk

(
gk|X̃k, Ãk

)
− ΛTk

(
gk|X̃k, Ãk

)
= ζk(Dn),

where ζk(Dn) is an independent and identically distributed zero-mean process. So we have

Q̂π(xt, at)−Qπ(xt, at) =−
K̄∑
k=t

γk−tEP0,π [ζk(Dn)|Xt = xt, At = at]

=−
K̄∑
k=t

γk−t
∑
{Dn}

Nk∏
i=1

P(xi,k, ai,k|xi,t, ai,t)ζk(Dn),

(5)

where for k ≤ t, P(xi,k, ai,k|xi,t, ai,t) = 1, and for k > t,

P(xi,k, ai,k|xi,t, ai,t) =
∑

ai,j ,xi,j

t+1≤j≤k

π (ai,t|xi,t)

k∏
j=t+1

P0 (xi,j | xi,j−1, ai,j−1)π (ai,j |xi,j) .

Note that |logSY (ϑ,Dn)| is bounded under Assumptions 5.1-5.3. Without loss of
generality, we assume supϑ∈Θ |logSY (ϑ,Dn)| ≤ 1. Then Pr [logSY (ϑ,Dn)]

2 ≤
Pr (supϑ∈Θ |logSY (ϑ,Dn)|)2 ≤ 1. Let αn = n−1/2+ϕ1(log n)1/2 with ν/2 < ϕ1 < 1/2. Then
{αn} is a nonincreasing sequence of positive numbers. Also for a given ϵ > 0, let ϵn = ϵαn. Then
for sufficiently large n and any ϑ ∈ Θn, we have

Var (Pn logSY (ϑ,Dn)) / (4ϵn)
2 ≤ (1/n)Pr [logSY (ϑ,Dn)]

2

16ϵ2α2
n

≤ 1

16ϵ2nα2
n

=
1

16ϵ2n2ϕ1 log n
≤ 1

2
.

Let P 0
n denote the signed measure that places mass ±n−1 at each of the observations D, with the

random ± signs being decided independently of the Di’s. Then from Pollard (1984, p. 31) and
Var (Pn logSY (ϑ,Dn)) / (4ϵn)

2 ≤ 1/2, the following symmetrization inequality holds

Pr

(
sup
ϑ∈Θn

|Pn logSY (ϑ,Dn)− P logSY (ϑ,Dn)| > 8ϵn

)
≤ 4Pr

(
sup
ϑ∈Θn

∣∣P 0
n logSY (ϑ,Dn)

∣∣ > 2ϵn

)
.

Let D =
{
D1, · · · ,Dn

}
. Given D, choose ϑ(1), . . . ,ϑ(κ), where κ = N {ϵn/2,Ln, L1 (Pn)}, such

that
min

j∈{1,...,κ}
Pn

∣∣∣logSY (ϑ,Dn)− logSY

(
ϑ(j),Dn

)∣∣∣ < ϵn/2

for all ϑ ∈ Θn. For each ϑ ∈ Θn, write ϑ∗ for the ϑ(j) at which the minimum is achieved. Note that

|P o
n (logSY (ϑ,Dn)− logSY (ϑ∗,Dn))| =

∣∣∣∣∣n−1
n∑

i=1

±
{
logSY

(
θ,Di

)
− logSY

(
θ∗,Di

)}∣∣∣∣∣
≤ n−1

n∑
i=1

|logSY (ϑ,Dn)− logSY (ϑ∗,Dn)| = Pn |logSY (ϑ,Dn)− logSY (ϑ∗,Dn)| .

Then we have

Pr

(
sup
ϑ∈Θn

|P o
n logSY (ϑ,Dn)| > 2ϵn | D

)
≤Pr

(
sup
ϑ∈Θn

{|P o
n logSY (ϑ∗,Dn)|+ Pn |logSY (ϑ,Dn)− logSY (ϑ∗,Dn)|} > 2ϵn | D

)
≤Pr

(
max

j

∣∣∣P o
n logSY

(
ϑ(j),Dn

)∣∣∣ > 3ϵn/2 | D
)

≤N {ϵn/2,Ln, L1 (Pn)}max
j

P
(∣∣∣P o

n logSY

(
ϑ(j),Dn

)∣∣∣ > 3ϵn/2 | D
)
.
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From the definition of the covering number N {ϵn/2,Ln, L1 (Pn)}, for each ϑ(j), there exists
ϑ̌(j) ∈ Θn such that Pn

∣∣logSY

(
ϑ̌(j),Dn

)
− logSY

(
ϑ(j),Dn

)∣∣ < ϵn/2. Therefore, we obtain

Pr
(∣∣∣P o

n logSY

(
ϑ(j),Dn

)∣∣∣ > 3ϵn/2 | D
)

≤Pr
({

Pn

∣∣∣logSY

(
ϑ(j),Dn

)
− logSY

(
ϑ̌(j),Dn

)∣∣∣+ ∣∣∣P 0
n logSY

(
ϑ̌(j),Dn

)∣∣∣} > 3ϵn/2 | D
)

≤Pr
(∣∣∣P o

n logSY

(
ϑ̆(j),Dn

)∣∣∣ > ϵn | D
)
.

From Hoeffding’s inequality (Pollard, 1984, Appendix B), we have

Pr
(∣∣∣P 0

n logSY

(
ϑ̌(j),Dn

)∣∣∣ > ϵn | D
)
=Pr

(∣∣∣∣∣
n∑

i=1

± logSY

(
ϑ̌(j),Di

)∣∣∣∣∣ > nϵn | D

)

≤2 exp

{
−2 (nϵn)2 /

n∑
i=1

(
2 logSY

(
ϑ̌(j),Di

))2}
≤ 2 exp

(
−nϵ2n/2

)
(because

∣∣∣logSY

(
ϑ̌(j),Dn

)∣∣∣ ≤ 1
)
.

Combining the inequalities above together with Lemma A.1, we obtain

Pr

(
sup
θ∈Θn

∣∣P 0
n logSY (ϑ,Dn)

∣∣ > 2ϵn | D
)
≤2N {ϵn/2,Ln, L1 (Pn)} exp

(
−nϵ2n/2

)
≤2K1M

(m+1)
n (ϵn/2)

−(p+m+1)
exp

(
−nϵ2n/2

)
.

Note that the right-hand side does not depend on D, by taking expectations over D, we have

Pr

(
sup
ϑ∈Θn

∣∣P 0
n logSY (ϑ,Dn)

∣∣ > 2ϵn

)
≤ 2K1M

(m+1)
n (ϵn/2)

−(p+m+1)
exp

(
−nϵ2n/2

)
.

Also Mn = O (na) implies that there exists a positive constant C such that 0 < Mn ≤ Cna for n
large enough, and m = o (nν) and ϕ1 > ν/2 imply m = o

(
n2ϕ1

)
. Combining these results with the

symmetrization inequality derived above, we obtain

Pr

(
sup
ϑ∈Θn

|Pn logSY (ϑ,Dn)− P logSY (ϑ,Dn)| > 8ϵn

)
≤ 4Pr

(
sup
ϑ∈Θn

∣∣P 0
n logSY (ϑ,Dn)

∣∣ > 2ϵn

)
≤ 8KM (m+1)

n (ϵn/2)
−(p+m+1)

exp
(
−nϵ2n/2

)
≤ 8K̂ exp

[
(m+ 1)a log n− (p+m+ 1)

{
log
(
ϵn−1/2+ϕ1(logn)1/2

)
− log 2

}
− nϵ2n−1+2ϕ1 log n/2

]
≤ 8K̂ exp

[
(p+m+ 1) {(a+ 1/2− ϕ1) logn− log log n/2− log ϵ+ log 2} − ϵ2n2ϕ1 log n/2

]
≤ 8K̂ exp

(
−K̄n2ϕ1 log n

)
where K̂ and K̄ are constants. Hence

∑∞
n=1 Pr

(
supϑ∈Θn

|Pn logSY (ϑ,Dn)− P logSY (ϑ,Dn)| > 8ϵn
)
<

∞. By the Borel-Cantelli lemma, we have supϑ∈Θn
|Pn logSY (ϑ,Dn)− P logSY (ϑ,Dn)| → 0

almost surely. From the MDP process, we can see that the ζk(Dn) between different k’s are also
independent of each other, so we can figure out that

E
[
Q̂π(x̃t, ãt)−Qπ(xt, at)

]
= 0,

V ar
[
Q̂π(x̃t, ãt)−Qπ(xt, at)

]
= σ(P0, π, γ,xt, at),
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where

σ(P0, π, γ,xt, at) =

K̄∑
k=t

γ2k−2t
∑
{Dn}

w(Dn)
2E[ζ2k(Dn)], (6)

w(Dn) =

Nk∏
i=1

∑
ai,j ,xi,j

t+1≤j≤k

π (ai,t|xi,t)

k∏
j=t+1

P0 (xi,j | xi,j−1, ai,j−1)π (ai,j |xi,j) .

From the form of (6), we can obtain the following expression:

σ(P0, π, γ,xt, at) ≤
K̄∑
k=t

γ2k−2t

∑
{Dn}

w(Dn)

2

sup
k

E[ζ2k(Dn)] =

K̄∑
k=t

γ2k−2t sup
k

E[ζ2k(Dn)].

What’s more, if ζk(Dn) follows a normal distribution, then Q̂π(x̃t, ãt)−Qπ(xt, at) also follows a
normal distribution according to (5) with the mean of zero and variance of σ(P0, π, γ,xt, at).

A.4 SUPPLEMENTAL EXPERIMENTS

(a) Cox PH Model (b) AFT Model

Figure 6: Right Censoring Rate of each Stage to Episodes
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(a) N = 50
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(b) N = 200
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(c) N = 1000
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(d) N = 5000

Figure 7: Left censoring rates of all episodes for each stage under different N using Aft and Cox
Model
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(a) N = 50 (b) N = 200

(c) N = 1000 (d) N = 5000

Figure 8: Comparison of Boxplot of Accuracy at each stage for different sample sizes using Cox PH
Model

(a) N = 50 (b) N = 200

(c) N = 1000 (d) N = 5000

Figure 9: Comparison of Boxplot of Accuracy at each stage for different sample sizes using AFT
Model
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