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ABSTRACT

Understanding where a particular species can or cannot be found is crucial for
ecological research and conservation efforts. By mapping the spatial ranges of all
species on Earth, we could obtain deeper insights into how global biodiversity is
affected by climate change and habitat loss. However, accurate range estimates are
available for a relatively small proportion of known species. For most species, we
have only have a few prior observations indicating the locations where they have
been previously recorded. In this work we address the challenge of training with
limited observations by developing a new approach for few-shot species range es-
timation. During inference, our model takes a set of spatial coordinates as input,
along with optional metadata such as text, and outputs a species encoding that
can be used to predict the range of a previously unseen species in feed-forward
manner. We validate our method on two challenging benchmarks, where we ob-
tain state-of-the-art performance in predicting the ranges of unseen species, in a
fraction of the compute time, compared to recent alternative approaches.

1 INTRODUCTION

Understanding the spatial distribution of plant and animal species is essential to mitigate the ongoing
decline in global biodiversity (Jetz et al., 2019). Monitoring these distributions over time allows us to
quantify the effects of climate change, habitat loss, and conservation interventions (Mantyka-pringle
et al., 2012). An estimate of the species’ distribution typically starts with a collection of location
data where the species is confirmed to be present. Traditionally, this data is used to train a models
that generate detailed predictions over a region of interest (Elith et al., 2006; Beery et al., 2021).
When sufficient data is available, these models enable practitioners to estimate important quantities
such as the spatial range (i.e., where a species can be found) or abundance (i.e., the total number of
individuals) of a species, in addition to quantifying how these quantities are changing over time.

Despite the availability of well-established modeling techniques, our current understanding of
species’ distributions is extremely limited due to little or no observational data being available for
most species. For example, iNaturalist, one of the largest citizen science platform documenting
global biodiversity, has collected over 130 million “research grade” observations for approximately
373,000 species globally (iNaturalist, 2024). However, the data is severely long-tailed: a small per-
centage of common species account for the majority of the observations, while many species have
very few observations. In fact, over half of the 373,000 species catalogued by iNaturalist have been
observed fewer than 10 times. This data limitation is amplified by the fact that there are estimated to
be several million species on earth, many of which are not yet documented by science (Mora et al.,
2011). Identifying locations where under-observed species can be found is a time consuming and
laborious process, often requiring long expeditions in remote locations searching for species that
are hard to find. Consequently, there is a pressing need for computational methods that can reliably
estimate the spatial distributions of species using only a small number of observations.

Knowing the range of one species can help predict the range of another due to shared ecological, en-
vironmental, and geographic contexts. Recent advances in range estimation have leveraged this idea
by training shared models using millions of observations across tens of thousands of species (Cole
et al., 2023). However, these models still rely on relatively large numbers of training observations
for individual species, which limits their applicability to species with sparse observations. In this
work, we introduce a novel Transformer-based model that overcomes this limitation and offers two
key advantages over previous approaches. First, our method achieves superior performance in the
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Figure 1: Few-shot species range estimation. We introduce, FS-SINR, a new approach for few-shot
species range estimation. FS-SINR is trained on citizen science species collected location data, and
once trained, it can be used to estimate the spatial range of an unseen species with a single forward
pass through the model, i.e., no retraining is required at inference time. Furthermore, it supports
different input modalities such as variable length sequences of geographic locations in addition to
other metadata such as text.

few-shot regime, a scenario that represents the reality for the majority of species but has been un-
derexplored in prior research. Second, our model can make accurate predictions for species not
present in the training set without any additional training, which can enable interactive exploration
and modeling. At inference time, we only require a set of observed locations for the unseen species
to generate reliable range estimates. Furthermore, we show that our model can flexibly incorporate
additional non-geographic context information (e.g., a text summary of the species’ habitat or range
preferences) to further improve prediction quality. Fig. 1 provides an overview of how our method
can be used at inference time.

In summary, we make the following core contributions: (i) We introduce FS-SINR, a new approach
for few-shot species range estimation. FS-SINR has novel capabilities, including the ability to
predict the spatial range of a previously unseen species at inference time without requiring any
retraining. (ii) We demonstrate, across two challenging benchmark datasets, that FS-SINR achieves
state-of-the-art performance in the few-shot setting.

2 RELATED WORK

Species Distribution Modeling. Estimating the spatial distribution of species has been a widely
explored topic both in statistical ecology and machine learning (Beery et al., 2021). The goal is to
develop models that can predict the distribution of species in space, and possibly time, given sparse
observation data. In the context of machine learning, different approaches based on traditional
techniques such as decision trees have been extensively explored (Phillips et al., 2004; Elith et al.,
2006). More recently, several deep learning methods have been introduced for the task (Botella et al.,
2018; Mac Aodha et al., 2019; Kellenberger et al., 2024). One of the strengths of deep methods is
that they can jointly represent thousands of different species inside of the same model and have
been shown to improve as more training data is added. For example, in SINR (Cole et al., 2023),
the authors demonstrated that range estimation performance improves as more data from different
species is added.

There has also been work investigating different approaches for addressing some of the challenges
associated with training and evaluating these models. Examples include attempts to addresses
imbalances across species in the training observation data (Zbinden et al., 2024b), methods for
sampling pseudo-absence data (Zbinden et al., 2024a), biases in the training locations (Chen &
Gomes, 2019), representing location information (Rußwurm et al., 2024), discretizing continuous
model predictions (Dorm et al., 2024), using additional metadata such as images (Teng et al., 2023;
Dollinger et al., 2024; Picek et al., 2024), and designing new evaluation datasets to benchmark
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performance (Cole et al., 2023; Picek et al., 2024). In our work, we investigate the under-explored
few-shot setting, where only limited observations (e.g., fewer than ten) are available for each species.

Few-shot Species Range Estimation. There are several aspects of the species range estimation
task in the low data regime that makes it different from other few-shot applications more commonly
explored in the literature (Parnami & Lee, 2022; Wang et al., 2020). For one, the input domain is
fixed (i.e., all the locations on earth), each location can support more than one species (i.e., multi-
label as opposed to multi-class), the label space is much larger (i.e., tens of thousands of species
as opposed to hundreds of classes in image classification), and only partial supervision is available
(i.e., we only have presence data, with no confirmed absences).

Some attempts have been make at training species range estimation models using limited amounts
of observation data. Cole et al. (2023) demonstrated that their SINR approach performs much worse
when trained on at most ten observations per species compared to training larger amounts. Lange
et al. (2023) proposed an active learning-based approach for estimating the ranges of previously
unseen species. They performed experiments in the low data regime, but in contrast to us, they
require confirmed absence observations, in addition to presences, when updating their model for an
unseen species. The zero-shot setting, i.e., where no location observations have been observed, has
also been explored. Specifically, LD-SDM (Sastry et al., 2023) used text information to encode the
taxonomic knowledge and LE-SINR (Hamilton et al., 2024) used text describing a species’ range or
preferred habitat. At inference time, these zero-shot methods can make predictions for previously
unseen species even when no observation (i.e., location) information was available, but when text
is. LE-SINR performed few-shot experiments whereby they used a language encoder to estimate
an initial encoding for a species and combined it with a linear classifier that needs to be trained
to generate range predictions. In contrast, our FS-SINR approach does not require any additional
training to make predictions for previously unseen species at inference time. We compare to LE-
SINR in our evaluation and demonstrate that we outperform it in both the zero and few-shot settings
and also show that free-form text is superior to the taxonomic text used in LD-SDM.

3 METHODS

In this section we first set up the species range estimation problem and then describe our approach
for few-shot range estimation.

3.1 SPECIES RANGE ESTIMATION

We start by describing the SINR approach from Cole et al. (2023). Let x = (lat, lon) ∈ X be a
location of interest sampled from a spatial domain X (e.g., the surface of the earth). Our goal is
train a model g() : X → [0, 1]s to predict the probability of s different species of interest occurring
at x. We will write ŷ = g(x), where ŷj ∈ [0, 1] (the jth entry of ŷ) denotes the probability that
species j occurs at location x.

We decompose the model as g() = hϕ() ◦ fθ(), where fθ() : X → Rd is a location encoder
with parameters θ and hϕ() : Rd → [0, 1]s is a multi-label classifier with parameters ϕ. The
location encoder fθ() maps a location x to a d-dimensional latent embedding fθ(x). The multi-
label classifier h() is implemented as a per-species linear projection followed by an element-wise
sigmoid non-linearity, meaning that ŷ = σ(fθ(x)W ), where W ∈ Rd×s (i.e., hϕ() = ϕ = W )
and σ() is the sigmoid function. Thus, each column vector ws of W can be viewed as a species
embedding, which we can combine with a location embedding fθ(x) in an inner product to compute
the probability that the species s is present at x. Importantly, the location embedding is shared
across all species. Once trained, it is then possible to generate a prediction for a given species for
all locations of interest (e.g., the entire surface of the earth) by evaluating the model at all locations
(i.e., x ∈ X ).

One of the main challenges associated with training models for species range estimation is that
there is a dramatic asymmetry in the available training data. Specifically, it is much easier to col-
lect presence observations (i.e., confirmed sightings of a species) than absence observations (i.e.,
confirmation that a species is not present at a specific location). As a result, many methods have
been developed to train models using presence-only data. In the presence-only setting, we have
access to training pairs (x, z), where x is a geographic location and z ∈ {1, . . . , s} is an integer
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Figure 2: FS-SINR overview. Here we depict our few-shot species range estimation model. The
input consists of an arbitrary number of context locations Cs, that are each independently tokenized
using a location encoder fθ(), and optional auxiliary context information like text. A register token
(REG) Darcet et al. (2024) and a class token (CLS) are appended to the input as well. All input tokens
are processed by a Transformer mψ(). To make a prediction at a query location x, we compute the
embedding of x using the location encoder and the projected embedding of the CLS token which is
output from the species decoder MLP s().

indicating which species was observed there. To overcome the lack of confirmed absence data, one
common approach is to generate pseudo-absences by sampling random locations on the surface of
the earth (Phillips et al., 2009). Give these pseudo-absences, the parameters of g() can be trained in
an end-to-end manner using variants of the cross entropy loss. In this, work we use the full assume
negative loss (i.e., LAN−full) from Cole et al. (2023) to train the SINR baseline:

LAN-full(ŷ, z) = − 1

S

S∑
j=1

[
1[z=j]λ log(ŷj) + 1[z ̸=j] log(1− ŷj) + log(1− ŷ′j)

]
, (1)

where z is the index of the species present for a given training instance, ŷj is the predicted probability
of the presence of species j, ŷ′j is the model prediction for a randomly sampled pseudo-absence
location, and λ is a hyperparameter that balances the presence and pseudo-absence loss components.

3.2 FEW-SHOT RANGE ESTIMATION

For the SINR model to make predictions for a new species, it is necessary to learn a new embedding
vector ws for that species. If additional location data is later observed for that species, the model
must be updated again. However, the number of observations, with associated locations, for uncom-
mon species can be limited and thus it is necessary to have methods that can be updated efficiently
with limited training data.

We address this challenge by proposing a new approach for few-shot species range estimation called
FS-SINR. Our model can predict the probability of presence for a previously unobserved species
directly at inference time given only the set of confirmed presence locations available, without any
retraining or parameter updates. At inference time we assume we have access to a set of context
locations Cs = {c1, . . . , ck}, which represent a set of k locations where the species s has been
confirmed to be present. Each entry is this set represents a geographic location, i.e., c = (lat, lon).
Like SINR, our model is also conditioned on a location x of interest (i.e., the ‘query’ location), but
uses the context locations to inform the prediction for the query location. Note, these locations can
come from a species that was not previously seen by the model during training.

We represent our FS-SINR model as g(x) = mψ(fθ(x), Cs). Unlike in SINR where the classifier
head hϕ() is a simple multi-label classifier and sigmoid non-linearity, in our case the ‘head’ of the
model mψ() is a Transformer-based encoder (Vaswani et al., 2017). An illustration of FS-SINR is
depicted in Fig. 2. The model takes an unordered set of context locations Cs as input, where each
location is encoded into an embedding vector (i.e., token) via a SINR-style multi-layer perceptron
location encoder. Importantly, our model is invariant to the number and ordering of the context
locations as we do not append any positional embeddings. This flexibility ensures that our model
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can process a variable number of context locations at inference. We also append an additional
register token (REG) as in (Darcet et al., 2024) to provide the model with an additional token to
‘store’ useful information. Given that the input sequence is unordered and may or may not include
additional context information, we also add additional learned ‘embedding type’ vectors to each
token such that the Transformer knows if a given input token is a location, or register, text, etc.

We represent the species embedding vector (i.e., ws in SINR) as the class token CLS of the Trans-
former after passing it through a small species decoder MLP s(). To make a final prediction, we
simply compute the inner product between the location embedding of the query location x and the
species embedding vector, and pass it through a sigmoid. Our approach is computationally efficient
in that once the species embedding is generated once it can then be efficiently multiplied by the
embeddings for all locations of interest to generate a prediction for a species’ range.

FS-SINR uses a similar training loss to LAN−full. However as FS-SINR has no equivalent to hϕ()
we cannot easily include all species in the loss and instead consider only those within the same batch
of training examples Sb. These species will have generated a species embedding vector during the
forward pass which can be used to predict probabilities of presence for that species for all locations
in the batch. We denote this modification as LAN−full−b, which indicates that we are considering
only those elements contained within the current batch b:

LAN-full-b(ŷ, z
b) = − 1

Sb

Sb∑
j=1

[
1[zb=j]λ log(ŷj) + 1[zb ̸=j] log(1− ŷj) + log(1− ŷ′j)

]
. (2)

3.2.1 ADDITIONAL CONTEXT INFORMATION

The design of FS-SINR is flexible, in that we can also provide additional context information to the
model if it is available. For example, if there is additional text (e.g., a range description) or visual
(e.g., images) information available for a novel species it could be added to the context, assuming
such information was also available at training time for other species. This observation is inspired
by recent work that also uses language derived information to improve range predictions (Sastry
et al., 2023; Hamilton et al., 2024). This additional information can provide a rich source of meta-
data encoding aspects of a species’ habitat preferences, even when there might only be a limited
number of location observations available for it. We can represent the expanded context vector as
Cs = {ts, c1, . . . , ck}, where ts denotes a fixed length text embedding from a large language model
extracted for species s. While, not explored in this work it is also possible to include addition context
modalities such as a fixed-length embedding vector from a pretrained vision model.

4 EXPERIMENTS

Here we evaluate FS-SINR on species range estimation and compare it to existing methods.

4.1 IMPLEMENTATION DETAILS

Our location encoders use the same fully connected neural network with residual connections as
in (Cole et al., 2023). Each of the context locations is processed by the same shared location encoder
which is first pretrained as in SINR after which the multi-label classifier head is discarded. Impor-
tantly, this pretrained encoder is only trained on species from the training set, and does not observe
any data from the evaluation species. The text embedding backbone is a frozen GritLM (Muen-
nighoff et al., 2024) which provides a fixed length embedding vector. We train a small two layer
fully connected text encoder to transform this into the text token. The Transformer contains four en-
coder layers and the parameters are updated jointly with the location and text encoders and species
decoder during training. In total, our model has 6.3M learnable parameters compared to 11.9M for
SINR. We train with a batch size of 2,048 instances and randomly drop-out text or location tokens
during training with a probability of 0.2 and 0.1 respectively to enhance robustness.

We train our model using the presence-only dataset from (Cole et al., 2023) which contains 35.5
million citizen science observations for 47,375 species from the iNaturalist platform (iNaturalist,
2024). During training we supply our model with 20 context locations per training example, though
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we find that the model performance is very robust to the number of context locations provided dur-
ing training. We evaluate models using the IUCN and S&T datasets, which contain 2,418 and 535
expert and model-derived binary species range maps respectively. The IUCN dataset is more glob-
ally distributed and contains a larger variation in range size across species, while the S&T dataset
only contains bird species that are primarily, but not always, found in North America and have a
larger range size. We note that the evaluation datasets used could contain errors, but they represent
the currently best available data and contain large variety in terms of range size and location. Impor-
tantly, unless otherwise stated, we hold out any species from the union of these two datasets from
the training set so that species from the evaluation set are not observed during training. As a result,
by default, our model is trained data from 44,422 species. Performance is reported in terms of mean
average precision (MAP).

At inference time, generating a species’ range for our FS-SINR model for a held-out species only
requires a single forward pass through the model to get an embedding vector for the species. Current
methods cannot be used in such a feed forward manner and need to be retrained for each species
that were not observed at training time. To obtain an equivalent embedding for our baselines (i.e.,
SINR and LE-SINR) we train a per-species binary logistic regression classifier using any few-shot
presence observations that are available in addition to adding 10,000 uniformly random and 10,000
target (i.e., in locations where species are) pseudo-absences as in Hamilton et al. (2024). For fairness,
we keep the presence observations consistent across each method and the larger number of presences
are supersets of the smaller ones. Additional implementation details are provided in Appendix A.

4.2 FEW-SHOT EVALUATION

First we evaluate how effective different range estimation models are at few-shot range estimation.
The goal for each model is to generate a plausible prediction for a previously unseen species’ range
given limited location observations. Quantitative results are presented in Fig. 3.

The SINR (Cole et al., 2023) baseline performs poorly in the low data regime, but as more data
is added performance improves. As noted earlier, here a per-species embedding vector is learned
using logistic regression using the provided presence samples and generated pseudo-absences. The
recently introduced LE-SINR (Hamilton et al., 2024) approach extends the basic SINR model to use
text information, when available, at inference time. We can see that when any form of text data is
available, LE-SINR outperforms SINR.

In all instances, when the same metadata is available, FS-SINR outperforms existing methods. Fur-
thermore, we also outperform SINR in the larger data regime (i.e., when 50 observations are avail-
able). Importantly, unlike the baselines we compare to, FS-SINR does not need to be retrained at
inference time. Instead, it can make predictions in a feed forward manner irrespective of the context
data available. This is advantageous in interactive settings, whereby the model can compute the
SINR locations encodings for all query locations on earth once and then the user could experiment
by adding different context information interactively.

We present qualitative results for three different species in Fig. 4 where we visualize FS-SINR’s
predictions as we change the number of context locations. Given only a single context location,
the model does a sensible job at localizing the species on the earth. This supports the findings
from Fig. 3 where we observe strong performance even when only one context location is available.
When more information is provided, the predicted range more closely resembles the expert-derived
range shown in the first row. However, we do note that the model can still make mistakes in our low
data setting, such as the erroneous predictions for the ‘Black and White Warbler’ in South America.
In Fig. 5 we illustrate some examples of how text information, when paired with limited context
locations, can influence the model predictions. Here we observe dramatically different predicted
ranges when the text prompt encourages the model to focus on different habitat types. We note
that each of the predicted ranges are still consistent with the location of the single context location
provided. Additional qualitative examples are provided in the appendix.

4.3 ZERO-SHOT EVALUATION

In addition to being able to generate range predictions in the few-shot setting when limited location
observations are provided, our approach is also able to make predictions when no location informa-
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Figure 3: Few-shot results. Here we evaluate different models on the task of species range esti-
mation on the IUCN (left) and S&T (right) datasets. On the x-axis we vary the amount of location
observations (i.e., samples) seen at inference time for the held-out evaluation species. The y-axis
represents MAP, where higher values are better. The error bars display the standard deviation of
three different runs. Our FS-SINR approach outperforms existing methods. Note, except for FS-
SINR, all other models need to be retrained during evaluation when more samples are provided. We
include these results in tabular form in Tabs. A3 and A4 in the Appendix.

tion is provided, i.e., the zero-shot setting. These zero-shot results are presented in Tab. 1 for both
the IUCN and S&T datasets.

We present results for several variants of FS-SINR where different types of text metadata data are
used. As a baseline, we also present the performance of SINR (row 1) where the the evaluation
species are part of its training set. We can also add data from these species to the training set of
our approach which unsurprisingly boosts performance (e.g., row 3 vs. 9), though unlike SINR,
FS-SINR does not have weights associated with individual species and so the impact of seeing
evaluation species during training is fairly small. As a trivial baseline, we also report performance
of FS-SINR (row 4) when no location or text metadata are provided, i.e., this is simply the output
of the class token. As expected, this model performs poorly, but interestingly it seems to have
learned some spatial prior that results in non-trivial predictions on S&T which contains bird species
mostly concentrated in North America. We also compare to a version of FS-SINR (row 5) where
we use taxonomic text as in LD-SDM (Sastry et al., 2023) (see Appendix B.7 for further details). In
all instances our FS-SINR approach we outperform LE-SINR (Hamilton et al., 2024), even though
both models are provided with the same information at inference time (e.g., row 8 vs. 9). Confirming
observations in LE-SINR we see that range text is more informative than habitat text (e.g., row 7
vs. 9). Additional zero-shot results can be found in Tab. A1, where we evaluate different input
features and location encoders.

4.3.1 ABLATIONS

We provide additional ablation experiments for FS-SINR in the appendix. We present results with
different input features and location encoders. We also evaluate the impact of the amount of data
used to train FS-SINR and pretrain the SINR location encoder we use. Finally, we also explore
architectural modifications such as removing the final species decoder that operates on the output of
the Transformer. We observe that FS-SINR is robust to many of these changes, justifying the design
decision we made.

5 LIMITATIONS

While FS-SINR exhibits impressive zero and few-shot performance, there are several notable limi-
tations. First, given a set of input context locations FS-SINR is deterministic in that it will always
generate the same output range map. In practice, in the few-shot regime, the same set of points
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Table 1: Zero-shot results. We compare to SINR (Cole et al., 2023) and LE-SINR (Hamilton et al.,
2024) in the zero-shot setting where no location information is provided to each model. We denote
additional metadata used by models as RT for ‘Range Text’ and HT for ‘Habitat Text’. TST repre-
sents ‘Test Species in Train’, indicating that a model uses location observations for the evaluation
species at training time, unlike other models where these species are excluded. ‘TRT’ indicates the
model was trained using taxonomy rank text as in (Sastry et al., 2023), and is provided with the
full taxonomic description from ‘class’ to ‘species’ during evaluation. SINR cannot make zero-shot
predictions, thus the results presented for it is the performance on the evaluation set when these
species have been observed at training time. This provides an upper bound on performance. Results
are presented as MAP, where higher is better.

ID Method Variant IUCN S&T
1 SINR TST 0.67 0.77
2 FS-SINR HT, TST 0.38 0.59
3 FS-SINR RT, TST 0.55 0.67
4 FS-SINR 0.05 0.18
5 FS-SINR TRT 0.21 0.34
6 LE-SINR HT 0.28 0.52
7 FS-SINR HT 0.33 0.53
8 LE-SINR RT 0.48 0.60
9 FS-SINR RT 0.52 0.64

could actually be representative of many different possible range maps. An obvious, and easy to im-
plement, extension of our work is to introduce stochasticity into the model outputs, e.g., by treating
class token output from the Transformer as a latent embedding for an additional sampling step. In
Fig. A15 we obverse that initializing FS-SINR with different random seeds during training results
in diverse range predictions across the different models. We leave this for future work. Second, at
inference time, users may wish to provide example locations indicating where a specific species has
not been found, i.e., confirmed absences. Currently our model is trained using presence-only data,
but could be adapted to use absence information, if available, which could be denoted via a differ-
ent embedding type vector which can be learned during training alongside our existing token type
embeddings. However, obtaining large-scale reliable absence data for tens of thousands of species
is a challenging task. Finally, global-scale citizen science datasets like the one we use to train FS-
SINR can contain large biases (Geldmann et al., 2016), e.g., location, temporal, or taxonomic biases,
among others. We do not explicitly account for these biases during training, and thus we would cau-
tion the use of the predictions of our model in any applications that would use our range predictions
in the context of biodiversity assessments. However, we note that we outperform existing recent
state-of-the-art range estimation methods, especially in the low observation data setting, and do not
require any retraining at inference time.

6 CONCLUSION

We have limited knowledge regarding the geographic distributions of the majority of species on
earth. This lack of understanding is further hampered by the fact that we also have insufficient data
to train models to estimate their ranges. To address this problem, we introduced FS-SINR, a new
approach for few-shot species range estimation. We demonstrated that our approach is naturally
able to fuse data from different modalities and at inference time can make plausible predictions for
the ranges of previously unseen species. Our quantitative analysis, using expert-derived range maps,
shows that we obtain a 5% to 10% improvement in performance compared to current approaches in
the low data setting for previously unseen species, e.g., when the number of observations equals ten.
Additionally, we also outperform existing methods in the zero-shot setting. While our results are
promising, they also indicate that there are many potential opportunities for future improvements in
this important topic.
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Black and White Warbler European Robin Hyacinth Macaw

Figure 4: Few-shot range estimation with increasing context locations. Here we illustrate FS-
SINR’s few-shot range predictions given a set of context locations {0, 1, 2, 5, 10} and no text de-
scriptions for the Black and White Warbler (left), European Robin (center), and the
Hyacinth Macaw (right), with expert-derived range maps inset. In the first row, we show the
expert-derived range inset and the prediction for the model when no context locations are provided
(which is the same for all species). Then, in the remaining rows we increase the number of context
locations, denoted as ‘◦’. Zoom in to see the context locations. Most of the Hyacinth Macaw
range is within the Amazon rainforest where we have few observations, and so most of our data
comes from the same locations around human settlements. Providing many very similar observa-
tions does not seem to impact the predicted range.
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[No Text] ü “high altitude mountains”

ü “rainforest” ü “desert”

Figure 5: Controlling range predictions using a single context location with different text.
Given the same single context location, denoted as ‘◦’, FS-SINR can generate significantly dif-
ferent range predictions depending on the text provided. This example illustrates a use case where
a user may have limited observations but some additional knowledge that can be encoded via text
regarding the type of habitat a species of interest could be found in.
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A IMPLEMENTATION DETAILS

A.1 MODEL ARCHITECTURE

Our FS-SINR architecture consists of four components: The location encoder, f ; the text encoder,
t; the transformer encoder, e; and the species decoder, s. These components comprise of 6,311,680
learnable parameters in total. All non-linearities in FS-SINR are ReLUs.

The location encoder, f , is identical to the the one used in Hamilton et al. (2024), which is taken
from (Cole et al., 2023). It is composed of an initial linear layer and ReLU nonlinearity followed by
four residual layers, where each is a two layer fully connected network with residual connections (He
et al., 2015) between the input and output of each residual layer. Each layer contains 256 neurons,
and there are 527,616 learnable parameters in total.

The text encoder, t, follows the structure of text-based species encoder from Hamilton et al. (2024).
In t, a pretrained and frozen large language model, GritLM (Muennighoff et al., 2024), is used to
produce a fixed 4,096 length embedding from input text. This is then passes through a smaller
network to reduce the dimensionality to 256. This smaller network comprises of two residual layers
with a hidden layer size of 512. In total, the text encoder contains 3,410,432 learnable parameters.

The transformer encoder, e, takes in an arbitrary length set of unordered 256 dimensional to-
kens produced by f and t as well as two learned tokens that are added to each set of inputs.
The “CLS”, class, token produces the species range, and a “Register” token, inspired by (Darcet
et al., 2024), acts as an additional repository of global information during encoding. Element-
wise addition between each token and one of four learned 256 dimensional “token type embed-
dings” is performed to allow the model to differentiate between tokens from different sources. The
transformer itself is composed of four transformer encoder layers, implemented using PyTorch’s
nn.TransformerEncoderLayer (Paszke et al., 2019), based on (Vaswani et al., 2017). Key-
Query-Value multi-head attention is used with two “heads”. The feed forward components contain
512 neurons per layer, while the token dimensionality is 256. Layer norm is used in each layer,
using a default epsilon value of 1e-5 for enhanced numerical stability. In total, e contains 2,176,256
learnable parameters.
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Finally the species decoder, s, is a simple fully connected network with two hidden layers. Each
layer contains 256 neurons, and in total the decoder contains 197,376 learnable parameters.

A.2 TRAINING

For all training we use the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.0005,
and an exponential learning rate scheduler with a learning rate decay of 0.98 per epoch, and we
use a batch size of 2048. Our training data comes from Cole et al. (2023), comprising of 35.5
million species observations with locations, covering 47,375 species observed prior to 2022 on the
iNaturalist platform. However, we remove all species that are found in our evaluation datasets,
leaving us with 44,181 species in our training set.

Training comprises of two steps. First, the location encoder, f , is trained. This follows the training
procedure of Cole et al. (2023) using the LAN-full loss function with the positive weighting, λ, set to
2,048, training for 20 epochs with a dropout of 0.5. To reduce training time without significantly
impacting performance we only train on a maximum of 1,000 examples per-species, as done in Cole
et al. (2023). Thus our training dataset contains 13.8 million location observations. Secondly, we
train all components of FS-SINR, except the pretrained large language model, using our LAN-full-b
loss with λ set to 2,048. We train the location encoder, f , again as this improves performance
compared to freezing it, seen in Fig. A4. For this part of training we use a dropout of 0.05. We further
reduce the training data used to a maximum of 100 examples per-species, leaving 4.0 million training
examples, which again increases training speed without a significant impact on performance, as seen
in Fig. A5.

Each instance in the training set is used once per epoch as a training example to compute the loss.
The training example is not passed through the transformer encoder, e, and so does not contribute to
making the species embedding vector produced by this part of the model. Instead, additional con-
text information is provided to produce the species embedding. With a 0.7 probability this context
information is comprised of 20 context locations and a section of text describing the target species.
With 0.2 probability, only the 20 context locations are provided, and with 0.1 probability only the
section of text is provided to the model. These context locations are taken from the training data
for the target species. As such, a single instance from the training set can be used multiple times
per epoch, once as a training example, and potentially many times as a context point. The impact of
different distributions of context information provided during training is shown in Fig. A2.

For the text inputs required during this stage of training, we use the text dataset from (Hamilton et al.,
2024) comprising of multiple sections of Wikipedia articles for each species in the train set where
these are available. This dataset contains 127,484 sections from 37,889 species’ articles. Note, that
not all 44,181 train species have text data available. When text is not available during training and
we are trying to provide both text and context locations to the model, we merely ignore the text
and only provide the context locations. When we are attempting to provide just text as context, we
instead skip that training example. In practice, during training, we pass all text sections through
the frozen large language model once and then store the embeddings produced to use in the current
training run and all future runs. This prevents us having to repeatedly query the frozen but resource
intensive large language model during training. Training takes approximately ten hours on a single
NVIDIA A6000 GPU, requiring about six gigabytes of RAM.

A.3 BASELINES

We compare our approach to LE-SINR (Hamilton et al., 2024) and SINR (Cole et al., 2023). We
follow the original architecture and training procedure for LE-SINR and SINR, with the exception
that we enforce that SINR, like LE-SINR and our approach, is trained on our reduced set of 44,181
species which do not include evaluation species.

We also follow the original evaluation procedure for LE-SINR. For few-shot evaluation without text,
logistic regression with L2 regularization is performed with location features as input using the few
positive examples provided alongside a set of pseudo-negatives drawn half from a uniform random
distribution and half from the training data distribution. The regularization weight is set to 20. For
text-based “Zero-shot” evaluation we directly make use of the output of the text encoder with the dot
product between this and location features giving us a probability of species presence. For few-shot
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evaluation, when text is provided, we again perform logistic regression, but the output of the text
encoder is used as the “target” that the weights are drawn towards in a modified L2 regularization
term. See (Hamilton et al., 2024) for more details. The regularization weight is again set to 20.

The original SINR implementation requires all evaluation species to be part of the training set. We
match the adaptations from Hamilton et al. (2024) to allow evaluation on unseen species. After
training we remove the learned species heads and keep only the location encoder. During evaluation
we perform logistic regression with L2 regularization using location features as input. The regu-
larization weight is again set to 20, and the same method of selecting pseudo-negatives as above is
used.

A.4 EVALUATION

We perform three runs for each experiment using different seeds and report the mean. We display
the standard deviation as error bars in our figures. For all evaluations across SINR, LE-SINR, and
FS-SINR, the same set of context locations are used for a given species, and these context locations
are accessed in the same order, so all evaluations using five context locations are performed with the
same five points, and four of those points are those used for evaluations using four context locations,
etc. In our few-shot setting, we use at most 50 context locations during both training and evaluation.

B ABLATIONS

Here we present results from investigating a variety of elements of our FS-SINR model and training
procedure. We present plots on a “Symlog” scale, where a linear scale is used between 0 and 1 in
order to allow us to show zero-shot results alongside few-shot results. We show a mean of three
runs with standard deviations shown as error bars. We also present just the mean values alongside
in order to allow easier reading.

B.1 ABLATING TRAINING CONTEXT LOCATIONS

In Fig. A1 we show “Range Text” evaluation performance on the IUCN dataset for FS-SINR models
trained using different amounts of context information. We see that generally increasing the context
used during training improves performance, and that having a fixed number of context locations is
also beneficial.

B.2 ABLATING CONTEXT INFORMATION

In Fig. A2 we show “Range Text” evaluation performance on the IUCN dataset for FS-SINR models
trained using different combinations of text and location context information during training. We see
that good text only zero-shot performance requires sometimes providing just text as context infor-
mation during training. This forces the model to learn to produce ranges from only text information.
Models that are sometimes provided with both text and locations for the same training examples
perform best as the number of provided context locations increases. We also see that models trained
without text can perform on par with those that see text during training when enough context loca-
tions are provided (5 - 10). As we might expect, models that are provided with token types they have
not seen during training perform poorly.

B.3 ABLATING INPUT FEATURES

In Tab. A1 we provide additional zero-shot results expanding on those in Tab. 1 in the main pa-
per. Specifically, we add comparisons to using a different location encoder (i.e., SATCLIP (Klem-
mer et al., 2023) instead of SINR) and comparisons to using the environmental covariates as in
SINR (Cole et al., 2023) that contain information about the location climate in addition to location
coordinates.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 1 5 10 50
Samples Seen During Evaluation

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

M
AP

5 Fixed Train Context
5 Variable Train Context
20 Fixed Train Context
20 Variable Train Context
50 Fixed Train Context
50 Variable Train Context

0 1 5 10 50
Samples Seen During Evaluation

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

M
AP

5 Fixed Train Context
5 Variable Train Context
20 Fixed Train Context
20 Variable Train Context
50 Fixed Train Context
50 Variable Train Context

Figure A1: Impact of amount of train context locations. Here we evaluate FS-SINR models
trained using different amounts of location context locations. Results are shown with standard de-
viations from three runs (left), and without (right) for clarity. Evaluation is performed with “Range
Text” on the IUCN dataset. “Fixed” indicates the same number of context locations were provided
for every training example. “Variable” indicates that a uniform random distribution of context loca-
tions up to the specified number were provided with each training example. We see that “Variable”
generally underperforms compared to “Fixed” and that increasing the train context length tends to
increase evaluation performance.

0 1 5 10 50
Samples Seen During Evaluation

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

M
AP

Default FS-SINR
Always Obs. Only
Always Obs. Only (No Eval Text)
Always Text only
Always Text and Obs.
Always Text or Obs.

0 1 5 10 50
Samples Seen During Evaluation

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

M
AP

Default FS-SINR
Always Obs. Only
Always Obs. Only (No Eval Text)
Always Text only
Always Text and Obs.
Always Text or Obs.

Figure A2: Impact of train context information. Here we evaluate FS-SINR models trained using
different context information on the IUCN dataset. Results are shown with standard deviations from
three runs (left), and without (right) for clarity. Evaluation is performed with “Range Text” unless
“No Eval Text” is specified, in which case just locations are provided during eval. 70% of training
examples for “Default FS-SINR” provide both location and text context, 20% provide just locations
10% and provide just text. “Always Obs. Only” has only seen locations during training. “Always
Text Only” has only seen Text during training. “Always Text and Obs” is always provided with both
locations and text during training. “Always Text or Obs.” is provided with just locations for 90% of
training examples, and just text for the remaining 10%.

B.4 ABLATING LOCATION ENCODER

In Fig. A3 we vary the number of datapoints used to pretrain the SINR encoder used in FS-SINR.
For both FS-SINR and the SINR baseline, we generally observe that more data is better, and for
SINR approaches we see that pretraining the encoder is much better than randomly initializing it.
We also show results for a SINR model trained on evaluation species as well as train species. As we
saw in Tab. 1 for FS-SINR, the impact on performance is fairly small as these models do not have
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Table A1: Zero-shot results. We compare to SINR (Cole et al., 2023) and LE-SINR (Hamilton
et al., 2024) where no location information is provided to each model. We denote additional meta-
data used by models as RT for ‘Range Text’, HT for ‘Habitat Text’, and EN for models that use
additional environmental covariates from (Cole et al., 2023) as input. TST represents ‘Test Species
in Train’, indicating that a model uses observations for the evaluation species at training time, un-
like other models where they are excluded. SATCLIP denotes a variant of our model whereby the
SINR encoders are replaced with the image derived location encoders from (Klemmer et al., 2023).
Results are presented as MAP, where higher is better.

Method Variant IUCN S&T
FS-SINR HT, SATCLIP 0.20 0.43
FS-SINR RT, SATCLIP 0.33 0.55
SINR EN, TST 0.76 0.81
FS-SINR HT, EN, TST 0.38 0.61
FS-SINR RT, EN, TST 0.57 0.67
FS-SINR EN 0.07 0.64
LE-SINR HT, EN 0.31 0.52
FS-SINR HT, EN 0.32 0.53
LE-SINR RT, EN 0.51 0.61
FS-SINR RT, EN 0.51 0.65

weights associated with individual species. Unlike the zero-shot SINR model also shown in Tab. 1,
our few-shot approach discards these weights and so much of the information learned during training
is lost. Due to this we see that our zero-shot performance for SINR models trained on evaluation
species is much greater than our few-shot performance with a small number of samples.

In Fig. A4 we also investigate the impact of changing the location encoder entirely. We see that
replacing our SINR location encoder with a pretrained, frozen “Satclip” location encoder (Klemmer
et al., 2023) significantly harms performance. This may be due to this model being frozen and trained
on tasks that do not completely match ours. In comparison a randomly initialised and untrained
SINR backbone performs almost identically well as one that has seen a small amount of training data
(10 examples per-species in the train set). We also investigate removing the learned location encoder
with a simple form of fourier feature encoding (Tancik et al., 2020). In this setting, a pretrained and
finetuned SINR type location encoder is still used to encode inputs to the species vector, ws, after
it has been produced by the transformer encoder and species decoder, but this model is not used for
inputs to the transformer itself. Using these 2 different encoders performs increasingly poorly as the
amount of context information increases.

B.5 ABLATING TRAINING DATA

In Fig. A5 we vary the number of examples per-species that are provided during training. The impact
of this is fairly small, with models trained on an intermediate amount of data performing best. We
find that the a model trained on only 10 examples per-species performs significantly worse, though
it is likely that some of this performance drop is that we must also train this model using 10 context
locations per training example rather than the 20 used for the other models, as there is simply not
enough data to provide more context information.

B.6 ABLATING FS-SINR ARCHITECTURE

In Fig. A6 we vary the underlying FS-SINR architecture. Removing several components has a very
small effect on model performance, with the removal of the species decoder actually improving
results when range text is provided. However, as several ablations perform very similarly, it is
difficult to tease out the how much of this effect is due to variance. It is clear however that removing
the learnable token type embeddings causes the model to completely fail to learn during training.

In Fig. A7 we show further ablations based around removing the learned location encoder for inputs
to the transformer and replacing it with the simple fourier feature encoding also seen in Fig. A4.
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Figure A3: Impact of Location Encoder Training. Here we evaluate the performance of SINR
and FS-SINR models when the size of the training dataset for the SINR backbone is varied. Results
for FS-SINR models are shown with standard deviations from three runs (left), and without (right)
for clarity. Evaluations on FS-SINR are performed with “Range Text”, while SINR can only make
use of location data. “1000”, “100”, “10” represent the maximum number of examples per class
the SINR backbone was trained on. “SINR (rand init)” is initialized with random weights and is
not trained. “(trained on eval species)” means the model was trained on all training and evaluation
classes.

0 1 5 10 50
Samples Seen During Evaluation

0.2

0.3

0.4

0.5

0.6

0.7

M
AP

FS-SINR 1000 Backbone
FS-SINR 1000 Backbone (Frozen)
FS-SINR rand_init Backbone
FS-SINR 100 Backbone
FS-SINR 10 Backbone
FS-SATCLIP
FS-SINR (Fourier Location Encoder)

0 1 5 10 50
Samples Seen During Evaluation

0.2

0.3

0.4

0.5

0.6

0.7

M
AP

FS-SINR 1000 Backbone
FS-SINR 1000 Backbone (Frozen)
FS-SINR rand_init Backbone
FS-SINR 100 Backbone
FS-SINR 10 Backbone
FS-SATCLIP
FS-SINR (Fourier Location Encoder)

Figure A4: Impact of Location Encoder. Here we evaluate the performance of FS-SINR type
models with different location encoders. Results are shown with standard deviations from three
runs (left), and without (right) for clarity. Evaluation is performed with “Range Text” on the IUCN
dataset. “1000”, “100”, “10” represent the maximum number of examples per class the SINR back-
bone was trained on. “(Frozen)” indicates that the location encoder parameters were not updated
during FS-SINR training. “FS-SATCLIP” replaces the SINR location encoder with a pretrained,
frozen location encoder from Klemmer et al. (2023). “FS-SINR (Fourier Location Encoder)” uses
the simple fourier feature encoding (Tancik et al., 2020) used in Mildenhall et al. (2021) to match
the 256D outputs of the SINR location encoders. These outputs are used directly as inputs to the
transformer encoder. After a species token is produced in this way, it is attached to a pretrained and
finetuned SINR backbone to produce a range.

When this is removed, other ablations seem to further harm performance, though results for these
ablations vary wildly between runs.
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Figure A5: Impact of Training Data. Here we evaluate FS-SINR models trained with different
amounts of data. Results are shown with standard deviations from three runs (left), and without
(right) for clarity. Evaluation is performed with “Range Text” on the IUCN dataset. The labels show
the maximum number of examples per-species that FS-SINR is trained on. We see that training on
an intermediate amount of training data leads to best performance.
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Figure A6: Ablating model architecture components. Here we evaluate the performance of FS-
SINR type models as we ablate various design choices. Results are shown with standard deviations
from three runs (left), and without (right) for clarity. Evaluation is performed with “Range Text” on
the IUCN dataset. We see only small changes in performance when removing the register token and
the species decoder. However removing the learned token type embeddings has a large impact.

B.7 TAXONOMIC UNDERSTANDING

Here we investigate the impact of providing FS-SINR with an understanding of taxonomy. For this
we provide “Taxonomic Rank Text” (TRT) instead of the Wikipedia-based free-form descriptions
of a species that are used for our standard FS-SINR approach. This text gives the taxonomy of the
species in decreasing taxonomic rank, in the form “class order family genus species”, so for a dog
we would give the text “Mammalia Carnivora Canidae Canis Familiaris”. During
training we select a rank uniformly at random and remove all ranks underneath that. We hope
that this process will force the model to learn an understanding of the distributions of not only
individual species, but also genera, families, etc.. This may be helpful when facing unseen species
as knowledge of the genus or family may provide clues about where this species may be found. This
is similar to the approach used by LD-SDM (Sastry et al., 2023).

In Tab. A2 we show zero-shot performance for FS-SINR models trained on TRT on the IUCN
and S&T evaluation tasks. We see that as we provide additional taxonomic information zero-shot
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Figure A7: Further ablating model components. Here we evaluate the performance of FS-SINR
type models as we ablate more components. Results are shown with standard deviations from three
runs (left), and without (right) for clarity. Evaluation is performed with “Range Text” on the IUCN
dataset. “FF” indicates that the model does not use a SINR backbone to encode location inputs to
the transformer encoder. Instead a simple Fourier feature encoding (Tancik et al., 2020) used in
Mildenhall et al. (2021) is used to increase the dimensionality of location data to match the token
dimension of the transformer encoder. These are used directly as inputs to the transformer encoder.
After a species token is produced in this way, it is attached to a standard SINR backbone to produce
a range. Removing the SINR backbone for encoding inputs to the transformer has a large impact
on performance, especially when more context locations are supplied, and makes the model more
sensitive to the impact of other ablations.

performance improves, though it is still much worse than using habitat or range text. This implies
that the model has managed to develop some understanding of the distributions of genera etc. and
can use this to help it map a novel species that shares higher order taxonomy with species in the
training set. In Fig. A8 we show few-shot results for FS-SINR models trained on TRT on the IUCN
and SNT evaluation datasets. Zero-shot improvement with increasing taxonomic information is
clear, but after very few provided locations this effect seems to disappear.

In Fig. A9 we provide some qualitative zero-shot and few-shot results showing the impact of train-
ing on taxonomic text. We see that the model appears to narrow down on the correct range as more
specific taxonomy is revealed to it, from predicting across the entire globe when just the class Aves
is provided, to removing northern latitudes as the family Columbidae is added, and finally remov-
ing the new world when the genus is provided. This broadly matches the actual distribution of these
taxonomic ranks.

Table A2: Zero-shot results with taxonomy rank text. We denote additional metadata used by
models as RT for ‘Range Text’ and HT for ‘Habitat Text’. ‘Species’, ‘Genus’, ‘Family’, ‘Order’,
‘Class’ refer to models trained and evaluated using taxonomic rank text. Taxonomic information up
to and including the specified rank is provided during evaluation.

Method Variant IUCN S&T
FS-SINR 0.05 0.18
FS-SINR HT 0.33 0.53
FS-SINR RT 0.52 0.64
FS-SINR Class 0.05 0.19
FS-SINR Order 0.06 0.20
FS-SINR Family 0.12 0.25
FS-SINR Genus 0.18 0.30
FS-SINR Species 0.21 0.34
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Figure A8: Impact of training and evaluating with Taxonomic Rank Text. Here we evaluate
FS-SINR models trained using different context information on the IUCN dataset (left), and the
S&T dataset (right). “Class” indicates that only the taxonomic class of the species is provided as
text during evaluation. “Order” indicates that the taxonomic class followed by the order is provided
as a text string during evaluation, and so on, such that “Species” indicates that a text string in the
format “class order family genus species” is provided during evaluation. Providing more specific
taxonomic text increases zero-shot performance. This is also presented Tab. A2. However we see
that even the full taxonomy does not provide as much signal as habitat and range text for zero-
shot range mapping. These more detailed texts provide more useful information for zero-shot range
mapping - either actually mentioning geographic locations in the case of range text, or allowing the
model to narrow predictions down to areas with specific features such as mountains and forests in
the case of habitat text. When a single context location is provided, the choice of taxonomy text no
longer seems to impact performance at all. It is possible that training on these less informative tokens
means the model learns to pay less “attention” to these text tokens compared to the Wikipedia-based
text tokens usually used during training. This could explain why different rank taxonomy text tokens
seemingly provide no benefit when any context locations are provided to the model.

C ADDITIONAL QUALITATIVE RESULTS

In this section we provide additional qualitative results.

C.1 QUALITATIVE RESULTS

As in LE-SINR Hamilton et al. (2024), by jointly training on text and locations, FS-SINR is able
to spatially ground abstract non-species concepts in a zero-shot manner. In Fig. A10 we see some
examples where different text concepts, that are very different from the species range or habitat text
provided during training, are grounded in sensible locations on the map. In Fig. A11 we compare
models with and without text cues. As we increase the number of context locations, the two dif-
ferent models converge to more similar range predictions. In Fig. A12 we provide another example
similar to Fig. 5 in the main paper. Here, we again fix the context location and show the impact
of changing the text. We can see that different text prompts can result in quite different predicted
ranges. In Figs. A13 and A14 we visualize the model range predictions for two different species
when richer habitat or range text is provided. We observe that the combination of text and context
locations (here only location is provided) results in the best performance. In Fig. A15 we visualize
FS-SINR range predictions for the Yellow-footed Green Pigeon for models that have had
different random initializations (i.e., different random seeds). We observe that there is a relatively
large amount of variance in the outputs produced given the same input data.

C.2 VISUALIZING EMBEDDINGS

In Fig. A16 we show Independent Component Analysis (ICA) derived projections of the location
encoder features for FS-SINR, LE-SINR, and SINR approaches. We encode locations around the
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world into 256 dimensional representations by passing them through location encoders from our
models, and we then reduce these to three dimensions and show them as RGB colors as in (Cole
et al., 2023). We also show this for an FS-SINR model trained on taxonomic rank text. Locations
with similar colors should have similar location features and represent locations that the model
thinks may share species. Across all models higher frequency changes in location features are seen
in areas where we have more training data. This can be seen particularly clearly by comparing the
United States and Europe versus central Asia or Africa.

C.3 QUALITATIVE COMPARISONS

Here we present qualitative comparisons of the ranges produced by FS-SINR, LE-SINR, and SINR.
In Fig. A17 we show range estimates for the Brown-banded Watersnake, using range text for
FS-SINR and LE-SINR approaches. In Fig. A18 we show range estimates for the Brown-headed
Honeyeater, using habitat text for FS-SINR and LE-SINR approaches. Finally in Fig. A19 we
show range estimates for the Crevice Swift, without providing text. Overall, SINR produces
more diffuse ranges and requires more samples to narrow down the range. LE-SINR and FS-SINR
appear to have very different zero-shot behaviours, with LE-SINR frequently seeming to predict
presence in almost no locations at all, while FS-SINR tends to produce a zero-shot range that is too
large.

D ADDITIONAL QUANTITATIVE RESULTS

In this section we present additional quantitative results. We include results from Fig. 3 in Tab. A3
and Tab. A4, for IUCN and S&T evaluations respectively.

Table A3: IUCN zero-shot and few-shot results. Here we present IUCN evaluation results for the
models shown in Fig. 3 in tabular form. SINR and LE-SINR without text cannot produce a range
map without at least one context point. Results are presented as MAP, where higher is better.

FS-SINR LE-SINR SINR
# Context Range Habitat No Text Range Habitat No Text No Text
0 0.52 0.33 0.05 0.48 0.28 - -
1 0.57 0.47 0.48 0.55 0.48 0.47 0.42
2 0.60 0.54 0.56 0.57 0.53 0.52 0.47
3 0.62 0.57 0.60 0.58 0.55 0.54 0.50
4 0.63 0.59 0.62 0.59 0.57 0.56 0.52
5 0.64 0.61 0.63 0.60 0.58 0.57 0.54
8 0.65 0.63 0.65 0.61 0.60 0.59 0.56
10 0.66 0.64 0.66 0.62 0.61 0.60 0.57
15 0.67 0.66 0.67 0.63 0.63 0.62 0.59
20 0.67 0.66 0.67 0.64 0.64 0.63 0.61
50 0.68 0.67 0.67 0.66 0.66 0.66 0.64

D.1 RESULTS BY REGION

Here we show the average false positive error by location on the IUCN evaluation dataset.

In Fig. A20 we show the average false positive error for zero-shot range estimation using text for FS-
SINR and LE-SINR, alongside the distribution of data in our training set. It appears that training data
density is somewhat negatively correlated with error. We observe that LE-SINR has significantly
lower false positive error globally, however Tab. 1 shows that MAP is also lower. Appendix C.3
shows that LE-SINR tends to predict very small areas for zero-shot range mapping, which explains
both the lower false positive error and the lower MAP.

In Fig. A21 we show the average false positive error for FS-SINR for few-shot range estimation.

D.2 RESULTS BY SPECIES RANGE SIZE

In this section we show plots indicating the average MAP for species in our IUCN evaluation dataset,
separated by range size. We include standard deviation error bars. Unlike earlier plots, these are not
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Table A4: S&T zero-shot and few-shot results. Here we present S&T evaluation results for the
models shown in Fig. 3 in tabular form. SINR and LE-SINR without text cannot produce a range
map without at least one context point. Results are presented as MAP, where higher is better.

FS-SINR LE-SINR SINR
# Context Range Habitat No Text Range Habitat No Text No Text
0 0.64 0.53 0.18 0.60 0.52 - -
1 0.66 0.58 0.50 0.64 0.60 0.52 0.49
2 0.67 0.62 0.58 0.66 0.62 0.57 0.55
3 0.68 0.64 0.61 0.67 0.64 0.60 0.58
4 0.69 0.66 0.64 0.67 0.65 0.61 0.59
5 0.70 0.67 0.65 0.68 0.66 0.62 0.60
8 0.71 0.69 0.68 0.69 0.67 0.65 0.63
10 0.72 0.70 0.69 0.69 0.68 0.66 0.64
15 0.72 0.71 0.70 0.70 0.69 0.68 0.67
20 0.72 0.71 0.71 0.71 0.70 0.69 0.68
50 0.73 0.72 0.71 0.73 0.72 0.72 0.72

generated from the results of three runs, but from the differences in performance between individual
species within a range size group.

In Fig. A22 we break down performance of zero-shot approaches by range size for both FS-SINR
and LE-SINR. In Fig. A23 we break down performance of low-shot approaches by range size for
both FS-SINR and LE-SINR, when provided with habitat text. Finally in Fig. A24 we break down
performance of low-shot approaches where no text is provided for FS-SINR, LE-SINR, and SINR.

We find that for all models and settings, performance varies very strongly with range size. This is
most significant in the zero-shot setting. FS-SINR performs well compared to our baselines, though
all models struggle with very small ranges. We also see that performance worsens for the very
largest ranges.

D.3 RESULTS BY TAXONOMIC CLASS

In this section we break down results on the IUCN evaluation dataset by taxonomic class. We include
standard deviation error bars. Unlike earlier plots, these are not generated from the results of three
runs, but from the differences in performance between individual species within a taxonomic class.
Four taxonomic classes are present in this dataset, namely Amphibia, Aves, Mammalia, and
Reptilia.

In Fig. A25 we display zero-shot performance for FS-SINR and LE-SINR using range and habitat
text. We observe that Aves and especially Mammalia outperform the other classes, particularly
when habitat text is provided. Albert et al. (2018) suggest that of the 20 most ‘charismatic’ species
in the western world, all but the Great White Shark and Crocodile are mammals, and
Trimble & Van Aarde (2010) show that scientific research is heavily focused on mammals. We may
be seeing the impact of this, where mammals are more likely to have detailed wikipedia pages where
we drew our textual training and evaluation data from.

In Fig. A26 we investigate how these differences in performance between taxonomic classes change
as more location data is provided. We see that for both FS-SINR and LE-SINR, even a single
location reduces the gap significantly and after 5 context locations the difference is minimal, though
mammals do continue to perform best for a given model and setting.

Finally in Fig. A27 We compare FS-SINR to LE-SINR, SINR with our few-shot modifications as in
Hamilton et al. (2024), and SINR trained on evaluation species as in Cole et al. (2023). We see that
FS-SINR tends to perform very well across all classes.

D.4 ALTERNATIVE PERFORMANCE METRICS

Here we provide additional results for the main models from Fig. 3 using a new ‘distance weighted’
MAP evaluation metric. This is inspired by the evaluation conducted in LD-SDM (Sastry et al.,
2023). This metric is based on mean average precision (MAP), however we now weight predictions
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by distance from the true range, i.e., predicting the presence of a species far from where it is said to
be found is penalized more than predicting the presence of a species in a location that is very close to
existing observations, but is still actually outside the range. We intend that this metric more closely
aligns with a human’s judgment on how ‘correct’ a range is, compared to standard MAP. By consid-
ering both metrics we can be more confident that the improvement in range mapping performance
that FS-SINR provides is not just a consequence of how we are measuring the performance.

We determine the weight for location x as

wx = 1 +
drange(x)

dantipodal
h, (3)

where drange(x) is the distance along the earth’s surface from point x to the nearest point of the
expert-derived range using for evaluation, and dantipodal is the distance along the earth’s surface
between two points on opposite sides of the earth. While this distance does vary very slightly in
different locations as the earth is not a perfect sphere, for this experiment we have set dantipodal
to 20,037.5 km. h is the ‘distance weight hyperparameter’ and determines how much this metric
penalizes incorrect predictions far from the range relative to close to the range. The metric is im-
plemented equivalent to scikit-learn’s average precision score sample weight parameter (Pedregosa
et al., 2011). We evaluate performance using the standard ‘unweighted MAP’, i.e., where h = 0 and
so we are calculating MAP as usual, and ‘distance weighted MAP’ with h = 9 and h = 99. We
selected these settings so that errors on the opposite side of earth from the true range are penalized
10 and 100 times more than errors close to the true range.

Results on the IUCN evaluation dataset can be found in Fig. A28. These are from a single run,
as opposed to the average of three repeats used for ‘unweighted MAP’ in Fig. 3. As the weight
is increased, we observe a general reduction in overall performance. While there is no change in
the relative ordering of different models, and FS-SINR outperforms LE-SINR and SINR across
all settings of h, we do observe that FS-SINR and LE-SINR models that use habitat text during
evaluation seem to decrease in performance more with larger h compared to other approaches. They
are likely most effected by the larger weight, as habitat text can cause the model to predict presence
in locations around the world with similar habitat features such as mountains, forest, or desert,
despite these locations being far from the true range. This appears to be true of both FS-SINR
and LE-SINR. For LE-SINR we see that when evaluating using unweighted MAP, using habitat
text outperforms not using text, while when we evaluate using weighted MAP, using habitat text
performs worse than not using text. In Fig. A29, we display zero-shot results for two species where
there is a large difference in performance based on the two metrics. In both cases the language only
FS-SINR variant incorrectly predicts the species to be present far from the expert-derived range.

D.5 ADDITIONAL FEW-SHOT BASELINES

Here we provide additional few-shot baselines based on Prototypical Networks (Snell et al., 2017).
Our approach is very similar to Snell et al. (2017) although we use the SINR location encoder of
our models as the ‘embedding function’, allowing us to generate few-shot results for a novel species
without any retraining. Using this method, SINR and LE-SINR models can be used to estimate the
range of a novel species without requiring training to learn a new species vector.

In order to do this, we first encode our known ‘presence’ locations using the location encoder of
our chosen model and then take an average of these points to generate a ‘prototype’ for the presence
class. We select pseudo-negatives in the same manner as Hamilton et al. (2024) and similarly encode
and average these in order to generate a prototype for the ‘absent’ class.

We represent these prototypes as

ck =
1

|Sk|
∑
xi∈Sk

fθ(xi), (4)

where k ∈ {present, absent} indicates the class of the prototype, and S is the ‘support set’, i.e., the
set of locations x that we use to create our prototypes. In our case, Spresent is the set of locations
of the small number of available observations for our target species, while Sabsent is the set of
pseudo-negative locations that we have selected according to Hamilton et al. (2024). fθ() indicates
the location encoder of our model.
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To generate a probability of presence or absence at any location x, we encode x using our location
encoder and calculate the negative squared euclidean distance in our high dimensional ‘location
encoder space’ between x and each prototype. We then use these values as the ‘logits’ in a softmax
function to generate our probabilities. Putting this together, we can calculate the probability of
presence as

ppresent(x) =
e−d(fθ(x),cpresent)

2

e−d(fθ(x),cpresent)2 + e−d(fθ(x),cabsent)2
, (5)

where d(a, b) represents the euclidean distance between a and b.

We present few-shot results using this method in Fig. A30 with certain results from 3 included for
comparison. We see that the performance of these ‘prototype’ approaches is significantly worse than
our FS-SINR approach and our learning-based SINR and LE-SINR baselines. On the less discrim-
inative S&T dataset, performance when |Sk| = 1 is similar to that of the other methods. However,
for both prototype approaches and both evaluation datasets, performance actually decreases as we
increase the number of provided context locations.

In Fig. A31 we present qualitative results visualizing the few-shot estimated range for the
Kalahari Scrub-Robin produced by FS-SINR and by a SINR model using the prototype
approach. We see that the estimated range for the ‘prototype SINR’ becomes significantly worse
as we add another context location. We find that averaging location encoder features from multiple
‘presence’ locations tends to produce a less useful prototype. We attempt to explain this finding
next.

The features from a single location may represent ecologically meaningful information about the
local environment, and a prototype produced from a single location will have the same representation
in location encoder space as the location it is produced from. This suggests that measuring the
distance from another encoded location to this prototype may tell us how ‘different’ the environment
of the new location is compared to the location used to create the prototype. This information is
helpful for producing an estimate of a species range. However when we have a larger support set
and so average the location encoder features of multiple locations, the prototype that is generated
may exist in a non-meaningful part of location encoder space, not associated with any real world
locations or environmental conditions. The distance between this prototype and an encoded location
becomes less indicative of a ‘difference’ in environment, and so this distance becomes less helpful
for estimating the presence of a species at the new location. Therefore as we increase the number
of context points which form the ‘present’ support set, we actually decrease the performance of our
prototype approaches.
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[TRT Text] [TRT Text] + 1 Context Location

Figure A9: Zero-shot and one-shot range estimation using Taxonomic Rank Text (TRT). Here
we see range predictions for Treron Phoenicopterus or the Yellow-footed Green
Pigeon from an FS-SINR model trained on taxonomic rank text as in LD-SDM (Sastry et al.,
2023), with expert-derived range inset. As seen in Fig. A8 and Tab. A2, The text-based zero-shot
predictions seem to more closely match the expert-derived range as more of the taxonomic rank text
of the species is provided. Taxonomic rank text allows the model to somewhat localize predictions
to areas where species sharing the provided taxonomy ranks are present in the training set. For ex-
ample, Aves or Birds are globally distributed and we see the model attempt to output this in the
zero-shot ‘Class’ vizualisation. Columbiformes and Columbidae or Pigeons and Doves
are not found in the extreme north and providing these ranks reduces predictions in these areas (and
much of the northern hemisphere). The model mostly manages to identify that Treron or ‘Green
Pigeons’ are found only in Africa and parts of Asia. A single observation significantly contracts
the predicted ranges, particularly when less taxonomic information is provided. Click on taxonomic
names to visit the iNaturalist page for that taxonomic rank, where you can see the geographic distri-
bution of observations of that taxa, which may resemble that in our training data.
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ü “Tasmania” ü “The Andes”

ü “Lord of The Rings” ü “Baseball”

ü “Pirates” ü “Oktoberfest”

Figure A10: Zero-shot non-species concepts. We can evaluate the model in a zero-shot manner
using only text information, i.e., without any locations. Here, we observe that FS-SINR, like LE-
SINR (Hamilton et al., 2024), can localize abstract concepts in geographic space, despite never being
trained to explicitly do so. The model achieves this as it learns to make connections between species
text and information already contained in the pretrained language encoder we use. However, we do
note failure/ambiguous cases such as the “Pirate” example in the bottom row.
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Figure A11: Varying the context information provided. Here we change the context information
provided to FS-SINR. The model on the left column receives no text input, but the one on the
right gets the text “Desert”. Additionally, in each row we increase the number of context locations
provided, from zero to three, denoted as ‘◦’. We observe that the model on the right that uses text
already has a strong prior about the species being present at desert-like locations, e.g., see first row
where no context locations are provided. As soon as one context location is added in North Africa
(second row), the model generates a new prediction with an increased probability that the species is
present there.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

[No Text] ü “mountain range”

ü “tropical climate” ü “arid desert”

Figure A12: Controlling range predictions using a single context location and text. Here we
show another example similar to Fig. 5 in the main paper. Given the same context location, de-
noted as ‘◦’, FS-SINR can produce significantly different range predictions depending on the text
provided. This example illustrates a use case where a user may have limited observations but some
additional knowledge regarding what type of habitat a species of interest could be found in.
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European Robin - Range Text European Robin - Habitat Text

The European robin is found across Europe, east to Western
Siberia and south to North Africa; it is sedentary in most of its
range except the far north. It also occurs in the Atlantic islands
as far west as the Central Group of the Azores and Madeira. It
is a vagrant in Iceland and has been introduced to other regions,
including North America and Australia, but these introductions
were unsuccessful.

The European robin inhabits a variety of habitats, including
gardens, parks, woodlands, and forests. It prefers areas with
dense vegetation and is often found near human settlements. It
is also found in mountainous regions and can be seen in urban
areas, such as cities and towns.

Figure A13: Using text descriptions. Here we illustrate the zero-shot (top row) and one-shot (bot-
tom row) range estimations based on text descriptions for the European Robin, using ‘Range’
(left), and ‘Habitat’ (right) text, shown below the range estimates. Expert derived range maps are
shown inset.

American Pika - Habitat Text American Pika - Range Text

The American pika (Ochotona princeps) is found in the moun-
tains of western North America, usually in boulder fields at or
above the tree line, from central British Columbia and Alberta
in Canada to the US states of Oregon, Washington, Idaho, Mon-
tana, Wyoming, Colorado, Utah, Nevada, California, and New
Mexico.

Pikas inhabit talus fields that are fringed by suitable vegetation
in alpine areas. They also live in piles of broken rock. Some-
times, they live in man-made substrate such as mine tailings and
piles of scrap lumber. Pikas usually have their den and nest sites
below rock, around 20-100 cm (8-39 in) in diameter, but often
sit on larger and more prominent rocks.

Figure A14: Using text descriptions. Here we illustrate the zero-shot (top row) and one-shot
(bottom row) range estimations based on text descriptions for the American Pika, using ‘Range’
(left), and ‘Habitat’ (right) text, shown below the range estimates. Expert derived range maps are
shown inset.
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Figure A15: Impact of random initialization on FS-SINR. Here we display range estimates for
the Yellow-footed Green Pigeon from three different FS-SINR models where different
random seeds were used to initialize each model during training. We show zero-shot results using
‘range text’ (top) and ‘habitat text’ (middle), and also few-shot results using one context location
with no text (bottom). The IUCN expert derived range is shown inset. We see that even when pro-
vided with the same inputs, different models can perform very differently when this input is very
sparse (e.g., just text or one context point). While most of the Indian part of the actual range is in-
cluded for all input types and runs, there is significant variability across the runs in other geographic
areas.
Range Text: “The yellow-footed green pigeon is found in the Indian subcontinent and parts of South-
east Asia. It is the state bird of Maharashtra.”
Habitat Text: “The species is a habitat generalist, preferring dense forest areas with emergent trees,
especially Banyan trees, but can also be spotted in natural remnants in urban areas. They forage in
flocks and are often seen sunning on the tops of trees in the early morning.”

(a) FS-SINR (b) FS-SINR (TRT)

(c) LE-SINR (d) SINR

Figure A16: Visualization of the learned features of different location encoders. Here we project
high dimensional location features down to three dimensions using Independent Component Analy-
sis.
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Figure A17: Comparing estimated ranges across models. Here we see zero-shot and few-
shot range estimates produced by FS-SINR, LE-SINR, and SINR for the Brown-banded
Watersnake, with expert derived range inset. We provide range text to FS-SINR and LE-SINR as
well as context locations, but SINR is not capable of accepting text and so we show a blank map for
the zero-shot range estimate. We see that LE-SINR underestimates the range using only text, while
FS-SINR overestimates it. SINR requires more location data than the other approaches to localize
the range to South America. Range Text: “The Brown-banded water snake (Helicops angulatus) is
found in tropical South America and Trinidad and Tobago.”
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Figure A18: Comparing estimated ranges across models. Here we see zero-shot and few-
shot range estimates produced by FS-SINR, LE-SINR, and SINR for the Brown-headed
Honeyeater, with expert derived range inset. We provide habitat text to FS-SINR and LE-
SINR as well as context locations, but SINR is not capable of accepting text and so we show a
blank map for the zero-shot range estimate. We again see LE-SINR underestimate the range using
only text, while FS-SINR has very good zero-shot performance for this species. We see that SINR
again requires more location data to narrow down the range and even after 20 locations the range
is still significantly larger than the other models, and extends into South Africa. Habitat Text: The
brown-headed honeyeater inhabits temperate forests and Mediterranean-type shrubby vegetation. It
is typically found in tall trees, where it forages by probing in the bark of trunks and branches.
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Figure A19: Comparing estimated ranges across models. Here we see few-shot range estimates
produced by FS-SINR, LE-SINR, and SINR for the Crevice Swift lizard, with expert derived
range in Mexico inset. No text is provided and so no sensible zero-shot prediction can be made
for any model. However while LE-SINR and SINR cannot produce an output for this and so we
show a blank map, FS-SINR can generate a predicted range just from feeding the learned CLS and
register tokens with no other information into the transformer encoder. The range that is produced
is contained wthin the model or the learned tokens itself rather than from any further inputs. We
see that it appears to somewhat match the distribution of training data we see in Fig. A20. Absent
additional information, the model guides predictions towards areas where it as seen many species
during training. This may be an unhelpful bias when attempting to model novel species. SINR again
produces more diffuse ranges than the other methods, though all approaches struggle to model these
small ranges, as seen in Appendix D.2.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

(a) FS-SINR (Range Text)
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(c) LE-SINR (Range Text) (d) Training Data Distribution

Figure A20: Average false positive error by location for zero-shot approaches. Here we see the
geographic distribution of false positive errors from FS-SINR and LE-SINR models provided with
only text during IUCN evaluation. We observe that FS-SINR provided with text (a and b) tends to
have fewer errors in areas well covered by our training data such as North America and Europe,
while areas with less training data such as Africa have significantly higher error. We also see that
LE-SINR (c) has a significantly lower false positive error across all locations than FS-SINR, though
quantitative results in Tab. 1 show LE-SINR performs worse at zero-shot range estimation. This
suggests that LE-SINR tends to ‘underpredict’ ranges while FS-SINR is more prone to ‘overpredict’
ranges. In some areas such as South America, the coast has higher false positive error than inland
areas. This is due to model predictions for land based species ‘bleeding’ slightly into the ocean,
and it appears to be an issue for both LE-SINR and FS-SINR. (d) shows the distribution of our
geographic training data.
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Figure A21: Average false positive error by location for few-shot approaches. Here we see
average false positive error of FS-SINR on IUCN evaluation. Providing any text leads to an increase
in the false positive error, although Fig. 3 suggests that this text still helps with range mapping.
As the number of provided context locations increases, the impact of the text is reduced and the
distribution of errors appear similar.
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Figure A22: Zero-shot performance by range size. Here we see zero-shot IUCN evaluation results
grouped by range size for FS-SINR and LE-SINR, using range text and habitat text. We see that for
both models, performance is strongly dependent on range size, with ranges between 10 million and
100 million km2 being modelled most succesfully. FS-SINR tends to perform better than LE-SINR
for large range species, while LE-SINR tends to perform better for smaller range species.
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Figure A23: Few-shot performance by range size. Here we see few-shot IUCN evaluation results
using habitat text for FS-SINR and LE-SINR for a range of context locations. Increasing the number
of context locations generally increases performance across both models, though the bias towards
intermediate range sizes seen in Fig. A22 remains.
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(c) SINR (20 Context Locations)
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(d) SINR (trained on eval species)

Figure A24: Few-shot performance by range size without text. Here we see IUCN evaluation
performance for a range of models where text was not provided during evaluation. “SINR (trained
on eval species)” was trained on up to 1000 examples per-species for both the train and eval species,
and the species vectors learned during training are used during evaluation, as in Cole et al. (2023).
Without text, FS-SINR is most capable of modeling small range sizes, though the “trained on eval
species” SINR performs best on large ranges.
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Figure A25: Zero-shot performance by taxonomic group. Here we see Zero-shot IUCN evalu-
ation results for FS-SINR and LE-SINR, using range text and habitat text. FS-SINR outperforms
LE-SINR across all taxonomic categories. We observe that for both models, birds and mammals
outperform amphibians and reptiles. This is particularly pronounced when using habitat text. This
may be due to these groups being particularly well studied by researchers and appreciated by people
in general, so the text data available for these taxonomic groups tends to be richer and more likely
to describe habitat preferences in detail.
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Figure A26: Few-shot performance by taxonomic group. Here we see few-shot IUCN evaluation
results using habitat text for FS-SINR and LE-SINR for a range of context locations. Increasing the
number of context locations generally increases performance across both models. We see that using
small amounts of location data reduces the imbalance across taxonomic groups seen in Fig. A25,
though mammals still outperform other groups slightly.
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(a) FS-SINR (20 Context Locations)
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(b) LE-SINR (20 Context Locations)
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(c) SINR (20 Context Locations)
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(d) SINR (trained on eval species)

Figure A27: Few-shot performance by taxonomic group without text. Here we see IUCN eval-
uation performance for a range of models where text was not provided during evaluation. “SINR
(trained on eval species)” was trained on up to 1000 examples per-species for both the train and eval
species, and the species vectors learned during training are used during evaluation, as in Cole et al.
(2023). Despite this, FS-SINR still performs marginally better.
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Figure A28: Zero-shot and few-shot performance using our distance weighted MAP metric
on the IUCN evaluation dataset. We find that increasing the distance weight hyperparameter, h,
reduces performance across the board without significantly changing the order of different models
i.e., FS-SINR continues to outperform LE-SINR and SINR. We do see that approaches using habitat
text decrease in performance more as h increases, relative to approaches not using text or using
range text.
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Figure A29: Examples of two species with poor distanced weighted MAP performance. Here
we visualize FS-SINR’s zero-shot predictions using habitat text for two species where there is a large
difference between the evaluation scores using the standard MAP metric compared to the distance
weighted one (here using h = 9). For the Gravenhorst’s Mabuya (left), which is endemic
to Madagascar, we obtain an MAP of 0.419 but a lower distance weighted MAP of 0.175. For the
African Jacana (right), found in most of sub-Saharan Africa, we obtain an MAP of 0.457 and
a distance weighted MAP of 0.226. The distance weighted metric more heavily penalizes mistakes
for these species that are very far from their true range.
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Figure A30: Additional few-shot results using a post-hoc prototypical network type approach.
We provide two additional baselines where we freeze the backbone of the SINR or LE-SINR models
and use their features to construct a prototypical type network, denoted as ‘Prototype SINR’ and
‘Prototype LE-SINR’ respectively. These two additional baselines do not require any training on the
evaluation species.
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Figure A31: Qualitative comparison of the Prototype SINR post-hoc method. Here we compare
the predictions of our FS-SINR approach (without any text) and the ‘Prototype SINR’ baseline on
the Kalahari Scrub-Robin species that is found in Southern Africa. The Prototype SINR
approach obtains an MAP 0.59 and 0.24, for one and two context locations respectively, i.e., it
performs worse as more data is added. In the case of one context location it over predicts the range
of the species and incorrectly predicts that it is present in Australia. In contrast, FS-SINR obtains
0.79 and 0.85, for one and two context locations respectively. Note, as in the other results figures,
we apply an ocean mask for the visualization which hides some of the prediction errors.
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