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Abstract

Existing large video-language models (LVLMs) struggle to comprehend long
videos correctly due to limited context. To address this problem, fine-tuning long-
context LVLMs and employing GPT-based agents have emerged as promising
solutions. However, fine-tuning LVLMs would require extensive high-quality data
and substantial GPU resources, while GPT-based agents would rely on proprietary
models (e.g., GPT-4o). In this paper, we propose Video Retrieval-Augmented
Generation (Video-RAG), a training-free and cost-effective pipeline that employs
visually-aligned auxiliary texts to help facilitate cross-modality alignment while
providing additional information beyond the visual content. Specifically, we
leverage open-source external tools to extract visually-aligned information from
pure video data (e.g., audio, optical character, and object detection), and incorporate
the extracted information into an existing LVLM as auxiliary texts, alongside
video frames and queries, in a plug-and-play manner. Our Video-RAG offers
several key advantages: (i) lightweight with low computing overhead due to single-
turn retrieval; (ii) easy implementation and compatibility with any LVLM; and
(iii) significant, consistent performance gains across long video understanding
benchmarks, including Video-MME, MLVU, and LongVideoBench. Notably, our
model demonstrates superior performance over proprietary models like Gemini-
1.5-Pro and GPT-4o when utilized with a 72B model. Codes are available at
https://github.com/Leon1207/Video-RAG-master.

1 Introduction

With the advancements in Large Language Models (LLMs), numerous studies have been conducted
to enhance their ability to comprehend and process videos [12, 16, 18, 51, 24, 47, 19, 3, 2, 50, 23,
25, 17], collectively termed Large Video-Language Models (LVLMs). Although current LVLMs
have demonstrated promising performance in understanding short videos, effective comprehension of
extremely long videos continues to be a major challenge.

To address this challenge, recent studies [49, 45, 35, 42, 55] have sought to extend the reasoning
context length of LVLMs, essentially finetuning long-context LVLMs for long video understanding.
LongVA [49] first introduces increasing the token capacity of an LLM and transferring its long-context
comprehension capabilities to video data. However, training such a model requires pre-training on an
extended corpus, and often there are distribution shifts between deployment videos and finetuning
videos. As demonstrated in Video-MME [6], LongVA declines when increasing the video frame
sampling rate from 128 to 384 (52.6% → 51.8%). This outcome suggests that simply increasing the
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Figure 1: (Left) Two common approaches for understanding long videos, alongside our Video-RAG.
Video-RAG provides a resource-efficient, training-free pipeline compatible with any LVLM. By
leveraging RAG, it retrieves auxiliary texts for input, leading to notable performance enhancement.
(Right) Comparison of the performance of Video-RAG with LLaVA-Video-72B [52], Gemini-1.5-Pro
[32], and GPT-4o [29] across various benchmarks, including the sub-tasks from Video-MME [6] (we
focus only on those that outperform Gemini-1.5-Pro), LongVideoBench [43], and MLVU [54].

number of sampled frames not only leads to information redundancy but also imposes additional
challenges for the model to handle complex reasoning. Retrieval-Augmented Generation [14] (RAG)
is a technique that enhances generative tasks by retrieving relevant documents from an external corpus,
thus improving response quality in LLMs. Recent studies have begun exploring the integration of
RAG with video-based tasks [1, 27, 48, 33], employing tools to process videos in long contexts
and sending them to a proprietary model for generation, which is known as the GPT-based Agent
method. However, they come with serval limitations. First, most of them process long video content
as plain text, subsequently utilizing the RAG mechanisms to retrieve relevant documents for LLMs.
Therefore, they lack alignment with the visual context of the video, resulting in a loss of critical
visual information. Second, they are often resource-intensive in multi-turn interactions and typically
require powerful LLMs to function as the driving force, thus limiting their flexibility and generative
capabilities. Executing the whole Video-MME [6] using VideoAgent [4] requires approximately 20
days and incurs a substantial consumption of GPT-4o API tokens.

In this study, we propose Video-RAG, an effective RAG pipeline that can be seamlessly integrated
with any LVLM. Specifically, instead of simply increasing the number of sampled video frames, we
propose to replace the corresponding extended visual tokens with auxiliary texts extracted from pure
video data by invoking open-source foundation models, such as optical character recognition (OCR),
automatic speech recognition (ASR), and object detection. These auxiliary texts are more aligned with
the visual context while providing additional information beyond the visual data, as demonstrated in
[20, 4]. Besides dealing with the context windows limit of LVLMs, we employ RAG in Video-RAG
to filter auxiliary texts, ensuring their relevance to the user’s query in the text embedding space.
As sampled visual context often lacks explicit alignment with the instructions, the auxiliary texts
can facilitate cross-modality alignment while reducing the modality divide. As illustrated in Figure
5, with Video-RAG, the retrieved auxiliary texts help guide the LVLM to pay more attention to
the query-relevant keyframes, while simultaneously facilitating cross-modality alignment between
query and keyframes. In this framework, an LVLM serves as the central component of Video-RAG,
processing visual tokens to preserve detailed visual context and minimize potential information loss.
Moreover, the retrieval process is parallelly executed in a single operation, ensuring efficiency.

We evaluate Video-RAG across several long video benchmarks, including Video-MME [6], MLVU
[54], and LongVideoBench [43]. By applying the Video-RAG to seven distinctive open-source
LVLMs, we achieve an average performance improvement of 2.8% on Video-MME with only 2.0K
text tokens addition (equal to 14 frames in most configuration) per case, while beating the proprietary
LVLM when integrated with the 72B model, as shown in the right part of Figure 1. Applying Video-
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RAG to a 7B LVLM only requires an additional 8GB of inference GPU memory and approximately 5
seconds of inference time per case (details in the Supplemental Material).

In summary, our contributions are as follows:

• We integrate RAG into open-source LVLMs: Video-RAG incorporates three types of
visually-aligned auxiliary texts (OCR, ASR, and object detection) processed by external
tools and retrieved via RAG, enhancing the LVLM. It’s implemented using completely
open-source tools, without the need for any commercial APIs.

• We design a versatile plug-and-play RAG-based pipeline for any LVLM: Video-RAG
offers a training-free solution for a wide range of LVLMs in a plug-and-play manner,
delivering performance improvements with minimal additional resource requirements.

• We achieve proprietary-level performance with open-source models: Applying Video-
RAG to a 72B open-source model yields proprietary-level performance, surpassing models
such as GPT-4o and Gemini-1.5-Pro.

2 Related Work

2.1 Large Video-Language Models

With the rapid advancement of large language models (LLMs), there has been increasing interest in
developing generalist video models capable of handling video-related tasks. Video-ChatGPT [28]
extracts features from individual frames and aggregates them through both spatial and temporal
pooling operations. VideoChat [16] encodes videos by generating both textual descriptions and
video appearance embeddings. Video-LLaVA [18] aligning image and video encoders during a
pre-processing phase, using a shared projector to map the encoded representations into a common
language space. LLaVA-NeXT-Video [51] extends LLaVA-NeXT [22] by fine-tuning the model
specifically on video data. Despite their contributions, these approaches face challenges when
processing long videos, primarily due to the limited number of frames sampled for analysis.

2.2 Long-context Large Video-Language Models

Recent approaches have sought to expand the context window size to enhance long video understand-
ing. LongVA [49] and Long-LLaVA [45] address this by continuously training LLMs on extended
textual data, to transfer their long-text comprehension capabilities to video processing. INTP [35]
introduces a video token rearrangement technique while proposing a training-free method for extend-
ing the LLM context window, allowing LVLMs to process increased visual tokens. However, these
methods face challenges in striking a balance between the high computational costs associated with
sampling video frames and the limited performance improvements achieved. Due to the inherent
redundancy in video content and constraints on model capacity, performance degradation may occur
when the number of sampled frames surpasses a certain threshold.

2.3 GPT-based Agent Video Understanding

Initial efforts [46, 41, 8, 38, 33] have employed LLMs to interact with tools to process visual
information as structured long context for question-answering. MM-VID [20] enhances long video
understanding by aligning video frames with corresponding text descriptions. VLog [21] leverages
multimodel pre-trained models to capture and interpret visual and audio information, summarizing
it into documents for video comprehension. VideoAgent [4], DrVideo [27], and OmAgent [48]
integrate multimodal inputs and enable dynamic querying of video segments to support long video
reasoning tasks. VideoRAG [33] and VideoRAG [11] achieve a tighter integration between the RAG
framework and proprietary models. However, these methods take a long time to process videos while
relying on proprietary models (e.g., GPT-4o), thus limiting their efficiency and adaptability to other
open-source frameworks.
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Figure 2: The framework of our Video-RAG. In the query decouple phase, the LVLM is prompted
to generate a retrieval request for auxiliary texts. Next, in the auxiliary text generation and retrieval
phase, the video is processed in parallel to extract three types of textual information (OCR, ASR, and
object detection), and the relevant text is retrieved as the auxiliary text. Finally, in the integration and
generation phase, auxiliary texts are combined with the query and the video to generate the response.

3 Method

We propose a novel, training-free pipeline for large video-language models (LVLMs), named Video-
RAG, which can be integrated into any LVLM. As illustrated in Figure 2, our pipeline comprises
three key phases: (i) Query Decouple: In this phase, the user’s query is decomposed into a retrieval
request aimed at extracting auxiliary texts from the target video. (ii) Auxiliary Text Generation
& Retrieval: Multiple auxiliary texts are generated from the queried video in parallel. Then, the
retrieval request is used to obtain relevant external information. (iii) Integration and Generation:
This phase integrates the retrieved auxiliary texts with the user’s query, feeding this combined input
into the LVLMs to generate the final response.

3.1 Large Video-Language Model

Given a video V, a frame sampler first sample N frames F. Most existing methods uniformly sample
frames from a video for both effectiveness and simplicity. Then, video features are extracted as
Fv = VisualEnc(F), where VisualEnc is an image-based visual encoder, such as CLIP-L [30].
Finally, the video features Fv and the user’s query Q are fed into the LVLM to generate an output O:

O = LVLM(Fv,Q) (1)

3.2 Query Decouple

In this phase, upon receiving a user’s query about the video, the LVLM begins by decoupling the
query and generating retrieval requests, denoted as R, for auxiliary texts. During this phase, the
LVLM processes only textual information, without access to video frames, and the output requests
are formatted in JSON. We prompt the LVLM using a decoupling prompt P to generate the following
retrieval requests as necessary: (i) Rasr: Requests about automatic speech recognition, to extract
audio information from the video that may pertain to the query. (ii) Rdet: Requests for identifying
physical entities within the video that may assist in answering the query. (iii) Rtype: Requests
for details about the location, quantity, and relationships of the identified physical entities. These
requests, which may be NULL (the corresponding information is not required), are then parsed and
forwarded to the auxiliary text retrieval phase. The entire process can be described as:
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R = LVLM(P,Q), R = {Rasr,Rdet,Rtype} (2)

3.3 Auxiliary Text Generation

In this phase, we first generate the auxiliary texts from the video and then retrieve them to assist the
LVLMs according to the retrieval requests R. As the length of the video increases, the number of
tokens generated from the processed data also grows, leading to an increase in redundant information.
Additionally, current open-source models are constrained by the limited length of their context
windows, which may prevent them from fully processing all auxiliary texts. To address this issue, we
draw inspiration from Retrieval-Augmented Generation (RAG) [14], retrieving only the auxiliary
texts relevant to the user’s query. Before retrieval, we construct the necessary databases from the
given video in parallel. Specifically, we implement three distinct databases: the Optical Character
Recognition (OCR) database, denoted as DBocr; the Automatic Speech Recognition (ASR) database,
denoted as DBasr; and the Object Detection (DET) database, denoted as DBdet.

OCR database. Current LVLM are still illusory in their ability to accurately recognize characters, and
their performance often falls short compared to proprietary models. To better leverage the information
contained in video frames and reduce hallucinations, we employ a proprietary OCR model to extract
text from each video frame with the same frame-sampled strategy as LVLMs. Specifically, we use
EasyOCR [10] as our text recognition model and segmented the recognized texts on a per-frame
basis, denoted as Tocr. Subsequently, we implemented RAG by utilizing the advanced text encoding
model Contriever [9] to encode the fetched OCR texts into text embeddings Eocr. These embeddings
are then stored in a database with the FAISS index [13], a library designed for efficient similarity
search and clustering of dense vectors. The entire building process can be formally described as:

Tocr = EasyOCR(F) (3)

DBocr
FAISS←−−−− Eocr = Contriever(Tocr) (4)

ASR database. Audio information (e.g., subtitles) plays a crucial role in video comprehension, often
providing additional context that may not be available through visual cues alone. To incorporate
them, we first extract the raw audio U from the video and then transcribe them into texts Tasr.
Specifically, we use Whisper [31] as our audio transcription model. Since the recognized texts can be
quite extensive, we chunk and encode them into a vector database, following the same procedure
used to construct the OCR database. The building process can be formally described as:

Tasr = Whisper(U) (5)

DBasr
FAISS←−−−− Easr = Contriever(Tasr) (6)

DET database. While LVLMs demonstrate strong performance in object recognition, they continue
to face challenges such as object counting, precise object localization, and understanding relative
relationships between objects. To mitigate the issue of hallucination, which can stem from these
challenges, we incorporate object detection information as auxiliary texts. We leverage a visual
grounding model to extract both the object categories and their corresponding positions from sampled
video frames. This approach helps provide more accurate and context-aware object detection. To
enhance processing efficiency, we limit object detection to keyframes only. Specifically, we compute
the CLIP similarity [30] between the object retrieval request Rdet and the sampled video frames F
and select relevant keyframes Fkey based on a threshold t:

Fkey = CLIP_similarity(Rdet,F) > t (7)

Once the keyframes are identified, we utilize APE [36], an efficient open-vocabulary object detection
model that accepts object descriptions as prompts to detect relevant objects within frames based
on retrieval queries. The capability of APE makes it particularly well-suited to our requirements
for on-demand object retrieval. Finally, the detected objects’ categories and their corresponding
positional information are stored in the DET database using natural language representations:

DBdet ←− Tdet = APE(Fkey,Rdet) (8)
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3.4 Auxiliary Text Retrieval

During the retrieve phase, we employ Contriever [9] to encode the user’s query and the parsed
requests for OCR and ASR into text embeddings, then concatenating to form the final query request
Ereq = Contriever(Concat(R,Q)), R ∈ {Rocr,Rasr}. Then we retrieve the auxiliary texts
from DB ∈ {DBocr, DBasr} by the FAISS tool, which computes the vector similarity between the
query and text chunks stored in the database. Text chunks with a FAISS similarity score greater than
threshold t are indexed as the retrieval results A ∈ {Aocr,Aasr}. The process can be formulated as:

A
Index←−−− FAISS_similarity(DB,Ereq) > t (9)

Since the text generated by the detection model is in a raw format (“category: [x_min, y_min,
length, width]"), it challenges LVLMs to understand the relative relationships between objects. We
preprocess the object information using a scene graph, which helps to represent spatial and relational
information more explicitly. This preprocessing allows us to construct more coherent and semantically
meaningful texts, denoted as Ap

det, which are more readily interpretable by LVLMs. We incorporate
three types of object information for each video keyframe: (i) Object Location Aloc: This refines
the positional information of the object, formatted as: “Object {node ID} is a {object category}
located at coordinates [x, y] with dimensions {length × width}” (ii) Object Counting Acnt: This
counts the number of objects and generates text in the following format: “Object counting: - {object
category}: {number}” (iii) Relative Positional Relationships Arel: This captures the relative spatial
relationships between objects using the format: “Object {node ID} ({object category}) is <positional
description> Object {node ID} ({object category})”. By combining this information, we construct a
detailed representation of the objects in the frame, denoted as Ap

det = {Aloc,Acnt,Arel}:

Ap
det = SceneGraph(DBdet) (10)

Finally, we acquire the object auxiliary texts based on the object information type retrieval requests
Rtype, which selects and finalizes the object auxiliary information Adet. Adet is one of the elements
of the power set P of Ap

det selected by Rtype, and the retrieve process can be formulated as:

Adet = Rtype(P(Ap
det)) ∈ P(A

p
det) (11)

3.5 Integration and Generation

After obtaining different types of auxiliary texts, we organize them chronologically using natural
language to create a unified auxiliary input, denoted as Am = Concat(Aocr,Aasr,Adet). These
merged auxiliary inputs, along with the user’s query and the sampled video frames, are then fed into
the LVLM to produce the final result. The overall process can be formulated as:

O = LVLM(Fv, Concat(Am,Q)) (12)

4 Experiments

4.1 Datasets

Video-MME [6] is a widely used benchmark for assessing the ability of LVLMs to handle detailed
videos in real-world scenarios. It is divided into three subsets based on video length, with durations
ranging from 11 seconds to 1 hour. MLVU [54] is a long video understanding benchmark with
a large wide of 9 distinct tasks. It is created based on long videos of diversified lengths, ranging
from 3 minutes to 2 hours with about 12 minutes average video length. LongVideoBench [43] is a
benchmark designed to accurately retrieve and reason over detailed multimodal information from
long videos, with 6,678 human-annotated multiple-choice questions in 17 fine-grained categories.

4.2 Implementation Details

We performed all experiments on NVIDIA A100 80G GPUs. During the auxiliary text generation
phase, we first restrict the detection requests Rdet generated by LVLMs in decouple prompt then
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Table 1: Performance on the Video-MME [6] benchmark in without subtitles (w/o S), with subtitles
(w/ S) and equipped with our Video-RAG (Ours), Frames and Gain means the input frame number
and performance gain by applying Video-RAG compared to the baseline with subtitles. By applying
Video-RAG to seven LVLMs, we observed an average performance improvement of 2.8% by adding
only an average of ∼2.0K auxiliary texts compared to ∼3.0K full-subtitled tokens per sample. In
particular, we perform better when applying Video-RAG with 72B LLaVA-Video [52] than the
proprietary method GPT-4o [29] (77.4% vs. 77.2%). All results are our republication.

Model Params Frames Short Medium Long Overall Gainw/o S w/ S Ours w/o S w/ S Ours w/o S w/ S Ours w/o S w/ S Ours

Proprietary LVLMs

GPT-4o [29] - 384 80.0 82.8 - 70.3 76.6 - 65.3 72.1 - 71.9 77.2 - -
Gemini-1.5-Pro [32] - 0.5 fps 81.7 84.5 - 74.3 81.0 - 67.4 77.4 - 75.0 81.3 - -

Open-Source LVLMs

Video-LLaVA [18] 7B 8 45.3 46.1 49.5 38.0 40.7 43.0 36.2 38.1 42.5 39.9 41.6 45.0 +3.4
LLaVA-NeXT-Video [51] 7B 16 49.4 51.8 56.6 43.0 46.4 47.4 36.7 44.9 46.0 43.0 47.7 50.0 +2.3
VITA-1.5 [7] 7B 16 67.0 69.9 71.0 54.2 55.7 55.4 47.1 50.4 52.4 56.1 58.7 59.6 +0.9
LongVA [49] 7B 128 61.1 61.2 66.1 50.4 53.8 60.4 46.2 52.9 59.4 52.6 56.0 62.0 +6.0
Long-LLaVA [45] 7B 64 61.9 62.4 67.1 51.4 56.2 60.4 45.4 54.7 60.1 52.9 57.8 62.6 +4.8
Qwen2-VL [40] 72B 32 75.0 76.7 77.4 63.3 69.9 70.2 56.3 69.2 71.0 64.9 71.9 72.9 +1.0
LLaVA-Video [52] 72B 64 80.7 81.8 82.8 68.7 73.8 76.3 62.1 72.2 73.1 70.3 75.9 77.4 +1.5

further filter them using spaCy, ensuring they correspond to CLIP-sensitive physical entities, avoiding
the inclusion of abstract concepts. In the auxiliary text retrieval phase, we set both the CLIP similarity
threshold and the FAISS similarity threshold t to 0.3. We employ the IndexFlatIP as the similarity
calculating method of FAISS [13]. Note that we don’t include the GPT-based Agent methods for
comparison due to their resource-intensive nature (complete execution of Video-MME [6] costs
around $2000 for API purchasing when using VideoAgent [4]). Still, we include a mini-experiment
of VideoAgent in the Supplemental Material that compares the overall performance, inference time,
and GPU requirements with two common long-context LVLMs and our Video-RAG.

Table 2: The overall performance in the multiple-
choice task of the MLVU [54] benchmark. * do-
nates the results of our replication.

Model #Params Frames Overall
Proprietary LVLMs

GPT-4o [29] - 0.5 fps 64.6

Open-Source LVLMs

VITA-1.5 [7] 7B 16 60.4
Video-CCAM [5] 14B 96 63.1
Video-XL [37] 7B 256 64.9
Aria [15] 25.3B 256 70.6
LLaVA-Video* [52] 7B 64 70.8
Oryx-1.5 [26] 32B 128 72.3
LLaVA-Video* [52] 72B 64 73.1

LLaVA-Video + Video-RAG 7B 64 72.4
LLaVA-Video + Video-RAG 72B 64 73.8

Table 3: The overall performance on the validation
set of LongVideoBench [43]. * donates the results
of our replication.

Model #Params Frames Overall
Proprietary LVLMs

Gemini-1.5-Pro [32] - 256 64.0
GPT-4o [29] - 256 66.7

Open-Source LVLMs

VideoChat2-Mistral [16] 7B 8 39.3
ShareGPT4Video [2] 7B 8 39.7
LLaVA-Next-Mistral [22] 7B 8 49.1
PLLaVA [44] 34B 16 53.2
VITA-1.5 [7] 7B 16 53.6
LLaVA-Video* [52] 7B 64 56.6
LLaVA-Video* [52] 72B 64 61.9

LLaVA-Video + Video-RAG 7B 64 58.7
LLaVA-Video + Video-RAG 72B 64 65.4

4.3 Main Results

Video-MME. We evaluate our Video-RAG in five 7B open-source LVLMs, including Video-LLaVA
[18], LLaVA-NeXT-Video [51], LongVA [49], Long-LLaVA [45], and two 72B LVLM Qwen2-VL
[40] and LLaVA-Video [52]. Constraining by computational resources, we evaluate the LVLMs with
their official frame rate setting in Video-MME except for 72B Qwen2-VL, which requires about
3K GPU memory with 768 video frame input (∼38 A100 GPUs). Results are shown in Table 1.
Specifically, after applying our Video-RAG in 72B LLaVA-Video [52], we perform better than the
proprietary model GPT-4o [29] (77.4% vs. 77.2%). Across the seven LVLMs used in our experiments,
we gained an average performance boost of 2.8% compared to results with subtitles, especially a
significant gain on long videos, demonstrating its effectiveness. This performance improvement is
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achieved by incorporating token counts from approximately 14 additional video frames (equivalent
to 2.0K tokens), each contributing around 144 tokens under most LVLM configurations. We obtain
such a large performance enhancement because most LVLMs are pre-trained primarily within the
text space and aligned with visual information, often lacking explicit alignment between embedding
spaces. Auxiliary texts can serve as semantic supplements sensitive to LVLMs, facilitating model
activation and easing the understanding of complex videos.

MLVU. We evaluate Video-RAG when integrating into the 7B and 72B LLaVA-Video [52] of MLVU
[54], a benchmark that is close to performance saturation. As shown in Table 4, Video-RAG’s 1.6%
improvement at 7B-scale is substantial, considering that it outperforms the 32B Qryx-1.5 [26] by
0.1%, while recent 7B-scale models average only a 1.3% gain (across 15 approaches in MLVU’s
leaderboard). Additionally, the 72B LLaVA-Video also has a performance gain of 0.7%, which sets a
new state-of-the-art.

LongVideoBench. We evaluate Video-RAG when applied in the 7B and 72B LLaVA-Video [52] of
LongVideoBench [43]. We omit the interleaved input format introduced in LongVideoBench when
applying Video-RAG. The evaluation results in Table 5 demonstrate that 72B LLaVA-Video with our
Video-RAG achieves an overall performance of 65.4% on the validation set. This result surpasses
the proprietary LVLM Gemini-1.5-Pro [32] by 1.4%, securing the second place, just 1.3% behind
GPT-4o [29]. Meanwhile, the 7B LLaVA-Video also has a performance enhancement of 2.1% when
equipped with our Video-RAG.

4.4 Ablation Studies

Effect of different sampling frame number. To explore the effect of the number of sampling frames
on Video-RAG, we experience sampling frames number of 8, 16, 32, 64, 128, and 256 in 7B model
LongVA [49], results are shown in Figure 3. As demonstrated, Video-RAG consistently delivers
performance improvements across all frame rates, especially in long videos. The experimental results
also indicate that Video-RAG can achieve higher performance gains with fewer frames, demonstrating
its potential for applications under resource-constrained conditions.
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Figure 3: Performance gain with different sampling frames
rate on Video-MME [6] when implement LongVA-7B [45].

Effect of different components of
Video-RAG. To explore the effective-
ness of auxiliary texts, we add DET,
OCR, and ASR as auxiliary texts be-
fore and after retrieving by the RAG to
evaluate Long-LLaVA-7B [45] with
32-frame setting in the Video-MME
[6] benchmark. As shown in Table 4,
the performance of Long-LLaVA pro-
gressively improves as auxiliary texts
after retrieving by the RAG system are
incrementally added (52.0% → 52.9%
→ 55.7% → 62.1%). Among these
components, ASR auxiliary texts con-
tribute to a general improvement for
different video durations, especially
for long videos. When all components are integrated, we obtain an optimal performance, as shown in
the last row of Table 4. Meanwhile, the experiment shows a 2.3% improvement (59.8% vs 62.1%) in
performance after incorporating RAG for retrieval, demonstrating that auxiliary texts after retrieving
by the RAG system are query-aligned, which helps cross-modality alignment. We also evaluate across
sub-tasks within Video-MME [6] and other video benchmarks like MLVU [54], LongVideoBench[43],
and VNBench [53], more details are shown in the Supplemental Material.

Effect of different thresholds of RAG processing. When retrieving, we specify a similarity threshold
t as a criterion for information selection. In the retrieval for OCR and ASR texts, information is
selected if its FAISS similarity exceeds t. For object detection, frames are selected as keyframes based
on their CLIP similarity surpassing t, and the relevant information is then extracted. Setting t too
high may hinder the retrieval of relevant information while setting it too low can result in information
redundancy and increased reasoning complexity. To investigate this trade-off, we conduct ablation
experiments to evaluate the impact of different threshold values. The results are shown in Table 5.

8



Table 4: Results on combinations of different aux-
iliary texts in Video-MME [6] when using Long-
LLaVA-7B [45] as the LVLM.

RAG DET OCR ASR Short Medium Long Overall
60.3 51.4 44.1 52.0

✓ 62.2 55.4 54.4 57.4
✓ ✓ 64.0 56.2 55.0 58.4

✓ ✓ 63.0 57.3 56.4 58.9
✓ ✓ ✓ 64.3 58.8 56.3 59.8

✓ ✓ 61.4 51.9 45.2 52.9
✓ ✓ 63.2 53.2 46.3 54.3
✓ ✓ 65.1 59.1 60.7 61.6
✓ ✓ ✓ 64.1 54.6 48.4 55.7
✓ ✓ ✓ 64.9 59.0 60.7 61.5
✓ ✓ ✓ 66.3 60.3 59.3 62.0
✓ ✓ ✓ ✓ 66.4 60.2 59.8 62.1

Table 5: Performance with different thresholds
of retrieval on Video-MME [6] when using Long-
LLaVA-7B [45] as the LVLM. #Token and Time
denote the total token number of the auxiliary texts
and the average inference time per question, respec-
tively.

t #Token Time Short Medium Long Overall
0.0 3.6K 36s 67.6 59.4 59.1 62.0
0.1 3.4K 30s 67.0 59.7 59.1 61.9
0.2 2.7K 18s 66.0 60.2 59.2 61.8
0.3 1.9K 11s 66.4 60.2 59.8 62.1
0.4 0.8K 8s 65.6 58.0 58.3 60.6
0.5 0.3K 7s 63.1 54.9 50.2 56.1
1.0 0.0K 6s 60.3 51.4 44.1 52.0

rnd 1.9K 11s 65.7 55.8 56.0 59.1

[Key Frame x]

Video-RAG

request = {

    “ASR”: null, 

    “DET”: [“apples”, “candles”, “berries”],

    “TYPE”: [“number”]

}

Frame x:
Obj Counting:
- apples: 5
- candles: 5
- berries: 7

Obj Detection

[Key Frame y]

It may be B.

Finetuning
 LVLM

The answer is C!

Video-RAG

When demonstrating the Germany modern Christmas tree is initially decorated with apples, candles and berries, 

which kind of the decoration has the largest number?

A. Apples. B. Candles. C. Berries. D. The three kinds are of the same number.
Full Video Link: 

youtu.be/fFjv93ACGo8

Figure 4: Qualitative result on Video-MME [6] when applying Video-RAG with LLaVA-Video [52].

Video-RAG
[Key Frame with more attention][Query-irrelevant Frames with less attention]

Finetuning
 LVLM

w/o Auxiliary Texts

[More aligned cross-modality features]

with Auxiliary Texts

Figure 5: Grad-CAM visualizations of the last hidden state heatmap along with t-SNE visualizations
of the user’s query and keyframe features of the example shown in Figure 4. The retrieved auxiliary
texts help cross-modality alignment by assisting the model to pay more attention to query-relevant
keyframes and thus generate more robust and accurate answers to the user’s query.

Notably, t = 0 and t = 1 correspond to all auxiliary texts input into the model and no auxiliary texts
input, respectively. To balance performance with information density and processing time (especially
APE [36] detection in keyframes), we selected a threshold of 0.3 for our implementation. More
details about similarity scores are shown in the Supplemental Material. Under this configuration, the
additional text length of approximately 1.9K tokens typically remains within the context window
limits of open-source LVLMs. For models with more stringent context window limitations, a threshold
of 0.4 may also be a viable option. We also randomly sample an equivalent token number of auxiliary
texts to serve as inputs for assessing the effectiveness of RAG retrieval, as shown in the last row of
Table 5.

4.5 Qualitative Evaluation

We present qualitative results in the case of Video-MME [6] in Figure 4 and Figure 5. As illustrated,
augmenting LLaVA-Video with external tools to process and retrieve auxiliary texts from videos
significantly enhances its ability to reduce visual hallucinations, thereby enabling more accurate
responses to user queries. Grad-CAM [34] and t-SNE [39] visualization results also show that
applying Video-RAG helps the LVLM’s cross-modality alignment.
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5 Conclusion

In this paper, we present Video-RAG for effective long video understanding through integrating
retrieved auxiliary texts with LVLMs, achieving proprietary-level performance with 72B open-source
LVLM. Unlike traditional methods that are resource-intensive with limited gains, Video-RAG offers
a resource-efficient, plug-and-play solution leveraging only open-source tools to extract visually-
aligned auxiliary texts from video data. However, Video-RAG may be limited by the visual tools we
choose and their performance, which lacks adaptation. In the future, we will explore how to more
efficiently integrate auxiliary texts and provide an adaptive frame selection strategy for LVLMs.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Please refer to the abstract and Section 1, also the experimental results can be
found at Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the Section 5, we discuss the future work of our proposed method, and also
discuss its limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Section 4, we describe the implementation details of our experimental results,
and also open-source our code anonymously, which can be found in our supplementary
material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We open-source our code with an anonymous link in our supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the implementation details in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Because the experiment requires the use of a large number of resources, we
only provide the data from one experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Table 5, we provide the time of execution of our method, and we also
include relative contents in our supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have ensured that the paper complies with the guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of our paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks since it is based on open-source tools or models
without providing any new model.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the datasets and models we used in this paper all from open-source
collections like Github and HuggingFace, with the license of CC-BY 4.0.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The LLM models involved in the study are all sourced from open-source
communities. Additionally, any extra LLM tools are used solely to assist with writing and
do not affect the core methods, scientific rigor, or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplemental Material

A Decouple Query

In the initial phase of the proposed Video-RAG, we employ a decouple prompt, denoted as P, to
guide the LVLM in generating retrieval requests. In this section, we present one example of a prompt
designed for multiple-choice questions, as illustrated in Figure 8.

B Sub-set of Video-MME

As outlined in the implementation details, we randomly sampled a subset of the Video-MME [6]
dataset to evaluate a computationally resource-intensive, agent-based method with long-context
LVLMs. Specifically, we selected 10% of the full dataset, comprising 30 short, 30 medium-length,
and 30 long videos. Each video contains three multiple-choice questions. Importantly, we ensured
that the performance ranking of the methods on the subset mirrored that of the full dataset. As shown
in Tables 6 and 7, we evaluated four distinct 7B models Chat-Univi-v1.5 [12], LLaVA-NeXT-Video
[51], LongVA [49], and Long-LLaVA [45] using a frame sampling rate of 16 for both the subset
and the full set. Our results indicate that the performance rankings remained consistent across both
evaluations.

Table 6: Performance of Video-MME sub-set.

Method Short Medium Long Overall
Chat-Univi-v1.5 [12] 50.0 33.3 17.8 33.7
LLaVA-NeXT-Video [51] 54.4 33.3 23.3 37.0
LongVA [49] 56.7 50.0 38.9 48.5
Long-LLaVA [45] 58.9 52.2 40.0 50.4

Table 7: Performance of Video-MME full-set.

Method Short Medium Long Overall
Chat-Univi-v1.5 [12] 45.7 39.0 35.7 40.1
LLaVA-NeXT-Video [51] 51.1 41.8 36.8 43.2
LongVA [49] 60.8 45.2 41.4 49.1
Long-LLaVA [45] 59.3 49.3 44.4 51.0

C Results on Video-MME Sub-Set

We examine Video-RAG against two representative methods in terms of inference time, GPU resource
requirements, and overall performance. Given that GPT-based Agent methods are resource-intensive,
we randomly sampled a sub-set of the Video-MME [6] for evaluation, as described in Section
B. As demonstrated in Figure 6, VideoAgent [4], a typically GPT-based Agent method, requires
significant time to process video and deliver suboptimal performance. Meanwhile, LongVA [49],
a representative long-context LVLM, shows limited improvement from increasing the frame rate
and even experiences performance degradation. Integrating our Video-RAG into the 16-frame
LongVA results in substantial performance improvements while reducing GPU resource consumption.
Specifically, with only increasing 8GB GPU memory compared to the base (16-frames LongVA),
we achieve 11.5% overall performance improvement, while outperforming another long-context
LVLM Long-LLaVA-7B [45] in 16-frames setting by 9.6% with less GPU memory requirements
and compatible total inference time. These results demonstrated that our Video-RAG is lightweight
with lower computing overhead than the other typical methods. Moreover, we provide detailed time
consuming to construct three types of databases (which can be built in parallel) and inference per
query, as shown in Table 8.
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Table 8: Overall performance, databases construct and average inference time (include building databases) per
query (#Time) in Video-MME-mini.

Model ASR OCR DET Total Time w/o subs w/ Video-RAG
#Time Overall #Time Overall

VideoAgent - - - - 14min 47.7 - -
LongVA-16fs 21min 2min 3min max(21, 2, 3)=21min 1s 48.5 1s + 5s 60.0
LongVA-128fs 21min 16min 16min max(21, 16, 16)=21min 8s 54.1 8s + 5s 63.3
LongVA-384fs 42min 48min 24min max(42, 48, 24)=48min 20s 53.7 20s + 11s 63.6
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Figure 6: The comparison of our Video-RAG with two common approaches. The size of the bubbles
represents the total time consumed for completing inference on the Video-MME [6] sub-set.

D Details of Similarity Score Calculation

In the process of using the RAG system to retrieve auxiliary texts extracted from videos, we define a
similarity threshold t to ensure the selection of relevant texts. Specifically, we employ FAISS-based
[13] similarity to select OCR and ASR texts, while CLIP [30] similarity is used for keyframe selection.
In our implementation, the similarity threshold t is set to 0.3. As for OCR and ASR selection, For
any given list of the retrieve request R and auxiliary texts A, the Contriever [9] framework maps the
text to a text embedding as:

Eai
= Contriever(Ai), i = 1, 2, . . . , n

Eri = Contriever(Ri), i = 1, 2, . . . , n

The average embedding of the retrieve request is then computed as:

Er =
1

n

n∑
i=1

Eri

After that, the embedding of the request and the list of auxiliary texts is normalized:

Eai
=

Eai

∥ Eai
∥
, Er =

Er

∥ Er∥

The similarity between the query embedding Er and the document vector Ea is computed using the
inner product, the FAISS library is employed to efficiently perform this search and return the indices
of the auxiliary texts meeting the criterion:

S(Er,Eai
) = Er ·Eai

> t

As for object detection, we use CLIP to select the video keyframe. During this process, we first
filter the object detection request Rdet to ensure they correspond to CLIP-sensitive physical entities,
avoiding the inclusion of abstract concepts. Specifically, if it is a single word, direct part-of-speech
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filtering is applied; if it is a compound word, certain rules are followed to check for compliance, such
as whether it is an adjective plus a noun, or a noun plus a noun. We use the Spacy library to achieve
this. After this, we put the text “A picture of" before each object detection request.

Then, we extracting embedding from both the video frames F and the detection request Rdet:

EFj
= CLIP(Fj), j = 1, 2, . . . ,m

ERi = CLIP(Rdeti), i = 1, 2, . . . , n

The similarity between each video frame and the detection retrieve requests is computed using the
dot product between the image and text feature embeddings. For each frame Fj , and for each retrieve
request ERi , the similarity score is given by:

Sij = EFj ·ERi

where · denotes the dot product. The final similarity score for each frame is the average similarity
across all requests:

Sj =
1

n

n∑
i=1

Sij

This computes the mean similarity for each frame across all text descriptions, resulting in a similarity
vector S = [S1, S2, . . . , Sm]. The similarity scores are adjusted by a scaling factor α, which is
computed based on the number of frames m and a base frame number b (which is set to 16 and 4.0,
respectively) to adapted different video sampling rate of LVLMs:

α = β × m

b
where β is a predefined scaling parameter.

Next, the similarity scores are scaled and normalized to ensure that they sum to 1:

Snorm
j =

α× Sj∑m
k=1 Sk

where Snorm
j represents the normalized similarity score for frame Fj .

The final step is to select the keyframes based on the normalized similarity scores. A threshold t is
applied to the normalized similarities, such that frames with similarity scores above the threshold are
selected as keyframes:

Keyframe: Fj if Snorm
j > t

Thus, the set of selected keyframes is given by:

Fkey = {Fj | Snorm
j > t, j = 1, 2, . . . ,m}

E More Ablation Studies

Effect of different components of Video-RAG. We evaluate the performance across sub-tasks
within Video-MME [6], as shown in Figure 7. The results reveal that object detection auxiliary texts
significantly enhance spatial perception and object counting, while OCR auxiliary texts specifically
improve performance on text recognition tasks. Additionally, ASR auxiliary texts contribute to a
general improvement in inference tasks, underscoring the critical role of audio transcription in video
understanding. Given that audio transcription is considerably more time-consuming than character
recognition or object detection, these texts should be selected based on the requirements of the
application.

Besides studying the inference of different components of Video-RAG in the Video-MME [6]
benchmark, we also experiment with a different type of video benchmark. We first evaluate LLaVA-
Video in MLVU [54] and LongVideoBench [43] in both 7B and 72B scale with the 64-frame setting,
results are shown in Table 9. As demonstrated, when all components are combined, we get optimal
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Figure 7: Performance on 12 sub-tasks in Video-MME [6] benchmark after applying different
components in Long-LLaVA.

Table 9: Ablation study in MLVU and LongVideoBench.

RAG DET OCR ASR 7B 72B
MLVU LVB MLVU LVB

70.8 56.6 73.1 61.9
✓ ✓ 71.0 56.5 73.4 63.2
✓ ✓ ✓ 71.3 56.8 73.5 63.4
✓ ✓ ✓ ✓ 72.4 58.7 73.8 65.4

✓ ✓ ✓ 70.3 58.3 72.9 64.0

performance in both datasets, including 7B and 72B scales. Specifically, the performance in MLVU
[54] even declined when the RAG system was not implemented.

Then, to better point out the role of DET and OCR, we evaluate Video-RAG in VNBench [53] with
Long-LLaVA-7B [45]. VNBench is a synthetic benchmark designed to evaluate models’ long-context
abilities, covering tasks such as retrieval, ordering, and counting. VNBench randomly inserts stickers
or text into the video that has nothing to do with the original content of the video, thus typically
challenging the model’s needle-in-the-haystack capability. As shown in Table 10, we find that
applying DET and OCR as auxiliary texts can significantly improve the performance in retrieval,
ordering, and counting tasks. However, the ASR component will decline the performance due to the
subtitles are not ancillary to this particular task. These results demonstrated that our proposed distinct
types of auxiliary texts can be selected according to the application needs to meet the requirements
better.

F More Qualitative Results

In this section, we show more results of LLaVA-Vdieo-7B when applying Video-RAG in different
examples in Figure 9. The figure highlights several representative cases involving detailed video
comprehension from Video-MME [6]. As illustrated, augmenting LLaVA-Video with external tools
to process and retrieve auxiliary texts from videos significantly enhances its ability to reduce visual
hallucinations, thereby enabling more accurate and confident responses to user queries.
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To answer the question step by step, list all the physical entities related to 
the question you want to retrieve, you can provide your retrieve request to 
assist you by the following JSON format:

{

     "ASR": Optional[str]. The subtitles of the video that may relavent to the 
question you want to retrieve, in two sentences. If you no need for this 
information, please return null.

     "DET": Optional[list]. (The output must include only physical entities, not 
abstract concepts, less than five entities) All the physical entities and their 
location related to the question you want to retrieve, not abstract concepts. If 
you no need for this information, please return null.

     "TYPE": Optional[list]. (The output must be specified as null or a list 
containing only one or more of the following strings: 'location', 'number', 
'relation'. No other values are valid for this field) The information you want 
to obtain about the detected objects. If you need the object location in the 
video frame, output "location"; if you need the number of specific object, 
output "number"; if you need the positional relationship between objects, output 
"relation". 

}

## Example 1: 

Question: How many blue balloons are over the long table in the middle of the 
room at the end of this video? A. 1. B. 2. C. 3. D. 4.

Your retrieve can be:

{

      "ASR": "The location and the color of balloons, the number of the blue 
balloons.",

      "DET": ["blue ballons", "long table"],

      "TYPE": ["relation", "number"]

}

## Example 2: 

Question: In the lower left corner of the video, what color is the woman wearing 
on the right side of the man in black clothes? A. Blue. B. White. C. Red. D. 
Yellow.

Your retrieve can be:

{

      "ASR": null,

      "DET": ["the man in black", "woman"],

      "TYPE": ["location", "relation"]

}

## Example 3: 

Question: In which country is the comedy featured in the video recognized 
worldwide? A. China. B. UK. C. Germany. D. United States.

Your retrieve can be:

{

      "ASR": "The country recognized worldwide for its comedy.",

      "DET": null,

      "TYPE": null

}

Note that you don't need to answer the question in this step, so you don't need 
any infomation about the video of image. You only need to provide your retrieve 
request (it's optional), and I will help you retrieve the infomation you want. 
Please provide the json format.

Decouple Prompt of the Multiple-choice Question

Figure 8: Decouple prompt of the multiple-choice question for LVLMs.
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Table 10: Results on combinations of different auxiliary texts in VNBench [53] with 1-try setting
when applying 7B Long-LLaVA [45] as LVLM under the 32-frames setting. Ret, Ord, and Cnt
represent retrieval, ordering, and counting tasks, respectively.

RAG DET OCR ASR Ret Ord Cnt Overall
65.1 25.6 24.2 38.3

✓ ✓ 66.9 28.4 23.8 39.7
✓ ✓ ✓ 68.2 31.3 28.9 42.8
✓ ✓ ✓ ✓ 66.7 31.3 29.6 42.5

…… the ALS 
building it 
where's your 
class …… hey 
guys just got 
out of class 
pretty ……

request = {

    “ASR”: “The athlete first meet the student.”, 

    “DET”: [“athlete”, “student”],

    “TYPE”: [“relation”]

}

Frame y:
ATHLETE；
STUDENT；
12:30 PM;

OCR / ASR
Databases

Full Video Link: 
youtu.be/

When and where did the athlete and student first meet in the video?

A. 12:30 PM in the car.  B. 12:30 PM in the canteen.

C. 12:30 PM in the classroom. D. 12:00 PM in the classroom.

[OCR Frame y]

Full Video Link: 
youtu.be/3m29MQ-qPfg

[OCR Frame x]

It may be D.

Finetuning
 LVLM

The answer is C!

Video-RAGVideo-RAG

… stop is 
death valley …
from arches 
national park… 
cathedral rock 
sunset here in 
sedona ……

request = {

    “ASR”: “The number of the attractions.”, 

    “DET”: [“attractions”],

    “TYPE”: [“number”]

}

Frame 1:
Death Valley；
...
Frame 10:
Cathedral 
Rock;OCR / ASR

Databases

Full Video Link: 
youtu.be/

How many attractions are shown in the video?

A. 9. B. 10.

C. 11. D. 8.

[OCR Frame 2]

Full Video Link: 
youtu.be/QHFy-nWNJYk

[OCR Frame 1]

It may be C.

Finetuning
 LVLM

The answer is B!

Video-RAGVideo-RAG

...... [OCR Frame 10]

request = {

    “ASR”: “Where is the coin gone.”, 

    “DET”: [“coin”, “table”, “sleeve”, 

“playing card”, “palm”],

    “TYPE”: [“relation”]

}

Full Video Link: 
youtu.be/

Where is the disappearing coin gone in the fifth magic?

A. It is thrown under the table.                      B. It is hidden in sleeves.

C. It is hidden behind the playing card. D. It is hidden in the palm of the magician's hand. Full Video Link: 
youtu.be/9HPFkUhOp1Q

It may be C.

Finetuning
 LVLM

The answer is D!

Video-RAGVideo-RAG

[Key Frame x]

Frame x:
Object m 
(coin) is 
above Object 
n (palm); 

…… practice
dropping the 
coin into 
your palm ……

DET / ASR
Databases

Figure 9: Qualitative results of LLaVA-Vdieo when applying Video-RAG.
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