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Abstract
As large language models increasingly drive real-
world applications, aligning them with human val-
ues becomes paramount. Reinforcement Learn-
ing from Human Feedback (RLHF) has emerged
as a key technique, translating preference data
into reward models when oracle human values
remain inaccessible. In practice, RLHF mostly
relies on approximate reward models, which may
not consistently guide the policy toward maximiz-
ing the underlying human values. We propose
Policy-Interpolated Learning for Aligned Feed-
back (PILAF), a novel response sampling strategy
for preference labeling that explicitly aligns pref-
erence learning with maximizing the underlying
oracle reward. PILAF is theoretically grounded,
demonstrating optimality from both an optimiza-
tion and a statistical perspective. The method is
straightforward to implement and demonstrates
strong performance in iterative and online RLHF
settings where feedback curation is critical.

1. Introduction
Reinforcement Learning from Human Feedback (RLHF)
(Ouyang et al., 2022) has revolutionized large language mod-
els (LLMs) by incorporating human preferences, enabling
significant progress in applications such as conversational
AI (Achiam et al., 2023), personalized tutoring (Limo et al.,
2023), and content curation (Yue et al., 2024). At the core of
RLHF is reward modeling, a critical process that translates
human feedback—such as pairwise comparisons or rank-
ings—into a measurable objective for model training. By
formalizing human preferences, reward models then guide
LLMs towards alignment through policy optimization.

While numerous studies have focused on improving lan-
guage models (LMs) by optimizing fixed reward functions
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(Dong et al., 2023; Liu et al., 2024b) or leveraging pre-
existing preference datasets (Ethayarajh et al., 2024; Azar
et al., 2024; Xu et al., 2024), comparatively less attention
has been paid to the critical challenge of collecting effective
data for human-labeling in the RLHF pipeline, to maximize
its utility. This is an important problem, as the quality of
preference data directly impacts the effectiveness of reward
modeling and, consequently, the overall success of fine-
tuning. This challenge is further compounded by the high
cost of expert preference labeling (Lightman et al., 2023).

Preference data is usually generated by sampling response
pairs (y⃗a

i , y⃗
b
i ) to a prompt xi from a policy, and present-

ing them to human labelers for preference annotation. It is
commonly assumed that the annotation follows the Bradley-
Terry (BT) model, under an oracle reward. Next, we use
maximum likelihood estimation (MLE) on these preference
data to train a reward model, which then serves as a mea-
surable objective to optimize the policy (i.e. LLM) while
staying close to a reference policy. In Direct Preference
Optimization (DPO) (Rafailov et al., 2023), this pipeline
is simplified by optimizing the policy with implicit reward
modeling. However, all these pipelines give rise to a mis-
alignment of objectives: RLHF (or DPO) should, in princi-
ple, train its policy to maximize the (inherently inaccessible)
oracle objective which combines the oracle reward from the
BT model with reference regularization. In practice, RLHF
relies on preference data through the MLE objective in re-
ward modeling or through methods like DPO, which are not
designed to guide policy optimization towards maximizing
oracle rewards. Thus, reward optimization (either directly
or implicitly via DPO) and (optimal) policy optimization are
not inherently aligned, potentially leading to inefficiencies
(see Section 2).

In this work, we study this misalignment by examining
the sampling scheme that generates response pairs (y⃗a

i , y⃗
b
i )

for preference labeling, which is especially important when
additional preference data is collected mid-RLHF training to
mitigate the off-policy distributional shift, as is empirically
standard (Touvron et al., 2023; Bai et al., 2022). We show
that uniform sampling from the current policy, as is common,
leads to misaligned gradients of the two objectives (reward
model loss and true oracle objective).

To tackle this issue, we present Theoretically Grounded
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Figure 1. Overview of our approach. (a) We consider a full RLHF training setup, where a language model (LM) policy is iteratively
refined through active data collection. Our goal is to develop an optimal response sampling method for preference labeling. (b) We
introduce PILAF, which generates responses by interpolating between the current policy and a reference policy, balancing exploration and
exploitation. (c) Our theoretical analysis shows that T-PILAF aligns the parameter gradient with the steepest direction for maximizing
human values and achieves more favorable convergence in regions of high sensitivity.

Policy-Interpolated Learning for Aligned Feedback (T-
PILAF), a novel sampling method that aligns reward model-
ing with value optimization. Specfically, T-PILAF generates
responses by interpolating the policy model and the refer-
ence model for a balanced exploration and exploitation. We
provide rigorous theoretical analysis to show that for pref-
erence data generated with T-PILAF, the gradient of the
MLE loss with respect to the policy network’s parameters is
aligned with the policy gradient of the oracle objective in a
first-order sense. This alignment enables the policy to opti-
mize directly for the oracle value, achieving both alignment
and efficiency. Furthermore, we separately show from a sta-
tistical perspective that T-PILAF aligns optimization with
the steepest directions of the oracle objective. It thus makes
the sampled preference pairs more informative, reducing
variance and improving training stability.

We then present PILAF, a simple modification of our the-
oretical sampling scheme T-PILAF, which naturally lends
itself to practical implementation. For clarity of exposition,
we present our method in the context of DPO; however,
PILAF can be adapted to a wide class of preference opti-
mization methods.1 See Figure 1 for an illustration of our
setup, method, and the optimization and statistical principles
underlying PILAF.

We conduct extensive experiments to validate PILAF’s effec-
tiveness and robustness. As a stand-in for expensive human
annotators, we use a well-trained reward model—Skywork-
Llama-3.1-8B (Liu et al., 2024a)—as a proxy for the oracle
reward. Throughout training, we query this model exclu-
sively for preference labels, simulating human feedback.

1See Appendix G for the extension to PPO.

We then align the Llama-3.1-8B base model (Dubey et al.,
2024) using these proxy-labeled preference data in two set-
tings: iterative DPO (Xiong et al., 2024) and online DPO
(Guo et al., 2024). In both scenarios, preference data is
collected on-the-fly, either after each full training epoch in
the iterative setting or after every training step in the online
setting. Across all configurations, PILAF outperforms all
the baselines, producing a policy with higher reward (as
measured by the proxy) and a lower KL divergence from
the reference model, reducing annotation and computation
costs by over 40% in iterative DPO.

Our key contributions are as follows:

• (Practical sampling algorithm) We propose PILAF
(Section 5), an efficient sampling algorithm for gener-
ating response pairs in the RLHF pipeline for improved
sample efficiency and performance, derived from its
theoretically grounded variant T-PILAF (Section 3).

• (Theoretical optimality) We provide theoretical guar-
antees for the efficiency of our approach from both
optimization and statistical perspectives (Section 4).

• (Empirical validation) We validate PILAF in both iter-
ative and online DPO settings (Section 6) and observe
that it consistently outperforms baselines by achieving
higher reward and lower KL divergence from the ref-
erence model. Moreover, PILAF achieves comparable
performance at significantly reduced annotation and
computational costs.

1.1. Related Work

Existing Sampling Schemes. In academic papers, uni-
form vanilla sampling is the most commonly used approach,
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while methods such as best-of-N and worst-of-N have also
been explored (Dong et al., 2024). Xie et al. (2024) propose
sampling one response from the current policy model and
another from a reference model, modifying the loss function
to encourage optimistic behavior. Similarly, Zhang et al.
(2024) sample one response from the current model but
rank it alongside two offline responses from the reference
model. Shi et al. (2024) present a formula similar to ours
based on intuition, introducing several hyperparameters and
analyzing convergence speed with DPO in a tabular setting.
Liu et al. (2024c) train an ensemble of reward models to
approximate a posterior distribution over possible rewards
and use Thompson sampling to generate responses with
exploration. In contrast to these works, we theoretically es-
tablish the principles of response generation for preference
labeling, making minimal assumptions and simplifications
while demonstrating the optimality of our approach. Our
approach eliminates the need for hyperparameter tuning.

Policy Gradient. Our theoretical principle is closely related
to the family of policy gradient methods (Williams, 1992;
Sutton et al., 1999) in reinforcement learning, which opti-
mize a policy πθ by estimating and ascending the gradient
of the expected return ∇θJ(θ). Significant advancements
have been made to improve the efficiency of these meth-
ods, including variance reduction techniques (Greensmith
et al., 2004), off-policy gradient estimation (Degris et al.,
2012), interpolating on-policy and off-policy updates (Gu
et al., 2017), deterministic policy gradients (Silver et al.,
2014), and three-way robust estimation approaches (Kallus
& Uehara, 2020). Our study extends these principles to pref-
erence learning for LMs, aligning the MLE gradient with the
oracle objective gradient by controlling the response sam-
pling distribution, thereby improving learning efficiency.

A review of other RLHF literature, particularly on data se-
lection for the preference dataset, is deferred to Appendix A.

2. Problem Setup and Motivation
2.1. Aligning LMs with Human Preferences

Language Model (LM). At the core of our framework is
a language model that processes prompts x ∈ X and gen-
erates responses y⃗ ∈ Y . Each response is represented as a
sequence of tokens y⃗ = (y1, y2, . . . , yT ). The primary goal
of RLHF is to guide the model to generate responses that
align with human preferences. This translates to design-
ing a decision policy π (parameterized as a LM) that maps
prompts to responses, maximizing a reward that reflects
human preferences (with a KL regularization).

Preference Data. The oracle reward for human values
is inherently inaccessible. Instead, the alignment process
approximates the reward using a dataset of human-labeled

preferences,

D =
{
(xi, y⃗

w
i , y⃗

ℓ
i)
}n

i=1
,

where each sample contains: (i) a prompt xi, independently
drawn from a distribution ρ, and (ii) a pair of responses
(y⃗w

i , y⃗
ℓ
i), where y⃗w

i is preferred over y⃗ℓ
i in human label-

ing. The response pair (y⃗w
i , y⃗

ℓ
i) is first generated from a

joint distribution µ(· | x) and then presented to human la-
belers for preference annotation. Human preferences are
commonly modeled using the Bradley–Terry (BT) model,
which assumes:

P
(
y⃗a ≻ y⃗b

∣∣ x) = σ
(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
, (1)

where r⋆(x, y⃗) represents the (unknown) oracle reward of
a response given a prompt, and σ(z) = {1 + exp(−z)}−1

is the sigmoid function, mapping differences in rewards to
probabilities. We adopt the BT model throughout this paper.

Reward Modeling. The preference data, encoding human
judgment, is then used to train a reward model, rθ, which
serves as a measurable objective for training the policy
model. rθ is trained by solving a MLE objective:

min
θ

L̂(θ) := − 1

n

n∑
i=1

log σ
(
rθ
(
xi, y⃗

w
i

)
− rθ

(
xi, y⃗

ℓ
i

))
.

(2)

This empirical loss approximates the expected negative log-
likelihood L(θ) :=

E x∼ρ

(y⃗a,y⃗b)∼µ(·|x)

[
− log σ

(
rθ(x, y⃗

w)− rθ(x, y⃗
ℓ)
)]

. (3)

Policy Optimization. To align a language model ϕ with
human preferences, we optimize it to maximize the learned
rewards rθ while staying close to a reference policy πref .
The objective is

maxϕ Ex∼ρ,y⃗∼πϕ(·|x)
[
rθ(x, y⃗)

]
−βDKL(πϕ ∥ πref). (4)

It consists of two parts:
(i) The reward term Ex∼ρ, y⃗∼π(·|x)[rθ(x, y⃗)] encourages

the policy to generate high-quality responses.
(ii) The regularization term DKL(π ∥ πref) penalizes devi-

ations from the reference policy πref and is defined as
Ex∼ρ

[
DKL

(
π(· | x)

∥∥ πref(· | x)
)]

.
Here, β is a regularization parameter that balances the trade-
off between reward maximization and adherence to the refer-
ence policy. We assume β is fixed and practitioner-specified.

2.2. Direct Preference Optimization

The above-described RLHF pipeline typically leverages the
Proximal Policy Optimization (PPO) algorithm (Schulman
et al., 2017) to perform policy optimization. This approach
requires loading the policy network, reward model, refer-
ence model, and a value model onto the GPU during training,
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making it highly resource-intensive. To improve computa-
tional efficiency and practicality, Direct Preference Opti-
mization (DPO) (Rafailov et al., 2023) has been proposed,
enabling direct alignment without the need for a reward
model or a value model.

A key insight of DPO is that any policy πθ can be viewed
as the optimal solution to problem (4) if the reward rθ is

rθ(x, y⃗) : = β · log
(

πθ(y⃗ | x)
πref(y⃗ | x)

)
. (5)

Thus, DPO can directly optimize the policy πθ using L̂(θ)
in Equation (2), where rθ is replaced by πθ as defined in
Equation (5). This reformulation makes the objective depen-
dent solely on θ, with the reward being implicitly learned
through the policy itself. As a result, the optimization pro-
cess becomes significantly more efficient.

2.3. Motivation: Realigning Oracle Reward
Maximization

To fully align with human values, RLHF should, in principle,
train the policy to maximize the oracle reward, r⋆, as defined
in the BT model. The corresponding oracle objective is then:

J(π) := Ex∼ρ, y⃗∼π(·|x)
[
r⋆(x, y⃗)

]
− β DKL(π ∥ πref) . (6)

Since direct access to r⋆ is unavailable, RLHF instead relies
on preference data, either through MLE-based reward mod-
eling or methods like DPO. However, these processes are
not inherently designed to train the policy to directly maxi-
mize the oracle objective, J(π). The following comparison
of the gradient will highlight the differences.

To make the notation concise, we introduce the follow-
ing shorthands: ∆r⋆ : = r⋆(x, y⃗a) − r⋆(x, y⃗b), ∆rθ :
= rθ(x, y⃗

a) − rθ(x, y⃗
b) and g : = ∇θ rθ(x, y⃗

a) −
∇θ rθ(x, y⃗

b). The lemmas give the following expressions
for the gradients of the scalar value J(πθ) (the optimal gra-
dient towards the oracle objective) and the training loss L(θ)
(the gradient actually used by DPO):

Lemma 2.1 (Gradient of value J(πθ)). For any πθ, the
gradient of the expected value J(πθ) satisfies

∇θ J(πθ) =
1

2β
Ex∼ρ; y⃗a,y⃗b∼πθ(·|x)

[
{∆r⋆ −∆rθ} · g

]
.

(7)

Lemma 2.2 (Gradient of the loss function L(θ) for vanilla
sampling). For any πθ and the vanilla response sampling
scheme, the gradient of the negative log-likelihood function
L(θ) is given by

∇θ L(θ) = − Ex∼ρ; y⃗a, y⃗b∼πθ(·|x)[
{σ(∆r⋆)− σ(∆rθ)} · g

]
.

(8)

We observe that these two gradients share a similar struc-
ture. The key difference is ∆r⋆ −∆rθ for ∇θ J(πθ) and
σ(∆r⋆)− σ(∆rθ) for ∇θ L(θ).

In this work, we design a sampling distribution µ to correct
this mismatch. Our new sampling method is optimal in the
sense that DPO, when using our sampling, will maximize
the oracle objective J(π), even without direct access to it.
The sampling strategy improves the quality of the preference
dataset, maximizes the utility of limited data, and enhances
both performance and efficiency.

This focus is particularly crucial in scenarios where addi-
tional data is collected during mid-training—a key phase in
the iterative fine-tuning of LMs (Touvron et al., 2023; Bai
et al., 2022; Xiong et al., 2024; Guo et al., 2024). At this
stage, a preliminary policy πθ (distinct from πref ) is already
in place, but its performance may fall short of expectations.
It is thus necessary to gather additional preference data, ide-
ally on-policy data that target areas where the current policy
shows room for improvement. An effective sampling design
can significantly enhance the efficiency of leveraging human
feedback in this process.

3. T-PILAF: Theoretical Sampling Scheme
We now present T-PILAF - theoretically grounded policy
interpolation for aligned feedback - our sampling scheme
for generating responses in data collection2. The scheme is
shown (in Section 4) to be optimal from both optimization
and statistical perspectives.

Consider we have an initial policy πθ and aim to collect pref-
erence data to further refine its performance. We propose
two complementary variants of policy πθ: one that encour-
ages exploration in regions more preferred by πθ, reflecting
an optimistic perspective, and another that focuses on areas
less favored by πθ, reflecting a conservative adjustment.

Specifically, we define policies π+
θ and π−

θ around πθ as

π+
θ (y⃗ | x) := 1

Z+
θ (x)

πθ(y⃗ | x) exp
{
rθ(x, y⃗)

}
, (9a)

π−
θ (y⃗ | x) := 1

Z−
θ (x)

πθ(y⃗ | x) exp
{
− rθ(x, y⃗)

}
, (9b)

where the reward function rθ is defined in equation (5).
The partition function Z+

θ (x) (or Z−
θ (x)) is given by

Z+
θ (x) :=

∫
Y πθ(y⃗ | x) exp{rθ(x, y⃗)} dy⃗.

For any prompt x ∈ X , our sampling procedure involves
the following steps:

(i) Draw a random variable ξ from Bernoulli(p0(x)),
where p0(x) := Z+

θ (x)Z−
θ (x)/{1 + Z+

θ (x)Z−
θ (x)}.

2The T in T-PILAF serves to distinguish the theoretical scheme
from the derived, simplified, efficiently implementable PILAF.
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(ii) If ξ = 1, independently draw responses y⃗a, y⃗b ∈ Y
according to y⃗a ∼ π+

θ (· | x) and y⃗b ∼ π−
θ (· | x).

If ξ = 0, draw responses as y⃗a, y⃗b ∼ πθ(· | x).

In the next section, we will theoretically analyze T-PILAF.
To account for the changes in sampling, we adopt a slightly
modified loss function in the theoretical framework:

L̂(θ) :=− 1

n

n∑
i=1

w(xi) · log σ
(
rθ
(
xi, y⃗

w
i

)
− rθ

(
xi, y⃗

ℓ
i

))
.

The newly introduced weight function w is defined as

w(x) :=
{
1 + Z+

θ (x)Z−
θ (x)

}
/Zθ , (10)

where the normalization constant Zθ > 0 is given by
Zθ : = 1 +

∫
X Z+

θ (x)Z−
θ (x) ρ(x) dx. We also modify the

population loss L in Equation (3) with the weight function.

4. Theoretical Analysis
This section provides the theoretical grounding and analysis
of our proposed sampling scheme from two perspectives.
In the optimization analysis (Section 4.1) we show that T-
PILAF aligns two objectives (gradient alignment property):
maximizing the likelihood function (Equation (3)) becomes
equivalent to gradient ascent on the value function J(πθ)
(Equation (6)). Consequently, policy updates on πθ move
the parameters in the direction of steepest increase of J . T-
PILAF thus provides the potential to accelerate training and
improve generalization, compared to vanilla (uniform) sam-
pling. In the statistical analysis (Section 4.2) we focus on
statistical error and show that the asymptotic covariance of
the estimated parameter θ̂ (inversely) aligns with the Hessian
of the objective function J when sampling with T-PILAF.
As a result, T-PILAF makes the sampled comparisons more
informative, as they align with directions where J is most
sensitive. The net outcome is reduced statistical variance
of our method through tighter concentration of estimates in
directions that matter most for performance.

4.1. Optimization Considerations

We begin by analyzing the DPO algorithm from an opti-
mization perspective.

Theorem 4.1 below formally illustrates how T-PILAF en-
sures alignment between the MLE gradient, ∇θ L(θ), and
the oracle objective gradient, ∇θ J(πθ).

Theorem 4.1 (Gradient structure in DPO training). Using
data collected from our proposed response sampling scheme
T-PILAF, the gradient of L(θ) satisfies

∇θ L(θ) = − β

Zθ

∇θ J(πθ) + T2 ,

where the constant Zθ is defined in equation (10), and the

term T2 represents a second-order error.

The detailed proof of Theorem 4.1 is deferred to Ap-
pendix C.1. Recall from Lemma 2.1 and Lemma 2.2 that
the difference between two gradients is the sigmoid func-
tion; the most notable technical contribution here is show-
ing how to leverage our sampling scheme to approximate
the derivative σ′ of the sigmoid function. By using T-
PILAF sampling, we can transform the difference term of
the form σ(∆r⋆) − σ(∆rθ) in ∇θ L(θ) into a linear dif-
ference ∆r⋆ − ∆rθ in ∇θ J(πθ). This bridges the gap
between the non-linear sigmoid differences and the linear
reward differences.

Theorem 4.1 establishes the gradient alignment property,
demonstrating that minimizing the likelihood-based loss
function L closely aligns with maximizing the oracle ob-
jective function J , with only a minor second-order error. It
highlights how the proposed sampling scheme enables the
DPO framework to effectively guide the policy toward opti-
mizing the expected reward. Beyond DPO, in Appendix G,
we show how the same principle can be applied to PPO-
based RLHF algorithms to help improve the sampling.

4.2. Statistical Considerations

From a statistical standpoint, we first examine the asymp-
totic distribution of the estimated parameter θ̂ when it (ap-
proximately) solves the optimization problem (2). In Theo-
rem 4.2, we formally characterize the randomness or statisti-
cal error inherent in θ̂ under this idealized scenario. The de-
tailed proof of Theorem 4.2 is provided in Appendix C.2.2.

Theorem 4.2. Assume the reward model r⋆ in the BT
model (1) satisfies r⋆ = rθ⋆ for some parameter θ⋆. Under
mild regularity conditions, the estimate θ̂ asymptotically
follows a Gaussian distribution

√
n (θ̂ − θ⋆)

d−→ N (0,Ω) as n → ∞ .

We have an estimate of the covariance matrix Ω:

Ω ⪯ C1 ·Σ−1
⋆ ,

where C1 > 0 is a universal constant. When using T-PILAF,
the matrix Σ⋆ is given by

Σ⋆ : = Ex∼ρ

[
Covy⃗∼π⋆(·|x)

[
∇θ r

⋆(x, y⃗)
∣∣ x]] . (11)

Next we analyze the performance of the output pol-
icy π̂ = πθ̂ from Theorem 4.2 in terms of the expected
value J(π). In Theorem 4.3, we show that our proposed
sampling method guarantees that the covariance of the sta-
tistical error in θ̂ aligns inversely with the Hessian of J at
the optimal policy π⋆. This alignment prioritizes conver-
gence efficiency along directions where the Hessian has
large eigenvalues, adapting to the geometry of the optimiza-
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tion landscape. It highlights the efficiency of our sampling
scheme in reducing statistical error. For the detailed proof
of Theorem 4.3, see Appendix C.2.3.

Theorem 4.3. The value function J(π) we define in equa-
tion (6) satisfies ∇θ J(π

⋆) = 0 and

∇2
θ J(π

⋆) = − 1

β
Σ⋆ (12)

for matrix Σ⋆ defined in equation (11). As a corollary,
suppose Σ⋆ is nonsingular, then there exists a constant
C2 > 0 such that for any ε > 0,

lim sup
n→∞

P

{
J(π̂) < J(π⋆)− C2 ·

d (1 + ε)

n

}
(13)

≤ P
{
χ2
d > (1 + ε) d

}
≤ exp

{
− d

2

(
ε− log(1 + ε)

)}
.

Our proposed sampling distribution µ ensures that the output
policy π̂ performs predictably and reliably. The value gap
J(π⋆)− J(π̂) asymptotically follows a chi-square distribu-
tion, irrespective of the problem instance details, such as the
underlying reward model r⋆. This structure-invariant statis-
tical efficiency allows the method to achieve asymptotically
efficient estimates without requiring explicit knowledge of
the model structure.

We further derive a general lemma describing how µ affect
the covariance in Appendix B. This result provides broader
insights into what constitutes good preference data in RLHF.

5. PILAF Algorithm
We now demonstrate that the T-PILAF sampling scheme
defined in Equation (9a) and (9b) can be naturally extended
into an efficient empirical algorithm (PILAF).

The first challenge in implementing these definitions lies
in calculating the normalizing factors Z+

θ (x) and Z−
θ (x),

which can be computationally expensive for LLMs. To ad-
dress this, we simplify the process by omitting these factors
and replacing them with 1.3 Consequently, the sampling pro-
cess becomes straightforward: with probability 1/2, we sam-
ple using πθ, and otherwise, we sample using π+

θ and π−
θ .

The second challenge lies in sampling a response y⃗ from
πθ(y⃗ | x) exp

{
± rθ(x, y⃗)

}
in an autoregressive way for

next-token generation. We argue that the policy π+
θ (and

π−
θ ) can be approximated in a token-wise manner:

π+
θ (y⃗ | x) ≈ π+

θ (y1 | x)π+
θ (y2 | x, y1)

· · · π+
θ (yt | x, y1:t−1) · · · π+

θ (yT | x, y1:T−1),

3When the regularization coefficient β is sufficiently small,
the term exp{rθ(x, y⃗)} in equation (9a) stays close to 1 and has
only a minor effect. Consequently, the partition function Z+

θ (x) is
approximately 1. A similar reasoning applies to Z−

θ (x).

where π+
θ (yt | x, y1:t−1) =

1

Z(x, y1:t−1)
πθ(yt | x, y1:t−1)

(
πθ(yt | x, y1:t−1)

πref(yt | x, y1:t−1)

)β

with Z(x, y1:t−1) being a partition function. The substi-
tution of rθ uses the correspondence between the reward
model rθ and the policy πθ in Equation (5), under the
assumption that this correspondence holds for all trunca-
tions y1:t−1. It gives us a direct per-token prediction rule:

π+
θ (· | x, y1:t−1)

= softmax
({

(1 + β)hθ − β href

}
(x, y1:t−1)

)
.

Here hθ and href are the logits of the policies πθ and πref ,
respectively. β is the regularization coefficient from the
objective function J(π) in Equation (6). Responses are
then generated using standard decoding techniques, such
as greedy decoding or nucleus sampling. Similarly, the
generation for π−

θ follows

π−
θ (· | x, y1:t−1)

= softmax
({

(1− β)hθ + β href

}
(x, y1:t−1)

)
.

For a detailed, step-by-step proof, see Appendix D.4.

We formalize our final algorithm in Algorithm 1. Vanilla
DPO (Rafailov et al., 2023; Guo et al., 2024) employs a
basic generation approach, sampling y⃗a

i , y⃗
b
i ∼ πθ at Step 3.

In contrast, instead of only sampling from πθ, our sampling
scheme interpolates and extrapolates the logits hθ and href

with coefficient β, enabling exploration of a wider response
space to align learning from human preference with value
optimization. The β here is the same parameter that controls
the KL regularization in Equation (4), as set by the problem.

Cost analysis. We summarize sampling and annotation
costs per preference pair for PILAF and related sampling
schemes in Table 1. In Vanilla sampling (from πθ), two
generations and two annotations are required for human
preference labeling, same to PILAF when the pair is sam-
pled from πθ, which happens half the time. With 50%
probability, PILAF uses π+

θ and π−
θ to generate, requiring

two forward passes with πθ and πref to generate one sample.
Thus, on average, a preference pair sampled with PILAF
requires a sampling cost of 3 forward passes (1.5 time the
cost of Vanilla) with the same annotation cost. To compare,
Xiong et al. (2024); Dong et al. (2024) perform Best-of-N
sampling with N = 8, which generates and annotates all 8
responses, selecting the best and worst of them. Xie et al.
(2024) use a Hybrid method that generates with πθ and
πref , thus matching the sampling and annotation costs of
the Vanilla method. We empirically compare PILAF with
these methods in the next section.
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Table 1. A cost summary of PILAF and sampling methods from related works. Best-of-N method in Xiong et al. (2024) uses the oracle
reward to score all candidate responses, then selects the highest- and lowest-scoring ones—instead of providing a preference label for only
two responses. We restrict the oracle to providing only preference labels. Thus, we create a Best-of-N variant that uses the DPO internal
reward for selection and then applies preference labeling, with an annotation cost of 2. We compare with this variant in the experiment.

METHOD y⃗a y⃗b SAMPLING COST ANNOTATION COST

Vanilla (RAFAILOV ET AL., 2023) πθ πθ 2 2
Best-of-N (XIONG ET AL., 2024), N=8 BEST OF πθ WORST OF πθ 8 8*
Best-of-N (WITH DPO REWARD), N=8 BEST OF πθ WORST OF πθ 8 2
Hybrid (XIE ET AL., 2024) πθ πref 2 2

PILAF (OURS) π+
θ /πθ π−

θ /πθ 3 2

Algorithm 1 DPO with PILAF (ours).

input Prompt Dataset Dρ, preference oracle O, πθ,πref .
1: for step t = 1, ..., T do
2: Sample nt prompts {xi}nt

i=1 from Dρ.
3: With probability 1/2, sample y⃗a

i , y⃗
b
i ∼ πθ; with prob-

ability 1/2, sample y⃗a
i ∼ π+

θ and y⃗b
i ∼ π−

θ .
4: Query O to label (xi, y⃗

a
i , y⃗

b
i ) into (xi, y⃗

w
i , y⃗

ℓ
i).

5: Update πθt with DPO loss using {(xi, y⃗
w
i , y⃗

ℓ
i)}

nt
i=1.

6: end for

6. Experiments
In this section, we empirically evaluate PILAF in both an
iterative DPO setting (Section 6.1, following Xiong et al.
(2024); Dong et al. (2024)) and an online DPO setting (Sec-
tion 6.2, following Guo et al. (2024)) where the model
undergoes multiple rounds of refinement through active data
collection. Our findings indicate that, without requiring
any hyper-parameter tuning, our sampling scheme stabilizes
training, achieves higher reward scores, and maintains lower
KL divergence from the reference model.

General Setup. We align the Llama-3.1-8B base model
(Dubey et al., 2024) in terms of helpfulness and harmless-
ness using the HH-RLHF dataset (Bai et al., 2022), a widely-
used benchmark dataset for alignment. It consists of 161k
prompts in the training set. For response preference labeling,
we use a well-trained reward model to simulate human pref-
erences by assigning preference to pairs of responses under
the BT assumption in Equation (1). Specifically, we em-
ploy the Skywork-Reward-8B model (Liu et al., 2024a), a
top-performing 8B model on RewardBench (Lambert et al.,
2024), as our oracle O. During training, interaction with
this reward model is limited to providing two responses for
comparison. We set β = 0.1 in all the experiments.

Supervised Fine-Tuning (SFT). To initialize training, fol-
lowing Rafailov et al. (2023), we first fine-tune the base
model to obtain the SFT model as πref , which we fix as the
reference model in all the experiments. We use the origi-
nally preferred responses from the HH-RLHF dataset as the

SFT dataset and perform full-parameter tuning.

Evaluation. We present our results using the reward-KL
curve, following Gao et al. (2023), with the reward evaluated
by the oracle reward model O. To monitor the impact of our
sampling scheme on the optimization trajectory, we evaluate
the model every 50 gradient steps during training. We use
the entire testset of HH-RLHF (8.55K samples) to evaluate.

Baselines. We compare our sampling method against exist-
ing methods in Table 1, and with VPO (Cen et al., 2024),
which uses the vanilla sampling but incorporates an explicit
exploration term in the loss. Since we treat the oracle O as
a proxy for human labelers that can only provide pairwise
preferences, all baselines are constrained to query the oracle
with exactly two samples at a time. We thus adapt a Best-
of-N variant that deploys the internal DPO reward to select
the top and bottom candidates, which are then presented to
the oracle for preference labeling, as listed in Table 1. We
compare PILAF against the baselines: Vanilla Sampling,
Best-of-N Sampling (with DPO reward), Hybrid Sampling
combined with a modified DPO loss (Xie et al., 2024), and
VPO (Cen et al., 2024).

Full experimental details can be found in Appendix F.

6.1. Iterative DPO

Implementation. We first consider the iterative DPO frame-
work (Xiong et al., 2024; Dong et al., 2024), in which prefer-
ence data is collected in successive iterations rather than as
a single fixed dataset. At the start of each iteration, a large
dataset of responses is sampled using the current model,
annotated for preferences, and then used to train the current
model. Concretely, we set nt = |Dρ| in Algorithm 1, mean-
ing that all prompts are used to generate new responses at
each iteration. During the first iteration, when πref and πθ

are identical, PILAF reduces to Vanilla Sampling. Hence,
we choose to focus our comparison on the second iteration.
For consistency, we initialize all runs with the same policy
model obtained at the end of the first iteration via Vanilla
Sampling.
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Figure 2. Reward-KL curve for Iterative DPO. All training runs
start from the same model obtained at the end of the first iteration
via Vanilla Sampling. Each dot represents an evaluation performed
every 50 training steps.

Table 2. Results of Iterative DPO. We report the average reward,
KL divergence from the reference model, and objective J on the
testset. Higher reward and J are better, while lower KL divergence
is better. We use boldface to indicate the best result and underline
to denote the second-best result.

METHOD REWARD (↑) KL (↓) J (↑)

Vanilla -10.16 35.20 -13.68
Best-of-N -10.13 32.38 -13.37
Hybrid -10.51 22.86 -12.80

PILAF (OURS) -9.80 25.01 -12.30

Results. Figure 2 presents the reward-KL curve for iter-
ative DPO. PILAF significantly outperforms all the other
methods: it achieves the end-point rewards of the baselines
already around halfway through training, with around 40%
less training time. This reduction directly translates to sav-
ings in both annotation and computational costs. We sum-
marize the final performance in Table 2. PILAF produces a
final policy with a high reward value and a modestly small
KL divergence from the reference model, thereby achieving
the highest overall objective J .

6.2. Online DPO

Implementation. We further evaluate our sampling method
in the online DPO setting (Guo et al., 2024), where new re-
sponses are generated and labeled at every training step, and
these preference data are immediately used to update πθ.
This setting corresponds to the case where nt (in Algo-
rithm 1) is set to the training batch size, resulting in the
most annotation-intensive and most actively on-policy align-
ment. By collecting and utilizing preference data on the
fly for each batch, the policy is continuously refined using
on-policy feedback throughout the entire training process.
Similar to Iterative DPO, we initialize all training runs with

the same πθ and focus on comparing the subsequent opti-
mization. Further details are in Appendix F.
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Figure 3. Reward-KL curve for Online DPO. Each dot represents
an evaluation performed every 50 training steps.

Results. Figure 3 demonstrates the effectiveness of PILAF
in the pure online setting, and we summarize the final per-
formance in Table 3. Compared with Vanilla, VPO, and
Hybrid Sampling, PILAF achieves a significantly better
Reward-KL trade-off curve, attaining higher reward with
lower KL. Although Vanilla and VPO eventually achieve
roughly the same reward value as PILAF, it comes at the
cost of a substantially higher KL. When compared with
Best-of-N, PILAF traces a similar Reward–KL trajectory but
ends with a higher reward and a better final objective after
the same number of iterations, translating to lower sample
complexity and reduced annotation and computational cost.

Table 3. Results of Online DPO. We report the average reward,
KL divergence from the reference model, and objective J on the
testset.

METHOD REWARD (↑) KL (↓) J (↑)

Vanilla -4.96 21.50 -7.11
Best-of-N -5.54 12.35 -6.77
Hybrid -6.42 16.46 -8.96
VPO -4.91 22.31 -7.09

PILAF (OURS) -4.88 15.42 -6.42

Robustness Analysis. Having established the effective-
ness of PILAF, we further evaluate its robustness by testing
whether it improves optimization and statistical convergence
under challenging conditions, as predicted from our statisti-
cal theory in Section 4.2. Specifically, we replace the initial
model with one that has overfit on a fixed off-policy dataset.
This setup allows us to examine how different methods
handle optimization starting from a poor initial point.

In Figure 4, we compare the performance of PILAF and
Vanilla Sampling when both are initialized from an over-
fitted policy. We observe that Vanilla Sampling rapidly

8
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increases its KL divergence from the reference model while
its reward improvement diminishes over time. In contrast,
PILAF undergoes an early training phase with fluctuating
KL values but ultimately attains a policy with higher reward
and substantially lower KL divergence. We hypothesize that
PILAF’s interpolation-based exploration design enables it
to escape the suboptimal region of the loss landscape in
which Vanilla remains. These results underscore PILAF’s
effectiveness in more robustly optimizing overfitted (or even
adversarially initialized) policies.
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Online DPO with an Overfitted Initial Model
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Figure 4. Online DPO with an overfitted initial policy. Each
dot represents an evaluation performed every 50 training steps.
Color saturation indicates the training step, with darker colors
representing later steps.

6.3. Ablations

We further conduct two ablation studies to isolate the
contributions of PILAF’s interpolation and extrapolation
components. Each component was replaced individually
with vanilla sampling, yielding two baselines: one with
(y⃗a, y⃗b) = (π+

θ , πθ) (ablation of the interpolation compo-
nent) and one with (y⃗a, y⃗b) = (πθ, π

−
θ ) (ablation of the

extrapolation component). We denote these ablation vari-
ants as PILAF-extrapolate and PILAF-interpolate, where
one response is obtained via vanilla sampling and the other
via extrapolation or interpolation, respectively.

The results are presented in Figure 5. Our theory suggests
that the two sampling responses should come from different
distributions in order to yield a controlled difference that
the model can effectively learn from. Both ablation vari-
ants introduce such differences and outperform vanilla sam-
pling. However, the variant with only interpolation (com-
bined with vanilla sampling for the other response) performs
much worse than full PILAF, highlighting the importance of
the extrapolation response. The PILAF-extrapolate variant
achieves slightly worse final results, and its convergence is
much slower (each dot in our figure represents one evalua-
tion after 50 steps). Overall, these ablation results confirm
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Figure 5. Reward-KL curve for Online DPO with ablations.
Each dot represents an evaluation performed every 50 steps.

our theoretical prediction that the full PILAF algorithm is
the best performing approach.

7. Conclusion
In this paper, we introduced Policy-Interpolated Learning
for Aligned Feedback (PILAF), a novel sampling method de-
signed to enhance response sampling for preference labeling.
Theoretical analysis highlights PILAF’s superiority from
both optimization and statistical perspectives, demonstrat-
ing its ability to stabilize training, accelerate convergence,
and reduce variance. The method is straightforward to im-
plement and requires no additional hyperparameter tuning.
We empirically validated its performance in both iterative
DPO and online DPO settings, where it consistently outper-
formed existing approaches. To achieve the same level of
performance, PILAF consistently requires lower annotation
costs, which can be substantial when annotations require
experts in knowledge-intensive domains.

In future work, we hope to extend PILAF to other paradigms,
such as KTO (Ethayarajh et al., 2024) and IPO (Azar et al.,
2024). Due to resource constraints, our evaluations were
conducted using 8B models and a reward model to simulate
human feedback. Future studies involving larger-scale ex-
periments and real human labeling would further generalize
our findings.

Overall, this work takes an important step toward improv-
ing preference data curation in RLHF pipelines, laying the
groundwork for more effective methods in alignment.
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A. Additional Literature Review
RLHF. RLHF has emerged as a cornerstone methodology for aligning large language models with human values and
preferences (Achiam et al., 2023). Early systems (Ouyang et al., 2022) turn human preference data into reward modeling to
optimize model behavior accordingly. DPO has been proposed as a more efficient approach that directly trains LLMs on
preference data. As LLMs evolve during training, continuing training on pre-generated preference data becomes suboptimal
due to the distribution shift. Empirically, RLHF is applied iteratively—generating on-policy data at successive stages to
enhance alignment and performance (Touvron et al., 2023; Bai et al., 2022). Similarly, researchers have introduced iterative
DPO (Xiong et al., 2024; Xu et al., 2023) and online DPO (Guo et al., 2024) to fully leverage online preference labeling.
Ultimately, the quality of preference data play a critical role in determining the effectiveness of the alignment.

Sampling in Frontier LLMs. Technical reports of Frontier LLMs briefly mention sampling techniques. For instance,

12
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Claude (Bai et al., 2022) utilizes models from different training steps to generate responses, while Llama-2 (Touvron et al.,
2023) further use different temperatures for sampling. However, no further details are provided, leaving the development of
a principled method an open challenge.

Data Selection. There is a line of research aimed at improving sample efficiency for preference labeling by selecting
question and response pairs. Scheid et al. (2024) conceptualize this as a regret minimization problem, leveraging methods
from linear dueling bandits. Das et al. (2024); Mehta et al. (2023); Muldrew et al. (2024); Ji et al. (2024) draw insights
from active learning, using various uncertainty estimators to guide selection by prioritizing sample pairs with maximum
uncertainty. These approaches focus directly on a dataset of questions and responses and are orthogonal to our work.

Other Changes in Response Sampling. Several works also modify the sampling design directly (Liu et al., 2024b; Dong
et al., 2023), but with the goal of improving policy network optimization based on a reward model, rather than enhancing
the reward modeling itself. Liu et al. (2024b) employ rejection sampling to approximate the response distribution induced
by the reward model, thereby improving optimization. However, this approach requires access to the reward model and
incurs higher computational and labeling costs. Similarly, Dong et al. (2023) use best-of-N sampling with the reward model
to generate high-quality data for supervised fine-tuning (SFT). We consider these approaches orthogonal to our work.

Additionally, Cen et al. (2024) introduce a bonus term in the policy learning phase of online RLHF to promote exploration
in response sampling, which aligns with the optimism principle.

B. Additional Statistical Results
In addition to our analysis of T-PILAF in Section 3, here we present a generalized version of Theorem 4.2 that applies to
any response sampling distribution µ. While not directly tied to the main focus of this work, this broader result may be of
independent interest to readers. The proof of Lemma B.1 is provided in Appendix C.2.1.
Lemma B.1. For a general sampling distribution µ, the statement in Theorem 4.2 remains valid with the matrix Σ⋆

redefined as

Σ⋆ : = Ex∼ρ,(y⃗a, y⃗b)∼µ(·|x)

[
w(x) ·Var

(
1{y⃗a = y⃗w}

∣∣ x, y⃗a, y⃗b
)
· g g⊤

]
, (14)

where the expectation is taken over the distribution

µ(y⃗a, y⃗b | x) := 1

2

{
µ(y⃗a, y⃗b | x) + µ(y⃗b, y⃗a | x)

}
. (15a)

The variance term is specified as

Var
(
1{y⃗a = y⃗w} | x, y⃗a, y⃗b

)
= σ

(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
σ
(
r⋆(x, y⃗b)− r⋆(x, y⃗a)

)
(15b)

and the gradient difference g is defined as

g : = ∇θ r
⋆(x, y⃗a)−∇θ r

⋆(x, y⃗b) . (15c)

The general form of the matrix Σ⋆ offers valuable insights for designing a sampling scheme. To ensure Σ⋆ is well-
conditioned (less singular), we must balance two key factors when selecting responses y⃗a and y⃗b:

Large variance: The variance in definition (15b) should be maximized. This occurs when r⋆(x, y⃗a) ≈ r⋆(x, y⃗b).
Intuitively, preference feedback is most informative when annotators compare responses of similar quality.

Large gradient difference: The gradient difference g from definition (15c) should also be large. This requires responses
with significantly different gradients. Only then can the comparison provide a clear and meaningful direction for model
training.

C. Proof of Main Results
This section provides the proofs of the main results from Section 4, covering both optimization and statistical aspects.
In Appendix C.1, we prove Theorem 4.1, which establishes the gradient alignment property. For the statistical results,
Appendix C.2 begins with the proofs of Lemma B.1 and Theorem 4.2, which derive the asymptotic distribution of the
estimated parameter θ̂, and concludes with the proof of Theorem 4.3, analyzing the asymptotic behavior of the value
gap J(π⋆)− J(π̂).
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C.1. Optimization Considerations: Proof of Theorem 4.1

We begin by presenting a rigorous restatement of Theorem 4.1, formally detailed in Theorem C.1 below.

Theorem C.1 (Gradient structure in DPO training). Consider the expected loss function L(θ) during the DPO training
phase. Using data collected from our poposed response sampling scheme µ, the gradient of L(θ) satisfies

∇θ L(θ) = − β

Zθ

∇θ J(πθ) + T2 ,

where the constant Zθ is defined in equation (10), and the term T2 represents a second-order error.

To control term T2, assume the following uniform bounds:

(i) ∥r⋆∥∞ ≤ R.

(ii) For any policy πθ ∈ Π, the induced reward rθ satisfies ∥rθ∥∞ ≤ R and supx,y⃗∥∇θ rθ(x, y⃗)∥2 ≤ G.

Under these conditions, T2 is bounded as

∥T2∥2 ≤ C · Ex∼ρ, y⃗a,y⃗b∼πθ(·|x)

[{(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
−

(
rθ(x, y⃗

a)− rθ(x, y⃗
b)
)}2

]
,

where the constant C is given by C = 0.1 (1 + e2R)G
/
Zθ.

The proof of Theorem C.1 is structured into three sections. In Appendix C.1.1, we lay the foundation by presenting the
key components, including the explicit expressions for the gradients ∇θ J(πθ) and ∇θ L(θ), as well as for the sampling
density µ. Then Appendix C.1.2 establishes the connection between ∇θ J(πθ) and ∇θ L(θ) by leveraging these results,
completing the proof of Theorem 4.1. Finally, in Appendix C.1.3, we provide a detailed derivation of the form of density
function µ.

C.1.1. BUILDING BLOCKS

To establish Theorem 4.1, which uncovers the relationship between the gradients of the expected value J(πθ) and the
negative log-likelihood function L(θ), the first step is to derive explicit expressions for the gradients of both functions. The
results are presented in Lemmas C.2 and C.3, with detailed proofs provided in Appendices D.1.2 and D.1.3, respectively.

Lemma C.2 (Gradient of value J(πθ)). For any πθ in the parameterized policy class Π, the gradient of the expected
value J(πθ) satisfies

∇θ J(πθ) =
1

2β
Ex∼ρ; y⃗a,y⃗b∼πθ(·|x)

[{(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
−
(
rθ(x, y⃗

a)− rθ(x, y⃗
b)
)}

·
{
∇θ rθ(x, y⃗

a)−∇θ rθ(x, y⃗
b)
}]

. (16)

Lemma C.3 (Gradient of the loss function L(θ)). For any πθ in the parameterized policy class Π and any sampling
distribution µ of the responses, the gradient of the negative log-likelihood function L(θ) is given by

∇θ L(θ) = −Ex∼ρ; (y⃗a, y⃗b)∼µ(·|x)

[
w(x) ·

{
σ
(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
− σ

(
rθ(x, y⃗

a)− rθ(x, y⃗
b)
)}

·
{
∇θ rθ(x, y⃗

a)−∇θ rθ(x, y⃗
b)
}]

, (17a)

where the average density µ is defined as

µ(y⃗a, y⃗b | x) :=
1

2

{
µ(y⃗a, y⃗b | x) + µ(y⃗b, y⃗a | x)

}
(17b)

as previously introduced in Equation (15a).

14



Optimal Sampling for Reward Modeling

In Lemma C.3, we observe that the gradient ∇θ L(θ) is expressed as an expectation over the probability distribution µ. By
applying the sampling scheme outlined in Section 3, we can derive a more detailed representation of ∇θ L(θ). This refined
form will reveal its close relationship to the gradient ∇θ J(πθ) given in expression (16).

Before moving forward, it is crucial for us to first derive the explicit form of µ. Specifically, we claim that the distribution µ
satisfies the following property

µ(y⃗a, y⃗b | x)
πθ(y⃗a | x)πθ(y⃗b | x)

=
1

2 {1 + Z+
θ (x)Z−

θ (x)}
· 1

σ′
(
rθ(x, y⃗a)− rθ(x, y⃗b)

) , (18)

where σ′ denotes the derivative of the sigmoid function σ, given by

σ′(z) =
1

(1 + exp(−z))(1 + exp(z))
= σ(z)σ(−z) for any z ∈ R . (19)

With these key components in place, we are now prepared to prove Theorem 4.1.

C.1.2. DERIVATION OF THEOREM 4.1

With the tools provided by Lemmas C.2 and C.3 and the sampling density expression in (18), we are now ready to prove
Theorem 4.1.

We begin by applying Lemma C.3 and reformulating equation (17a) as

∇θ L(θ) = −Ex∼ρ; y⃗a, y⃗b∼πθ(·|x)

[
w(x) · µ(y⃗a, y⃗b | x)

πθ(y⃗a | x)πθ(y⃗b | x)

·
{
σ
(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
− σ

(
rθ(x, y⃗

a)− rθ(x, y⃗
b)
)}

·
{
∇θ rθ(x, y⃗

a)−∇θ rθ(x, y⃗
b)
}]

. (20)

Substituting the density ratio from equation (18) into expression (20) and incorporating the weight function w(x) defined in
equation (10), we obtain

∇θ L(θ) = − 1

2Zθ

Ex∼ρ; y⃗a, y⃗b∼πθ(·|x)

[
σ
(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
− σ

(
rθ(x, y⃗

a)− rθ(x, y⃗
b)
)

σ′
(
rθ(x, y⃗a)− rθ(x, y⃗b)

)
·
{
∇θ rθ(x, y⃗

a)−∇θ rθ(x, y⃗
b)
}]

. (21)

Using the intuition that the first-order Taylor expansion

σ(z⋆)− σ(z)

σ′(z)
= (z⋆ − z) +O

(
(z⋆ − z)2

)
is valid when z → z⋆, with z⋆ : = r⋆(x, y⃗a)− r⋆(x, y⃗b) and z : = rθ(x, y⃗

a)− rθ(x, y⃗
b), we find that

σ
(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
− σ

(
rθ(x, y⃗

a)− rθ(x, y⃗
b)
)

σ′
(
rθ(x, y⃗a)− rθ(x, y⃗b)

)
=

{(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
−
(
rθ(x, y⃗

a)− rθ(x, y⃗
b)
)}

+ second-order term.

Reformulating equation (21) in this context, we rewrite it as

∇θ L(ϕ) = − 1

2Zθ

E x∼ρ;

y⃗a,y⃗b∼πθ(·|x)

[{(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
−

(
rθ(x, y⃗

a)− rθ(x, y⃗
b)
)}

·
{
∇θ rθ(x, y⃗

a)−∇θ rθ(x, y⃗
b)
}]

+ T2 , (22)
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where T2 represents the second-order residual term related to the estimation error rθ − r⋆. By applying Lemma C.2, we
observe that the primary term in equation (22) aligns with the direction of ∇θ J(πθ), resulting in

∇θ L(ϕ) = − β

Zθ

∇θ J(πθ) + T2 . (23)

Next, we proceed to control the second-order term T2. The conditions

∥r⋆∥∞, ∥rθ∥∞ ≤ R and sup(x,y⃗)∈X×Y∥∇θ rθ(x, y⃗)∥2 ≤ G,

lead to the bound ∣∣∣ σ(z⋆)− σ(z)

σ′(z)
− (z⋆ − z)

∣∣∣ ≤ 0.1 (1 + e2R) · (z⋆ − z)2 ,

which in turn implies

∥T2∥2 ≤ 0.1 (1 + e2R)G

Zθ

Ex∼ρ; y⃗a,y⃗b∼πθ(·|x)

[{(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
−

(
rθ(x, y⃗

a)− rθ(x, y⃗
b)
)}2

]
. (24)

Finally, combining equation (24) with equation (23), we conclude the proof of Theorem 4.1.

C.1.3. PROOF OF CLAIM (18)

The remaining step in the proof of Theorem 4.1 is to verify the expression for the density ratio in equation (18).

Based on the sampling scheme described in Section 3, we find that the sampling distribution for the response satisfies

µ
(
y⃗a, y⃗b

∣∣ x) = {1− p0(x)} · πθ(y⃗
a | x)πθ(y⃗

b | x) + p0(x) · π+
θ (y⃗

a | x)π−
θ (y⃗

b | x) , (25)

where the probability p0(x) is defined as

p0(x) = Z+
θ (x)Z−

θ (x)/{1 + Z+
θ (x)Z−

θ (x)}

and the policies π+
θ and π−

θ are specified in equations (9a) and (9b), respectively. This allows us to simplify equation (25) to

µ
(
y⃗a, y⃗b

∣∣ x) =
πθ(y⃗

a | x)πθ(y⃗
b | x)

1 + Z+
θ (x)Z−

θ (x)

{
1 + exp

{
rθ(x, y⃗

a)− rθ(x, y⃗
b)
}}

.

Similarly, we derive an expression for µ(y⃗b, y⃗a | x). By averaging the two expressions, for µ(y⃗a, y⃗b | x) and µ(y⃗b, y⃗a | x),
we obtain

µ(y⃗a, y⃗b | x)
πθ(y⃗a | x)πθ(y⃗b | x)

=
πθ(y⃗

a | x)πθ(y⃗
b | x)

2 {1 + Z+
θ (x)Z−

θ (x)}

{
2 + exp

{
rθ(x, y⃗

a)− rθ(x, y⃗
b)
}
+ exp

{
rθ(x, y⃗

b)− rθ(x, y⃗
a)
}}

.

Rewriting this expression using the formula for σ′ in equation (19), we arrive at

{
1 + Z+

θ (x)Z−
θ (x)

}
· µ(y⃗a, y⃗b | x)
πθ(y⃗a | x)πθ(y⃗b | x)

=
1

2

{
1 + exp

{
rθ(x, y⃗

b)− rθ(x, y⃗
a)
}}{

1 + exp
{
rθ(x, y⃗

a)− rθ(x, y⃗
b)
}}

=
1

2σ′
(
rθ(x, y⃗a)− rθ(x, y⃗b)

) .
Finally, rearranging terms, we recover equation (18), completing this part of the proof.
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C.2. Statistical Considerations

In this section, we present the proofs for Theorems 4.2 and 4.3 and Lemma B.1 from Section 4.2. We start with the proof of
Lemma B.1 in Appendix C.2.1, with a rigorous restatement provided in Theorem C.4 below.

Theorem C.4. Assume the reward model r⋆ in the BT model (1) satisfies r⋆ = rθ⋆ for some parameter θ⋆. Assume
that θ̂ minimizes the loss function L̂(θ) in the sense that

√
n∇θ L̂(θ̂)

p→ 0 and that θ̂
p→ θ⋆ as the sample size n → ∞.

Additionally, suppose the reward function rθ(x, y⃗), its gradient ∇θ rθ(x, y⃗) and its Hessian ∇2
θ rθ(x, y⃗) are uniformly

bounded and Lipchitz continuous with respect to θ, for all (x, y⃗) ∈ X × Y .

Under these conditions, the estimate θ̂ asymptotically follows a Gaussian distribution
√
n (θ̂ − θ⋆)

d−→ N (0,Ω) as n → ∞ .

We have an estimate of the covariance matrix Ω:

Ω ⪯ ∥w∥∞ ·Σ−1
⋆ .

For a general sampling scheme µ chosen, the matrix Σ⋆ is given by

Σ⋆ : = Ex∼ρ, (y⃗a, y⃗b)∼µ(·|x)

[
w(x) ·Var

(
1{y⃗a = y⃗w}

∣∣ x, y⃗a, y⃗b
)
· g g⊤

]
,

where the expectation is taken over the distribution

µ(y⃗a, y⃗b | x) := 1

2

{
µ(y⃗a, y⃗b | x) + µ(y⃗b, y⃗a | x)

}
.

The variance term is specified as

Var
(
1{y⃗a = y⃗w} | x, y⃗a, y⃗b

)
= σ

(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
σ
(
r⋆(x, y⃗b)− r⋆(x, y⃗a)

)
and the gradient difference g is defined as

g : = ∇θ r
⋆(x, y⃗a)−∇θ r

⋆(x, y⃗b) .

Theorem C.4 establishes the asymptotic distribution of the estimated parameter θ̂, which serves as the foundation for the
subsequent results. Next, we show that Theorem 4.2 directly follows as a corollary of Theorem C.4, with the detailed
derivation provided in Appendix C.2.2. Finally, in Appendix C.2.3, we prove Theorem 4.3, which describes the asymptotic
behavior of the value gap J(π⋆)− J(π̂).

C.2.1. PROOF OF LEMMA B.1 (THEOREM C.4)

In this section, we analyze the asymptotic distribution of the estimated parameter θ̂ for a general sampling distribution µ.
The parameter θ̂ is obtained by solving the optimization problem

minimizeθ L̂(θ) := − 1

n

n∑
i=1

w(xi) · log σ
(
rθ
(
xi, y⃗

w
i

)
− rθ

(
xi, y⃗

ℓ
i

))
.

We assume the optimization is performed to sufficient accuracy such that ∇θ L̂(θ̂) = op
(
n− 1

2

)
. Under this condition, θ̂

qualifies as a Z-estimator. To study its asymptotic behavior, we use the master theorem for Z-estimators (Kosorok, 2008),
the formal statement of which is provided in Theorem E.1 in Appendix E.

To apply the master theorem, we set Ψ := ∇θ L and Ψn : = ∇θ L̂ and verify the conditions. In particular, the smoothness
condition (64) in Theorem E.1 translates to the following equation in our context:

√
n
{
∇θ L̂(θ̂)−∇θ L(θ̂)

}
−
√
n
{
∇θ L̂(θ⋆)−∇θ L(θ⋆)

}
= op

(
1 +

√
n ∥θ̂ − θ⋆∥2

)
. (27)

This condition follows from the second-order smoothness of the reward function rθ with respect to θ. A rigorous proof is
provided in Appendix D.2.1.

We now provide the explicit form of the derivative Ψ̇θ⋆ = ∇2
θ L(θ⋆), as captured in the following lemma. The proof of this

result can be found in Appendix D.2.2.
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Lemma C.5. The Hessian matrix of the population loss L(θ) at θ = θ⋆ is

∇2
θ L(θ⋆) = Σ⋆ , (28)

where the matrix Σ⋆ is defined in equation (14).

Next, we analyze the asymptotic behavior of the gradient ∇θ L̂(θ⋆). The proof is deferred to Appendix D.2.3.

Lemma C.6. The gradient of the empirical loss L̂(θ) at θ = θ⋆ satisfies

√
n
(
∇θ L̂(θ⋆)−∇θ L(θ⋆)

) d−→ N (0, Ω̃) as n → ∞, (29a)

where the covariance matrix Ω̃ ∈ Rd×d is bounded as follows:

Ω̃ ⪯ ∥w∥∞ ·Σ⋆ , (29b)

with Σ⋆ defined in equation (14).

Combining these results, and assuming Σ⋆ is nonsingular, the master theorem (Theorem E.1) yields the asymptotic
distribution of θ̂:

√
n
(
θ̂ − θ⋆

) d→ N
(
0,Σ−1

⋆ Ω̃Σ−1
⋆

)
.

Furthermore, from the bound (29b), the covariance matrix Ω; : = Σ−1
⋆ Ω̃Σ−1

⋆ satisfies

Ω = Σ−1
⋆ Ω̃Σ−1

⋆ ⪯ ∥w∥∞ ·Σ−1
⋆ .

Therefore, we have established the asymptotic distribution of θ̂, completing the proof of Lemma B.1.

C.2.2. PROOF OF THEOREM 4.2

Theorem 4.2 is a direct corollary of Lemma B.1, using our specific choice of sampling distribution µ. To establish this,
we demonstrate how the general covariance matrix Σ⋆ in equation (14) simplifies to the form in equation (11) under our
proposed sampling scheme.

To establish the result in this section, we impose the following regularity condition: There exists a constant C ≥ 1 satisfying

Varrθ
(
1{y⃗a = y⃗w}

∣∣ x, y⃗a, y⃗b
)

≤ C ·Varr⋆
(
1{y⃗a = y⃗w}

∣∣ x, y⃗a, y⃗b
)

(30)

for any prompt x ∈ X and responses y⃗a, y⃗b ∈ Y . Here Varrθ
(
1{y⃗a = y⃗w}

∣∣ x, y⃗a, y⃗b
)

denotes the conditional variance
under the BT model (1), when the implicit reward function r⋆ is replaced by rθ. The term Varr⋆

(
1{y⃗a = y⃗w}

∣∣ x, y⃗a, y⃗b
)
≡

Var
(
1{y⃗a = y⃗w}

∣∣ x, y⃗a, y⃗b
)

represents the conditional variance under the ground-truth BT model, where the reward
function is given by r⋆.

We begin by leveraging the property of the sampling distribution µ from equation (18) and the derivative σ′ of the sigmoid
function σ, given in equation (19). Specifically, we find that

µ(y⃗a, y⃗b | x)
πθ(y⃗a | x)πθ(y⃗b | x)

=
1

2 {1 + Z+
θ (x)Z−

θ (x)}
· 1

σ
(
rθ(x, y⃗a)− rθ(x, y⃗b)

)
σ
(
rθ(x, y⃗b)− rθ(x, y⃗a)

)
=

1

2 {1 + Z+
θ (x)Z−

θ (x)}
· 1

Varrθ
(
1{y⃗a = y⃗w}

∣∣ x, y⃗a, y⃗b
) .

We then apply condition (30) and derive

µ(y⃗a, y⃗b | x)
πθ(y⃗a | x)πθ(y⃗b | x)

≥ C−1

2 {1 + Z+
θ (x)Z−

θ (x)}
· 1

Varr⋆
(
1{y⃗a = y⃗w}

∣∣ x, y⃗a, y⃗b
) . (31)

18
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Next, substituting this result (31) into equation (14), alongside the weight function w(x) from equation (10), we reform Σ⋆

as

Σ⋆ = Ex∼ρ; y⃗a, y⃗b∼πθ(·|x)

[
µ(y⃗a, y⃗b | x)

πθ(y⃗a | x)πθ(y⃗b | x)
· w(x) ·Var

(
1{y⃗a = y⃗w}

∣∣ x, y⃗a, y⃗b
)
· g g⊤

]
⪰ 1

2C Zθ

Ex∼ρ; y⃗a, y⃗b∼πθ(·|x)
[
g g⊤] . (32)

The conditional expectation of gg⊤ simplifies as

Ey⃗a, y⃗b∼πθ(·|x)
[
gg⊤ ∣∣ x]

= Ey⃗a, y⃗b∼πθ(·|x)

[{
∇θ r

⋆(x, y⃗a)−∇θ r
⋆(x, y⃗b)

}{
∇θ r

⋆(x, y⃗a)−∇θ r
⋆(x, y⃗b)

}⊤
∣∣∣ x]

= 2 · Ey⃗∼πθ(·|x)

[
∇θ r

⋆(x, y⃗)∇θ r
⋆(x, y⃗)⊤

∣∣∣ x]− 2 · Ey⃗∼πθ(·|x)
[
∇θ r

⋆(x, y⃗)
∣∣ x]Ey⃗∼πθ(·|x)

[
∇θ r

⋆(x, y⃗)
∣∣ x]⊤

= 2 · Covy⃗∼πθ(·|x)
[
∇θ r

⋆(x, y⃗)
∣∣ x] .

Substituting this result into equation (32), we arrive at the conclusion that

Σ⋆ ⪰ 1

C Zϕ

Ex∼ρ

[
Covy⃗∼π⋆(·|x)

[
∇θ r

⋆(x, y⃗)
∣∣ x]] ,

which matches the simplified form in equation (11) as stated in Theorem 4.2.

C.2.3. PROOF OF THEOREM 4.3

Gradient ∇θ J(π
⋆) and Hessian ∇2

θ J(π
⋆): The equality ∇θ J(π

⋆) = 0 follows directly from the gradient expres-
sion (41) for ∇θ J(πθ), evaluated at θ = θ⋆ with rθ = r⋆.

The proof of the Hessian result, ∇2
θ J(π

⋆) = −(1/β) · Σ⋆, involves straightforward but technical differentiation of
equation (41). For brevity, we defer this proof to Appendix D.3.1.

Asymptotic Distribution of Value Gap J(π⋆)− J(π̂): To understand the behavior of the value gap J(π⋆)− J(π̂), we
start by applying a Taylor expansion of J(πθ) around θ⋆. This gives

J(π⋆)− J(π̂) = ∇θ J(π
⋆)⊤(θ⋆ − θ̂)− 1

2
(θ⋆ − θ̂)⊤∇2

θ J(π
⋆)(θ⋆ − θ̂) + o

(
∥θ⋆ − θ̂∥22

)
.

By substituting ∇θ J(π
⋆) = 0 (a direct result of the optimality of π⋆), the linear term vanishes. Introducing the shorthand

H : = −∇2
θ J(π

⋆) = (1/β) ·Σ⋆, the expression simplifies to

J(π⋆)− J(π̂) =
1

2
(θ̂ − θ⋆)⊤H (θ̂ − θ⋆) + o

(
∥θ̂ − θ⋆∥22

)
. (33)

When the sample size n is sufficiently large, θ̂ approaches θ⋆, making the higher-order term negligible. Therefore, the value
gap is dominated by the quadratic form.

From Theorem 4.2, we know the parameter estimate θ̂ satisfies

√
n (θ̂ − θ⋆)

d−→ N (0,Ω).

Substituting this result into the quadratic approximation of the value gap, we find that the scaled value gap has the asymptotic
distribution

n · {J(π⋆)− J(π̂)} d−→ 1

2
z⊤Ω

1
2HΩ

1
2 z = : X where z ∼ N (0, I). (34)

This approximation provides a clear intuition: the value gap is asymptotically driven by a weighted chi-squared-like term
involving the covariance structure Ω and the Hessian-like matrix H .

To rigorously establish this result, we will apply Slutsky’s theorem. The full proof is presented in Appendix D.3.2.
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Bounding the Chi-Square Distribution: To bound the random variable X , we first leverage the estimate of the covariance
matrix Ω provided by Theorem 4.2:

Ω ⪯ C Zθ ∥w∥∞ ·Σ−1
⋆ ,

where the constant C comes from condition (30). It follows that the matrix Ω
1
2HΩ

1
2 appearing in equation (34) can be

bounded as

Ω
1
2HΩ

1
2 ⪯ C ∥w∥∞ ·Σ− 1

2
⋆ HΣ

− 1
2

⋆ = C · Zθ ∥w∥∞
β

· I = C ·
1 + ∥Z+

θ Z−
θ ∥∞

β
· I .

Here the last equality uses the definition of the weight function w from equation (10). Substituting this bound into the
quadratic form, we derive

X =
1

2
z⊤Ω

1
2HΩ

1
2 z ≤ C ·

1 + ∥Z+
θ Z−

θ ∥∞
2β

· z⊤z ,

where z ∼ N (0, I). Since z⊤z follows a chi-square distribution with d degrees of freedom, X is stochastically dominated
by a rescaled chi-square random variable

C ·
1 + ∥Z+

θ Z−
θ ∥∞

2β
· χ2

d.

Equivalently, we can express this dominance as

lim sup
n→∞

P

{
n {J(π⋆)− J(π̂)} > C ·

1 + ∥Z+
θ Z−

θ ∥∞
2β

· t
}

≤ P
{
χ2
d > t

}
for any t > 0. (35)

This inequality, given in equation (35), corresponds to the first bound in equation (13).

The second inequality in equation (13) provides a precise tail bound for χ2
d. As its proof involves more technical details, we

defer it to Appendix D.3.3.

D. Proof of Auxiliary Results
This section provides proofs of auxiliary results supporting the main theorems and lemmas. In Appendix D.1, we present the
auxiliary results required for Theorem 4.1. Appendix D.2 details the proofs of supporting results for Theorem 4.2. Finally,
in Appendix D.3, we establish the auxiliary results necessary for Theorem 4.3.

D.1. Proof of Auxiliary Results for Theorem 4.1

In this section, we provide the proofs of several auxiliary results that support the proof of Theorem 4.1. Specifically,
Appendix D.1.1 presents the forms of the gradients of the policy πθ and the reward rθ, which serve as fundamental building
blocks for deriving the lemmas. Appendix D.1.2 analyzes the gradient of the return function J(πθ), as defined in equation (6).
Appendix D.1.3 focuses on deriving expressions for the gradient of the negative log-likelihood function L(θ).

D.1.1. GRADIENTS OF POLICY πθ AND REWARD rθ

In this part, we introduce results for the gradients of policy πθ and reward rθ with respsect to parameter θ, which lay the
foundation of our calculations.

Lemma D.1 (Gradients of policy πθ and reward function rθ). The gradients of the policy πθ and the reward function rθ can
be expressed in terms of each other as follows

∇θ πθ(dy⃗ | x) = πθ(dy⃗ | x) · 1
β

{
∇θ rθ(x, y⃗)− Ey⃗′∼πθ(·|x)

[
∇θ rθ(x, y⃗

′)
]}

, (36a)

∇θ rθ(x, y⃗) = β · ∇θ πθ(y⃗ | x)
πθ(y⃗ | x)

. (36b)
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We now proceed to prove Lemma D.1.

To begin, recall our definition of the reward function rθ as given in equation (5). It directly follows that

∇θ rθ(x, y⃗) = β · ∇θ πθ(y⃗ | x)
πθ(y⃗ | x)

.

This result confirms equation (36b) as stated in Lemma D.1.

Next, we express the policy πθ(dy⃗ | x) in terms of the reward function rθ(x, y⃗). By reformulating equation (5), we obtain

πθ(dy⃗ | x) =
1

Zθ(x)
πref(dy⃗ | x) exp

{ 1

β
rθ(x, y⃗)

}
, (37a)

where Zθ(x) is the partition function defined as

Zθ(x) =

∫
Y
πref(dy⃗ | x) exp

{ 1

β
rθ(x, y⃗)

}
. (37b)

We then compute the gradient of πθ(dy⃗ | x) with respect to θ. Applying the chain rule, we get

∇θ πθ(dy⃗ | x) =
1

Zθ(x)
πref(dy⃗ | x) exp

{ 1

β
rθ(x, y⃗)

}
· 1
β
∇θ rθ(x, y⃗)

− 1

Z2
θ (x)

πref(dy⃗ | x) exp
{ 1

β
rθ(x, y⃗)

}
· ∇θ Zθ(x) . (38)

We need the gradient of the partition function Zθ(x):

∇θ Zθ(x) =

∫
Y
πref(dy⃗ | x) exp

{ 1

β
rθ(x, y⃗)

}
· 1
β
∇θ rθ(x, y⃗)

= Zθ(x) ·
∫
Y
πθ(dy⃗ | x) · 1

β
∇θ rθ(x, y⃗)

= Zθ(x) ·
1

β
Ey⃗∼πθ(·|x)

[
∇θ rθ(x, y⃗)

]
. (39)

Substituting equation (39) back into equation (38), we simplify the expression for the gradient of πθ(dy⃗ | x):

∇θ πθ(dy⃗ | x) =
1

Zθ(x)
πref(dy⃗ | x) exp

{ 1

β
rθ(x, y⃗)

}
· 1
β

{
∇θ rθ(x, y⃗)− Ey⃗′∼πθ(·|x)

[
∇θ rθ(x, y⃗

′)
]}

.

This matches equation (36a) from Lemma D.1, thereby completing the proof.

D.1.2. PROOF OF LEMMA C.2

Equality (16) in Lemma C.2 can be derived as a consequence of a more detailed result. We state it in Lemma D.2.

Lemma D.2. For a policy πθ, the gradients with respect to the parameter θ of its expected return Ex∼ρ, y⃗∼πθ(·|x)
[
r⋆(x, y⃗)

]
and its KL divergence from a reference policy DKL(πθ ∥ πref) are given by

∇θ Ex∼ρ, y⃗∼πθ(·|x)
[
r⋆(x, y⃗)

]
=

1

β
Ex∼ρ, y⃗∼πθ(·|x)

[
r⋆(x, y⃗)

{
∇θ rθ(x, y⃗)− Ey⃗′∼πθ(·|x)

[
∇θ rθ(x, y⃗

′)
]}]

, (40a)

∇θ DKL(πθ ∥ πref) =
1

β2
Ex∼ρ, y⃗∼πθ(·|x)

[
rθ(x, y⃗)

{
∇θ rθ(x, y⃗)− Ey⃗′∼πθ(·|x)

[
∇θ rθ(x, y⃗

′)
]}]

. (40b)

Recall that the scalar value J(πθ) of the policy is defined as

J(πθ) = Ex∼ρ, y⃗∼πθ(·|x)
[
r⋆(x, y⃗)

]
− β DKL(πθ ∥ πref) .
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Using Lemma D.2, we derive the gradient of J(πθ) as

∇θ J(πθ) = ∇θ Ex∼ρ, y⃗∼πθ(·|x)
[
r⋆(x, y⃗)

]
− β∇θ DKL(πθ ∥ πref)

=
1

β
Ex∼ρ, y⃗∼πθ(·|x)

[{
r⋆(x, y⃗)− rθ(x, y⃗)

}{
∇θ rθ(x, y⃗)− Ey⃗′∼πθ(·|x)

[
∇θ rθ(x, y⃗

′)
]}]

. (41)

We rewrite the expression in equation (41) in two equivalent forms by exchanging the roles of y⃗a and y⃗b:

∇θ J(πθ) =
1

β
Ex∼ρ, y⃗a∼πθ(·|x)

[{
r⋆(x, y⃗a)− rθ(x, y⃗

a)
}{

∇θ rθ(x, y⃗
a)− Ey⃗b∼πθ(·|x)

[
∇θ rθ(x, y⃗

b)
]}]

, (42a)

∇θ J(πθ) =
1

β
Ex∼ρ, y⃗b∼πθ(·|x)

[{
r⋆(x, y⃗b)− rθ(x, y⃗

b)
}{

∇θ rθ(x, y⃗
b)− Ey⃗a∼πθ(·|x)

[
∇θ rθ(x, y⃗

a)
]}]

. (42b)

By taking the average of the two equivalent formulations above, we obtain equality (16) and complete the proof of
Lemma C.2.

We now proceed to prove Lemma D.2, tackling equalities (40a) and (40b) one by one.

Proof of Equality (40a) from Lemma D.2: We begin by expressing the expected return as

Ex∼ρ, y⃗∼πθ(·|x)
[
r⋆(x, y⃗)

]
= Ex∼ρ

[ ∫
Y
r⋆(x, y⃗)πθ(dy⃗ | x)

]
.

Taking the gradient of both sides with respect to θ, we have

∇θ Ex∼ρ, y⃗∼πθ(·|x)
[
r⋆(x, y⃗)

]
= Ex∼ρ

[ ∫
Y
r⋆(x, y⃗)∇θ πθ(dy⃗ | x)

]
. (43)

Using the expression for the policy gradient ∇θ πθ provided in Lemma D.1, the right-hand side of (43) simplifies to

RHS of (43) = Ex∼ρ

[ ∫
Y
r⋆(x, y⃗)πθ(dy⃗ | x) · 1

β

{
∇θ rθ(x, y⃗)− Ey⃗′∼πθ(·|x)

[
∇θ rθ(x, y⃗

′)
]}]

=
1

β
Ex∼ρ, y⃗∼πθ(·|x)

[
r⋆(x, y⃗)

{
∇θ rθ(x, y⃗)− Ey⃗′∼πθ(·|x)

[
∇θ rθ(x, y⃗

′)
]}]

.

This completes the verification of equation (40a) from Lemma C.2.

Proof of Equality (40b) from Lemma D.2: Recall the definition of the KL divergence

DKL(πθ ∥ πref) = Ex∼ρ

[ ∫
Y
πθ(dy⃗ | x) log

(
πθ(y⃗ | x)
πref(y⃗ | x)

)]
.

Applying the chain rule, we obtain

∇θ DKL(πθ ∥ πref) = Ex∼ρ

[ ∫
Y
∇θ πθ(dy⃗ | x) log

(
πθ(y⃗ | x)
πref(y⃗ | x)

)]
+ Ex∼ρ

[ ∫
Y
∇θ πθ(dy⃗ | x)

]
. (44)

Since the policy integrates to 1, i.e.,
∫
Y πθ(dy⃗ | x) = 1, it always holds that∫
Y
∇θ πθ(dy⃗ | x) = ∇θ

∫
Y
πθ(dy⃗ | x) = 0 , (45)

i.e., the second term on the right-hand side of (44) is zero. Using the expression (37a), we take the logarithm

log

(
πθ(y⃗ | x)
πref(y⃗ | x)

)
=

1

β
rθ(x, y⃗)− logZθ(x) . (46)
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Combining equations (45) and (46), we get∫
Y
∇θ πθ(dy⃗ | x) log

(
πθ(y⃗ | x)
πref(y⃗ | x)

)
=

1

β

∫
Y
rθ(x, y⃗)∇θ πθ(dy⃗ | x) − logZθ(x)

∫
Y
∇θ πθ(dy⃗ | x)

=
1

β

∫
Y
rθ(x, y⃗)∇θ πθ(dy⃗ | x) . (47)

Now, similar to the proof of equation (40a), we derive

RHS of (44) =
1

β
Ex∼ρ

[ ∫
Y
rθ(x, y⃗)∇θ πθ(dy⃗ | x)

]
=

1

β2
Ex∼ρ, y⃗∼πθ(·|x)

[
rθ(x, y⃗)

{
∇θ rθ(x, y⃗)− Ey⃗′∼πθ(·|x)

[
∇θ rθ(x, y⃗

′)
]}]

,

which verifies equality (40b) from Lemma D.2.

D.1.3. PROOF OF LEMMA C.3

In this section, we prove a full version of Lemma C.3 as stated in Lemma D.3 below. Equation (17a) from Lemma C.3
follows directly as a straightforward corollary.

In Lemma D.3, we consider a general class of distributions parameterized by θ that models the binary preference
Pθ(y⃗

a ≻ y⃗b | x). The negative log-likelihood function is defined as

L(θ) = −Ex∼ρ; (y⃗a,y⃗b)∼µ(·|x)

[
w(x) · logPθ(y⃗

w ≻ y⃗ℓ
∣∣ x)] .

The Bradley-Terry (BT) model described in equation (1) and the corresponding loss function L(θ) in equation (49) represent
a special case of this general framework.
Lemma D.3 (Gradient of the loss function L(θ), full version). For a general distribution class {Pθ}, the gradient of L(θ)
with respect to θ is given by

∇θ L(θ) = −Ex∼ρ; (y⃗a,y⃗b)∼µ(·|x)

[
w(x) ·

{
P
(
y⃗a ≻ y⃗b

∣∣ x)− Pθ

(
y⃗a ≻ y⃗b

∣∣ x)}
· ∇θ Pθ(y⃗

a ≻ y⃗b | x)
Pθ(y⃗a ≻ y⃗b | x)Pθ(y⃗b ≻ y⃗a | x)

]
, (48a)

where µ is the average distribution defined in equation (17b). Specifically, for the Bradley-Terry (BT) model where

Pθ

(
y⃗a ≻ y⃗b

∣∣ x) = σ
(
rθ(x, y⃗

a)− rθ(x, y⃗
b)
)

=

{
1 +

(
(πθ/πref)(y⃗

b | x)
(πθ/πref)(y⃗a | x)

)β}−1

,

the gradient of L(θ) becomes

∇θ L(θ) = −Ex∼ρ; (y⃗a, y⃗b)∼µ(·|x)

[
w(x) ·

{
σ
(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
− σ

(
rθ(x, y⃗

a)− rθ(x, y⃗
b)
)}

·
{
∇θ rθ(x, y⃗

a)−∇θ rθ(x, y⃗
b)
}]

. (48b)

For notational simplicity, we focus on the proof for the case where the weight function w(x) = 1. The results for a general
weight function w(x) > 0 can be derived in a similar manner.

Recall that the negative log-likelihood function L(θ) is defined as

L(θ) = E
[
− logPθ

(
y⃗w ≻ y⃗ℓ

∣∣ x)] .
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Based on the data generation mechanism, we can expand the expectation in L(θ) as

L(θ) = Ex∼ρ; (y⃗a, y⃗b)∼µ(·|x)

[
P
(
y⃗a ≻ y⃗b

∣∣ x) · {− logPθ

(
y⃗a ≻ y⃗b

∣∣ x)}
+ P

(
y⃗b ≻ y⃗a

∣∣ x) · {− logPθ

(
y⃗b ≻ y⃗a

∣∣ x)}] . (49)

Notice that we can exchange the roles of y⃗a and y⃗b in the expectation above. This means that we can equivalently express
the expectation using the pair (y⃗b, y⃗a) ∼ µ(· | x). This symmetry allows us to replace µ in equation (49) with the average
distribution µ as defined in equation (17b).

Next, we take the gradient of the loss function L(θ) with respect to the parameter θ and obtain

∇θ L(θ) = Ex∼ρ, (y⃗a, y⃗b)∼µ(·|x)

[
P(y⃗a ≻ y⃗b | x)
Pθ(y⃗a ≻ y⃗b | x)

·
{
−∇θ Pθ(y⃗

a ≻ y⃗b | x)
}

+
P(y⃗b ≻ y⃗a | x)
Pθ(y⃗b ≻ y⃗a | x)

·
{
−∇θ Pθ(y⃗

b ≻ y⃗a | x)
} ]

.

Note that P
(
y⃗b ≻ y⃗a

∣∣ x) = 1 − P
(
y⃗a ≻ y⃗b

∣∣ x) and Pθ

(
y⃗b ≻ y⃗a

∣∣ x) = 1 − Pθ

(
y⃗a ≻ y⃗b

∣∣ x). Using this, we can
rewrite the gradient as

∇θ L(θ) = Ex∼ρ; (y⃗a, y⃗b)∼µ(·|x)

[{
1− P(y⃗a ≻ y⃗b | x)
1− Pθ(y⃗a ≻ y⃗b | x)

− P(y⃗a ≻ y⃗b | x)
Pθ(y⃗a ≻ y⃗b | x)

}
· ∇θ Pθ

(
y⃗a ≻ y⃗b

∣∣ x)] .
We simplify the expression further to obtain

∇θ L(θ) = Ex∼ρ; (y⃗a, y⃗b)∼µ(·|x)

[{
Pθ

(
y⃗a ≻ y⃗b

∣∣ x)− P(y⃗a ≻ y⃗b
∣∣ x)} · ∇θ Pθ(y⃗

a ≻ y⃗b | x)
Pθ(y⃗a ≻ y⃗b | x)Pθ(y⃗b ≻ y⃗a | x)

]
.

This establishes equation (48a) from Lemma C.3.

As for the Bradley-Terry (BT) model, we use the equality

σ′(z) =
1

(1 + exp(−z))(1 + exp(z))
= σ(z)σ(−z) for any z ∈ R

to derive the following expression

∇θ Pθ(y⃗
a ≻ y⃗b | x)

Pθ(y⃗a ≻ y⃗b | x)Pθ(y⃗b ≻ y⃗a | x)
= ∇θ rθ(x, y⃗

a)−∇θ rθ(x, y⃗
b) . (50)

By substituting this gradient expression from equation (50) into equation (48a), we directly obtain equation (48b), thereby
completing the proof of Lemma C.3.

D.2. Proof of Auxiliary Results for Theorem 4.2

In this section, we present the detailed proofs of the supporting lemmas used in the proof of Theorem 4.2. We begin
in Appendix D.2.1 by establishing condition (27), which is crucial for the valid application of the master theorem for
Z-estimators. Following this, in Appendix D.2.2, we compute the Hessian matrix ∇2

θ L(θ⋆) explicitly. Finally, in
Appendix D.2.3, we derive the asymptotic distribution of the gradient ∇θ L̂(θ⋆).

D.2.1. PROOF OF CONDITION (27)

We begin by rewriting the left-hand side of equation (27) as follows:

∆ :=
√
n
{
∇θ L̂(θ̂)−∇θ L(θ̂)

}
−

√
n
{
∇θ L̂(θ⋆)−∇θ L(θ⋆)

}
=

√
n
{
∇θ L̂(θ̂)−∇θ L̂(θ⋆)

}
−

√
n
{
∇θ L(θ̂)−∇θ L(θ⋆)

}
. (51)
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We then leverage the smoothness properties of the function rθ, which guarantee the following approximations:

∇θ L̂(θ̂)−∇θ L̂(θ⋆) = ∇2
θ L̂(θ⋆) (θ̂ − θ⋆) + op

(
∥θ̂ − θ⋆∥2

)
, (52a)

∇θ L(θ̂)−∇θ L(θ⋆) = ∇2
θ L(θ⋆) (θ̂ − θ⋆) + op

(
∥θ̂ − θ⋆∥2

)
. (52b)

Assuming these equalities (52a) and (52b) hold, we substitute them into equation (51), leading to

∆ =
√
n
{
∇2

θ L̂(θ⋆) (θ̂ − θ⋆) + op(∥θ̂ − θ⋆∥2)
}
−

√
n
{
∇2

θ L(θ⋆) (θ̂ − θ⋆) + op(∥θ̂ − θ⋆∥2)
}

=
√
n
{
∇2

θ L̂(θ⋆)−∇2
θ L(θ⋆)

}
(θ̂ − θ⋆) + op

(
1 +

√
n ∥θ̂ − θ⋆∥2

)
. (53)

Using the law of large numbers, we know that ∇2
θ L̂(θ⋆)

p→ ∇2
θ L(θ⋆), which implies

√
n
{
∇2

θ L̂(θ⋆)−∇2
θ L(θ⋆)

}
(θ̂ − θ⋆) = op

(√
n ∥θ̂ − θ⋆∥2

)
.

Therefore, we conclude that

∆ = op
(
1 +

√
n ∥θ̂ − θ⋆∥2

)
as claimed in equation (27).

The only remaining task is to establish the validity of equalities (52a) and (52b).

Proof of Equalities (52a) and (52b): We express the loss function L̂(θ) in the form

L̂(θ) :=
1

n

n∑
i=1

w(xi) · ℓθ
(
xi, y⃗

w
i , y⃗

ℓ
i

)
,

where the function ℓθ is defined as

ℓθ(x, y⃗1, y⃗2) = − log σ
(
rθ(x, y⃗1)− rθ(x, y⃗2)

)
.

We then calculate the gradient ∇θ ℓθ and ∇2
θ ℓθ as follows:

∇θ ℓθ(x, y⃗1, y⃗2) = σ
(
rθ(x, y⃗2)− rθ(x, y⃗1)

)
·
{
∇θ rθ(x, y⃗2)−∇θ rθ(x, y⃗1)

}
and

∇2
θ ℓθ(x, y⃗1, y⃗2) = σ′(rθ(x, y⃗2)− rθ(x, y⃗1)

)
·
{
∇θ rθ(x, y⃗2)−∇θ rθ(x, y⃗1)

}{
∇θ rθ(x, y⃗2)−∇θ rθ(x, y⃗1)

}⊤

+ σ
(
rθ(x, y⃗2)− rθ(x, y⃗1)

)
·
{
∇2

θ rθ(x, y⃗2)−∇2
θ rθ(x, y⃗1)

}
.

When the reward function rθ(x, y⃗), along with its gradient ∇θ rθ(x, y⃗) and Hessian ∇2
θ rθ(x, y⃗), is uniformly bounded and

Lipschitz continuous with respect to θ for all (x, y⃗) ∈ X × Y , it guarantees that the Hessian of the loss function, ∇2
θ ℓθ, is

also Lipschitz continuous. This holds with some constant L > 0 across all (x, y⃗) ∈ X × Y , as demonstrated below:∥∥∇2
θ ℓθ(x, y⃗1, y⃗2)−∇2

θ ℓθ⋆(x, y⃗1, y⃗2)
∥∥
2

≤ L · ∥θ − θ⋆∥2 .

From this Lipschitz property, we deduce∥∥∇θ ℓθ(x, y⃗1, y⃗2)−∇θ ℓθ⋆(x, y⃗1, y⃗2)−∇2
θ ℓθ⋆(x, y⃗1, y⃗2) (θ − θ⋆)

∥∥
2

≤ L

2
· ∥θ − θ⋆∥22

and further derive ∥∥∇θ L̂(θ)−∇θ L̂(θ⋆)−∇2
θ L̂(θ⋆) (θ − θ⋆)

∥∥
2

≤ L ∥w∥∞
2

· ∥θ − θ⋆∥22 ,∥∥∇θ L(θ)−∇θ L(θ⋆)−∇2
θ L(θ⋆) (θ − θ⋆)

∥∥
2

≤ L ∥w∥∞
2

· ∥θ − θ⋆∥22 .

Finally, under the condition that θ̂
p→ θ⋆, these results simplify to the expressions given in equations (52a) and (52b), as

previously claimed.

25



Optimal Sampling for Reward Modeling

D.2.2. PROOF OF LEMMA C.5, EXPLICIT FORM OF HESSIAN ∇2
θ L(θ⋆)

From equation (17a) in Lemma C.3, we recall the explicit formula for the gradient ∇θ L(θ). Taking the derivative of both
sides of equation (17a), we obtain

∇2
θ L(θ) = Ex∼ρ; (y⃗a, y⃗b)∼µ(·|x)

[
w(x) · σ′(rθ(x, y⃗a)− rθ(x, y⃗

b)
)

·
{
∇θ rθ(x, y⃗

a)−∇θ rθ(x, y⃗
b)
}{

∇θ rθ(x, y⃗
a)−∇θ rθ(x, y⃗

b)
}⊤

]
−Ex∼ρ; (y⃗a, y⃗b)∼µ(·|x)

[
w(x) ·

{
σ
(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
− σ

(
rθ(x, y⃗

a)− rθ(x, y⃗
b)
)}

·
{
∇2

θ rθ(x, y⃗
a)−∇2

θ rθ(x, y⃗
b)
}]

.

(54)

When we set θ = θ⋆, it follows that rθ = r⋆. This simplification eliminates the second term in expression (54), reducing the
Hessian matrix to

∇2
θ L(θ⋆) = Ex∼ρ; (y⃗a, y⃗b)∼µ(·|x)

[
w(x) · σ′(r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
·
{
∇θ r

⋆(x, y⃗a)−∇θ r
⋆(x, y⃗b)

}{
∇θ r

⋆(x, y⃗a)−∇θ r
⋆(x, y⃗b)

}⊤
]
.

Substituting the derivative σ′ with its explicit form, σ′(z) = σ(z)σ(−z) for any z ∈ R, we refine the expression to

∇2
θ L(θ⋆) = Σ⋆ ,

where the covariance matrix Σ⋆ is defined in equation (14). This completes the proof of expression (28) from Lemma C.5.

D.2.3. PROOF OF LEMMA C.6, ASYMPTOTIC DISTRIBUTION OF GRAIDENT ∇θ L̂(θ⋆)

In this section, we analyze the asymptotic distribution of the gradient ∇θ L̂(θ) at θ = θ⋆, where the loss function L̂(θ) is
defined as

L̂(θ) = − 1

n

n∑
i=1

w(x) · log σ
(
rθ
(
xi, y⃗

w
i

)
− rθ

(
xi, y⃗

ℓ
i

))
.

Using the definition of the sigmoid function σ, we calculate that

(log σ(z))′ = σ′(z)/σ(z) = σ(z)σ(−z)/σ(z) = σ(−z) for any real number z ∈ R.

This allows us to reformulate ∇θ L̂(θ) as the average of n i.i.d. vectors {ui}ni=1:

∇θ L̂(θ) =
1

n

n∑
i=1

ui . (55)

Here each vector ui ∈ Rd is defined as

ui : = w(x) · σ
(
rθ(xi, y⃗

ℓ
i)− rθ(xi, y⃗

w
i )

)
·
{
∇θ rθ(xi, y⃗

ℓ
i)−∇θ rθ(xi, y⃗

w
i )

}
.

At θ = θ⋆, we denote ui as u⋆
i and gi as g⋆

i . Notably, vector ui can be rewritten as

ui = w(x) ·
{
σ
(
rθ(xi, y⃗

a
i )− rθ(xi, y⃗

b
i )
)
− 1{y⃗a

i = y⃗w
i , y⃗

b
i = y⃗ℓ

i}
}
· gi , (56)

where gi is given by

gi : = ∇θ rθ(xi, y⃗
a
i )−∇θ rθ(xi, y⃗

b
i ) .

From the structure of the BT model, it holds that

E
[
1{y⃗a

i = y⃗w
i , y⃗

b
i = y⃗ℓ

i}
∣∣ xi

]
= σ

(
r⋆(xi, y⃗

a
i )− r⋆(xi, y⃗

b
i )
)
,
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which implies E[u⋆
i ] = 0.

To analyze the asymptotic distribution of ∇θ L̂(θ⋆), we apply the central limit theorem (CLT) to its empirical form given in
equation (55). By the CLT, we have

√
n
(
∇θ L̂(θ⋆)−∇θ L(θ⋆)

) d−→ N
(
0, Ω̃

)
, n → ∞ , (57)

where the covariance matrix Ω̃ ∈ Rd×d is given by

Ω̃ : = Cov(u⋆
1) = E

[
u⋆
1(u

⋆
1)

⊤] .
Here we have used the property E[u⋆

i ] = 0 in the second equality.

We now compute the explicit form of the covariance matrix Ω̃. Using the definition of ui from expression (56), we find that

Ω̃ = E
[
u⋆
1(u

⋆
1)

⊤]
= Ex∼ρ; (y⃗a,y⃗b)∼µ(·|x)

[
w2(x) ·

{
σ
(
r⋆(x1, y⃗

a
1)− r⋆(x1, y⃗

b
1)
)
− 1{y⃗a

1 = y⃗w
1 , y⃗

b
1 = y⃗ℓ

1}
}2 · g⋆

1(g
⋆
1)

⊤
]
. (58)

Taking the conditional expectation over the outcomes of winners and losers, and using the relation

E
[{

σ
(
r⋆(x1, y⃗

a
1)− r⋆(x1, y⃗

b
1)
)
− 1{y⃗a

1 = y⃗w
1 , y⃗

b
1 = y⃗ℓ

1}
}2

∣∣∣ x1, y⃗
a
1 , y⃗

b
1

]
= Var

(
1{y⃗a

1 = y⃗w
1 , y⃗

b
1 = y⃗ℓ

1}
∣∣∣ x1, y⃗

a
1 , y⃗

b
1

)
= σ

(
r⋆(xi, y⃗

a
i )− r⋆(xi, y⃗

b
i )
)
σ
(
r⋆(xi, y⃗

b
i )− r⋆(xi, y⃗

a
i )
)
,

we reduce equation (58) to

Ω̃ = Ex∼ρ; (y⃗a,y⃗b)∼µ(·|x)

[
w2(x) ·Var

(
1{y⃗a

1 = y⃗w
1 , y⃗

b
1 = y⃗ℓ

1}
∣∣ x1, y⃗

a
1 , y⃗

b
1

)
· g⋆

1(g
⋆
1)

⊤
]
.

Bounding the weight function w(x) by its uniform bound ∥w∥∞, we simplify further:

Ω̃ ⪯ ∥w∥∞ · E
[
w(x) ·Var

(
1{y⃗a

1 = y⃗w
1 , y⃗

b
1 = y⃗ℓ

1}
∣∣ x1, y⃗

a
1 , y⃗

b
1

)
· g⋆

1(g
⋆
1)

⊤
]
.

This ultimately reduces to

Ω̃ ⪯ ∥w∥∞ ·Σ⋆ (59)

where Σ⋆ is defined in equation (14).

Finally, by combining equations (57) and (59), we establish the asymptotic normality of ∇θ L̂(θ⋆) and complete the proof
of Lemma C.6.

D.3. Proof of Auxiliary Results for Theorem 4.3

This section contains the proofs of the auxiliary results supporting Theorem 4.3. In Appendix D.3.1, we derive the
explicit form of the Hessian ∇2

θ J(π
⋆). Appendix D.3.2 rigorously establishes the asymptotic distribution of the value gap

(equation (34)). Finally, Appendix D.3.3 proves the tail bound (13) on the chi-square distribution χ2
d.

D.3.1. PROOF OF EQUATION (12) FROM THEOREM 4.3, EXPLICIT FORM OF HESSIAN ∇2
θ J(π

⋆)

We begin by differentiating expression (41) for the gradient ∇θ J(πθ) to obtain the Hessian matrix ∇2
θ J(πθ). The resulting

expression can be written as

∇2
θ J(πθ) = Γ1 + Γ2 + Γ3 ,
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where the terms are defined as follows:

Γ1 : =
1

β
Ex∼ρ

[ ∫
Y

{
r⋆(x, y⃗)− rθ(x, y⃗)

}{
∇θ rθ(x, y⃗)− Ey⃗′∼πθ(·|x)

[
∇θ rθ(x, y⃗

′)
]}

∇θ πθ(dy⃗ | x)⊤
]
,

Γ2 : = − 1

β
Ex∼ρ, y⃗∼πθ(·|x)

[{
∇θ rθ(x, y⃗)− Ey⃗′∼πθ(·|x)

[
∇θ rθ(x, y⃗

′)
]}

∇θ rθ(x, y⃗)
⊤
]
,

Γ3 : =
1

β
Ex∼ρ, y⃗∼πθ(·|x)

[{
r⋆(x, y⃗)− rθ(x, y⃗)

}{
∇2

θ rθ(x, y⃗)−∇θ Ey⃗′∼πθ(·|x)
[
∇θ rθ(x, y⃗

′)
]}]

.

At the point θ = θ⋆, we know that rθ = r⋆. This simplifies the expression significantly:

Γ1 = 0 and Γ3 = 0.

Therefore, only term Γ2 contributes to the Hessian, and it further reduces to

Γ2 = − 1

β
Ex∼ρ, y⃗∼πθ(·|x)

[
∇θ rθ(x, y⃗)∇θ rθ(x, y⃗)

⊤
]

+
1

β
Ex∼ρ

[
Ey⃗′∼πθ(·|x)

[
∇θ rθ(x, y⃗

′)
]
Ey⃗∼πθ(·|x)

[
∇θ rθ(x, y⃗)

]⊤]
= − 1

β
Ex∼ρ

[
Covy⃗∼πθ(·|x)

[
∇θ rθ(x, y⃗)

∣∣ x]] .
From this simplification, we deduce

∇2
θ J(π

⋆) = − 1

β
Ex∼ρ

[
Covy⃗∼π⋆(·|x)

[
∇θ r

⋆(x, y⃗)
∣∣ x]] ,

which establishes equation (12) as stated in Theorem 4.3.

D.3.2. PROOF OF THE ASYMPTOTIC DISTRIBUTION IN EQUATION (34)

The goal of this part is to establish the asymptotic distribution of n{J(π⋆) − J(π̂)}, as stated in equation (34) from
Appendix C.2.3. To achieve this, we first recast the value gap into the product of two terms and then invoke Slutsky’s
theorem.

We start by writing

n · {J(π⋆)− J(π̂)} = n · (θ̂ − θ⋆)⊤H (θ̂ − θ⋆)︸ ︷︷ ︸
Un

· J(π⋆)− J(π̂)

(θ̂ − θ⋆)⊤H (θ̂ − θ⋆)︸ ︷︷ ︸
Vn

. (60)

By isolating Un and Vn in this way, we can handle their limiting behaviors separately:

Un
d→ z⊤Ω

1
2HΩ

1
2 z with z ∼ N (0, I), (61a)

Vn
p→ 1

2
. (61b)

If these two results are established, the desired asymptotic distribution of the value gap, as given in equation (34), follows
directly from Slutsky’s theorem.

To complete the proof, we proceed to verify equations (61a) and (61b). It is worth noting that equation (61a) is a
straightforward corollary of Theorem 4.2, so the main task is to establish the convergence result in equation (61b).

Proof of Equation (61b): Since Σ⋆ is nonsingular, the matrix H = (Zθ/β) ·Σ⋆ is also nonsingular. From equation (33),
we know that for any ε ∈ (0, 1), there exists a threshold η(ε) > 0 such that whenever ∥θ − θ⋆∥2 ≤ η(ε), the following
inequality holds:(1

2
− ε

)
(θ − θ⋆)⊤H (θ − θ⋆) ≤ J(π⋆)− J(πθ) ≤

(1
2
+ ε

)
(θ − θ⋆)⊤H (θ − θ⋆) .

28



Optimal Sampling for Reward Modeling

This can be reformulated as ∣∣∣Vn − 1

2

∣∣∣ ≤ ε .

Next, under the condition that θ̂
p→ θ⋆, for any δ > 0, there exists an integer N(ε, δ) ∈ Z+ such that for any n ≥ N(ε, δ),

P
{
∥θ̂ − θ⋆∥2 > η(ε)

}
≤ δ .

Therefore, for any n ≥ N(ε, δ), we can conclude

P

{∣∣∣Vn − 1

2

∣∣∣ > ε

}
≤ δ .

In simpler terms, Vn
p→ 1

2 , which establishes equation (61b).

D.3.3. PROOF OF THE TAIL BOUND IN EQUATION (13)

We now establish the tail bound

P
{
χ2
d > (1 + ε) d

}
≤ exp

{
− d

2

(
ε− log(1 + ε)

)}
, (62)

as stated in equation (13).

We first note that the moment-generating function (MGF) of distribution χ2
d is given by

Mχ2
d
(t) = (1− 2t)−

d
2 , for any t < 1

2 .

Using Markov’s inequality, for any t > 0, we have

P
{
χ2
d > (1 + ε) d

}
≤ exp{−t(1 + ε)d} ·Mχ2

d
(t) = exp{−t(1 + ε)d} · (1− 2t)−

d
2 , for any t < 1

2 . (63)

We optimize the bound by choosing t to minimize the exponent −t(1 + ε)d− d
2 log(1− 2t). Solving for the optimal t, we

obtain

t =
ε

2(1 + ε)
.

Substituting t back into inequality (63), the bound simplifies to the desired inequality (62).

D.4. Proof of the next-token version of PILAF sampling

Proof of the Explicit Forms of π+
θ (· | x, y1:t−1) and π−

θ (· | x, y1:t−1): To begin, we express the policies πθ and πref

in terms of their logits. Specifically, each policy can be written in the exponential family form, normalized by a partition
function:

πθ(yt | x, y1:t−1) = C−1
θ exp

{
hθ(yt | x, y1:t−1)

}
where Cθ : =

∑
y∈V

exp
{
hθ(y | x, y1:t−1)

}
;

πref(yt | x, y1:t−1) = C−1
ref exp

{
href(yt | x, y1:t−1)

}
where Cref : =

∑
y∈V

exp
{
href(y | x, y1:t−1)

}
.

Now, let us consider the modified policy π+
θ (yt | x, y1:t−1). Substituting the expressions for πθ and πref into its definition,

we get

π+
θ (yt | x, y1:t−1) =

1

Z(x, y1:t−1)
πθ(yt | x, y1:t−1)

(
πθ(yt | x, y1:t−1)

πref(yt | x, y1:t−1)

)β

=
1

Z(x, y1:t−1)
C−1

θ exp
{
hθ(yt | x, y1:t−1)

}( C−1
θ exp{hθ(yt | x, y1:t−1)}

C−1
ref exp{href(yt | x, y1:t−1)}

)β

.
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At this point, we observe that the terms Z(x, y1:t−1), Cθ, and Cref do not depend on token yt, given the prompt x and
previous tokens y1:t−1. Therefore, we can treat them as constants when focusing on the structure of π+

θ as probabilities over
token yt. This allows us to simplify the expression:

π+
θ (yt | x, y1:t−1) ∝ exp{hθ(yt | x, y1:t−1)}1+β

exp{href(yt | x, y1:t−1)}β
= exp

({
(1 + β)hθ − β href

}
(yt | x, y1:t−1)

)
.

It shows that the modified policy π+
θ is proportional to the exponential of a linear combination of logits from πθ and πref .

To convert this into a proper probability distribution, we normalize over the token space:

π+
θ (yt | x, y1:t−1) =

exp
(
{(1 + β)hθ − βhref}(yt | x, y1:t−1)

)∑
y∈V exp

(
{(1 + β)hθ − βhref}(y | x, y1:t−1)

) .
In other words, the new policy is simply the softmax over the combined logit:

π+
θ (· | x, y1:t−1) = softmax

({
(1 + β)hθ − β href

}
(x, y1:t−1)

)
as claimed.

The expression for the negatively weighted policy π−
θ can be derived in a similar manner to π+

θ .

E. Supporting Theorem: Master Theorem for Z-Estimators
In this section, we provide a brief introduction to the master theorem for Z-estimators for the convenience of the readers.

Let the parameter space be Θ, and consider a data-dependent function Ψn : Θ → L, where L is a metric space with
norm ∥ · ∥L. Assume that the parameter estimate θ̂n ∈ Θ satisfies ∥Ψn(θ̂n)∥L

p→ 0, making θ̂n a Z-estimator. The
function Ψn is an estimator of a fixed function Ψ : Θ → L, where Ψ(θ0) = 0 for some parameter of interest θ0 ∈ Θ.

Theorem E.1 (Theorem 2.11 in Kosorok (2008), master theorem for Z-estimators). Suppose the following conditions hold:

1. Ψ(θ0) = 0, where θ0 lies in the interior of Θ.

2.
√
nΨn(θ̂n)

p→ 0 and ∥θ̂n − θ0∥
p→ 0 for the sequence of estimators {θ̂n} ⊂ Θ.

3.
√
n(Ψn −Ψ)(θ0)

d→ Z, where Z is a tight4 random variable.

4. The following smoothness condition is satisfied:∥∥√n
(
Ψn(θ̂n)−Ψ(θ̂n)

)
−

√
n
(
Ψn(θ0)−Ψ(θ0)

)∥∥
L

1 +
√
n ∥θ̂n − θ0∥

p→ 0 . (64)

Additionally, assume that θ 7→ Ψ(θ) is Fréchet differentiable5 at θ0 with derivative Ψ̇θ0 , and that Ψ̇θ0 is continuously
invertible6. Then ∥∥√nΨ̇θ0(θ̂n − θ0) +

√
n(Ψn −Ψ)(θ0)

∥∥
L

p→ 0

and therefore

√
n
(
θ̂n − θ0

) d→ −Ψ̇−1
θ0

Z .

4A random variable Z is tight if, for any ϵ > 0, there exists a compact set K ⊂ R such that P(Z /∈ K) < ϵ.
5Fréchet differentiability: A map ϕ : D→ L is Fréchet differentiable at θ if there exists a continuous, linear map ϕ′

θ : D→ L such
that ∥ϕ(θ + hn)− ϕ(θ)− ϕ′

θ(hn)∥L/∥hn∥ → 0 for all sequences {hn} ⊂ D with ∥hn∥ → 0 and θ + hn ∈ Θ for all n ≥ 1.
6Continuous invertibility: A map A : Θ → L is continuously invertible if A is invertible, and there exists a constant c > 0 such that

∥A(θ1)−A(θ2)∥L ≥ c∥θ1 − θ2∥ for all θ1, θ2 ∈ Θ.
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F. Experimental Details
We implement our code based on the open-sourced OpenRLHF framework Hu et al. (2024). We will open-source our code
in the camera-ready version.

We use both the helpful and the harmless (HH) sets from HH-RLHF (Bai et al., 2022) without additional data selection. We
adopt the chat template from the Skywork-Reward-8B model (Liu et al., 2024a) to align with the reward template. This
reward model, fine-tuned from Llama-3.1-8B, is used to simulate human preference labeling and matches our network
trained for alignment.

For SFT, we apply full-parameter tuning with Adam for one epoch, using a cosine learning rate schedule, a 3% warmup
phase, a learning rate of 5× 10−7, and a batch size of 256. These hyperparameters are adopted from Hu et al. (2024).

For all the DPO training in both iterative and online settings, we use full-parameter tuning with Adam but with two epochs.
The learning rate, warmup schedules, and batch size are all the same.

During generation, we limit the maximum number of new tokens to 896 and employ top p decoding with p = 0.95 for all
experiments. For Online DPO, we use a sampling temperature of 1.0, following Guo et al. (2024), while in Iterative DPO,
we set the temperature to 0.7 to account for the off-policy nature of the data, following Dong et al. (2024); Shi et al. (2024).

Prompts are truncated to a maximum length of 512 tokens (truncated from the left if the length exceeds this limit) for SFT,
DPO, and generation tasks. For SFT data, the maximum length is further restricted to 1024 tokens. When the combined
length of the response and the (truncated) prompt exceeds 1024 tokens, the response is truncated from the right. These
truncation practices align with the standard methodology described by Rafailov et al. (2023). In contrast, for DPO, responses
are not further truncated, as we are already limiting the maximum tokens generated during the generation process.

When reproducing the Hybrid Sampling baseline (Exploration Preference Optimization, XPO) from Xie et al. (2024), we
use α = 5× 10−6 as suggested in the paper.

We do not include a comparison with Shi et al. (2024) and Liu et al. (2024c) in our experiments. While Shi et al. (2024)
employs a sampling method similar to ours, their approach requires significantly more hyperparameters to tune, whereas
our method involves no hyperparameter tuning. On the other hand, Liu et al. (2024c) relies on training an ensemble of 20
reward models to approximate the posterior. Their sampling method requires solving the argmax of these rewards, which
is computationally intractable. As a workaround, they generate 20 samples and select the best one using best-of-N with
N = 20. This approach demands at least six times the computational resources compared to our method.

F.1. Additional Results

We present the full results for Online DPO with the overfitted initial policy, including a scatter plot in Figure 6 and a
summary of the objective values in Table 4.

We observe that Vanilla Sampling rapidly increases its KL divergence from the reference model while its reward improvement
diminishes over time. In contrast, PILAF undergoes an early phase of training with fluctuating KL values but ultimately
achieves a policy with higher reward and substantially lower KL divergence. We hypothesize that PILAF’s interpolation-
based exploration enables it to escape the suboptimal region of the loss landscape where Vanilla Sampling remains trapped.

Conversely, Hybrid Sampling, despite its explicit exploration design, remains biased by the policy model and continues to
exhibit high KL values. While KL divergence decreases over training, the reward improvement remains limited. Meanwhile,
Best-of-N Sampling introduces an implicit exploration mechanism through internal DPO, which selects the best and worst
responses, leading to wider coverage than Vanilla Sampling. However, despite achieving a KL divergence similar to PILAF,
it results in a lower reward. These findings highlight the superiority of PILAF sampling, demonstrating its effectiveness in
robustly optimizing an overfitted policy.

G. Extension to Proximal Policy Optimization (PPO)
In this section, we briefly explore how the core principles of our PILAF sampling approach can be extended to PPO-based
RLHF methods.
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Figure 6. Online DPO with an overfitted initial policy. Full results
of the Figure 4. Each dot represents an evaluation performed every
50 training steps. Color saturation indicates the training step, with
darker colors representing later steps.

Table 4. Results of Online DPO with an overfitted initial policy.
We report the average reward, KL divergence from the reference
model, and objective J on the testset.

METHOD REWARD (↑) KL (↓) J (↑)

Vanilla -3.95 39.85 -7.93
Best-of-N -4.49 27.90 -7.28
Hybrid -6.00 18.20 -7.82

PILAF (OURS) -3.54 26.45 -6.19

Integrating Response Sampling in InstructGPT: The PPO-based RLHF pipeline used in InstructGPT (Ouyang et al.,
2022) consists of three key steps:

(i) Supervised Fine-Tuning (SFT) that produces the reference model πref .
(ii) Reward Modeling (RM) by solving the optimization problem (2), yielding an estimated reward function rθ.

(iii) Reinforcement Learning Fine-Tuning, where the policy πϕ is optimized against the reward model rθ using the Proximal
Policy Optimization (PPO) algorithm, following the optimization scheme (4).

The key distinction between the PPO and DPO approaches lies in how the reward model rθ is represented—explicitly in
PPO and implicitly in DPO. In response sampling for data collection, it is crucial to consider the iterative nature of the
InstructGPT pipeline. During each iteration, additional human-labeled data is collected for reward modeling (step (ii)), and
steps (ii) and (iii) are repeatedly applied to refine the model. Our proposed PILAF algorithm naturally integrates into this
pipeline by improving the data collection process in step (ii), thereby enhancing reward model training and, in turn, policy
optimization.

Extensions of T-PILAF and PILAF: Extending our response sampling methods, PILAF and T-PILAF, to the PPO setup
with an explicit rθ is both natural and straightforward.

• Within the theoretical framework of T-PILAF, as introduced in Section 3, the only required modification is replacing
πθ with the language model πϕ and redefining the interpolated and extrapolated policies, π+

ϕ and π−
ϕ , following the

same formulation as in equations (9a) and (9b). Specifically, we define

π+
ϕ (y⃗ | x) := 1

Z+(x)
πϕ(y⃗ | x) exp

{
rθ(x, y⃗)

}
, (65a)

π−
ϕ (y⃗ | x) := 1

Z−(x)
πϕ(y⃗ | x) exp

{
− rθ(x, y⃗)

}
, (65b)

where rθ is now explicitly produced by a reward network, rather than being implicitly derived from πϕ, as in
equation (5).

• To extend our empirical PILAF algorithm, as described in Section 5, we propose applying the same interpolation and
extrapolation techniques directly to the logits of the language models πϕ and πref . In particular, we take

π+
ϕ (· | x, y1:t−1) = softmax

({
(1 + β)hϕ − β href

}
(x, y1:t−1)

)
,

π−
ϕ (· | x, y1:t−1) = softmax

({
(1− β)hϕ + β href

}
(x, y1:t−1)

)
,
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where hϕ and href represent the logits of the language models πϕ and πref , respectively.

Adaption of Theoretical Analysis: Our theoretical analyses can be extended to the PPO framework, assuming that the
optimization process (4) in step (iii) of InstructGPT is solved exactly. In this case, the policy satisfies πϕ = πrθ , where

πrθ (y⃗ | x) :=
1

Zθ(x)
πref(y⃗ | x) exp

{ 1

β
rθ(x, y⃗)

}
.

Under this assumption, the output language model πϕ is implicitly a function of the parameter θ. Building on this, we can
adapt our optimization and statistical analyses as follows:

• Optimization Consideration: Using the same argument as in Theorem 4.1, we can prove that

∇θ L(θ) = −C ′ · ∇θ J(πϕ) + T2 ,

where C ′ > 0 is a universal constant, and T2 represents a second-order approximation error.

In other words, if the policy optimization step is sufficiently accurate for the reward model rθ, then performing gradient
descent on the MLE loss with respect to θ is equivalent to applying gradient ascent on the oracle objective J , following
the steepest direction in the parameter space of θ.

• Statistical Consideration: Even with the new parameterization, the asymptotic distribution of θ̂ from Theorem 4.2
remains unchanged. Moreover, the gradient and Hessian of J with respect to θ retain the same form as in Theorem 4.1.
As a result, the statistical analysis extends naturally to PPO, allowing us to conclude that PILAF also maintains
structure-invariant statistical efficiency for PPO methods.
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