
Under review as a conference paper at ICLR 2022

NASVIT: NEURAL ARCHITECTURE SEARCH FOR EF-
FICIENT VISION TRANSFORMERS WITH GRADIENT
CONFLICT-AWARE SUPERNET TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Designing accurate and efficient vision transformers (ViTs) is an important but
challenging task. Supernet-based one-shot neural architecture search (NAS) en-
ables fast architecture optimization and has achieved state-of-the-art results on
convolutional neural networks (CNNs). However, directly applying the supernet-
based NAS to optimize ViTs leads to poor performance - even worse compared to
training single ViTs. In this work, we observe that the poor performance is due to a
gradient conflict issue: the gradients of different sub-networks conflict with that of
the supernet more severely in ViTs than CNNs, which leads to early saturation in
training and inferior convergence. To alleviate this issue, we propose a series of
techniques, including a gradient projection algorithm, a switchable layer scaling
design, and a simplified data augmentation and regularization training recipe. The
proposed techniques significantly improve the convergence and the performance
of all sub-networks. Our discovered hybrid ViT model family, dubbed NASViT,
achieves top-1 accuracy from 78.2% to 81.8% on ImageNet from 200M to 800M
FLOPs, and outperforms all the prior art CNNs and ViTs, including AlphaNet
and LeViT. When transferred to semantic segmentation tasks, NASViTs also out-
perform previous backbones on both Cityscape and ADE20K datasets, achieving
73.2% and 37.9% mIoU with only 5G FLOPs, respectively.

1 INTRODUCTION

Transformers have recently been applied to various vision tasks, including image classification (Liu
et al., 2021; Dong et al., 2021; Bao et al., 2021), object detection (Carion et al., 2020; Zhu et al.,
2020), semantic segmentation (Xie et al., 2021; Cheng et al., 2021), video understanding (Bertasius
et al., 2021; Fan et al., 2021), etc. Vision transformers (ViTs) benefit from high model capacity,
large receptive field, and grouping effect, etc (Dosovitskiy et al., 2020), and demonstrate superior
performance compared to convolutional neural networks (CNNs) especially with the scaling of the
model size and training data size. For example, CoAtNet (Dai et al., 2021) achieves 90.88% top-1
accuracy on Imagenet by scaling the model to 2586G FLOPs and pre-training the model on JFT-3B
dataset (Sun et al., 2017).

Though promising in the high computation budget regime, the performance of ViTs is still inferior to
that of the CNN counterparts on small- or medium-sized architectures, especially compared to CNN
architectures that are highly optimized by neural architecture search (NAS), e.g., AlphaNet (Wang
et al., 2021a), FBNetV3 (Dai et al., 2020), etc. For example, the initial DeiT-Tiny (Touvron et al.,
2020) only achieves 72.2% top-1 accuracy with 1.2G FLOPs. The recently proposed LeViT (Graham
et al., 2021) makes significant progress to achieve 76.6% top-1 accuracy with 305M FLOPs with
convolution/transformer hybrid architectures and a 3x longer training schedule. In contrast, AlphaNet
(Wang et al., 2021a) achieves 77.8% top-1 accuracy with only 203M FLOPs. The large accuracy
gap illustrated above raises a natural question: are transformer blocks that build large and dynamic
receptive fields beneficial for small models?

To answer the question above, in this work, we target at developing a family of efficient ViTs with
FLOPs ranging from 200M to 800M . A natural approach is to leverage NAS, which has achieved
state-of-the-art (SOTA) accuracy-efficiency trade-off for CNNs (Wang et al., 2021a; Dai et al., 2020;
Cai et al., 2019). The recently proposed supernet-based NAS, e.g., BigNAS (Yu et al., 2020a) and
AlphaNet (Wang et al., 2021a), builds a weight-sharing graph including all the sub-networks in

1

Under review as a conference paper at ICLR 2022

the architecture search space. A sandwich sampling rule with inplace knowledge distillation (KD)
(Yu et al., 2018) is leveraged to simultaneously optimize the supernet and sub-networks for each
mini-batch, which stabilizes the training and improves the training convergence.

To leverage the supernet-based NAS, we �rst modify the LeViT model to build the architecture
search space for ViTs and then jointly optimize the model architectures and parameters following
AlphaNet. However, we �nd that directly applying AlphaNet achieves poor performance on the ViT
search space, even worse compared to training single ViTs. To understand the root cause of the
poor performance, we examine the supernet training procedure and observe that the gradients of the
supernet and the different sub-networks con�ict with each other during the sandwich sampling, which
makes the training loss saturates much more quickly for ViTs, thus leading to slow convergence.

To alleviate the issue of con�icting gradients, we propose three different techniques to improve
the supernet training. Firstly, instead of directly adding the gradients from different sub-networks
together, we �nd it bene�cial to prioritize the training of the sub-networks over the supernet, as our
main purpose is to build ef�cient sub-networks. We achieve this with a projection gradient algorithm
which removes the component of the supernet gradient that is con�ict with the sub-network gradient.
Secondly, to alleviate the gradient con�icts among different sub-networks, we propose to augment
each transformer layer with switchable channel-wise scaling layers. The weights of different scaling
layers are not shared among different transformer blocks to reduce gradient con�icts. Thirdly, we
propose to use a weak data augmentation scheme and reduce the regularization in training to decrease
the optimization dif�culty and hence reduce gradient con�icts.

Our proposed techniques signi�cantly alleviate the gradient con�ict issue and empirically improve the
convergence of supernet training. Compared to the baseline supernet training algorithm in AlphaNet,
we can improve the top-1 accuracy to 78.2% for the small model with 205M FLOPs and achieve
81.8% for the large model with 757M FLOPs. Meanwhile, the resulting model family, NASViT,
outperforms all the SOTA CNN and ViT models across a wide range of computation constraints.
NASViT also demonstrates good performance on downstream tasks. When transferring to semantic
segmentation tasks, NASViT backbones outperform previous CNN and ViT backbones on both
Cityscape and ADE20K datasets, achieving 73.2% and 37.9% mIoU with 5G FLOPs, respectively.

Related Works Recently, researchers have used supernet-based NAS to optimize the architecture
for transformers. For example, HAT (Han et al., 2021) uses supernet for hardware-aware transformer
optimization. HAT mainly focuses on NLP tasks and features a design space with heterogeneous
transformer layers. AutoFormer (Chen et al., 2021a) and ViTAS (Su et al., 2021) leverages supernet-
based NAS to optimize the ViT architecture. By searching the width, depth, K/Q/V dimension, MLP
ratio, etc, better accuracy is achieved compared to the baseline DeiT models (Chen et al., 2021a).
However, these works focus on large ViT models with more than 1G FLOPs and their accuracy is
still inferior to the CNN backbones with similar compute, e.g., Ef�cientNet (Tan & Le, 2019). We
refer readers to appendix for more discussions about related works.

2 NAS FOR EFFICIENT TRANSFORMERS

Our goal is to design ef�cient small- and medium-sized ViTs in the FLOPs regime from 200M to
800M. We build our search space inspired by the recently proposed LeViT (Graham et al., 2021).
LeViT is a family of ef�cient models leveraging a hybrid architecture of convolutions and transformers.
In LeViT, the convolutions are introduced to handle high resolution inputs thanks to their ef�ciency
from local computation while the transformers are leveraged for lower resolution features to extract
global information. We closely follow LeViT to build our baseline search space; see Figure 1 for an
overview.

Search Space We summarize the detailed search dimensions of our search space in Table 1. For
each CNN block, we directly follow the design in AlphaNet (Wang et al., 2021a;b) and search for
the optimal channel widths, block depths, expansion ratios and kernel sizes; for each transformer
block, we search for the best number of windows, hidden feature dimensions (denoted asWidthin
Table 1)1, depths and MLP expansion ratios. Compared to CNN blocks, one special search dimension

1Hidden feature dimension equals the number of heads times the feature dimension of each head. In our
search space, we �x the head dimension to be 8, and only searching for the number of heads.

2

Under review as a conference paper at ICLR 2022

Figure 1: An illustration of our ViT search space. Conv and MBConv refers to standard convolution
and inverted residual blocks (Sandler et al., 2018), respectively. Transformer denotes transformer
blocks. All CNN and transformer blocks contain a stack of dynamic layers with searchable architec-
ture con�gurations. Additionally, we also search for the input resolutions.

Block Width Depth Kernel size Expansion ratio SE Stride Number of Windows
Conv f 16, 24g - 3 - - 2 -

MBConv-1 f 16, 24g f 1,2g f 3, 5g 1 N 1 -
MBConv-2 f 24, 32g f 3, 4, 5g f 3, 5g f 4, 5, 6g N 2 -
MBConv-3 f 32, 40g f 3, 4, 5, 6g f 3, 5g f 4, 5, 6g Y 2 -

Transformer-4 f 64, 72g f 3, 4, 5, 6g - f 1, 2g - 2 f 1, 4g
Transformer-5 f 112, 120, 128g f 3, 4, 5, 6, 7, 8g - f 1, 2g - 2 1
Transformer-6 f 160, 168, 176, 184g f 3, 4, 5, 6, 7, 8g - f 1, 2g - 1 1
Transformer-7 f 208, 216, 224g f 3, 4, 5, 6g - f 1, 2g - 2 1

MBPool f 1792, 1984g - 1 6 - - -
Input resolution f 192, 224, 256, 288g

Table 1: An illustration of our search space. MBConv refers to the inverted residual block (Sandler
et al., 2018). MBPool denotes the ef�cient last stage (Howard et al., 2019). SE represents the
squeeze and excite layer (Hu et al., 2018). Transformer stands for the transformer blocks (Vaswani
et al., 2017).Width represents the channel width for CNN layers and hidden feature dimension
for transformer layers, respectively.Depthdenotes the number of repeated CNN and transformer
layers for each block. For MBConv blocks, the expansion ratio refers to the expansion ratio of the
depth-wise convolution layer. For transformer layers, it refers to the MLP expansion ratio. For each
transformer block, we use3 � 3 depth-wise convolution with stride 2 for down-sampling and the
down-sampling layer is placed as the �rst layer for that block.

for transformer blocks is the number of windowsk. When the number of windowsk is greater
than 1, we follow Swin transformer (Liu et al., 2021) and partition the input tokens intok groups.
We then compute the self-attention weights for each group separately to reduce computational cost.
Standard global self-attention is a special case ofk = 1 . In this work, we only search the number of
windows for the �rst transformer block, as the input resolutions to the other transformer blocks are
already small after 4 times of down-sampling. Similar to the search range of AlphaNet, the smallest
sub-network in our search space has 190M FLOPs and the largest sub-network has FLOPs of 1,881M.
we refer the reader to Appendix B for more description of our search space.

Naive supernet-based NAS fails to �nd accurate ViTs We �rst closely follow the previous best
practices in AlphaNet (Wang et al., 2021a) for the supernet training. We train the supernet for 360
epochs on ImageNet (Deng et al., 2009). At each training step, we adopt the sandwich sampling
rule (Yu et al., 2018) and sample four sub-networks: the smallest sub-network, the supernet (a.k.a.
the largest sub-network), and two random sub-networks. All small sub-networks are supervised by
the supernet with� -divergence-based KD; see Algorithm 1 in Appendix C.1 for an overview of the
supernet training procedure. Additionally, as our candidate networks contain transformer blocks, we
further incorporate the best training recipe from LeViT (Graham et al., 2021) by replacing the SGD
optimizer with Adam (Kingma & Ba, 2014) and leveraging an external pre-trained teacher model
for the best accuracy. Speci�cally, we use the pre-trained teacher to supervise the supernet and still
constrain all other small sub-networks to learn from the supernet. In this work, we always use an
Ef�cientNet-B5 (Tan & Le, 2019) with 83.3% top-1 accuracy on ImageNet as the teacher to train our
ViT supernet unless otherwise speci�ed.

We plot the training curves of the smallest sub-network and the largest sub-network in Figure 2. We
�nd both the smallest sub-network and the largest sub-network from our search space converge poorly
compared to the CNN baseline. Speci�cally, the validation accuracy of both the smallest and the
largest sub-network is saturated at around the 250-th epoch, and the �nal accuracy is much worse

3

Under review as a conference paper at ICLR 2022

Im
ag

eN
et

To
p-

1
va

la
cc

Im
ag

eN
et

To
p-

1
va

la
cc

Training Epoch Training Epoch
(a) The smallest sub-network (b) The largest sub-network (the supernet)

Figure 2: (a-b) show the training curves of the smallest sub-network and the largest sub-network (i.e.,
the supernet), respectively. Note that AlphaNet is trained without external teacher models.

FLOPs (M) 190 208 309 591
Scratch 77.2 77.5 79.1 80.4
Supernet 76.4 76.6 78.5 80.6

Table 2: ImageNet top-1 accuracy from sub-
networks trained from scratch vs. results from
sub-networks sampled from the supernet.

AlphaNet DeiT LeViT
Smallest 77.0 76.6 76.8
Largest 82.4 82.2 82.2

Table 3: ImageNet Top-1 accuracy from the
smallest and the largest sub-network by using
different training recipes.

than the CNN baselines. To understand the inferior model performance, we investigate the potential
issues of our ViT supernet training from the following three directions.

Investigation 1: Is our search space designed badly?We seek to understand if the performance
gap is caused by a bad search space design. To verify, we randomly pick four sub-networks from
the search space with computation cost ranging from 190M to 591M FLOPs. Then, we train these
networks from scratch with the same data augmentation and regularization. As we can see from
Table 2, the sub-networks trained from scratch outperform the sub-networks sampled from the
supernet. Note that from previous works (e.g. Yu et al., 2020a), supernet often learns more accurate
sub-networks compared to the training from scratch performance, by taking advantage of inplace
knowledge KD and weight-sharing. Our observations in Table 2 indicate that the poor performance
does not come from the search space but from the interference with the training of the supernet.

Investigation 2: Are the training settings suitable for ViTs? Our default training settings from
AlphaNet are originally optimized for CNNs only. Compared with AlphaNet, recent ViT methods,
e.g., DeiT and LeViT, suggest to use stronger data augmentation schemes (e.g., a combination of
CutMix (Yun et al., 2019), Mixup (Zhang et al., 2017), randaugment (Cubuk et al., 2020), random
erasing (Zhong et al., 2020), and repeated augmentation) and stronger regularization (e.g., large
weight decay, large drop path probability) for training. We evaluate the effectiveness of these ViT
speci�c training recipes and summarize our �ndings in Table 3. As we can see from Table 3,
DeiT- or LeViT-based training recipe produces even worse accuracy compared to the results from
AlphaNet-based training.

Investigation 3: Saturated supernet training due to gradient con�icts? Compared to the stan-
dard single network training, a major difference of supernet training is that multiple networks are
sampled and trained at each step. We hypothesize that the training loss from the supernet and that from
the sub-networks may yield con�icting gradients due to the heterogeneous and complex structures
of networks, and the con�ict gradients may consequently lead to slow convergence and undesirable
performance.

To verify this hypothesis, we compute the cosine similarity between the gradients from the supernet
and the averaged gradients from the sub-networks. A negative cosine similarity indicates the supernet
and sub-networks produce con�ict gradients and tend to update model parameters in opposite
directions. To quantitatively examine the gradient con�ict issue, we go through the entire ImageNet
training set and calculate the percentage of negative cosine similarity between the gradients of

4

Under review as a conference paper at ICLR 2022

Epoch 1st 90th 180th 270th 360th
AlphaNet 27% 20% 21% 24% 28%
ViT 36% 27% 27% 32% 34%

Table 4: An estimation of negative cosine similarity ratio (gradient con�ict ratio) between the
supernet gradient and the averaged gradient of the sub-networks.

supernet and sub-networks among all training images at a per layer granularity. The gradients are
computed under the same data augmentation and regularization as the supernet training stage. For
AlphaNet, we train the model using its of�cial code2. As shown in Table 4, our ViT supernet suffers
from more severe gradient con�icts compared to the CNN baseline. According to existing works in
multi-task learning, large gradient con�ict ratios may result in signi�cant accuracy drop even for
binary classi�cation problems (see Figure 3 in Du et al. (2018) and Figure 4(b) in Yu et al. (2020b)).
We hypothesize that the inferior performance of our ViT supernet is mainly caused by the large
percentage of disagreements between the supernet gradients and the subnetworks gradients.

3 GRADIENT CONFLICT AWARE SUPERNET TRAINING

Figure 3: A basic transformer layer
with scaling. Activated compo-
nents are the neurons selected in the
forward path for one sub-network.
`c1' and `c2' represent the num-
ber of channels activated in a self-
attention layer and MLP, respec-
tively.

We propose to improve the ViT supernet training by address-
ing the gradient con�ict issue between the supernet and the
sub-networks from three aspects: 1) manually resolving the gra-
dient con�ict by projecting the supernet gradients to the normal
vector of the sub-networks gradients; 2) introducing switchable
scaling layers to the search space to give more optimization
freedom for sub-networks; 3) reducing data augmentation and
regularization to provide easier training signals.

Gradient projection to prioritize sub-networks update
Our �rst idea is to focus on training the sub-networks when-
ever gradients from the supernet and the gradients from the
sub-networks con�icted with each other. As we are interested
in the sub-networks from the 200M to 800M FLOPs range,
we propose to prioritize the optimization of the sub-networks
over the supernet when gradient con�icts are observed. Let
r `sup andr `sub denote the gradients of the supernet and the
sub-networks, respectively. To prioritize sub-networks train-
ing, we always projectr `sup to the normal vector ofr `sub
to avoid gradient con�icts when the cosine similarity between
r `sup andr `sub is negative. The overall accumulated gradi-
ent at each training iteration with projection can be written as
follows,

g = r `sub + proj(r `sup) with (1)

proj(r `sup) =

(
r `sup if cos(r `sup ; r `sub) � 0;

r `sup �
r ` >

sup r ` sub

kr ` sub k2 r `sub otherwise:

Note thatcos(r `sub ; proj(r `sup)) = 0 if cos(r `sup ; r `sub) < 0, which ensures the gradient
cosine similarity is always non-negative. In sandwich sampling, since several sub-networks are
sampled in each iteration,`sub is computed as the summation of the gradients from all sub-networks.
Note similar ideas of gradient projection have also been explored in multi-tasks learning, see e.g., Yu
et al. (2020b); Du et al. (2018); Real et al. (2019); Dery et al. (2021).

While the gradient projection in Eqn.(1) eliminates the gradient con�icts, it may lead to slow
convergence as the resulting gradients are biased. Hence, we also propose the follow two techniques to
reduce the gradient con�icts from a search space design and training strategy re�nement perspective.

2https://github.com/facebookresearch/AlphaNet

5

Under review as a conference paper at ICLR 2022

Switchable scaling layer Motivated by Slimmable NN (Yu et al., 2018), we introduce additional
switchable scaling layers to allow sub-networks with different layer widths and depths to re-scale
their features in a privatized way. Speci�cally, for each transformer layer, a switchable scaling
layer is introduced at the output of the self-attention (SA) and the MLP, respectively, as shown in
Figure 3. Assumex [c;d] 2 Rc is a input feature of a scaling layer, withc the feature dimension (i.e.
the number of selected channels in the forward path) andd the index of this layer in a transformer
search block. The scaling layer transformsx [c;d] asw [c;d] � x [c;d]. Herew [c;d] 2 Rc are learnable
parameters and� denotes element-wise multiplication. For each transformer block (see Table 1),
each different con�guration of[c; d] will specify a set of independent switchable scaling layers.
Following CaiT (Touvron et al., 2021), we initialize all scaling factorsw to a small value (e.g.10� 4)
for fast convergence and stable training. Intuitively, the switchable scaling layers effectively increase
the model capacity of sub-networks and give the sub-networks more optimization �exibility.

Reduced data augmentation and regularization Furthermore, we observe that the supernet and
the sub-networks are more likely to con�ict with each other in the presence of stronger data aug-
mentations and stronger regularization, e.g., large weight decay, large DropConnect (Wan et al.,
2013). Hence, we simplify the AlphaNet training recipe and use a weaker data augmentation scheme
- RandAugment (Cubuk et al., 2019) with both the number of augmentation transformations and the
magnitude set to 1, and remove the regularization, e.g. DropConnect (Wan et al., 2013), dropout and
weight decay, from the training; see Table 5 for a comparison.

Method Data augmentation Weight decay DropConnect Dropout
AlphaNet AutoAugment 10� 5 0.2 0.2
Ours RandAugment (n = 1 ; m = 1) 0 0 0

Table 5: An illustration of our simpli�ed training settings, wheren is the number of augmentation
transformations andm the number of magnitudes in RandAugment. A typical setting of RandAug-
ment isn=2 andm=9 for training a single network; see Cubuk et al. (2020); Liu et al. (2021).

4 EXPERIMENTS

To
p-

1
va

lid
at

io
n

ac
cu

ra
cy

M FLOPs

Figure 4: Comparison with prior-art CNNs and
ViTs on ImageNet. Here “+T” indicates meth-
ods that are trained with external teacher models.
Note that Mobile-Former (Chen et al., 2021c) and
MNasNet (Tan et al., 2019) are trained without
additional teacher models.

We �rst retrain our ViT supernet with our pro-
posed gradient con�ict reduction techniques on
ImageNet (Deng et al., 2009); we then conduct
an evolutionary search on a subset of the Ima-
geNet training dataset to search the accuracy vs.
FLOPs Pareto following (Wang et al., 2021b).
We refer the reader to Appendix C.1 for more
details. Note all the models are directly sampled
from the supernet without retraining or �netun-
ing.

We call our discovered as NASViT models and
compare with state-of-the-art ef�cient CNNs
and ViTs, including FBNetV3 (Dai et al., 2020),
AlphaNet (Wang et al., 2021a), LeViT (Graham
et al., 2021) and Segformer (Xie et al., 2021),
on both image classi�cation (e.g., ImageNet)
and semantic segmentation benchmarks (e.g.,
Cityscapes and ADE20K).

4.1 IMAGENET

We compare our NASViT models with state-of-the-art NAS-based CNNs, including AlphaNet (Wang
et al., 2021a) and FBNetV3 (Dai et al., 2020), and recently-proposed ef�cient ViTs, e.g., LeViTs.

Settings Note that our ViT supernet is trained with a pretrained Ef�cient-B5 teacher model (83.3%
top-1) model. For fair comparison, we retrain AlphaNet with the same teacher. For FBNet-V3 and

6

	Introduction
	NAS for efficient transformers
	gradient conflict aware supernet training
	Experiments
	ImageNet
	Semantic Segmentation
	Ablation Studies on gradient conflict aware training
	Ablation studies on search space

	Conclusion
	Related Work
	Search space
	Efficient transformer building layer

	Implementation details on training and searching
	Training and Search Algorithm
	Ablation Studies

	Architecture visualization of NASViT models

