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Figure 1: Illustration of our method’s integration of tetrahedral mesh manipulability with high-quality feature grid rendering
capabilities. The left three columns demonstrate controlled deformations enabled by our approach, allowing for user-directed
modifications. The right three columns showcase the application of our method in rigged animation.

Abstract
While neural radiance fields (NeRF) have shown promise in novel
view synthesis, their implicit representation limits explicit con-
trol over object manipulation. Existing research has proposed the
integration of explicit geometric proxies to enable deformation.
However, these methods face two primary challenges: firstly, the
time-consuming and computationally demanding tetrahedraliza-
tion process; and secondly, handling complex or thin structures
often leads to either excessive, storage-intensive tetrahedral meshes
or poor-quality ones that impair deformation capabilities. To ad-
dress these challenges, we propose DeformRF, a method that seam-
lessly integrates the manipulability of tetrahedral meshes with the
high-quality rendering capabilities of feature grid representations.
To avoid ill-shaped tetrahedra and tetrahedralization for each object,
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we propose a two-stage training strategy. Starting with an almost-
regular tetrahedral grid, our model initially retains key tetrahedra
surrounding the object and subsequently refines object details using
finer-granularity mesh in the second stage. We also present the con-
cept of recursively subdivided tetrahedra to create higher-resolution
meshes implicitly. This enables multi-resolution encoding while
only necessitating the storage of the coarse tetrahedral mesh gen-
erated in the first training stage. We conduct a comprehensive
evaluation of our DeformRF on both synthetic and real-captured
datasets. Both quantitative and qualitative results demonstrate the
effectiveness of our method for novel view synthesis and deforma-
tion tasks. Project page: https://ustc3dv.github.io/DeformRF/
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1 Introduction
The study of novel view synthesis has witnessed remarkable ad-
vancements in the fields of computer vision and graphics, notably
since the inception of Neural Radiance Fields (NeRF) [26]. Subse-
quent to NeRF, numerous follow-up works have emerged, among
which methods based on feature grids [4, 5, 22, 27, 31, 34] have
demonstrated exceptional performance in terms of rendering qual-
ity and speed. Despite the promising results, the inherent nature
of NeRF as an implicit continuous representation does not directly
afford explicit control mechanisms. This limitation poses signifi-
cant challenges in the deformation and manipulation of objects,
especially in scenarios requiring user-directed control for precise
adjustments and interventions.

To address this challenge, researchers have proposed integrat-
ing explicit geometric proxies to enable deformation. Some works
have utilized triangular meshes for deformation, including the
method proposed by Xu et al. [39], which generates watertight
triangular meshes encapsulating the target object. Alternative stud-
ies [12, 23, 36, 40] have employed tetrahedral meshes as geometric
proxies, building upon the feature grid approach. By manipulating
the shape of these meshes, they facilitate the deformation of the ob-
ject in a controlled manner. However, these methods face two main
challenges: Firstly, they require a time-consuming and computation-
ally intensive process of applying Marching Cubes algorithms [24]
and tetrahedralization after training the implicit representation.
Secondly, this process becomes particularly challenging for ob-
jects with complex topology or those containing thin structures,
as it tends to result in one of two scenarios. In one scenario, to
accurately conform to the object’s intricate details, an excessive
quantity of small tetrahedra is generated, significantly increasing
the storage overhead. Alternatively, limiting the total number of
tetrahedra often results in the creation of poor-quality tetrahedra,
which adversely affects the efficacy of deformation tasks.

In this paper, we introduce a novel method, termed DeformRF,
that seamlessly integrates the manipulability of tetrahedral meshes
with the high-quality rendering capabilities of feature grid represen-
tations. Our method effectively circumvents the issues associated
with poor-quality tetrahedra and also eliminates the need for tetra-
hedralization for each object. Departing from traditional practices,
we propose a two-stage training framework, which offers a one-
time solution for tetrahedralization and avoids the time-consuming
Marching Cubes process for surface mesh extraction. Initially, we
generate a regular, fixed tetrahedral grid before training, employ-
ing this uniform grid across all objects. During the first training
stage, our model identifies and retains the crucial tetrahedra that
effectively encapsulate the target object. Subsequently, the second
training stage leverages the tetrahedral mesh obtained from the first
stage. In this stage, the training of the tetrahedral representation is
elevated by increasing the subdivision levels, thereby enhancing the
model’s visual fidelity. The two-stage training framework stream-
lines the training process and produces high-quality tetrahedra,
which greatly benefits subsequent deformation tasks.

In order to fully harness the advantages of feature grid methods
in rendering while effectively integrating with tetrahedral struc-
tures, it seems intuitive to store features at the vertices of the

tetrahedra. Tetra-NeRF [16] has implemented this approach, lead-
ing to impressive rendering results; however, it also encounters its
own set of challenges. Its tetrahedral mesh, derived from a dense
point cloud through triangulation, leads to high memory usage and
prolonged training times. To tackle these challenges, we introduce
the concept of recursively subdivided tetrahedra, which virtually
generates detailed meshes without the necessity to store these sub-
divisions. This approach enables multi-resolution feature encoding
while only necessitating the storage of a coarse tetrahedral mesh
generated during the first stage of training. From the initial coarse
mesh, we obtain progressively finer levels of the tetrahedral mesh
by repeating connecting the midpoints of each tetrahedron’s edges.
For a given sample point on the camera ray, we conduct a barycen-
tric interpolation at each hierarchical level of the model, utilizing
the features located at the vertices of the encompassing tetrahedron
relevant to that level. The distinct feature vector from each level are
subsequently concatenated to form a comprehensive feature vector
for the sample point. We observe that the barycentric coordinates
at a current level can then be used to calculate these coordinates
at a subsequent, finer level of the hierarchy. To capitalize on the
inherent hierarchical structure of recursively subdivided tetrahe-
dra, we introduce an iterative algorithm for computing barycentric
coordinates at each level of subdivision. This strategy significantly
reduces memory demands by storing only the coarse tetrahedral
mesh, thus avoiding the need to maintain vertex and connectivity
information for the finer meshes.

We conduct a comprehensive evaluation of our DeformRF on
both synthetic and real-captured datasets. Both quantitative and
qualitative results demonstrate the effectiveness of our method for
novel view synthesis and deformation. In summary, our work has
the following contributions:

• We propose a novel approach that combines the manipula-
bility of tetrahedral meshes with the high-quality rendering
capabilities of feature grid representations.

• Our approach introduces an iterative computation of barycen-
tric coordinates, eliminating the need for storing high reso-
lution meshes explicitly. This not only lessens the memory
footprint but also maintains the enhanced detail and accu-
racy of the finer tetrahedral mesh.

• The proposed method extends the capabilities of NeRFs to
include explicit object-level deformations and animations
while preserving photorealistic rendering quality.

2 Related Work
2.1 Neural Scene Representation
Significant advancements in novel view synthesis have been driven
by NeRF [26], which employ multi-layer perceptrons (MLP) to effec-
tively model both the geometric and appearance aspects of scenes,
leveraging volume rendering to deliver high-quality renderings.
NeRF has found extensive applications in versatile computer graph-
ics and computer vision tasks, such as human avatar creation [8, 29],
pose estimation [2, 6, 21], reconstruction [3, 33], robotics [1, 20] and
simulation [18, 19]. However, despite these advancements, NeRF
still contends with challenges in temporal and resource consump-
tion efficiency. To mitigate the issues of time and memory inef-
ficiencies, the training and representational capabilities of NeRF
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Figure 2: Overview of DeformRF. (a) Given that a ray intersects with a tetrahedral mesh, we proceed with ray marching while
retaining the sample points within the tetrahedron. (b) For each sample, we perform barycentric interpolation at each level
and combine the feature vectors from all levels to create a complete feature vector. In this process, the computation of the
barycentric coordinates is conducted iteratively. (c) In the two-stage training process, we first acquire a coarse mesh and then
enhance training through increased subdivisions. (d) Our method support physically-based simulation and rigged animation.

have been improved through the use of feature-grid based scene
representations [4, 5, 22, 27, 31, 34].

In addition to methods based on regular grids, some approaches
utilizing tetrahedral grids have also demonstrated impressive ren-
dering capabilities. Tetra-NeRF [16] uniquely represents scenes
with tetrahedral meshes, derived from Delaunay triangulation of a
point cloud, and these meshes are then used for efficient barycentric
interpolation of features, with a shallow MLP predicting density
and color for volume rendering. However, the mesh generated by
Delaunay triangulation is not closely adhered to object surfaces
and contains many ill-shaped tetrahedra, making it unsuitable for
deformation. PermutoSDF [30] combines permutohedral lattice
hash encoding with a neural implicit surface model, integrating
regularization techniques for smooth surface recovery and precise
geometric reconstruction. Nevertheless, the relationship between
grids of different levels in PermutoSDF is not hierarchical, which
limits its capacity for deformation. Lately, 3D Gaussian Splatting
[13] has gained prominence, showcasing notable real-time results
in novel view synthesis as well.

However, unlike our work, these studies focus solely on achiev-
ing high-quality rendering in static scenes and do not explore the
potential for extending their techniques to encompass manipula-
tion of the objects. In contrast, our method not only capitalizes
on the high-quality rendering advantages of feature grid-based
approaches, but also supports deformation and animation.

2.2 3D Deformation and Manipulation
In the context of computer graphics, manipulating a 3Dmodel refers
to the process of altering its geometry based on user-defined pa-
rameters or controls. PIE-NeRF [7] employs quadratic generalized
moving least squares to achieve meshless discretization, integrat-
ing physics-based simulations with NeRF. However, this approach
does not directly support rigging, a common technique used in
character animation and deformation that relies on a predefined

skeletal structure to control the deformation of a mesh. Xu et al. [39]
proposed a method for free-form deformation of radiance fields us-
ing cage-based deformation, which involves manipulating a coarse
triangular mesh. However, the topological structure of triangular
meshes may limit the types and extents of possible deformations.

Several studies [12, 23, 36, 40] have utilized advanced tetrahe-
dral meshing algorithms [11, 32] to construct geometric proxies.
In particular, NeRFshop [12] employs a region-growing algorithm
to expand user selections into a larger volume, which is then con-
verted into a surface mesh using Marching Cubes; this mesh is
tetrahedralized with TetGen [32] to create a geometric proxy for
deformation. These methods are effective for interior tetrahedraliza-
tion of pre-existing, watertight surfaces. Nonetheless, these sophis-
ticated techniques can be time-consuming and require significant
computational resources.

3D Gaussian Splatting (GS) [13, 38], as an explicit discrete rep-
resentation, facilitates more direct and straightforward editability.
Despite this, it faces issues under large deformations, necessitat-
ing intricate algorithms to manage scale, rotation, translation, and
the complex merging and splitting of Gaussian ellipsoids, often
resulting in artifacts [9].

In contrast to the aforementioned methods, our work presents a
streamlined approach to 3D object manipulation that combines the
strengths of tetrahedral meshing with the high-fidelity rendering
of feature-grid representation. By introducing a two-stage training
framework, we bypass the need for complex and resource-intensive
tetrahedralization processes. Furthermore, we introduce the con-
cept of recursively subdivided tetrahedra to implicitly create higher-
resolution meshes. This method enables efficient multi-resolution
feature encoding and reduces memory usage while also introducing
a hierarchical structure to tetrahedral meshes, specifically designed
to support deformation and animation.
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3 Method
In this paper, we aim to seamlessly integrate the manipulability of
tetrahedral meshes with the high-quality rendering capabilities of
feature grid representations. Fig. 2 highlights how our DeformRF
effectively combines tetrahedral mesh flexibility with advanced ren-
dering capabilities, progressing from sampling and neural represen-
tation through sequential training stages to its diverse applications
in simulation and animation.

In the following sections, Sec. 3.1 offers the necessary back-
ground for NeRF andmulti-resolution hash encoding. Sec. 3.2 delves
into our novel representation, which uses recursively subdivided
tetrahedra to simulate increasingly refined and detailed meshes
without actually storing them. This implicit subdivision method
allows for detailed representations while conserving storage space
and ensuring computational efficiency. Sec. 3.3 discusses the two-
stage training process implemented in our model.

3.1 Preliminary
3.1.1 Neural Radiance Fields. In our approach, we utilize a differen-
tiable volume rendering model akin to that employed in NeRF [26].
This model determines the color of a ray by integrating over contri-
butions from points sampled along the ray path. The approximation
is described by the equation:

𝐶 (r) =
𝑁∑︁
𝑖=1

𝑇𝑖 (1 − exp(−𝜎𝑖𝛿𝑖 )) c𝑖 , (1)

where

𝑇𝑖 = exp ©«−
𝑖−1∑︁
𝑗=1

𝜎 𝑗𝛿 𝑗
ª®¬ . (2)

In these expressions, 𝑇𝑖 denotes the light transmittance through
ray r up to the 𝑖-th sample, effectively capturing the light con-
tribution from all preceding samples. The term (1 − exp(−𝜎𝑖𝛿𝑖 ))
represents the contribution from the 𝑖-th sample itself, with 𝜎𝑖 be-
ing the opacity of the sample, and 𝛿𝑖 the distance to the next sample
along the ray. The variable c𝑖 specifies the color at the 𝑖-th sample.

3.1.2 Multi-resolutionHash Encoding. Instant-NGP [27] introduced
an encoding strategy for neural graphics primitives. Specifically,
for a given point x, hash encoding maps features from a cascade of
grids at each level through a spatial hash function [35] :

ℎ(x) =
(

𝑑⊕
𝑖=1

𝑥𝑖𝜋𝑖

)
mod 𝑇ℎ, (3)

where ⊕ denotes the bit-wise XOR operation , 𝜋𝑖 represents a unique
large prime number associated with each dimension and 𝑇ℎ is the
size of hash table. These features are then interpolated using trilin-
ear interpolation, and features frommultiple levels are concatenated
to determine the features for that point. Since the features are stored
as trainable parameters, the size of the MLPs can be significantly
reduced, thereby saving both training and rendering times.

3.2 Multi-Resolution Tetrahedral
Representation

In this subsection, we introduce two key components of our method:
a multi-resolution representation based on recursively subdivided

Figure 3: Subdivision of a Tetrahedron. Given a tetrahedron
𝑇 , we subdivide it into eight smaller tetrahedra 𝑇𝑘 , for 𝑘 ∈
{0, . . . , 7}, by connecting the midpoints of each edge.

tetrahedra and an efficient approach for iterative barycentric coor-
dinates computation. Here we define 𝐿 as the total number of levels
in the subdivision hierarchy, which includes the initial coarse mesh
level and the total number of subdivision levels.

3.2.1 Feature Encoding. Inspired by the efficient encoding strategy
of Instant-NGP [27], our method innovatively adapts this technique
to the multi-resolution tetrahedral meshes. For each level of the
tetrahedral mesh, the vertices are linked to the entries within their
respective hash table. We use the same spatial hash function as
Instant-NGP [27] to map a vertex position x to its feature vector.
Unlike previous feature-grid methods, which employ regular grids,
our approach uses tetrahedral meshes, necessitating the implemen-
tation of barycentric interpolation for feature interpolation within
these meshes. We use the barycentric coordinates of each sampling
point to calculate a weighted sum of the vertex features of the
tetrahedron that contains the point. This process effectively yields
the feature of the sampling point at each level. Subsequently, these
features, derived from different levels of the tetrahedral mesh, are
concatenated to form a comprehensive feature vector for the sample
point.

3.2.2 Recursively Subdivided Tetrahedra. In our approach, we em-
ploy an intuitive method to generate tetrahedral meshes of different
levels from a coarse mesh, and infer these higher-resolution meshes
on the fly without storing them. Given a coarse tetrahedral mesh,
we execute a recursive subdivision process to generate tetrahedral
meshes of increasingly higher resolution across multiple levels.
Starting with the coarse tetrahedral mesh, each tetrahedron is sub-
divided into eight smaller tetrahedra by connecting the midpoints
of its six edges. Note that there are multiple ways to connect the
midpoints on edges. Here we select a specific subdivision pattern
and uniformly apply this pattern to all tetrahedra in the mesh, as
shown in Fig. 3. This subdivision process is recursively applied,
transforming each tetrahedron at level ℓ into eight smaller tetra-
hedra at level ℓ + 1, which leads to progressively finer tetrahedral
meshes at each level.

Although higher resolution meshes enable a more detailed repre-
sentation of objects, they correspondingly demand greater memory
space. It is impractical to store all meshes inmemory simultaneously.
We observe that storing high-resolution meshes is not necessary
for our multi-resolution tetrahedral representation, as the essential
information for feature encoding can be obtained by concentrating
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on two key aspects. Firstly, identifying the coordinates of the four
vertices of the tetrahedron at the sampling point allows us to access
the features of these vertices. Secondly, calculating the barycentric
coordinates at the sampling point within the tetrahedron is crucial
for enabling barycentric interpolation. Once these two key aspects
are addressed, the process of feature encoding can be successfully
completed.

3.2.3 Hierarchical Barycentric Inference. Building on the need to
encode features through vertex identification and barycentric calcu-
lations, we propose an iterative approach that simplifies the process
based on the hierarchical structure of our recursive subdivided tetra-
hedra. This method allows us to determine which of the eight child
tetrahedra at level ℓ + 1 contains a specific sampling point at level ℓ ,
using the barycentric coordinates of the point in the parent tetrahe-
dron. Moreover, the barycentric coordinates of the sampling point
at level ℓ + 1 can be explicitly calculated from its coordinates at
level ℓ , using a closed-form formula.

Initially, our method employs the NVIDIA OptiX library [28]
to perform ray-tetrahedral mesh intersections. Subsequently, we
apply ray marching along the camera rays to generate a series of
sampling points. Utilizing the results of these intersections, along
with the positions of the sampling points, we are able to determine
within which tetrahedron of the coarse mesh each point resides, as
well as compute the corresponding barycentric coordinates.

Having obtained the barycentric coordinates for sampling points
at the coarsest level, our focus shifts to identifying which of the
eight child tetrahedra each sampling point falls into. Without loss of
generality, consider an arbitrary tetrahedron in level ℓ defined by its
four vertices vℓ0, v

ℓ
1, v

ℓ
2, v

ℓ
3 ∈ R3. For a given sampling point p located

within this tetrahedron, assume its barycentric coordinate in level
ℓ is known and denoted as 𝜶 ℓ = (𝛼ℓ0, 𝛼

ℓ
1, 𝛼

ℓ
2, 𝛼

ℓ
3). The coordinates of

p can thus be expressed as:

p = 𝛼ℓ0v
ℓ
0 + 𝛼ℓ1v

ℓ
1 + 𝛼ℓ2v

ℓ
2 + 𝛼ℓ3v

ℓ
3 . (4)

Upon subdividing the original tetrahedron by connecting these
midpoints as shown in Fig. 3, eight smaller tetrahedra are formed.
The sampling point p will be contained within one of these eight
tetrahedra, and there exist eight possible configurations for its
placement.

To determine the specific child tetrahedron containing the sam-
pling point p, we apply a set of criteria based on the barycentric
coordinates. If any of the 𝜶 ℓ values, such as 𝛼ℓ

𝑖
, exceeds 0.5, the

sampling point is located at one of the four corners of the parent
tetrahedron; otherwise, if all values are less than 0.5, it is positioned
within one of the central four child tetrahedra. In cases where any
of 𝛼ℓ

𝑖
equals 0.5, the sampling point theoretically lies on the shared

face between two adjacent child tetrahedra. In our approach, such a
point can be assigned to either of the adjoining tetrahedra without
affecting the outcome. If the sampling points are not located at the
corners, we then narrow down the child tetrahedron’s identification
by checking if the sums 𝛼ℓ1 + 𝛼ℓ2 and 𝛼

ℓ
2 + 𝛼ℓ3 exceed 0.5. Depending

on whether these sums exceed 0.5, we can accurately pinpoint the
child tetrahedron that contains p. The detailed criteria are provided
in the supplementary material. After determining the specific child
tetrahedron containing the sampling point, we are able to access

the positions of the child tetrahedron’s vertices. This enables us to
retrieve the features of these vertices at level ℓ + 1.

Recall that the barycentric coordinates of the sampling point at
level ℓ + 1 are required to perform barycentric interpolation. Let
the barycentric coordinates of p in the specific child tetrahedron
be 𝜶 ℓ+1 = (𝛼ℓ+10 , 𝛼ℓ+11 , 𝛼ℓ+12 , 𝛼ℓ+13 ). For each of the eight child con-
figurations resulting from the subdivision of a parent tetrahedron,
a distinct coefficient matrix C𝑖 ∈ R4×4, where 𝑖 = 0, . . . , 7, can
be defined such that 𝜶 ℓ+1 = C𝑖𝜶 ℓ . Since our subdivision pattern
is predetermined and uniformly applied across all tetrahedra, as
detailed in Fig. 3 and previous discussions, each coefficient matrix
C𝑖 is constant and specific to its configuration. These constant ma-
trices enable the precise determination of the point’s coordinates in
the subdivided meshes at each successive level. Consequently, the
barycentric coordinates at level ℓ + 1 can be calculated from those
at level ℓ using the appropriate C𝑖 , ensuring accurate and efficient
interpolation across all levels of the mesh hierarchy. The detailed
computation process, including the derivation of the coefficient
matrix C that relates the barycentric coordinates from one level to
the next, is elaborated in the supplementary material.

3.3 Two-stage Training
To reduce memory usage on the GPU and enhance training speed
of our model, we propose a two-stage training process.

In the first stage, we employ the QuarTet algorithm [17] to gen-
erate the initial tetrahedralization of the space, resulting in a tetra-
hedral mesh that fills the space of a unit cube. We use an occupancy
mesh to determine which tetrahedra to retain within the mesh,
which is similar to how Instant-NGP [27] uses an occupancy grid to
decide voxel retention. At the end of this phase, we obtain a coarse
tetrahedral mesh that roughly envelops the object. The advantage
of this is the rapid construction of an initial structure surrounding
complex geometries while minimizing memory consumption by
retaining only those tetrahedra that are actually occupied.

In the second stage, we elevate the tetrahedral representation
training by increasing subdivision levels 𝐿. This phase is dedicated
to refining the tetrahedral representation obtained from the first
stage, aiming to achieve a more accurate and visually appealing
neural representation. This refinement process demands more com-
putational resources, but since it builds upon an already roughly
formed structure, it allows for focused optimization of areas requir-
ing detailed representation.

4 Experiments
4.1 Implementation Details

Tetrahedral Mesh Initialization. For constructing our initial tetra-
hedral mesh, we employ the QuarTet algorithm [17] for converting
surface geometry into tetrahedral meshes. We input a cube with an
edge length of 1 and set the grid spacing parameter to 0.02, which
results in the generation of a tetrahedral mesh comprising 17,933
vertices and 92,234 tetrahedra.

Experiment Setting. We run our experiments on a workstation
with an Intel Xeon E5-2690 v3, an NVIDIA GeForce RTX 3090,
and 128GB of RAM. We use Adam optimizer [14] with parameters
𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−15. We set the learning rate to 1 × 10−2
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Figure 4: Qualitative Comparisons on the Synthetic NeRF Dataset [26].

for all scenes. Additionally, we apply a learning rate scheduler that
gradually decreases the learning rate during training using a cosine
annealing schedule. Furthermore, for our proposed method, we set
the total number of levels in the subdivision hierarchy to 6 for all
scenes.

4.2 Novel View Synthesis
To assess the effectiveness of our approach, we evaluate our model
on both synthetic and real-captured datasets. The evaluation fo-
cuses on the fidelity of view synthesis in comparison to ground
truth images captured from identical poses.

Metrics. This evaluation employs three distinct metrics: Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure
(SSIM) [37], and Learned Perceptual Image Patch Similarity (LPIPS)
[41]. For Tetra-NeRF [16], we recalculated their SSIM metrics using
the same SSIM implementation employed in the other methods for
consistency.

Datasets. The Synthetic NeRF dataset [26] comprises eight intri-
cately designed synthetic objects. Each object is captured through
100 images from virtual cameras strategically placed around a hemi-
sphere facing inwards. Mirroring the methodology in NeRF [26],
we utilize 100 views per scene for training purposes, reserving an
additional set of 200 images for testing. The Tanks and Temples
dataset comprises scenes of five real-world objects captured by an
inward-facing camera orbiting the scenes. Each scene consists of
152 to 384 images with a resolution of 1920 × 1080.

Quantitative Comparison. We quantitatively compare various
state-of-the-art methods on the Synthetic NeRF dataset and the
Tanks and Temples dataset. Table 1 details the average performance
across the metrics of PSNR, SSIM, and LPIPS for scenes from these
datasets. The results from the Synthetic NeRF dataset demonstrate
that our method surpasses other state-of-the-art methods in PSNR
and SSIM. For the LPIPS metric, our method ranks second, just
behind the NSVF method [22]. In the Tanks and Temples dataset,
our method leads in both the PSNR and LPIPS metrics, while it
holds the third position in SSIM, only surpassed by Plenoxels [31]
and Tetra-NeRF [16].

Table 1: Qualitative Comparisons on the Synthetic NeRF
Dataset [26] and the Tanks and Temples Dataset [15]. Best
3 scores in each metric are marked with gold , silver and
bronze .

Methods Synthetic NeRF dataset Tanks and Temples dataset

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NeRF [26] 31.01 0.947 0.081 25.78 0.864 0.198
NSVF [22] 31.75 0.954 0.048 28.48 0.901 0.155
Plenoxels [31] 31.71 0.958 0.050 27.46 0.905 0.162
Instant-NGP [27] 32.68 0.948 0.054 28.62 0.890 0.142
Tetra-NeRF [16] 32.76 0.957 0.051 28.83 0.925 0.125

Ours 33.12 0.960 0.049 29.09 0.903 0.124

Qualitative Comparison. We selected several images with intri-
cate details from the dataset to showcase the superior rendering
quality of our method. Fig. 4 illustrates the performance of our
method compared to strong baselines on the Synthetic NeRF dataset,
where our approachmore effectively captures the fine textures of ob-
jects and renders images with geometrically plausible appearances.
Fig. 5 displays the comparative performance of our method against
others on real-world data from the Tanks and Temples dataset. Our
method achieves superior rendering results, particularly noticeable
on surfaces with textual textures.

Memory Usage. To empirically validate the memory efficiency
of our proposed method, we conducted a series of experiments
comparing the memory usage of our approach with the Tetra-NeRF
method. The experimental results are summarized in Table 2. Firstly,
our approach achieves superior storage efficiency for tetrahedral
meshes, as it only requires storing a coarse tetrahedral mesh, re-
sulting in a much smaller storage size compared to Tetra-NeRF [16].
Secondly, our method shows considerably lower GPU memory con-
sumption during training. Moreover, we investigated the differences
in memory usage between single-stage and two-stage training. The
results indicate that two-stage training is more memory-efficient,
proving its effectiveness.

Accumulation Map. Since both our method and Tetra-NeRF [16]
utilize tetrahedral mesh rendering, we conduct a comparative anal-
ysis from the perspective of accumulation to highlight differences
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Figure 5: Qualitative Comparisons on the Tanks and Temples Dataset [15].

Table 2: Memory Usage Difference.

Synthetic NeRF dataset Tanks and Temples dataset

Ours Tetra-NeRF Ours Tetra-NeRF

Mesh Storage Size 248.88 KB 1.25 MB 677.20 KB 110.85 MB
Stage 1 Memory 5.34 GB 18.39 GB 7.64 GB 17.75 GBStage 2 Memory 2.70 GB 6.06 GB

Single-stage Memory 9.79 GB - 12.01 GB -

in performance. We generate accumulation images that represent
the cumulative weighting of sampled points along a light ray’s
path. Each pixel in these maps is assigned a float value between
0 and 1, which reflects the extent of light interaction along the
ray’s path. While Tetra-NeRF suffers from ill-shaped tetrahedra
within the tetrahedral mesh, frequently leading to artifacts in its
accumulation maps, our method exhibits fewer artifacts as shown
in Fig. 6. This suggests that our method avoids these mesh-related
issues and achieves a more precise prediction and depiction of the
densities within the scene.

4.3 Deformation
4.3.1 Physically-based Simulation. The coarse tetrahedral mesh
serves as the geometric proxy for the simulation, offering a balance
between computational efficiency and the ability to accurately rep-
resent complex deformations. The choice of a coarse mesh aids in
reducing computational overhead while retaining sufficient detail
to effectively capture the dynamics of the system. Upon establishing
the tetrahedral mesh, we configure it as a mass-spring system. Each
vertex of the mesh is treated as a mass point, with edges acting as

Figure 6: Predicted Accumulation Map Comparisons on the
Synthetic NeRF Dataset [26] and the Tanks and Temples
Dataset [15].

springs that connect these mass points. To simulate the physics of
our mass-spring system, we implement XPBD [25] using the Taichi
programming language [10]. Particularly, we enforce constraints to
maintain the invariance of spring length and tetrahedral volume.
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Figure 7: Rendering Results of Simulation

Fig. 7 displays the rendering results of an object deformed through
user manipulation. The red spheres in the image represent the tetra-
hedral vertices dragged by the user’s mouse. It is evident from the
figure that our method maintains high-quality and photorealistic
rendering even when the object undergoes deformation.

4.3.2 Rigged Animation. We first export the coarse tetrahedral
mesh generated by ourmodel into a format compatible with Blender.
Utilizing Blender’s robust rigging system, we attach a skeletal struc-
ture to the imported mesh. The process involves placing bones
strategically within the mesh and ensuring that the weights as-
signed to each vertex were optimized for realistic deformation.

view 1 view 2 view 3armature

Figure 8: Rendering Results of Rigged Animation

The rendering results of the rigged animations are presented in
Fig. 8. Each row in the figure displays the armature along with
rendering results from three different viewpoints. Our method
successfully supports animations driven by skeletal structures, and
under the designed poses, the rendering remains photorealistic.

Despite the complex deformations involved in the rigged ani-
mations, our model successfully maintains high-quality rendering,
showcasing its robustness in handling dynamic changes.

4.4 Ablation Study
4.4.1 Number of Subdivision Levels. In our multi-resolution tetra-
hedral representation, the level of subdivision for the tetrahedra

is adjustable. We investigate the variations in the model’s PSNR
on the test set under different numbers of subdivision levels, as
illustrated in Fig. 9. As expected, there is an improvement in perfor-
mance with an increase in the number of levels. This demonstrates
the efficacy of our subdivision strategy.
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Figure 9: Ablation Study of Number of Levels

4.4.2 Necessity of Two-stage Training. To validate the effectiveness
of our two-stage training strategy, we compare its rendering per-
formance on the Tanks and Temples dataset [15] against that of a
single-stage training approach. The single-stage training refers to
direct model training using a full tetrahedral grid, instead of the
process of generating a coarse tetrahedral mesh.

Table 3: Quantitative Comparison between Single-stage
Training and Two-stage Training.

PSNR↑ SSIM↑ LPIPS ↓
Singe Stage 28.01 0.887 0.155
Two Stages 29.09 0.903 0.124

We compare the average performance across themetrics of PSNR,
SSIM, and LPIPS for scenes, as detailed in Table 3, where the two-
stage training strategy exhibits a clear numerical advantage. This
substantiates the necessity of employing a two-stage training strat-
egy.

5 Conclusion
In this work, our DeformRF successfully integrates the manip-
ulability of tetrahedral meshes with the high-quality rendering
capabilities of feature grid representations. We have introduced
the concept of recursively subdivided tetrahedra, which enables
multi-resolution feature encoding by implicitly generating detailed
meshes without the need to store each subdivision. By innova-
tively employing iterative computation of barycentric coordinates,
we managed to maintain computational efficiency while dealing
with higher mesh resolutions. Our comprehensive evaluations on
both synthetic and real-captured datasets demonstrate the effective-
ness of our method in novel view synthesis and deformation tasks.
DeformRF advances the capabilities of neural radiance fields by en-
abling object-level deformations and animations while maintaining
photorealistic rendering quality.
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