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ABSTRACT

Treatment effect estimation is crucial for making reliable decisions and avoid-
ing spurious correlations. However, estimating causal effects is harder in limited
unbalanced observations, particularly in decision-making systems with multiple
causes like healthcare, and politics. In this paper, we aim to enhance the esti-
mation of the multi-cause conditional treatment effect (M-CATE) by augmenting
limimted observational data with interventional data to alleviate the data unbalanc-
ing. One challenge is that the distribution of interventional data may not be close
to the real data. We leverage the causal graph to consider the relationships among
causes to solve this. Another challenge is that general identification conditions do
not satisfy the realization of intervention. Thereby we give milder partial-cause
conditions for identification to construct a Partial Cause Intervention (PCI) algo-
rithm for M-CATE estimation. Specifically, we first intervene in part of the causes
once at a time through causal regression which means only modeling the predicted
variable using its parent variables, and then we combine the limited observational
data with all the interventional data for M-CATE estimation. To support our ap-
proach, we prove that the estimation error can be upper bound by the empirical
error and the distributional shift among treatments. The experimental results in
simulations and real-world data applications validate our approach and theoretical
findings.

1 INTRODUCTION

In variants of decision-making tasks, such as healthcare, political management, and IT industry
decisions, the treatment effect estimation is crucial to make explainable and reliable decisions by
avoiding spurious correlations (Dahabreh et al., 2016; Li et al., 2015; Yu et al., 2022). Usually,
feasible actions/treatments in complex decision-making systems are multi-dimensional, outcome
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has multiple causes which are related. For example, a researcher may be interested in ”If some
drugs mutually relieved the patient’s symptoms?” Estimating the conditional average multi-cause
effect from limited observational data can help answer questions and make sound decisions. To ease
the presentation, we call the traditional treatment effect estimation with single-cause “single-cause
effect estimation.” In Figure 1 we provide causal graphs under single-cause and multi-cause settings.
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Figure 1: Example for causal graphs in single-cause and multi-cause treatment effect estimation problem. In
the single-cause problem, only one cause is considered to affect the outcome and the causal relationships are
constructed as triangles: covariates → cause, covariates → outcome, and cause → outcome. In multi-cause
problem, outcome Y is influenced by covariates X1, . . . , XM and multiple causes A1, . . . , AK . Apart from
being affected by covariates, causes are also affected by part of these causes.

In recent years, with the success of deep neural networks (DNN) in important AI tasks like image
recognition, machine translation, and speech generation (Li, 2022; Ranathunga et al., 2021; Li et al.,
2022), researchers are investigating how to leverage the expressiveness of DNN to enhance the
accuracy of treatment effect estimation. However, the limited observational data collected in the
past decision-making systems are unbalanced that the covariates distribution is different in treat
group and control group.

In the single-cause setting, the problem of unbalanced observations has been improved in many ways
(Alaa and van der Schaar, 2017; Künzel et al., 2019; Shalit et al., 2017a; Huling and Mak, 2020;
Chen et al., 2022; Wager and Athey, 2018; Lopez and Gutman, 2017). As the number of causes
increases, some treatments may be observed only a few times and even not be observed from limited
observational samples thus violating the positivity assumption in (Rubin, 2005). The multi-cause
setting suffers from more complex confounding issues and more severe data unbalancing issues
than single-cause. In Figure 1, if causes are binary variables, there will be two possible treatments
in a single-cause setting, but 2K treatments in the K-cause setting. Covariates balance also becomes
harder to achieve when samples are sparsely distributed across the treatment groups. Generally
in the multi-cause problems, each cause may have different parent covariates and multiple causes
will exist causal relationships that affect the distribution of the treatment assignment and potential
outcomes. Variational Sample Re-weighting (VSR) (Zou et al., 2020) and Deconfounder (Wang and
Blei, 2019) followed this type of causal graph to estimate CATE and derived representation learning
among causes. They assumed that the propensity score (PS) is determined by low-dimensional
latent variables Z, where Z are generated by initial covariates X . Qian et al. (2021) recognized the
problem that some treatment groups may have no individuals and also found the traditional triangle
causal graph (X → A, X → Y and A → Y ) ignored the influences among the multiple causes.
They developed single-cause perturbation (SCP) to augment datasets based on the causal order of the
causes but they confused and missed some relationships among covariates, causes, and outcomes.

In this paper, we aim to improve the multi-cause treatment effect estimation by augmenting limited
observational data with interventional data to alleviate the data unbalancing issue. When part of the
causes are intervened, they may affect both their descendant causes and outcomes. The augmented
data brings more combinations among causes than the limited observational data and if the aug-
mented data is by the true distribution derived from the causal graph, the enlarged dataset will be
more balanced. One difficulty arises when there is a potential disparity between the distribution of
interventional data and the actual data. To address this, we utilize the causal graph to examine the
connections among causes by causal regression which means only modeling the predicted variable
using its parent variables. First of all, we prove that the multi-cause treatment effect can be identi-
fied under “the milder partial-cause conditions” in Proposition 1 and 2. Then, we propose the Partial
Cause Intervention (PCI) algorithm Algorithm 1) and we assume there exists a pre-discovered causal
graph 1. For theoretical support of our approach, we prove the upper bound of outcome and causal

1There are variants of methods to discover the causal graph (Spirtes and Zhang, 2016; Zeng et al., 2022)
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effect estimation error in Theorem 1. We are the first to prove that the estimation error can be upper
bounded by the empirical error and the distributional shift (among treatments) over the augmented
data. Finally, we conduct experiments on medical and political domains to validate our method.

2 PARTIAL-CAUSE INTERVENTION AND IDENTIFICATION

We focus on M-CATE estimation with K binary causes. The causes A = (A1, . . . , AK) ∈ A be
a multi-dimansional random variable with sample space Ω = {0, 1}K , where Ak is the kth cause.
X ∈ X ⊂ Rd are pre-treatment covariates which are not affected by causes and Y ∈ R are
observed outcomes affected by parts of pre-treatment covariates and all causes. The observational
dataset D0 = {xi, yi,ai}i∈[N ] with N independent samples. We assume the causal relationship
between these variables is known. If not, causal recovery methods can be employed to guarantee the
true graph is contained in the estimated graph. In the following, we give assumptions and conditions
for partial-cause identification as well as multi-cause potential outcomes identification under partial-
cause intervention.

Because of the weakness of the traditional graph setting, we consider a precise causal graph model by
the partial-cause intervention (PCI). PCI intervenes p causes among all K causes once at a time, so
there exist Cp

K combinations to intervene. We denote the sth combination of intervened partial-cause
as As,p = (As1 , . . . , Asp) , where s = 1, . . . , Cp

K and 1 ≤ s1 < · · · < sp ≤ K. The lower case
as,p is the value of the partial-cause As,p. Based on graph knowledge, we partition the rest of the
K − p causes A−s,−p into As,p’s causal descendants A↓

−s,−p and their non-descendants A↑
−s,−p.

We denote the cause in descendants A↓
−s,−p by Aj . Instead of fit A↓

−s,−p jointly, we separately
fit every cause Aj in A↓

−s,−p by all Ajs’ causal order using Aj’s parent variables PaX(Aj) and
PaA(Aj) where PaX(Aj) and PaA(Aj) means Aj’s parent covariates set and parent causes set.
Once we intervene in the partial-cause As,p, we want to estimate the potential outcome Y and the
elements in A↓

−s,−p with the non-descendant causes of As,p fixed.

For potential outcomes identification, we first make three standard assumptions on partial-cause
consistency, unconfoundedness, and positivity: (1) Partial-cause Consistency: ∀s ≤ Cp

K , ∀As,p ∈
{0, 1}p and ∀Aj ∈ A↓

−s,−p, if As,p = as,p, then Y (as,p) = Y and Aj(as,p) = Aj ; (2)
Partial-cause Unconfoundedness: A↓

−s,−p (as,p) ⊥⊥ As,p | PaX(A↓
−s,−p),A

↑
−s,−p and Y (as,p) ⊥

⊥ As,p|PaX(Y ),A↑
−s,−p,A

↓
−s,−p (as,p), ∀as,p ∈ {0, 1}p,∀s ≤ Cp

K ; (3) Partial-cause Positiv-
ity: P(As,p = as,p|PaX(As,p),A

↑
s,p) > 0, ∀as,p ∈ {0, 1}p, if P(PaX(As,p)) ≥ 0. And

we assume outcomes and treatments model to be: Y = g1(PaX(Y ),A) + ε, and Ak ∼
B[g2(PaX(Ak), PaA(Ak)) + ϵk] where g1 and g2 are unknown functions, ε and ϵ are noises,
and B[]̇ denotes Bernoulli distribution.

Under these assumptions, in Proposition 1, we prove that the descendant causes and partial-cause
potential outcomes affected by the intervened partial-cause can be identified separately from obser-
vational data, precisely, from their parent variables based on the causal graph.
Proposition 1. Under partial-cause assumptions (1’)-(3’), we can identify the Y (as,p) from obser-
vational data as: ∀s ≤ Cp

K ,∀as,p ∈ {0, 1}p,

P
(
Y (as,p) ,A

↓
−s,−p(as,p) | X,A↑

−s,−p

)
=P

(
A↓

−s,−p | PaX(A↓
−s,−p),A

↑
−s,−p,As,p = as,p

)
× P

(
Y | PaX(Y ),A↑

−s,−p,A
↓
−s,−p,As,p = as,p

)
.

(1)

Proposition 2. Under the sequential ignorability assumption (Robins and Greenland, 1992), ∀s ≤
Cp

K ,
E (Y (a) | X) = E (Y (as,p) | PaX(Y ),A−s,−p (as,p) = a−s,−p) . (2)

After the intervention, we enrich the causes that individuals received. Also, the partial-cause pos-
itivity must be satisfied within the enlarged datasets for identification. The partial and multi-cause
potential outcomes are equal in expectation under appropriate conditioning. With Proposition 2,
we can augment the initial dataset by estimating the partial-cause potential outcomes on the r.h.s
of equation A.3 and pooling them into one enlarged dataset to estimate the multi-cause potential
outcomes on the l.h.s. When estimating the r.h.s of equation 2, the partial-cause potential outcomes
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are estimated by parent variables based on the causal graph. The increased sample size mitigates the
data scarcity issue and allows the estimator to generalize better.

3 INTERVENTION ON PARTIAL CAUSES FOR M-CATE ESTIMATION

3.1 THE ALGORITHM

To balance the distribution shift, we hope to enlarge the limited observations by intervention. Inter-
vention requires us to specify which cause(s) need to be intervened and how to intervene it/them.
Thus we make our approach into three steps and the algorithm is shown in Appendix A.1.

Step One: train causal models Based on causal regression idea that we estimate a variable only
using its parents regardless of other variables, for p causes, we train models for As,p’s descendant
causes and potential outcomes Y (as,p) on the initial observational data D0, where as,p ∈ {0, 1}p.
For each model, we only input parent variables of the output variable to train 2:

Ŷ (as,p) = fY (PaX(Y ),A), Â↓
s,p = fA↓

s,p
(PaX(A↓

s,p), PaA(A↓
s,p)). (3)

Step Two: intervene p causes For intervened causes As,p, we specify A↓
s,p’s parent vari-

ables and perturb causes As,p by setting As,p = 1 − as,p, their opposite values, where 1
indicates vectors of length p whose elements are all equal to 1. Then we obtain the poten-
tial descendant causes and potential outcomes from the estimated models in step one: Âj =

fAj (PaX(Aj), PaA−s,−p(Aj),As,p = 1 − as,p), Ŷ (1 − as,p) = fY (PaX(Y ),A↑
−s,−p,As,p =

1−as,p, Â
↓
−s,−p), for Aj ∈ A↓

−s,−p. Finally, we obtain Cp
K new dataset D1, . . . ,DCp

K
where each

interventional dataset contains: (1) (unchanged) X , As,p’s non-descendant causes; (2) (changed)
As,p = 1− as,p, As,p’s potential descendant causes and potential outcomes Y (1− as,p).

Step Three: estimate potential outcome on the augmented dataset. After data augmentation in
step two, we can merge observational data D0 and interventional datasets D1, . . . ,DCp

K
to train final

outcome model for potential outcome prediction.

3.2 BOUNDS FOR ESTIMATING POTENTIAL OUTCOMES AND MULTI-CAUSE CATE

With the observational data, we hope to learn a hypothesis fa : X → R which predicts the outcome
based on the covariates and multiple causes. To bound the risk of fa on the whole population under
multi-cause setting, denoted as R (fa), we give Theorem 1 as follows and the details of Theorem 1
are shown in appendix.
Theorem 1. Assume that weak unconfoundedness (Assumption (2’) holds w.r.t X . Given samples
(x1,a1, y1), . . . , (xn,an, yn)

i.i.d.∼ p(X,A, Y ) with empirical measure p̂n, let fa(x) ∈ H be a hy-
pothesis of EY (a)|X [Y (a)|X = x]. With probability at least 1− 2δ,

R (fa) ≤ A(fa) + Ba + σ2
Y (a), (4)

where A(fa) contains the empirical factual risk on the treatment a and the gap between population
and empirical factual risk, Ba contains the empirical distribution distance and the gap between its
population and empirical form, σ2

Y (a) is the expected variance in Y (a).

4 EXPERIMENTS

4.1 SIMULATION STUDY

Data setting and Benchmarks Each dataset contains 500 samples for training, 200 samples for
validation, and 500 samples for testing. The model that data generation follows is shown in ap-

2Some work (VanderWeele, 2019) highlighted that when using instrumental variables can worsen outcome
prediction because instrumental variables have no edges to outcomes. For treatment models, adjustment vari-
ables on outcome prediction are unnecessary to remove bias but can reduce variance in treatment effect estima-
tion (Sauer et al., 2013; Kuang et al., 2019)
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pendix. We evaluate the models using RMSE on all potential outcomes and PEHE. We use Wasser-
stein distance to measure the balance of covariates and achieving smaller distance is more balanced.
We included seven benchmarks to compare with our method. As a baseline, we used covariates
adjustment with feed-forward neural networks (NN). We compared with VSR and Deconfounder
(DEC) (Zou et al., 2020; Wang and Blei, 2019). We also included Counterfactual Regression (CFR)
and DR-CFR (Shalit et al., 2017b; Hassanpour and Greiner, 2020), the propensity score (NN-IPW)
and overlap score (OP) methods from the ATE literature (Hirano et al., 2003; Li and Li, 2019) as
well as SCP(Single-cause-perturbation)(Qian et al., 2021) which also used data augmentation.

Table 1: Prediction error on treatment effect and data balancing on simulation data
PEHE (std)

Method K = 2 5 7
NN 0.18 (.006) 0.29 (.016) 6.48 (.056)

NN IPW 0.20 (.004) 0.37 (.021) 7.88 (.210)
OP 0.20 (.005) 0.43 (.020) 15.1 (.500)

VSR 0.25 (.037) 0.28 (.016) 8.15 (.068)
DEC 0.28 (.026) 0.25 (.012) 4.99 (.033)
CFR 0.15 (.006) 0.51 (.023) 14.5 (.523)

DR-CFR 0.18 (.008) 0.77 (.034) 14.3 (.516)
SCP 0.12 (.008) 0.15 (.008) 4.77 (.062)

PCI (Ours) 0.06 (.002) 0.10 (.015) 1.06 (.024)
Wasserstein distance (IPML)

Dataset K = 2 5 7
Dataset0 13.5 177 1947

SCP 6.26 145 1871
PCI (Ours) 5.96 137 1810

Results Based on the validation error, we choose the intervened partial-cause number to be p =
1 when cause number K = 2, 3, 7 and p = 2 when K = 5. As shown in Table 1, Our PCI
method gains the smallest RMSE and PEHE and consistently outperforms the benchmarks across
the different number of causes K with covariate dimensionality d = 4×K. The performance gain
becomes more pronounced as the number of causes increases, e.g. K = 7. Based on Theorem 1,
we compare the covariate distribution shift among different treatment groups in the training dataset
as Wasserstein distance. Our method has the smallest Wasserstein distance thus it achieves more
balance in covariate distribution. We also conduct more experiments in A.3 to explore why our
method has superior achievement than SCP.

4.2 EXPERIMENT ON ADNI DATASET

ADNI Dataset Our analysis is based on data from the Alzheimer’s Disease Neuroimaging Ini-
tiative, including 2129 subjects with 67% of them used as the training size. The outcome is the
Mini-Mental State Examination score and confounding variables include APOE4, age, sex, marital
status, years of education, and years of retirement. Treatments measure the atrophy of three brain
regions. We assume that the outcomes Y follow the model (A.13) and learn the causal DAG among
covariates, causes, and outcomes (Figure 6).

Results The causal graph in Figure 6 shows that shrinkage of the three regions has a significant
effect on the cognitive score, which coincides with the hypothesis that the atrophy of those regions is
among the most significant biomarkers of Alzheimer’s disease. In Table 5, we compare the proposed
and other methods in two settings: semi-synthetic data (generate outcomes Y based on (8)) and real
data (real outcomes Y ). In the semi-synthetic and real-world setting, our method gains the smallest
RMSE on all potential outcome predictions and the lowest PEHE. We also conduct experiment on
Vdem dataset to validate our approach in A.5.
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A APPENDIX

A.1 ALGORITHM DETAILS FOR PARTIAL CAUSE INTERVENTION (PCI)

In the main article, we summarize our approach to a simplified algorithm. Here we show the details
of the algorithm.

Algorithm 1 Partial Cause Intervention (PCI)
Input:

Observational dataset D0 = {xi, yi,ai}i∈[N0]; Causal regression algorithm f ; Tuning interval
for the number of intervened causes p;

1: for each p ∈ 1, . . . ,M(M ≤ K) do
2: for each s ∈ 1, . . . , Cp

K do
3: Fit f̂Aj(as,p)(·) to estimate Aj(as,p) where Aj ∈ A↓

−s,−p upon the inputs Pa(Aj) using
the observed data D0;

4: Fit f̂Y (as,p)(·) to estimate Y (as,p) upon the inputs Pa(Y ) using the observed data D0;
5: Initialize sth interventional dataset; Ds = ∅,
6: for each i ∈ 1, . . . , N0 do
7: Intervene the p causes: a′

i,s,p = 1− ai,s,p;
8: Set a↑

i,−s,−p(a
′
i,s,p) = a↑

i,−s,−p;
9: Set ai,j(a′

i,s,p) = f̂Aj(as,p)(Pa(Ai,j)),
where Aj ∈ A↓

−s,−p, Pa(Aj) may contain some confounders and causes which are
parents of aj ;

10: Set ỹi,s,p := y(a′
i,s,p) = f̂Y (as,p)(Pa(Yi)),

where Pa(Yi) may contain some of confounders Xi, a
↑
i,−s,−p, perturbed cause ai,s,p

and ai,j(a
′
i,s,p) which are parents of outcome Yi;

11: Combine the causes ãi,s,p := (a′
i,s,p,ai,−s,−p(a

′
i,s,p));

12: Add new data point (xi, ỹi,s,p, ãi,s,p) to Ds;
13: end for
14: end for
15: Obtain the augmented training data DTr = Ds, s ∈ {0, . . . ,K};
16: Train fp,θ to estimate E[Y |X,A] upon Pa(Y ) using DTr;
17: end for
18: Compare the validation error across different intervened partial-cause number p, choose the best

p∗;
Output:

A trained multi-cause potential outcomes predictor fp∗,θ;

X1 X2 X3 X5 X4

A1 A2 A3

Y

Figure 2: Example for causal graphs in multi-cause treatment effect estimation problem.

To detail our estimation procedure, we demonstrate an example with p = 1 shown in Figure 2. When
intervening one cause A1, we need to estimate its descendant causes A2, A3, and outcome Y ; when
intervening A2, we need to estimate A3 and Y ; when intervening A3, we need to estimate Y . We
take the intervention on A1 as an example to show how we estimate multi-cause CATE with causal
structure knowledge: (1) train three models to fit A2, A3 and Y with their parent variables through
causal regression and we can use any regression algorithm for these three models; (2) intervene on
A1 by setting it equal to its opposite value 1 − ak, then predict A1’s descendant causes (A2 and
A3) and outcomes Y to obtain the interventional dataset D1; (3) Add the interventional dataset D1

to the observational dataset D0. After intervention on those three causes, we use the augmented

8



Published as a conference paper at ICLR 2024

datasets {D0, . . . ,D3} to fit a potential outcome model with the input {X1, X4, A1, A2, A3} and
then estimate the multi-cause CATE.

A.2 THEORETICAL RESULTS

In this section, we detail the proofs of Proposition 1, Proposition 2 and Theorem 1.

A.2.1 PROOF OF PROPOSITION 1 AND 2

Proposition 1. Under partial-cause assumptions (1’)-(3’), we can identify the Y (as,p) from obser-
vational data as: ∀s ≤ Cp

K ,∀as,p ∈ {0, 1}p,

P
(
Y (as,p) ,A

↓
−s,−p(as,p) | X,A↑

−s,−p

)
=P

(
A↓

−s,−p | PaX(A↓
−s,−p),A

↑
−s,−p,As,p = as,p

)
× P

(
Y | PaX(Y ),A↑

−s,−p,A
↓
−s,−p,As,p = as,p

)
.

(A.1)

Equation A.1 decomposes the joint estimation of outcomes and descendant causes into two separate
estimation tasks. When we intervene the partial-cause As,p, their descendant causes and outcomes
would be affected accordingly. The l.h.s of equation A.1 jointly estimate outcomes and descendant
causes On the r.h.s of equation A.1, we separately estimate descendant causes of the partial-cause by
their parent nodes: PaX(A↓

−s,−p),A
↑
−s,−p,As,p, and also estimate outcomes Y by parent nodes:

PaX(Y ),A↑
−s,−p,A

↓
−s,−p,As,p. After the intervention, we can identify the affected variables from

observational data and intervene partial-cause.

Proof of Proposition 1. Note that the partial-cause unconfoundedness assumption implies the fol-
lowing two equations by the properties of conditional independence,

A↓
−s,−p (as,p) ⊥⊥ As,p | PaX(A↓

−s,−p),A
↑
−s,−p,

Y (as,p) ⊥⊥ As,p | PaX(Y ),A↑
−s,−p,A

↓
−s,−p (as,p) .

P
(
Y (as,p) ,A

↓
−s,−p(as,p) | X,A↑

−s,−p

)
can be decomposed into two terms by Bayes rule:

P
(
Y (as,p) ,A

↓
−s,−p(as,p) | X,A↑

−s,−p

)
=P
(
A↓

−s,−p (as,p) | X,A↑
−s,−p

)
· P
(
Y (as,p) | X,A↑

−s,−p,A
↓
−s,−p (as,p)

)
.

(A.2)

Because partial-cause positivity P
(
As,p | PaX(A↓

−s,−p),A
↑
−s,−p

)
> 0, we can seperately treat

A↓
−s,−p and Y as outcome. Invoking the standard identification theory, we obtain

P
(
A↓

−s,−p (as,p) | X,A↑
−s,−p

)
= P

(
A↓

−s,−p (as,p) | PaX(A↓
−s,−p),A

↑
−s,−p,As,p

)
,

P
(
Y (as,p) | X,A↑

−s,−p,A
↓
−s,−p (as,p)

)
= P

(
Y (as,p) | PaX(Y ),A↑

−s,−p,A
↓
−s,−p (as,p) ,As,p

)
.

The consistency assumption states that when As,p = as,p,A
↓
−s,−p (as,p) = A↓

−s,−p (As,p) =

A↓
−s,−p. Hence, we can replace A↓

−s,−p (as,p) on the right hand side with A↓
−s,−p which concludes

the proof.

Proposition 2. Under the sequential ignorability assumption (Robins and Greenland, 1992), ∀s ≤
Cp

K ,
E (Y (a) | X)

=E (Y (as,p) | PaX(Y ),A−s,−p (as,p) = a−s,−p) .
(A.3)

9
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Proof of Proposition 2. We start by recognizing the right hand side of the Equation (4) follows

P (Y (as,p) | PaX(Y ),A−s,−p (as,p) = a−s,−p)

= P (Y (as,p) | PaX(Y ) ∩ PaX(A),A−s,−p (as,p) = a−s,−p)

= P (Y (as,p,A−s,−p (as,p)) | PaX(Y ) ∩ PaX(A),A−s,−p (as,p) = a−s,−p)

= P (Y (as,p,a−s,−p) | PaX(Y ) ∩ PaX(A),A−s,−p (as,p) = a−s,−p) ,

(A.4)

∀as,p ∈ {0, 1}p and a−s,−p ∈ {0, 1}K−p. Furthermore, we have for all a−s,−p ∈ {0, 1}K−p

P (Y (as,p,a−s,−p) | PaX(Y ) ∩ PaX(A),A−s,−p (as,p) = a−s,−p) = P (Y (as,p,a−s,−p) | X) .

Combining the previous two equations, we immediately see that

P (Y (as,p,a−s,−p) | X) = P (Y (as,p) | PaX(Y ),A−s,−p (as,p) = a−s,−p) ,

∀as,p ∈ {0, 1}p and a−s,−p ∈ {0, 1}K−p which concludes the proof.

A.2.2 DETAILS AND PROOF OF THEOREM 1

In this section, we give the complete formulation of Theorem 1. Under multi-cause setting that
a,a′ ∈ {0, 1}K , the multi-cause population risk R would be decomposed similarly:

R (fa) = πa Ra(fa)︸ ︷︷ ︸
Observable

+
∑

a′∈{0,1}K

a′ ̸=a

πa′ Ra′ (fa)︸ ︷︷ ︸
Unobserved

, (A.5)

where the factual risk Ra(fa) means the expected error for the population if all the individuals were
assigned to the treatment a, and the counterfactual risk Ra′(fa) means the risk of the individuals
with treatment a which have not received the treatment a and πa = p(A = a).

To bound the risk of fa on the whole population, it is sufficient for us to bound the counterfactual
risk Ra′ (fa) and estimate Ra(fa) empirically. pa(x) = p(X = x | A = a) is covariates
distribution with treatment a, also denoted as pa. The empirical weighted factual risk is defined as
R̂a (fa) := 1

na

∑
i:ai=a L (fa (xi) , yi) where na is the number of individuals with treatment a.

We give Theorem 1 to bound the population risk.

Theorem 1. Assume that weak unconfoundedness (Assumption (2’) holds w.r.t X . Given sam-
ples (x1,a1, y1), . . . , (xn,an, yn)

i.i.d.∼ p(X,A, Y ) with empirical measure p̂n, and na :=∑n
i=1 1(ai = a) for a ∈ {0, 1}K . Let fa(x) ∈ H be a hypothesis of EY (a)|X [Y (a) | X = x] and

ℓfa(x) := EY |X [L (fa(x), Y (a)) | X = x] where L (y, y′) = (y − y′)2. With probability at least
1− 2δ,

R (fa) ≤ A(fa) + Ba + σ2
Y (a), (A.6)

where A(fa) contains the empirical factual risk and the gap between population and empirical
factual risk, Ba contains the empirical distribution distance and the gap between its population and
empirical form, σ2

Y (a) is the expected variance in Y (a).

In equation (A.6) of Theorem 1, A(fa) = 1
na0+na+

(∑na0
i:ai=a L (fa (xi) , yi) +∑na0+na+

i>na0
ai=a

L (fa (xi) , ỹi) +
∑na0+na+

i>na0
ai=a L (ỹi, yi)

)
+ 1

(na0
+na+

)3/8
Vpa (ℓfa) CH

na0
+na+

,δ ,

where Vpa (ℓfa) = max

(√
Epa

[
ℓ2fa

]
,

√
Ep̂a

[
ℓ2fa

])
, CH

n,δ is a function of the pseudo-dimension

of H and ỹi denotes the augmented outcomes. On the r.h.s of A(fa), (1) the first term is prediction
error under observervational data D0 where na0

is the number of individuals with treatment a
which have received the treatment a in dataset D0; (2) prediction error under augmented data
where na+

is the augmented number of individuals with treatments a which have not received
the treatment a in D0; (3) the third term the loss between yi and ỹi is the augmented error which
measures the distance between true potential outcomes and augmented potential outcomes.
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We denote Ba = B
∑

a′∈{0,1}K

a′ ̸=a

πa′ IPML (p̂a, p̂a′)+
∑

a′∈{0,1}K

a′ ̸=a

πa′DL
δ

(
1√

na0
+na+

+ 1√
na′

0
+na′

+

)
,

where πa = P(A = a), DL
δ is a function of the kernel norm of L (see lemma 3). Assume that

there exists a constant B > 0 such that ℓfa(x)/B ∈ L, where L is a reproducing kernel
Hilbert space of a kernel k such that k(x,x) < ∞ . IPM is the integral probability metric
that is used to measure the distance between two distributions. Empirical IPM estimation is
a measure for empirical covariates distributions under different treatment groups p̂a, and its
population form is pa(x) = P(X = x | A = a). When L is the family of functions with
Lipschitz constant at most 1 and IPML the Wasserstein distance. The term IPML (p̂a, p̂a′)
is used to bound the counterfactual risk jointly with the factual risk. When the conditional
probability pa(x) is modeled by the causal graph, P(X|A) = P(X,A)/

∫
X P(X,A)dX where

P(X,A) = P(X)
∏K

k=1 P(Ak | parents(Ak)) based on Local Markov assumption (A variable is
independent of its nondescendants given its parents (only the parents)). The last term at r.h.s of Ba

demonstrates the gap between population and empirical distribution distance. The gap will decline
as the sample size increases. And the larger the augmented samples, the lower the gap.

Before the proof of Theorem 1, we illustrate some definitions used in Theorem 1. For-
mally, the expected pointwise loss of a hypothesis fa at a point x is defined as ℓfa(x) :=
EY (a)|X [L(Y (a), fa(x)) | X = x], where L(·, ·) is the error function (e.g. square error).

The marginal risk of a hypothsis fa w.r.t. a population p(X) is defined as R(fa) := EX [ℓfa(X)].
R(fa) means the expected error for the population if all the individuals were assigned to the treat-
ment a. R(fa) is the combination of the factual risk and counterfactual risk because not all the indi-
viduals received the same treatment a. The factual risk of fa w.r.t. treatment group p(X | A = a) is
Ra(fa) := EX|A[ℓfa(X) | A = a], means the risk of the individuals with treatment a which have
received the treatment a. The counterfactual risk is Ra′(fa) := EX|A[ℓfa(X) | A = a′], a′ ̸= a

and a′ ∈ {0, 1}K , means the risk of the individuals with treatment a which have not received the
treatment a. Therefore, our target is minimizing R(fa).

The factual risk Ra(fa) is identifiable under consistency, as

ℓfa(X) = EY (a)|X [L (fa(X), Y (a)) | X] = EY |X,A [L (fa(X), Y ) | X,A = a] .

In multi-cause problem, multi-cause conditional average treatment effect τ(a,a′,x) =
E [Y (a)− Y (a′) | X = x] was focused on. Using Theorem 1, we can bound the population risk of
treatment effect R(τ̂a,a′) that R(τ̂a,a′) ≤ 2(R(fa) + R(fa′)) − 4σ2

Ya,a′ where τ̂a,a′ = fa − fa′ and
σ2
Ya,a′ := max(σ2

Y (a), σ
2
Y (a′)). Based on Theorem 1, the population risk of fa is influenced by both

the empirical risks and the IPM (integral probability metric distance), which quantifies the shift in
distribution between different treatment groups. Moreover, increasing the sample size can alleviate
the upper bound, thereby making data augmentation a viable approach to mitigating the population
risk. Additionally, a smaller validation error for the training model (referred to as augmented error)
leads to a lower bound, and the number of intervened partial-cause p impacts the validation error as
a larger p may increase the augmented error. Consequently, the intervened cause number p serves as
a tuning parameter, necessitating the selection of an appropriate value to enhance performance.

Proof of Theorem 1. For a hypothesis f with expected point-wise loss ℓf (x) such that ℓf/ ∥ℓf∥L ∈
L with a ∈ {0, 1}K ,

Ra′(f)−Ra(f) ≤ ∥ℓf∥L IPML (pa′ , pa) , (A.7)
where pa(x) = p(X = x | A = a), IPM is the integral probability metric distance between pa
and pa′ w.r.t. L defined as follows: IPML(p, q) := supℓ∈L |Ep[ℓ(x)]− Eq[ℓ(x)]|. L ⊂ {X → R+}
is a space of pointwise loss functions with respect to the covariates X endowed with a norm ∥ · ∥L.
Here we assume that the expected conditional loss ℓfa for each potential outcome belongs to such a
family, i.e. that ℓfa ∈ L.

Based on equation A.7, we can derive the bound of population risk R(fa) as:

R (fa) ≤ Ra (fa) +
∑

a′∈{0,1}K

a′ ̸=a

πa′ ∥ℓfa∥L IPML (pa′ , pa) . (A.8)
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Particular choices of L make the IPM equivalent to different well-know distances on distributions.
With L the family of functions in the norm-1 ball in a reproducing kernel Hilbert space (RKHS),
IPML is the Maximum Mean Discrepancy (MMD); When L is the family of functions with Lips-
chitz constant at most 1, we obtain the Wasserstein distance.

Next we aim to bound the population risk by the difference between empirical estimates of Ra(fa)
and IPML(pa, pa′) and their expected counterparts. We modify the results of Johansson et al. (2020)
to give bounds on multi-cause setting. Let ℓf = EY |X [L(f(x), Y ) | X = x] be the expectation of
the squared loss L(y, y′) = (y−y′)2 of a hypothesis f ∈ H ⊂ {f ′ : X → R}, let dP = Pdim({ℓf :
f ∈ H}) where Pdim is the pseudo-dimension of H and let σ2

Y = EX,Y

[
L
(
Y,EY |X [Y | X]

)]
.

Given samples ((x1, y1), . . . , (xn, yn)) with empirical distribution p̂, with probability at least 1− δ,

Ra(fa) ≤ R̂a(fa) + Vpa,p̂a [lfa(x)]
CH
na

n
3/8
a

+ σ2
Ya

, (A.9)

where CH
na

= 25/4
(
dP log 2nae

dP
+ log 4

δ

)3/8
and Vpa,p̂a [lfa(x)] =

max

(√
EX

[
ℓ2fa(X)

]√
EX∼p̂a

[
ℓ2fa(X)

])
.

Equation A.9 allows us to separate the bias (the IPM-term) and variance. The efficiency with which
samples may be used to estimate IPML depends on the chosen function family L.

The distribution shift between population distribution and empirical distribution is proved as fol-
lows. Suppose k is a universal, measurable kernel such that supx∈X k(x,x) ≤ C ≤ ∞ and L the
reproducing kernel Hilbert space induced by k, with ν := supx∈X ,f∈L f(x) ≤ ∞. Then with p̂, q̂
the empirical distributions of p, q from m and n samples, and with probability at least 1− δ,

|IPML(p, q)− IPML(p̂, q̂)| ≤
√
18ν2 log

4

δ
C

(
1√
m

+
1√
n

)
. (A.10)

Also the augmented outcomes would bring bias that R̂a(fa) = 1
na

∑
ai=a L(fa(x), ỹi) +

1
na

∑
ai=a L(yi, ỹi) where ỹi means the augmented outcome.

R (fa) ≤Ra (fa) +
∑

a′∈{0,1}K

a′ ̸=a

πa′ ∥ℓfa∥L IPML (pa′ , pa)

≤R̂a(fa) + Vpa,p̂a [lfa(x)]
CH
na

n
3/8
a

+ σ2
Ya

+B
∑

a′∈{0,1}K

a′ ̸=a

πa′ IPML (p̂a, p̂a′) +
∑

a′∈{0,1}K

a′ ̸=a

πa′DL
δ

(
1√

na0 + na+

+
1√

na′
0
+ na′

+

)

≤ 1

na0
+ na+

 na0∑
i:ai=a

L (fa (xi) , yi) +

na0
+na+∑

i>na0
ai=a

L (fa (xi) , ỹi) +

na0
+na+∑

i>na0
ai=a

L (ỹi, yi)


+

1

(na0 + na+)
3/8

Vpa (ℓfa) CH
na0

+na+
,δ

+B
∑

a′∈{0,1}K

a′ ̸=a

πa′ IPML (p̂a, p̂a′) +
∑

a′∈{0,1}K

a′ ̸=a

πa′DL
δ

(
1√

na0
+ na+

+
1√

na′
0
+ na′

+

)

+ σ2
Y (a).

(A.11)
Then with all the equations in this proof, we derive the bound in Theorem 1.
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Figure 3: (a)Validation error for train causal models before data augmentation on simulation data.
(b) Augmented data points reduces prediction error. RMSE declines as more datasets Dk are added
for training. There are K = 7 causes in this simulation. (c) Prediction error of potential outcomes
(red line) and M-CATE (blue line) varies as intervened partial cause number p increases when all
cause number K = 5.

A.3 SUPPLEMENT FOR SIMULATION STUDY

Data setting Each dataset contains 500 samples for training, 200 samples for validation, and 500
samples for testing. The training sets and validation sets contain observations (xi, yi,ai) whereas
the testing set contains (xi, yi(a),∀a ∈ Ω. To generate an observation, we first sample dc covariates
independently or partly dependently based on the known simulated graphs: for some dc ≤ d, xidc

∼
N(0, 1) or xidc

=
∑dc

m=1 b
(x,dc)
m xim + eidc

. Then we obtain the causes aik,∀k ≤ K and the
outcome yi :

aik ∼ B

[
σ

(
d∑

m=1

b(a)m xim +

k−1∑
n=1

c(a)n ain + ϵik

)]
, (A.12)

yi =ϕ(

d∑
m=1

b(y)m xim +

K∑
n=1

c(y)n ain +

d∑
l=1

d∑
j=l

eljxilxij

+

K∑
r=1

K∑
s=l

qrsairais +

d∑
u=1

K∑
v=l

wuvxiuaiv + εi).

(A.13)

b, c, e, q, w are weights(only a fraction of them are non-zero) and superscripts (a) mean that the
variables work on the cause a. B[·] denotes a Bernoulli random variable, σ denotes the sigmoid
function, ϕ(·) is either identity or sigmoid function.

Other results We also compare the validation error before data augmentation to explore why our
method has superior achievement than SCP in Figure 3(a). As the number of causes increases,
the validation error is also growing. Our method’s validation error is smaller than SCP with a
different number of causes. In Figure 3(b), prediction error declines as the size of the augmented
dataset increases and our results reduce more significantly. To study how the intervened partial-cause
number p influences the prediction error, we plot the changes in Figure 3(c) when all causes number
K = 5. We find the prediction error first decreases as p increases and then becomes higher under
bigger p. Too big p is not better. Thus in experiments, p needs to be chosen based on the validation
set. Through Table 2 and Figure 3, we can verify that causal graph could strengthen the prediction
performance: (1) Under causal graph model, our method would have a more concrete model for
outcomes; (2) Obeying causal graph would attain more similar potential causes with initial dataset
and it will benefit for the outcome prediction because step one models are learned from initial data;
(3) Outcome distribution conditional on covariates and causes in our augmented data will be closer
to real data, thus final outcome model with enlarged data performs better. Furthermore, Figure 3(b)
demonstrates that the prediction error would reduce as the sample size enlarges.
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Table 2: Prediction error on potential outcomes (RMSE) and treatment effect (PEHE), and data
balancing (Wasserstein distance) on simulation data

RMSE (std)
Method K = 2 3 5 7

NN 0.352 (.012) 1.004 (.026) 1.943 (.089) 7.105 (.088)
NN IPW 0.324 (.010) 0.984 (.034) 2.381 (.140) 13.06 (.277)

OP 0.546 (.021) 1.423 (.041) 2.789 (.099) 8.811 (.237)
VSR 0.369 (.009) 0.902 (.026) 1.893 (.090) 9.243 (.137)
DEC 0.393 (.009) 0.703 (.017) 1.819 (.079) 6.505 (.050)
CFR 0.374 (.026) 2.162 (.090) 3.069 (.098) 176.9 (4.903)

DR-CFR 0.546 (.024) 2.892 (.089) 4.297 (.100) 160.1 (4.740)
SCP 0.223 (.010) 0.663 (.048) 1.033 (.070) 6.012 (.102)

PCI (Ours) 0.169 (.006) 0.559 (.044) 0.631 (.068) 1.056 (.024)
PEHE (std)

Method K = 2 3 5 7
NN 0.176 (.006) 0.277 (.015) 0.293 (.016) 6.477 (.056)

NN IPW 0.204 (.004) 0.215 (.008) 0.366 (.021) 7.878 (.210)
OP 0.199 (.005) 0.298 (.006) 0.430 (.020) 15.11 (.500)

VSR 0.245 (.037) 0.211 (.011) 0.283 (.016) 8.150 (.068)
DEC 0.278 (.026) 0.174 (.009) 0.250 (.012) 4.986 (.033)
CFR 0.154 (.006) 0.657 (.032) 0.509 (.023) 14.48 (.523)

DR-CFR 0.184 (.008) 0.580 (.019) 0.769 (.034) 14.31 (.516)
SCP 0.115 (.008) 0.156 (.010) 0.151 (.008) 4.774 (.062)

PCI (Ours) 0.063 (.002) 0.133 (.008) 0.102 (.015) 1.056 (.024)
Wasserstein distance (IPML)

Dataset K = 2 3 5 7
Dataset0 13.5 28.1 177 1947

SCP 6.26 17.6 145 1871
PCI (Ours) 5.96 17.5 137 1810

A.4 SIMULATION ON DOCUMENT RECOMMENDATION

Data setting We construct a simulation environment about document recommendation to mimic
the recommendation systems in the real world following the setting in VSR Zou et al. (2020). A
document Di is characterized by the topic ci and quality qi. Let X ∈ Rd be the preference variable
of users for different document topics, where d is the number of document topics. The recommend-
ing score of each document Di is calculated as the document quality plus the preference value of
the document topic, i.e. Scorei = xci + qi. The s documents with the highest score are selected
as recommended documents forming the treatment. The outcome is generated from a pre-defined
function, determined by both confounders x and treatments a:

y =

d∑
j=1

K∑
k=1

xjdj,kak + εy, (A.14)

where D = {dj,k}1≤j≤d,1≤k≤n is a pre-defined matrix, and εy is a normal noise.

In this simulation, we set the sample size n = 2000, the number of document topics d = 8, selected
documents s = 6, and the noise variable εy ∼ N

(
0, 0.012

)
.

Results Based on the validation error, we choose the intervened partial-cause number to be p = 2
when cause number K = 8, 9, 10. In Table 3, Our PCI method gains the smallest PEHE and
consistently outperforms the benchmarks across the different number of causes K. The performance
gain becomes more pronounced as the number of causes increases. Our method also derives the
smallest Wasserstein distance. In this simulation, we verified that the intervened number p influences
the treatment effect and outcome estimation, thus choosing the appropriate p is crucial.
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Table 3: Prediction error on treatment effect estimation (PEHE), and data balancing (Wasserstein
distance) on recommendation simulation

PEHE (std)
Method K = 8 9 10

NN 0.92 (.001) 1.01 (.001) 0.99 (.001)
NN IPW 0.58 (.001) 1.07 (.002) 1.05 (5e-4)

OP 0.51 (.001) 0.93 (.001) 0.40 (4e-4)
VSR 1.06 (.002) 1.24 (.002) 1.10 (.001)
DEC 1.47 (.002) 1.05 (.001) 1.33 (.001)
CFR 0.79 (.003) 1.05 (.002) 0.87 (.001)

DR-CFR 1.68 (.003) 2.01 (.003) 2.12 (.002)
SCP 0.56 (.001) 1.85 (.002) 1.91 (.004)

PCI (Ours) 0.48 (.001) 0.88 (.001) 0.27 (2e-4)
Wasserstein distance (IPML)

Dataset K = 8 9 10
Dataset0 12.6 42.6 61.6

SCP 12.5 40.9 59.7
PCI (Ours) 6.42 22.6 55.7

A1

A2 A3

A4 A5 A6

Figure 4: Causal graph of 6 causes in V-Dem dataset.

A.5 EXPERIMENT ON V-DEM DATASET

V-Dem Dataset Our second application focuses on the role of democratic political institutions in
reducing the likelihood of civil war onset. Democracy is a fundamental concept when modeling the
quality of governance, but drawing inferences about its effect represents a straightforward example
of the multi-cause setting. In particular, democracy cannot be measured as a single unambiguous
feature – instead, it is a confluence of many conceptually related by empirically distinct features
describing different aspects of a system of governance. The causal effect of democracy on outcomes
like conflict initiation is typically measured using a dimension reduction of the features represent-
ing the individual institutions. We refine features describing the system of governance present in a
country in the Varieties of Democracy Dataset (V-Dem) to measure the democratic political institu-
tions and finally concentrate on 6 causes and 27 covariates to quantify the effect of these political
institutions on civil war onset (binary outcome generated in semi-synthetic setting). These 6 causes
represent: (1) does the electoral principle of democracy achieve? (2) do the elected local and re-
gional governments operate without interference from unelected bodies? (3) are citizens able to
openly discuss political issues in private homes and in public spaces? (4) are laws transparently,
independently, predictably, impartially, and equally enforced? (5) does government respect press
and media freedom as well as the freedom of academic and cultural expression? (6) is civil society
robust? Covariates in the V-Dem dataset are relevant to rights and equality, democratic and clean
politics. The causal relationships among these causes are shown in a causal graph. In the semi-
synthetic experiment, we model the outcome to be linear with causes and covariates as equation
A.13.

Results Based on the validation error, we choose p = 1 in the linear outcomes setting and p = 2
in the non-linear setting. In Table 4, we compare the proposed and other methods under generated
outcomes Y . In semi-synthetic data, our method gains the smallest RMSE on all potential outcomes
prediction. Because we only have observational test data, we only compare the performance on the
observational outcome prediction and our method achieves the best accuracy in terms of RMSE.
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Table 4: Prediction error on treatment effect (PEHE) and potential outcomes (RMSE) under V-Dem
dataset

Method Linear outcomes Non-linear outcomes
PEHE (std) RMSE (std) PEHE (std) RMSE (std)

NN 0.692 (.006) 0.906 (.011) 0.024 (4e-5) 0.101 (.001)
NN IPW 0.841 (.006) 1.287 (.009) 0.042 (5e-5) 0.092 (2e-4)

OP 0.885 (.006) 0.930 (.008) 0.042 (7e-5) 0.155 (.001)
VSR 0.738 (.006) 0.816 (.006) 0.020 (3e-5) 0.083 (.001)
DEC 0.696 (.006) 0.793 (.007) 0.020 (5e-5) 0.086 (.001)
SCP 0.729 (.003) 0.782 (.003) 0.136 (.001) 0.233 (4e-4)

PCI (Ours) 0.649 (.004) 0.697 (.006) 0.013 (4e-5) 0.071 (.001)
Wasserstein Distance (IPML)

Method Linear outcomes Non-linear outcomes
dataset0 357.8 357.8

SCP 336.8 336.8
PCI (Ours) 326.2 330.7
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Figure 5: ADNI dataset in multi-cause setting: Histogram of individuals distribution

A.6 ADNI ANALYSIS

In AD fields, when choosing patients’ treatments, researchers need to estimate the influence of
brain atrophy on cognition based on the causal relationships among variables (Choo et al., 2010;
Gainotti et al., 2003; Schröder and Pantel, 2016). Cognition decline is one of the main symptoms of
Alzheimer’s Disease which is strongly associated with the atrophy of three brain regions (temporal
(A1), cingulate cortex (A2), and hippocampal regions (A3)). These K = 3 causes (three regions:
hippocampus, temporal and cingulate cortex) are valued as {0, 1} and form 8 treatments in 2129
individuals. The individuals with different treatments is unevenly distributed shown in Figure 2’s
histogram.

When learning the causal graph of ADNI data, we obey some rules based on medical knowledge
and common sense: (1) genes may have effects on individuals’ intelligence and Alzheimer’s Disease
(Reiman et al., 1998; Rohrer et al., 2010), (2) cingulate is associated with the atrophy of temporal
region (Iizuka and Kameyama, 2016) and (3) sex and age cannot be affected by the covariates in
ADNI data. Figure 6 is the learned causal graph of ADNI data.
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Figure 6: ADNI dataset in multi-cause setting: the effect of brain atrophy on cognition.

Table 5: Prediction error on treatment effect (PEHE) and outcomes (RMSE) under ADNI dataset
Method Generated outcomes Real outcomes

PEHE (std) RMSE (std) RMSE (std)
NN 0.106 (.001) 1.759 (.017) 4.542 (.113)

NN IPW 0.087 (4e-4) 1.784 (.017) 4.424 (.111)
OP 0.086 (4e-4) 1.800 (.017) 4.442 (.115)

VSR 0.086 (4e-4) 1.794 (.018) 4.507 (.105)
DEC 0.085 (4e-4) 1.787 (.016) 4.535 (.110)
SCP 0.086 (3e-4) 1.785 (.016) 4.316 (.114)
PCI 0.070 (.001) 0.379 (.003) 3.910 (.110)

Wasserstein Distance (IPML)
Method generate outcome real MMSE
dataset0 47.18 47.18

SCP 33.89 33.89
PCI 33.55 33.45
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