
MoVQ: Modulating Quantized Vectors for
High-Fidelity Image Generation

Chuanxia Zheng
Monash University

chuanxiazheng@gmail.com

Long Tung Vuong
VinAI

longvt94@gmail.com

Jianfei Cai
Monash University

Jianfei.Cai@monash.edu

Dinh Phung
Monash University

dinh.phung@monash.edu

Abstract

Although two-stage Vector Quantized (VQ) generative models allow for synthesiz-
ing high-fidelity and high-resolution images, their quantization operator encodes
similar patches within an image into the same index, resulting in a repeated arti-
fact for similar adjacent regions using existing decoder architectures. To address
this issue, we propose to incorporate the spatially conditional normalization to
modulate the quantized vectors so as to insert spatially variant information to the
embedded index maps, encouraging the decoder to generate more photorealistic
images. Moreover, we use multichannel quantization to increase the recombination
capability of the discrete codes without increasing the cost of model and codebook.
Additionally, to generate discrete tokens at the second stage, we adopt a Masked
Generative Image Transformer (MaskGIT) to learn an underlying prior distribution
in the compressed latent space, which is much faster than the conventional au-
toregressive model. Experiments on two benchmark datasets demonstrate that our
proposed modulated VQGAN is able to greatly improve the reconstructed image
quality as well as provide high-fidelity image generation.

1 Introduction

The vision community has rapidly improved image synthesis results on quality, diversity and res-
olution over a short period of time. In particular, many powerful baseline frameworks have been
introduced, such as Generative Adversarial Networks (GAN) [13], Variational AutoEncoder (VAE)
[23], Flow-based Generators [8] and Diffusion Probabilistic Models (DPM) [35]. These methods are
conceptually intuitive, leading to an explosion of image synthesis works that push the boundaries of
image generation quality and diversity [14, 1, 22, 20, 21, 37, 4].

Figure 1: 256×256 image samples generated by the proposed MoVQ, with model trained on FFHQ.

Among these existing image synthesis frameworks, Vector Quantized-Variational AutoEncoder (VQ-
VAE) [39] is a very popular nova, which learns a compressed discrete representation for each image

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

at the first stage and subsequently learns the underlying prior distribution in the discrete latent space
at the second stage. Unlike conventional GANs that pursue a fragile balance in a minimax game,
resulting in unstable training, the optimization target of VQ-VAE is a definite negative log-likelihood
(NLL) objective of the training data. By maximizing the log-likelihood over all training examples,
theoretically VQ-VAE is able to cover all modes of the data, and thus bypass the “mode collapse”
issue in GAN. On the other hand, compared with VAE [23], VQ-VAE maps an image into a palette of
latent discrete codes in higher resolution with spatial structure information and learns the composition
of the codes from the data itself, which overcomes the long-dragged image quality issue of VAE in
image synthesis. These advantages of VQ-VAE have led to remarkable image synthesis results as
evident by its recent extensions, such as VQ-VAE-2 [31], DALL-E [30], VQGAN [11], ImageBART
[10], LDMs [32], VIT-VQGAN [45], RQ-VAE [24], MaskGIT [2] and DALL-E-2 [29].

Despite the great performance, the VQ-VAE or VQGAN pipeline also has its shortcomings. For
example, its second stage is typically modelled as a sequence generation process in an autoregressive
way [39, 11], i.e. generating each discrete latent code one by one at different spatial locations, which
is very time-consuming for inference. MaskGIT [2] nicely addresses this issue by predicting multiple
tokens based on the prediction confidence at each step, which greatly reduces the number of steps
needed in the autoregressive token generator.

In contrast, in this paper we focus on improving the stage-1 learning of the VQ-based image
synthesis pipeline. Specifically, we notice another inherent shortcoming of the VQ-based methods,
i.e. they often generate repeated artifact patterns in image synthesis (see Fig. 3), which is because
the quantization operator drops away some variances and embeds similar patches into the same
quantization index. To address this, motivated by the spatially conditional normalization and position
embedding literature [17, 27, 20, 41], we re-design the decoder architecture in a way that utilizes
a spatially conditional normalization layer to modulate the activations using the quantized vectors,
which essentially adds spatially variant information to the discrete representation. Moreover, we
leverage a multichannel representation technique, introduced in [47] for image completion, to keep
the codebook size manageable while with sufficient representation capability for image generation.
Lastly, with a better quantizer, we follow MaskGIT [2] to speed up the prior distribution training over
the compact discrete representations in the second stage [45].

In summary, our main contributions are as follows:

• We point out an inherent shortcoming of the VQ-based image synthesis pipeline: having
repeated artifacts in semantically similar nearby regions, and solve it by introducing a
spatially conditional normalization to provide spatially variant information for different
locations.

• With the help of our proposed spatially conditional normalization, we further incorporate
the multichannel representation that dramatically improves the reconstructed image quality
using the same encoder-decoder layers as in VQGAN.

• When sampled from a learned prior on all directions for multi-locations and multi-channels,
experimental results on two benchmark datasets show that our synthesized samples hold not
only high quality but also large diversity.

2 Related Work

VQ-based image synthesis. Our model is derived from VQGAN [11], which is built upon the two-
stage VQ-VAE [39]: first, a quantizer with an encoder-decoder architecture is trained to embed images
into compact sequences using discrete tokens from a learned codebook, and then a prior network is
learned to model the underlying distribution in the discrete space. Unlike the minimax game in popular
GAN models [13, 1, 20, 21], the VQ-based generator is trained by optimizing negative log-likelihood
over all examples in the training set, leading to a stable training and bypassing the “mode collapse”
issue. Driven by these advantages, many image synthesis models follow the two-stage paradigm,
such as image generation [31, 45, 2, 24, 16], image-to-image translation [11, 10, 32], text-to-image
synthesis [30, 29, 10, 7], conditional video generation [28, 42, 44], and image completion [11, 10, 47].
Apart from VQGAN, the most related works also include ViT-VQGAN [45] and RQ-VAE [24] that
aim to train a better quantizer in the first stage. Compared to them, our model is simple and efficient,
yet effective to improve the image quality, without adding the computational cost on higher resolution
representations with much larger model [45] or more stages of recursive quantization [24].

2

Spatially conditional normalization, also called adaptive instance normalization, has been widely
used in image synthesis task [9, 17, 18, 27, 20, 41]. Among them, the spatially conditional input
contains various variants, such as style images [9, 17], target domain images [18], semantic maps
[27], learned vectors [20] and random heatmaps [41]. Comparing our approach to these works, our
spatially conditional input is the embedded discrete features, which contain automatically learned
compact contents.

To the best of our knowledge, this is the first work to modulate quantized vectors and use multichannel
quantization on the VQ-based image generation framework. In the following sections, we will
describe the modulated quantized vectors and multichannel quantization and discuss their advantages
over the concurrent models such as [32, 45] and [24] in detail.

𝛾𝛾

Original Reconstruction

Encoder

VQ

Decoder

𝑧𝑧𝑞𝑞

F 𝐹𝐹

𝛽𝛽

(ℎ,𝑤𝑤, 𝑐𝑐)

(ℎ,𝑤𝑤, 𝑐𝑐)

Conv

Norm
× +

(ℎ,𝑤𝑤, 𝑐𝑐)

MoVQ Masked Tokens

B
idirectional

Transform
er

Predicated Tokens

Stage 1: Modulated VQ Encoder and Decoder Training Stage 2: Multi-Channels Masked Token Predication

Figure 2: Left: The quantizer architecture of our proposed MoVQ. We incorporate the spatially
conditional normalization layer into the decoder, where the two convolution layers predict modulation
parameters γ and β in a point-wise way to modulate the learned discrete structure information. Right:
Masked image generation. Here, a bidirectional transformer is applied to estimate the underlying
prior distribution on the discrete representation with multiple channels.

3 Method

The proposed approach, illustrated in Fig. 2, follows a two-stage recipe that embeds images using
a learnable codebook (see Fig. 2 left), and then tames a bidirectional transformer to estimate the
underlying prior distribution over the discrete latent space (see Fig. 2 right). The key observation
we found is that a better quantizer will naturally lead to better image reconstruction and generation
quality [45]. Hence, our main goal in this work is to improve the quantization in the first stage, yet
without suffering from awkward computational cost as in concurrent works [45, 24].

3.1 Modulating Quantized Vector

Background. Given an image x ∈ RH×W×3, vanilla VQ-VAEs learn a discrete codebook to repre-
sent observations as a collection of codebook entries zq ∈ Rh×w×nq , where nq is the dimensionality
of quantized vectors in the codebook. In this way, each image can be equivalently represented as
a compact sequence s with h · w indices of the codevectors zq. Formally, the observed image x is
reconstructed by:

x̂ = Gθ(zq) = Gθ(q(ẑ)) = Gθ(q(Eψ(x))). (1)
In particular, an encoder Eψ(·) first embeds an image x into a continuous vector ẑ, and the quantization
operator q(·) is then conducted to transfer the continuous feature ẑ into the discrete space by looking
up the closest codebook entry zk for each spatial grid feature ẑij within ẑ:

zq = q(ẑ) = arg min
zk∈Z

∥ẑij − zk∥, (2)

where Z ∈ RK×nq is the codebook that consists of K entries with nq dimensions. The quantized
vector zq is finally transmitted to a decoder Gθ(·) for rebuilding the original image. The overall
models and the codebook can be learned by optimizing the following objective:

L(Eψ,Gθ,Z) = ∥x− x̂∥22 + ∥sg[Eψ(x)]− zq∥22 + β∥sg[zq]− Eψ(x)∥22. (3)

Here, sg denotes the stop-gradient operator, and β is a hyperparameter for the third commitment
loss. The first term is a reconstruction loss to estimate the error between the observed x and the
reconstructed x̂. The second term is the codebook loss to optimize the entries in the codebook. We
use the released VQGAN implementation as our baseline.

3

(a) VQGAN [11]
16× 16 / 16384

(b) RQVAE [24]
8× 8× 16 / 16384

(c) Ours
16× 16× 4 / 1024

(d) Original

Figure 3: Reconstructions from different models. The numbers denote the represented latent size and
learned codebook sizes, respectively. Compared to the latest state-of-the-art RQVAE [24], our model
dramatically improves the image quality in the first stage under the same compression ratio.

Spatially conditional normalization. The quantization operator is lossy [31], and similar patches
are often embedded as the same codebook indices, resulting in a repeated artifact when they are
synthesized through existing decoder architectures (see Fig. 3 (a)). As opposed to existing methods
that directly feed discrete feature maps into the decoder as activations, in this work, we introduce a
new spatially conditional normalization layer to propagate the embedded contents to the activations.
The key motivation behind this is to add spatial variants to the discrete maps, such that the model can
generate plausible and diverse results, even for the same quantization index in neighboring regions.

The structure of our modulated decoder is illustrated in Fig. 2 (left), with an activation F normalized
by a conventional normalization, and then modulated by the learned scale and bias calculated from
the embedded vector. Specifically, the activation F of the i-th layer in the decoder Gθ is given by:

F i = ϕγ(zq)
F i−1 − µ(F i−1)

σ(F i−1)
+ ϕβ(zq), (4)

where F i−1 is the intermediate feature map, which can be initialized as the positional embedding
[12, 40], learned constant [20], or Fourier features [36, 19] for F 0 in the decoder. µ(·) and σ(·)
respectively denote the functions for calculating the mean and standard deviation of the activation.
There are many choices of the normalization. Following the baseline VQGAN [11], here we directly
use the Group Normalization [43]. ϕγ(·) and ϕβ(·) are two learned affine transformations, which are
implemented as 1× 1 convolutional filters in our setting, to convert the discrete representation zq to
the scaling and bias values. Note that, the output of ϕγ(·) and ϕβ(·) hold the same resolution to the
current activation F i−1, which injects spatial variances into the discrete feature.

In fact, this spatially conditional normalization is derived from the adaptive instance normalization
(AdaIN), which has been applied for many image synthesis approaches, such as style transfer [9, 17],
image-to-image translation [18, 27], and image generation [20, 41]. Compared to these methods, our
spatially conditional map is a quantized map, which contains learned compact contents. As such
modulation operator injects the spatially variant information, it encourages the same quantization
entries to generate plausible and diverse results on different locations.

Multichannel representation. Unlike existing quantizers that map an image into a single-channel
index map, here we convert it into a multichannel index map with the shared codebook to further
improve the image quality, similar to [47]. This is inspired by the conventional GAN setting,
where 1× 1× nc random vector is able to generate photorealistic images with reasonable structure
[13, 20, 21], showing that values across the channels contain abundant information. In practice,
we first subdivide the encoded continuous feature ẑ ∈ Rh×w×nz along the channel dimension
into multiple chunks, i.e. ẑ = {ẑ(1), · · · , ẑ(c)}, ẑ(c) ∈ Rh×w×nz/c. Each of these chunks is then
quantized based on the equation 2 to the closest codevectors in the codebook.

For 256×256 images, we downsample it by a fixed factor of 16 to 16×16 features. Unless otherwise
noted, in this work we employ c = 4 parallel chunks, and our equivalent sequence representation
is 16 × 16 × 4, which is 192x times smaller than the original image. Note that, in such way the
codevector dimensionality in the codebook will be reduced to nq = nz/c. Due to this reduced
dimension of each codevector, the total computational cost is similar to that of the single-channel

4

representation with fully dimensionality. In fact, our codebook Z ∈ RK×nq has a smaller size with
the number of dimensions to be nq = nz/c = 256/4 = 64.

While a higher resolution representation, e.g. 32 × 32 × 1 or 64 × 64 × 1, can also improve the
reconstruction quality as in [30, 32, 45], the computational cost will be expensive for the second
stage due to the longer sequence s = h× w (see Sec. 3.2 for details). In contrast, our multichannel
representation maintains a smaller sequence length, i.e. 16 × 16, although each sequence token
now is recomposed by four pieces, each of which corresponds to one quantization index. With
such an exponential combination capacity of Kc for each spatial grid feature ẑij , the multichannel
representation power becomes much larger than the K entries in the original codebook.

3.2 Modeling Prior Distribution

While a decoder can invert the discrete image embeddings zq to produce images x, we need to tame a
model to estimate the underlying prior distribution over the discrete space to enable image generation.
Since our main goal is to improve the codebook learning stage, we directly employ the existing
setup for the second stage, including the conventional autoregressive model and the latest masked
generative image transformer (MaskGIT) [2].

Autoregressive token generation. After embedding an image x into an index sequence s =
{s1, · · · , sh×w} of the codebook entries zq , the image generation can be naturally formulated as an
autoregressive next-symbol predication problem. In particular, we maximize the likelihood function:

p(s) =
∏
i

p(si|s<i), (5)

where p(si|s<i) is the probability of having the next symbol si given all the previous symbols s<i.
Then, the training objective for the second stage is equal to minimize the negative log-likelihood of
the whole sequence, i.e. L = Ex∼p(x)[− log p(s)].

There are many choices of autoregressive generation models, such as CNN-based PixelCNN [38]
and transformer-based GPT [3]. While they can sequentially produce diverse and reasonable results
based on the previously generated results, the sampling process is very slow.

Masked token generation. To produce the index sequence efficiently, we follow the latest MaskGIT
to simultaneously predict all tokens in parallel. Inspired by BERT [5], the model aims to estimate the
distribution of all indices based on the visible indices in a fixed length:

p(s) =
∏
i

p(si|sm̄), (6)

where sm̄ denotes conditional representation with partially visible codebook indices. In practice,
the masked map sm̄, with random mask ratios during training, is fed into a multi-layer bidirectional
transformer to estimate the possible distribution of each masked indices, where the negative log-
likelilood objective as above is also calculated between the ground-truth one-hot index and predicted
index. At inference time, the model runs fixed steps and predicts all tokens simultaneously in parallel
based on the previous produced visible tokens at each iteration. Then, the most confident tokens are
selected out and the remaining masked tokens will be predicted in the next step condition on previous
predicted tokens. We refer readers to MaskGIT [2] for more details.

Multichannel token generation. Since our MoVQ embeds an image into a multichannel sequence
s = {s1, · · · , sh×w}, where si ∈ {0, · · · , |Z| − 1}c, for each position, we inversely concatenate
chunks along the channel as one token for the input, and predict c indices for the output. In practice,
we independently mask each index for various channels and positions. Compared to MaskGIT, the
predicated indices in our model condition on three directional dependencies, i.e. visible indices from
different positions and channels, resulting in larger diversity due to the combination capability.

5

Table 1: Quantitative reconstruction results on the validation splits of ImageNet [33] (50,000 images)
and FFHQ [20] (10,000 images). ∗ denotes the model we trained with the publicly available code.
“Num Z” is the number of codevectors in the codebook.
Model Dataset Latent Size Num Z PSNR ↑ SSIM ↑ LPIPS ↓ rFID ↓
VQGAN [11]

FFHQ

16×16 1024 22.24 0.6641 0.1175 4.42
ViT-VQGAN [45] 32×32 8192 - - - 3.13
RQ-VAE [24] 8×8×4 2048 22.99 0.6700 0.1302 7.04
RQ-VAE [24]∗ 16×16×4 2048 24.53 0.7602 0.0895 3.88
Mo-VQGAN (Ours) 16×16×4 1024 26.72 0.8212 0.0585 2.26
VQGAN [11]

ImageNet

16×16 1024 19.47 0.5214 0.1950 6.25
VQGAN [11] 16×16 16384 19.93 0.5424 0.1766 3.64
ViT-VQGAN [45] 32×32 8192 - - - 1.28
RQ-VAE [24] 8×8×16 16384 - - - 1.83

Mo-VQGAN (Ours) 16×16×4 1024 22.42 0.6731 0.1132 1.12

Figure 4: Top: original 256× 256× 3 images, bottom: reconstructed images from our MoVQ with a
16× 16× 4 latent representation in a discrete space. Zoom in to see the details.

4 Experiments

4.1 Experimental Details

Datasets. To evaluate the proposed method, we instantiated MoVQ on both unconditional and
class-conditional image generation tasks, with FFHQ [20] and ImageNet [33] respectively. The
training and validation setting followed the default one of our baseline model VQGAN [11]. We
trained all the models on 256× 256 images.

Evaluation metrics. For image generation, we used the two most common evaluation metrics
Fréchet Inception Distance (FID) [15] and Inception Score (IS) [34] to evaluate the quality and
diversity between generated images and ground truth images. Since we focused on the first stage,
we also evaluated the quality between reconstructed images and original images. Except for the
rFID score, we additionally reported the traditional patch-level image quality metrics, including peak
signal-to-noise ratio (PSNR), structure similarity index (SSIM), and the latest learned feature-level
LPIPS [46] for the paired reconstructed images and ground truth images.

4.2 Image Quantization

Network structures and implementation details. For each dataset, we only trained a single
scale quantizer with a codebook Z ∈ R1024×64, i.e. 1024 codevectors each with 64 dimensions,
on 256× 256 images for all experiments. Our encoder-decoder pipeline is built upon the original
VQGAN1, except the only difference that we replaced the original Group Normalization with the

1https://github.com/CompVis/taming-transformers

6

Table 2: FID comparison for unconditional image generation on FFHQ [20] with 256×256 resolution.
“# Params” is the model size and VQ-based models hold an encoder-decoder model and a prior model,
respectively. “# steps” denotes the number of steps run for generating a sample.

Model # Params # Steps FID ↓
BigGAN [1] 164M 1 12.4
StyleGAN2 [21] 30M 1 3.8

VQGAN [11] (w/ top-k sampling) 72.1M + 801M 256 11.4
ImageBART [10] - - 9.57
RQVAE [24] 100M + 355M 256 10.38
ViT-VQGAN [45] 599M + 1697M 1024 5.3

Mo-VQGAN (Ours)-auto 82.7M + 307M 1024 8.52
Mo-VQGAN (Ours)-mask 82.7M + 307M 8 8.78

proposed spatially conditional normalization layer. We applied the new normalization layer in the
first three blocks of the decoder. Following the default setting in VQGAN, images are always
downsampled by a fixed factor of 16, i.e. from 256 × 256 × 3 to a grid of tokens with the size of
16 × 16 × 4. We set hyper-parameters following the baseline VQGAN work, and we trained all
models with a batch size of 48 across 4 Tesla V100 GPUs with 40 epochs for this stage.

We compare MoVQ with the state-of-the-art methods for image reconstruction in Table 1. All
instantiations of our model outperform the state-of-the-art methods under the same compression ratio
(192x). This includes the concurrent works ViT-VQGAN [45] and RQ-VAE [24], which utilize higher
resolution representation and recursively residual representation, respectively. Without bells and
whistles, though we use a much smaller number of parameters (82.7M), similar to VQGAN (72.1M),
MoVQ outperformers ViT-VQGAN [45], which employs a larger transformer model (599M) on
higher resolution representation (32 × 32) for the first stage. The concurrent RQ-VAE work [24]
also represents an image with multiple channels by recursively calculating the residual information
between quantized vectors and their continuous ones, which requires much more embedding times.
Furthermore, the entries in RQ-VAE are not equally important because the residual representation
highlights the codevectors in the first round, leaving the other codevectors to capture the small residual
information. In contrast, our codevectors share the same significance in all channels, resulting in
larger representation capability. More importantly, our model dramatically improves the reconstructed
images quality on all metrics, suggesting the reconstructed images are closer to the original inputs,
which contributes to more downstream image interpolation tasks.

Note that, our learned codebook contains only 1024 codevectors with 64 dimensionality, but interest-
ingly outperforms other methods using larger codebook sizes. This suggests that a better quantizer
can improve the codebook usage, and it is not necessary to greedily increase the codebook size.

The qualitative results are visualized in Figs. 3 and 4. MoVQ achieves impressive results under
various conditions. In Fig. 3, we compare our MoVQ with the baseline model VQGAN [11] and the
concurrent model RQ-VAE [24]. VQGAN holds repeated artifacts on the similar semantic patches,
such as the grass and trees. RQ-VAE improves the visual appearance, but exhibits systematic artifacts
with lossy information. Our MoVQ shows no such artifacts, providing much more realistic details.

4.3 Image Generation

Network structures and implementation details. After embedding images as a sequence, a
transformer is implemented to estimate the underlying prior distribution in the second stage. Here, we
used the same configuration for all models: 24 layers, 16 attention heads, 1024 embedding dimensions
and 4096 hidden dimensions. The network architecture is build upon the VQGAN baseline, except
that we predicted a 16× 16× 4× 1024 tensor in the final layer, where 16× 16× 4 is the number of
predicted indexes, and 1024 is the number of entries in our learned codebook. Here, we set the image
generation in two scenarios: (1) an "auto" scenario, in which the training and inference are totally
similar with the VQGAN baseline, and (2) a "mask" scenario, in which the training and inference

7

Table 3: Quantitative comparison for class-conditional image generation on ImageNet [33].
Model # Params # Steps FID ↓ IS ↑ Prec ↑ Rec ↑
BigGAN-deep [1] 160M 1 6.95 198.2 0.87 0.28
DCTransformer [25] 738M > 1024 36.51 - 0.36 0.67
Improved DDPM [26] 280M 250 12.26 - 0.70 0.62

VQ-VAE-2 [31] 13.5B 5120 31.11 ∼45 0.36 0.57
ADM [6] 554M 250 12.94 101.0 0.69 0.63
VQGAN [11] 1.4B 256 15.78 78.3 - -
RQ-VAE [24] 3.8B 1024 7.55 134.0 - -
MaskGIT [2] 227M 8 6.18 182.1 0.80 0.51
VIT-VQGAN [45] (w/ rejection sampling) 2.2B 1024 4.17 175.1 - -

Mo-VQGAN (Ours)-auto 389M 1024 7.13 138.3 0.75 0.57
Mo-VQGAN (Ours)-mask 389M 12 7.22 130.1 0.72 0.55

is inspired by MaskGIT [2]2. Unless otherwise noted, we default samples tokens as in MaskGIT
for much faster sampling. The hyper-parameters follow the defaults setting as in VQGAN, and we
trained all models with a batch size of 64 across 4 Tesla V100 GPUs with 200 epochs.

The unconditional generation results are compared in Table 2. While the original autoregressive
sampling in our baseline VQGAN [11] provides tiny better generation results, the sampling time is
much more expensive. Following MaskGIT, we do not set any special sampling strategies such as
top-k and top-p sampling heuristics. We produce 60,000 samples at the inference time. Our model
outperforms most VQ-based methods, with smaller parameters and faster inference time. While our
model performs worse than the concurrent work ViT-VQGAN, they use a much larger model (5
times than ours) in the second stage with a longer training, which is not a directly fair comparison. A
few generated samples are visualized in Figures 1 (see the Appendix for more). MoVQ generates
photorealistic high-fidelity images, with a large diversity.

We also compare the proposed MoVQ with state-of-the-art models for class-conditional image
generation on ImageNet 256 × 256. Our model generates 50 samples for each category, 50,000
samples in total, for the quantitative evaluation. As shown in Table 3, the proposed MoVQ significantly
improve the performance over the baseline model VQGAN [11]. Compared with the concurrent work
RQ-VAE [24], which also employs a multi-channel representation, our performance is competitive
with them, even without the specially designed RQ-transformer for further predicting multichannel
indexes. As MaskGIT and VIT-VQGAN use more GPUs for longer training, it is not a directly
fair comparison with our MoVQ. Figures 5 show a few generated samples. Note that, the proposed
MoVQ appears to be able to generate high frequency details, such as the eyes of the bird.

4.4 Discussion

We run a few ablations to analyze the proposed MoVQ. The results are summarized in Fig. 6.

Architecture. Fig. 6 (a) reports MoVQ with various decoder settings. Compared with the baseline
model VQGAN (A), although we used the same settings for the network architecture, the multichannel
representation (B) naturally leads to a significant improvement by decomposing and recomposing the
features in channel. For the spatially conditional normalization (C), we explored three most commonly
used embedding functions as the initial feature F 0, including positional embedding [12, 40], learned
constant [20], and Fourier features [36, 19]. For positional embedding, we implemented sine and
cosine functions of different frequencies on different locations and channels. The learned constant is
implemented as learned parameters with the same size as the embedded discrete feature. However,
the improvement from both methods is limited. We believe a key reason is the lack of special identity
information for the reconstruction task, while they can provide high frequency signals. In contrast,
each Fourier feature is calculated from the corresponding discrete feature, which contains the identity
feature, as well as the high-frequency signals, resulting in a significant improvement.

2https://github.com/CompVis/taming-transformers

8

Goldfish

Goldfinch

Goose

Flamingo

Silky Terrier

Tibetan Mastiff

Red Panda

Grey Fox

Figure 5: Generated 256× 256 images by our MoVQ for class-conditional generation on ImageNet.

Codebook size. Vanilla VQGAN shows a larger codebook leads to a much better representation.
However, this is not true in our experimental results. In Fig. 6 (b) we compare the results with
different codebook sizes. As shown in the figure, the difference between the 1024 codebook entries
and 16384 entries in our setting is negligible. This suggests that once a better quantizer is designed, it
is sufficient to represent vast amounts of images using a small codebook, which makes the model
easier to train. Besides, we found a low codebook usage in current VQ models, while our design can
somehow improve the codebook usage. We plan to investigate this issue in future work.

9

Methods rFID FID

A Baseline VQGAN 4.42 11.4
B + multichannel x4 3.78 10.6

C
w/ sinusiods 3.52 9.17
w/ learned constants 3.48 8.86
w/ Fourier features 2.26 8.78

Methods Num Z rFID

VQGAN 1024 6.25
VQGAN 16384 3.64

MoVQ 1024 1.12
MoVQ 16384 1.05 1 2 4 8 16

channels

1.5

2.0

2.5

3.0

rF
ID

Reconstruction FID
Generation FID

8.8

8.9

9.0

9.1

9.2

9.3

9.4

9.5

FI
D

(a) Initial spatial features F 0 for the
spatially conditional normalization
on FFHQ.

(b) Different numbers of
entries in the codebook on
ImageNet.

(c) Reconstruction and genera-
tion FID of representation with
different channels on FFHQ.

Figure 6: Ablations on MoVQ for different network architectures, codebook sizes and latent maps.

Latent size. Vector quantization is a compression system, and we exploit the influence of different
compress ratios by using different latent sizes. In order not to dramatically increase the computational
cost, we mainly compare the performance of the latent representation with different numbers of
channels in Fig. 6 (c). The reconstruction performance is naturally benefits from more channels due
to the lower compression ratio. However, we note that not all configurations automatically benefit
from more channels on image generation, as we need to predict more information in the second
stage. Thus, we select a trade-off between the reconstruction and the generation. It is worth to note
that this is an initial step toward combining spatial vectors in the likelihood model with the channel
information as in GAN for the generation task.

5 Conclusion

In this work, we introduced MoVQ, a new model that is simple, efficient yet effective for generating
diverse and plausible images using a better quantizer with a powerful transformer to estimating the
prior. Our encoder and decoder architectures are kept simple as in the baseline framework VQGAN,
except that we incorporate a spatially conditional normalization and multichannel latent maps into the
VQGAN method. Experimental results show that MoVQ significantly outperforms the state-of-the-art
VQ models on image modeling, yet without increasing computational cost. With a better quantizer,
we show that the fidelity of our unconditional samples and class-conditional samples are better than
the existing methods.

In the future, we would like to explore the semantic meaning of each entry in the learned codebook.
As our model not only generates high fidelity image as the state-of-the-art GAN, but also provides
much better reconstructed images, we are excited about the future of VQ-based models and plan to
apply them to more image inversion, interpolation and translation tasks.

Limitation. Although our MoVQ dramatically improves the image representation quality than the
state-of-the-art under the same compression ratio, the model sometimes generates images with a
high-frequency appearance, while the structure information is missing. We believe this is partially
due to the multichannel representation we employed in our model. Therefore, a better generation
model for modeling multichannel indexes needs to be further studied.

Acknowledgements: This research was supported by Monash FIT research Grant.

10

References
[1] A. Brock, J. Donahue, and K. Simonyan. Large scale gan training for high fidelity natural image

synthesis. In Proceedings of the International Conference on Learning Representations (ICLR),
2018.

[2] H. Chang, H. Zhang, L. Jiang, C. Liu, and W. T. Freeman. Maskgit: Masked generative image
transformer. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2022.

[3] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever. Generative pretraining
from pixels. In International Conference on Machine Learning (ICML), pages 1691–1703.
PMLR, 2020.

[4] A. Cherepkov, A. Voynov, and A. Babenko. Navigating the gan parameter space for semantic
image editing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3671–3680, 2021.

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics, 2019.

[6] P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. In Advances in
Neural Information Processing Systems (NeurIPS), volume 34, 2021.

[7] M. Ding, Z. Yang, W. Hong, W. Zheng, C. Zhou, D. Yin, J. Lin, X. Zou, Z. Shao, H. Yang,
et al. Cogview: Mastering text-to-image generation via transformers. Advances in Neural
Information Processing Systems, 34, 2021.

[8] L. Dinh, D. Krueger, and Y. Bengio. Nice: Non-linear independent components estimation.
arXiv preprint arXiv:1410.8516, 2014.

[9] V. Dumoulin, J. Shlens, and M. Kudlur. A learned representation for artistic style. In Proceedings
of the International Conference on Learning Representations (ICLR), 2016.

[10] P. Esser, R. Rombach, A. Blattmann, and B. Ommer. Imagebart: Bidirectional context with
multinomial diffusion for autoregressive image synthesis. In Advances in Neural Information
Processing Systems (NeurIPS), volume 34, 2021.

[11] P. Esser, R. Rombach, and B. Ommer. Taming transformers for high-resolution image synthesis.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 12873–12883, 2021.

[12] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolutional sequence
to sequence learning. In International Conference on Machine Learning, pages 1243–1252.
PMLR, 2017.

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems
(NeurIPS), pages 2672–2680, 2014.

[14] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training
of wasserstein gans. In Advances in Neural Information Processing Systems (NeurIPS), pages
5767–5777, 2017.

[15] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by
a two time-scale update rule converge to a local nash equilibrium. In Proceedings of the
31st International Conference on Neural Information Processing Systems (NeurIPS), pages
6626–6637, 2017.

[16] M. Hu, Y. Wang, T.-J. Cham, J. Yang, and P. Suganthan. Global context with discrete diffusion in
vector quantised modelling for image generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2022.

11

[17] X. Huang and S. Belongie. Arbitrary style transfer in real-time with adaptive instance normal-
ization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),
pages 1501–1510, 2017.

[18] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz. Multimodal unsupervised image-to-image
translation. In Proceedings of the European conference on computer vision (ECCV), pages
172–189, 2018.

[19] T. Karras, M. Aittala, S. Laine, E. Härkönen, J. Hellsten, J. Lehtinen, and T. Aila. Alias-
free generative adversarial networks. In Advances in Neural Information Processing Systems
(NeurIPS), volume 34, 2021.

[20] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4401–4410, 2019.

[21] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila. Analyzing and improving
the image quality of stylegan. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 8110–8119, 2020.

[22] D. P. Kingma and P. Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In
Advances in Neural Information Processing Systems (NeurIPS), pages 10215–10224, 2018.

[23] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In editor, editor, Proceedings
of the International Conference on Learning Representations (ICLR), 2014.

[24] D. Lee, C. Kim, S. Kim, M. Cho, and W.-S. Han. Autoregressive image generation using
residual quantization. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022.

[25] C. Nash, J. Menick, S. Dieleman, and P. Battaglia. Generating images with sparse represen-
tations. In Proceedings of International Conference on Machine Learning (ICML), pages
7958–7968. PMLR, 2021.

[26] A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In Pro-
ceedings of International Conference on Machine Learning (ICML), pages 8162–8171. PMLR,
2021.

[27] T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu. Semantic image synthesis with spatially-adaptive
normalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2337–2346, 2019.

[28] R. Rakhimov, D. Volkhonskiy, A. Artemov, D. Zorin, and E. Burnaev. Latent video transformer.
In 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications, VISIGRAPP 2021, pages 101–112. SciTePress, 2021.

[29] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. Hierarchical text-conditional image
generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

[30] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever.
Zero-shot text-to-image generation. In International Conference on Machine Learning, pages
8821–8831. PMLR, 2021.

[31] A. Razavi, A. Van den Oord, and O. Vinyals. Generating diverse high-fidelity images with
vq-vae-2. In Advances in Neural Information Processing Systems (NeurIPS), volume 32, 2019.

[32] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis
with latent diffusion models, 2021.

[33] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. International
Journal of Computer Vision, 115(3):211–252, 2015.

12

[34] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved
techniques for training gans. In Proceedings of the 31st International Conference on Neural
Information Processing Systems (NeurIPS), 2016.

[35] J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Proceedings of the 32nd International
Conference on Machine Learning (ICML), pages 2256–2265, 2015.

[36] M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ra-
mamoorthi, J. Barron, and R. Ng. Fourier features let networks learn high frequency functions
in low dimensional domains. In Advances in Neural Information Processing Systems (NeurIPS),
pages 7537–7547, 2020.

[37] A. Vahdat and J. Kautz. NVAE: A deep hierarchical variational autoencoder. In Advances in
Neural Information Processing Systems (NeurIPS), 2020.

[38] A. Van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves, et al. Conditional image
generation with pixelcnn decoders. In Advances in Neural Information Processing Systems
(NeurIPS), volume 29, 2016.

[39] A. Van Den Oord, O. Vinyals, et al. Neural discrete representation learning. In Advances in
Neural Information Processing Systems (NeurIPS), volume 30, 2017.

[40] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems
(NeurIPS), 2017.

[41] J. Wang, C. Yang, Y. Xu, Y. Shen, H. Li, and B. Zhou. Improving gan equilibrium by raising
spatial awareness. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022.

[42] C. Wu, J. Liang, L. Ji, F. Yang, Y. Fang, D. Jiang, and N. Duan. N\" uwa: Visual synthesis
pre-training for neural visual world creation. arXiv preprint arXiv:2111.12417, 2021.

[43] Y. Wu and K. He. Group normalization. In Proceedings of the European conference on computer
vision (ECCV), pages 3–19, 2018.

[44] W. Yan, Y. Zhang, P. Abbeel, and A. Srinivas. Videogpt: Video generation using vq-vae and
transformers. arXiv preprint arXiv:2104.10157, 2021.

[45] J. Yu, X. Li, J. Y. Koh, H. Zhang, R. Pang, J. Qin, A. Ku, Y. Xu, J. Baldridge, and Y. Wu.
Vector-quantized image modeling with improved VQGAN. In Proceedings of the International
Conference on Learning Representations (ICLR), 2022.

[46] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable effectiveness
of deep features as a perceptual metric. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 586–595, 2018.

[47] C. Zheng, G. Song, T.-J. Cham, J. Cai, D. Phung, and L. Luo. High-quality pluralistic image
completion via code shared vqgan. arXiv preprint arXiv:2204.01931, 2022.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section. 4

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

13

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

	Introduction
	Related Work
	Method
	Modulating Quantized Vector
	Modeling Prior Distribution

	Experiments
	Experimental Details
	Image Quantization
	Image Generation
	Discussion

	Conclusion

