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Abstract

We present MGE-LDM, a unified latent diffusion framework for simultaneous
music generation, source imputation, and query-driven source separation. Unlike
prior approaches constrained to fixed instrument classes, MGE-LDM learns a joint
distribution over full mixtures, submixtures, and individual stems within a single
compact latent diffusion model. At inference, MGE-LDM enables (1) complete
mixture generation, (2) partial generation (i.e., source imputation), and (3) text-
conditioned extraction of arbitrary sources. By formulating both separation and
imputation as conditional inpainting tasks in the latent space, our approach supports
flexible, class-agnostic manipulation of arbitrary instrument sources. Notably,
MGE-LDM can be trained jointly across heterogeneous multi-track datasets (e.g.,
Slakh2100, MUSDB18, MoisesDB) without relying on predefined instrument
categories. Audio samples are available at: anonymous_link|

1 Introduction

Recent advances in generative modeling have significantly accelerated progress in the music domain,
especially in music audio synthesis [1H4], accompaniment generation [5H7]], and music source
separation [8,9]. A recent line of work has investigated solving these tasks simultaneously within
a single model by modeling the joint distribution of multi-track stems within a unified diffusion
backbone [[10-H12]]. However, these approaches typically rely on predefined instrument classes for
each track or assume that the mixture waveform is the linear sum of its constituent stems. While
the additive assumption is valid in the waveform domain, it is incompatible with the nonlinear
encoder-decoder structure of latent diffusion models, limiting the applicability of such methods in
compressed latent spaces.

To address these limitations, we introduce MGE-LDM, a class-agnostic latent diffusion framework
that jointly unifies music generation, partial generation (source imputation), and arbitrary source
extraction. Our approach models three interrelated latent variables: mixture, submixture, and source,
within a single diffusion backbone.

2 Method

Figure [T| provides an overview of the proposed MGE-LDM pipeline. We begin by defining the
construction of training triplets and then describe how they are used for joint diffusion-based training
and inpainting-based inference.

2.1 Formulating Joint Latent Representation

Let {x;};cr denote the set of time-domain audio stems, where the number of sources || may vary
across mixtures depending on their instrumentation. We uniformly sample an index j € [ and define
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(a) Training pipeline (b) Inference pipeline

Figure 1: Overview of MGE-LDM. (a) Training pipeline: We train a three-track latent diffusion
model on mixtures, submixtures, and sources. (b) Inference pipeline: At test time, task-specific
latents are either generated or inpainted based on available context and text prompts.

the mixture, submixture, and source triplet (z(™), (%), z(*)) as:

z(m):in, z(s):xj, W = Z T4

icl ie\{j}

We encode each element of this triplet using a pretrained VAE encoder E, resulting in latent
representations z(™), 2(®) 2() ¢ RE*L where C and L denote the latent channel and temporal
dimensions, respectively. This formulation naturally accommodates mixtures with a variable number
of stems. Regardless of the number of instruments present, any publicly available multi-track dataset
can be decomposed into mixture, submixture, and source components for joint latent modeling, even
with loosely labeled tracks such as other that aggregate multiple instruments, as in MUSDB18

[14).
2.2 Latent Diffusion Training with Three-Track Embeddings

We build upon the Stable Audio framework [3]], employing a Diffusion Transformer (DiT) backbone
[13] and training the model under the v-objective [16]. Let the composite latent input be defined

as zo = (z(()m), z(()“), zés)> € R3¥*CXL where z((,k) € RE*L are (clean) track embeddings, with
k € K = {m,u, s} denoting the track types — mixture, submixture, and source, respectively.

We aim to estimate the score V,_log ¢, (z.) of the perturbed latent z, across continuous noise levels
T € [Tmin, 1]- To do so, we perturb zy with Gaussian noise according to:

Zr = arZo + BT67 €~ N(OvI)v (H

where the noise scaling coefficients are defined as o, = cos(¢,) and 3, = sin(¢), where ¢, = J7.
Here, 7 ~ U ([Tmin, 1]) is sampled from a truncated uniform distribution with 7,,;, = 0.02 for stability.

A denoising network fy(z.,7,c) is trained to estimate the score V,_ logq,(z,|c) using the v-
objective: oz
L(0) :Elo’é’Ter(zﬁﬂc) _UT||§7 vy =

96,

The conditioning vector ¢ = (c("™), ¢(®), ¢(%)) is derived using the audio branch of a pretrained CLAP

encoder [[17]], applied to each component. To enable classifier-free guidance (CFG) [18], each ¢(*) is
independently dropped out with probability p during training.

= Q7€ — ﬁ‘rz0~ (2)

2.3 Inference via Conditional Sampling in Latent Space

In the image domain, inpainting refers to reconstructing missing or corrupted regions of an image
by conditioning on the surrounding pixels. Diffusion models have demonstrated strong zero-shot
inpainting capabilities, enabling arbitrary mask completion without retraining 20]. We extend
this paradigm to the latent domain of music, operating over a joint distribution of mixture, submixture,
and source embeddings.



Downstream tasks are formulated as conditional generation problems, where known la-
tents are treated as observed and unknown ones are sampled as missing components. In
all inference modes, we condition on natural-language queries using CLAP embeddings.
When text conditioning is required, we use the text

branch of CLAP to produce the prompt embedding ¢*) =  Table 1: Total generation results. Reported

CLAP o (c\2)), where ¢\%) is a free-form natural language ~Scores are FAD |, computed against mixture
description (e.g., "the sound of an electric guitar"). references from each test set. Values in paren-
theses indicate generation results conditioned
Total Generation. Let py(2("™), 2(*)| 2(*)) denote the im- on the prompt "The sound of the bass, drums,
plicit model distribution whose score function is induced = 8§uifar, and piano”.
by the denoising network fy. To synthesize a complete
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where 2(*) and (%) are auxiliary latents that are discarded. Finally, the synthesized mixture waveform
#(™) is obtained by decoding 2("™ through the pretrained VAE decoder D (i.e., (™ = D(2(™)).

Hereafter, we use (%) to denote any dummy latent that is not retained during inference.

Partial Generation. Partial generation, also known as source imputation, refers to the task of gener-
ating missing stems given partially observed sources. We approach this iteratively to progressively
reconstruct the full mixture from the partial input.

LetZ = {c1,...,c;} be an (ordered) set of CLAP-derived text embeddings, each corresponding to

a target source description to be imputed. Let x(()“) denote the waveform mixture of the observed

sources, and let z(()u) =K (xéu)) be its latent representation. We initialize the submixture latent with

zé“), and generate each missing source sequentially.

Ateachstep j € {1, ..., J}, we sample a new source latent 2§8) conditioned on the current submixture

and the text embedding c;s):

B8~ pg (2,20 2,0, ). )
We then update the submixture by accumulating the decoded sources: z](-“) =F (Z{;Ol D(él(s))).

J

After J iterations, we obtain the full set of imputed sources {2;‘9)} =1 and reconstruct the final

: m) _ .(u) J 5(s)
mixture waveform as x(™) = 2" + > =1 D(&7).
Source Extraction. Text-driven extraction of an arbitrary stem is performed by conditioning on
a natural-language prompt. Given a prompt embedding c(*), we treat the mixture latent z(™) as
observed and inpaint the submixture and source tracks:

200,560~ py (2™, 2() | 2 &, 3, el), )

where #(*) is an auxiliary prediction that is discarded. Finally, the isolated source waveform is
reconstructed via 2(*) = D(2(%)).

We also introduce an advanced training framework for improving the inpainting performance of our
three-track diffusion model in Appendix |C] All reported results are obtained using this framework
with track-wise adaptive timesteps.

3 Results

We evaluate MGE-LDM on three tasks: total generation, partial generation, and source extraction.
We train and evaluate on three multi-track music datasets: Slakh2100 [21]], MUSDBI18 [14] (denoted
M,, ), and MoisesDB [22] (denoted M,, ). For Slakh2100, we define two subsets: S 4, containing
only bass, drums, guitar, and piano stems to match the MSDM and MSG-LD setup; and
Sp ., which includes all remaining stems. Each result table indicates the training dataset(s) used and
reports performance across multiple test sets. We train our models on various dataset combinations to



Table 2: Partial generation results. Scores are reported using sub-FAD |, which measures the distance between
the reference mixture and the sum of given and generated sources. Each column header (e.g., B, D, G) indicates
the target source being generated, conditioned on the remaining stems.

Train Set Sa SB
SaSpM,M, D G P BD BG BP DG DP GP BDG BDP BGP DGP Brs. C.P. Org. Pipe Reed Str. S.Lead S.Pad

B
MSDM [I0] v x X x 0.56 1.06 049 0.7 223 1.56 1.95 1.64 1.83 2.31 3.09 3.53 572 3.86 - - - -
MSG-LD [12] v x X x 0.33 0.34 0.49 0.48 0.70 1.08 1.05 0.86 0.83 1.47 143 142 231 176 - - - - - -

Model

Ti v X x x 102 141 1.17 1.19 1.15 1.29 1.25 1.69 1.65 1.14 1.80 1.84 1.45 1.84 1.45 0.68 0.23 3.48 558 1.38 4.47 1.08
MGE T, v v x x 211299 199 2.74 407 2.32 4.18 3.54 3.9 3.18 4.93 5.69 4.25 4.66 5.96 0.41 1.03 3.66 3.52 2.79 0.88 232
(ours) T3 X X v v 143 1.29 334 2.30 1.85 3.64 2.83 2.95 2.36 4.39 3.30 3.57 6.03 3.86 3.58 0.58 0.15 0.22 0.56 0.61 0.54 0.48
Ta v vV vV V 1.14 1.50 3.75 2.47 2.06 4.06 2.82 3.37 2.74 4.55 3.94 4.05 5.66 4.06 5.09 0.42 0.56 0.20 3.14 395 0.31 0.40

Table 3: Source extraction results. Metrics are reported as Log-Mel L1 distance |. For baseline models, scores
are shown only for stems included in their fixed output set.

Model Train Set Sa Se M, M,
SaASsM,M, B D G P Brs. CP. Org. Pipe Reed Str. SLead SPad V. B D V B D G P B.Str Perc.
HDemucs X v x 149090 - - - 150 1.99 1.53 0.83 1.71 1.10 - - - -
AudioSep [23] X X X 2.36 1.67 3.41 242 313 284 32() 3()4 3. 15 257 2.8 206 2.66 407 1.89 1.54 3.37 1.87 1.31 1.42 1.70 2.36
MSDM [I0J v x x x 190 1.51 332270 - - - - - - - 256169 - 215131 128 1.51 - -
MSGLDM2] v x_x x 120124224185 - - - - - - - - - 196160 - 172149236206 - -
Ti v X X x 128 0.66 1.27 1.07 3.22 3.07 3.13 3.11 3.30 2.77 2.68 2.30 3.80 1.91 1.33 5.15 1.61 1.10 2.86 2.68 2.03 2.94
MGE T3 vV /X x 1.68 271 2.69 2.16 3.43 2.16 1.84 2.33 3.07 244 231 1.93 3.55 2.14 2.15 4.66 1.86 2.11 2.28 2.18 1.93 2.36
(ours) Ta X X v v 1.800.99 2.89 2.01 3.17 2.51 3.61 2.13 2.86 2.22 2.78 222 1.85 1.56 1.17 0.98 1.10 0.90 1.04 1.58 1.62 2.49
Ta v vV vV / 167083261 1.77 3.15 229 2.22 1.95 2.61 1.85 2.71 3.68 1.76 1.56 1.13 1.01 1.07 0.86 1.02 1.40 2.25 2.69

evaluate robustness under different source distributions and stem configurations. Unless otherwise
specified, partial generation and source extraction are performed using text prompts of the form
“The sound of the { 1abe1}.” Abbreviations for all stem labels are listed in Appendix Table ] and
additional ablation results are provided in Appendix [F

Table |1| presents FAD [24] scores for the total generation task. Note that the S 4 test set contains
only mixtures of bass, drums, guitar, and piano, while Sgy; corresponds to the full Slakh2100
test set, which includes a broader and more diverse set of instruments. We first compare our model
T1 against MSDM [10]] and MSG-LD [12]], where all models are trained on S 4 . Our model achieves
the lowest FAD on the S 4 test set, demonstrating superior fidelity in generating standard four-stem
mixtures. Furthermore, our model can be trained on extended combinations of datasets, as in 75, 73,
and 7, , which leads to improved FAD scores on the Sgy; , My, , and M, test sets.

Table [2]presents results for partial generation, evaluated using the sub-FAD metric, which is adopted
in [10,[12L25]]. On S 4 , our model 77 performs worse than MSG-LD for single-source imputation but
shows competitive or better performance as the number of generated stems increases. For imputation
tasks involving broader instrument classes in S , models trained on more diverse datasets perform
better.

We also evaluate text-queried source extraction using the Log Mel L1 distance, following MSG-
LD [12]]. Table [3| presents results for a variety of stems across the S4, Sp, M,,, and M, test
sets. Alongside MSDM and MSG-LD, we compare two additional baselines: HDemucs [26] and
AudioSep [23]. Our model 77, trained solely on S 4, performs strongly on the canonical Slakh
stems (bass, drums, guitar, piano), outperforming MSG-LD on all but bass. However, it
generalizes poorly to less common stems and real-world recordings. By expanding the training set
to encompass the full Slakh2100 dataset, model 75 achieves improved performance on categories
such as chromatic percussion, organ, synth lead, and synth pad, demonstrating
the importance of broader intra-domain coverage. Model 73 generalizes competitively with 75 to
synthetic stems, even outperforming some stems such as drums, and model 74 exhibits robust
performance across both synthetic and real-world domains.

4 Conclusion

We have presented MGE-LDM, a unified class-agnostic latent diffusion framework that jointly models
mixtures, submixtures, and individual sources for music generation, stem completion, and text-driven
extraction. By formulating stem completion and source extraction as conditional inpainting in
a shared latent space, and by introducing track-dependent timestep conditioning, we overcome
the limitations of fixed-class, additive mixing assumptions and achieve flexible manipulation of
arbitrary instrument tracks. Empirically, MGE-LDM matches or exceeds specialized baselines on the
Slakh2100 generation and separation benchmarks while uniquely supporting zero-shot, language-
guided extraction across heterogeneous multi-track datasets.
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A Related Work

Audio Source Separation and Extraction. Audio source separation aims to decompose a polyphonic
mixture into its constituent tracks, while source extraction focuses on isolating a particular target
sound, often guided by metadata, text prompts, or reference examples. Two dominant paradigms
have emerged: discriminative models learn a direct mapping from the input mixture to each target
stem via regression losses, either in the waveform domain or on spectrogram representations [26-31]].
In contrast, generative approaches learn probabilistic priors over source distributions and recover
individual stems via sampling [32H36].

Recently, diffusion-based techniques have emerged as a powerful paradigm for audio decomposition,
achieving strong results in both speech separation [37, 38]] and enhancement [39-42]. These methods
iteratively denoise a mixture under a learned score function, offering flexible and high-fidelity source
recovery.

Query-based extraction further extends separation by conditioning the model on external cues such
as class labels [43145]], visual signals [46l47]], or audio exemplars [48| 49]]. Several studies have also
demonstrated the effectiveness of natural language prompts for flexible, user-driven source isolation
[23 147, [50553]. In our framework, we employ the pretrained CLAP model [17] to obtain shared
audio-text embeddings, enabling seamless, language-guided extraction of arbitrary stems within a
multi-track latent diffusion architecture.

Audio Generation Models. Early neural audio synthesis methods focused on autoregressive ar-
chitectures that model waveform dependencies sample by sample. WaveNet [54] demonstrated the
effectiveness of dilated convolutions for end-to-end generation, while SampleRNN [55]] extended
this with hierarchical recurrence. Subsequent work adopted adversarial objectives to improve fidelity,
using GANSs to generate perceptually sharp outputs [56, 57].

Parallel efforts introduced discrete-token models, where audio is encoded into compact code se-
quences using vector quantization (e.g., VQ-VAE [38]]). Jukebox [59] models long-range depen-
dencies over codes using Transformers [60], while recent systems enhance fidelity through residual
quantization [61H63]] and hierarchical token modeling, where coarse-to-fine code representations
are generated over multiple levels [25.164H66]. MusicGen [67] improves decoding efficiency with
delayed-token generation, and Instruct-MusicGen [68]] extends it for targeted editing via instruction-
tuned prompts. Concurrently, token-based masked generative modeling techniques—originally devel-
oped for the vision domain [69]—have been extended to audio, enabling efficient non-autoregressive
synthesis and precise spectrogram inpainting [ 70, [71]].

Diffusion-based generation emerged with DiffWave [72]] and WaveGrad [73]], which learn to iteratively
denoise Gaussian-corrupted waveforms. These techniques have since been adapted for music-specific
generation with structure and style conditioning [74} [75]. Latent diffusion models (LDMs) [76]],
which perform denoising in a compressed embedding space, have further advanced generation fidelity
and scalability. LDM-based audio models such as AudioLDM [77] (78], MusicLDM [1], and Stable
Audio [2H4] achieve state-of-the-art performance. Recent frameworks like AUDIT [79]], InstructME
[80] explore the use of diffusion for controllable and interactive audio editing.

Multi-Track Music Audio Modeling. Recent studies model multi-track music as a structured com-
position of interdependent stems. StemGen [81]] employs an iterative, non-autoregressive transformer
over discrete tokens to generate stems conditioned on text prompts. Jen-1 Composer [82] applies
latent diffusion to jointly model four canonical stems (bass, drums, instrument, melody), producing
coherent multi-track compositions. MusicGen-Stem [81]] combines per-stem vector quantization
with an autoregressive decoder to synthesize bass, drums, and aggregated other components, and
supports mixture-conditioned accompaniment generation.

Other work explores joint modeling of synthesis and decomposition within a single diffusion backbone.
Multi-Source Diffusion Models (MSDM) [10]] model a fixed set of stems (bass, drums, guitar,
and piano) within a shared diffusion framework, relying on an additive mixture assumption and a
Dirac delta-based posterior sampler, following the EDM formulation for ODE-based sampling [83]].
This line of work has since been extended in GMSDI [[11], MSG-LD [12], and others [84.85]. GMSDI
enables variable-stem modeling and text-based conditioning but remains grounded in waveform-space
additive mixing. MSG-LD adapts latent diffusion for four-stem modeling and classifier-free guidance
[L8]], though it still assumes fixed instrument classes.
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In contrast, our approach jointly models mixture, submixture, and source embeddings in latent space
and casts both synthesis and arbitrary-source extraction as text-conditioned inpainting tasks, offering
fully class-agnostic multi-track music processing without reliance on fixed instrument vocabularies
or linear mixing assumptions.

B Background

B.1 Canonical Inpainting in Score-Based Models

The core idea behind inpainting in score-based generative models is to estimate the score of the
unknown region conditioned on known region [10} 20].

Let K denote the set of all tracks. Suppose a subset 2 C K is observed (i.e., known), and let ' = K\Q
denote the complement, i.e., the unobserved tracks we aim to inpaint. Define z** := {2(*)}, ¢ and
z" := {2(") ), cr. The goal is to approximate the conditional score:

Vo log ¢r (X |Z8). (6)

This conditional gradient is generally intractable for a score model trained only on joint marginals.
However, following Song et al. [20], we can approximate it via:

40 (2)2§) = / 4r (28, 22|28} dz

— [ ar @122 )0 0155

= Iqu(zng [qT (Z£|Z§_2, Z(ng)]

~ B, gape) (62 |27)] @)

~ - (2} [2}), ®)
Q.

where i? ~ q.(29)28) = N (2% a2}, B21) is a noised sample of the known region. Accordingly,
the conditional score can be approximated as:

~Q
VZE log g- (Zvlj‘zg) ~ VZE log g- (Zvlj‘z'r)
~Q
= sz IquT([ZE; ZT])7

where [25; i?] denotes a composite latent vector such that the known region is replaced by i? while
r

the unknown region remains as z, adopting the same notation as Song et al. [20].

This approximation enables zero-shot inpainting without requiring retraining: at each diffusion
timestep, a noised version of the known latents is sampled, concatenated with the current estimate of
the unknown latents, and passed to the score model. The resulting gradient is then applied to update
only the unknown region. This process is repeated throughout the reverse diffusion trajectory.

B.2 RePaint

Lugmayr et al. proposed RePaint [86l], a resampling-based mechanism that improves score-based
inpainting by repeating the diffusion process across multiple forward—reverse cycles. Their key
insight is that, in conventional inpainting (as described in Equation (8)), the sampled noise for the
known region is independent of the generated (inpainted) region. This lack of synchronization can
lead to semantic inconsistencies and disharmony between known and unknown parts of the sample.

To address this, RePaint introduces a resampling mechanism during generation. At each denoising
timestep, the algorithm alternates between one reverse diffusion step and one forward diffusion
step, repeating this cycle U times. These micro-steps refine the sampling distribution and can
have the effect of partially marginalizing over the known region at noise level T in Equation (8)),
thereby reducing the approximation error inherent in conditional score estimation. This iterative
resampling procedure improves consistency but incurs higher computational cost, as each denoising
step requires multiple forward-reverse passes—making RePaint significantly more expensive than
standard inpainting methods.
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Algorithm 1 Inpainting using the RePaint approach.

Input:
Number of timesteps 7'
Re-denoising steps per reverse step U;
Noise schedule {Ti}lT:O with a7, Br;
Binary mask m (1 for known, O for unknown);
Known clean (masked) latents z5™%";
Denoiser network fp
I: zr, ~N(0,I)
2: forie=1T,...,1do
3 foru=1,...,U do
4 > DDIM sampling step
5: f)Ti <— fg(ZT“Tl‘)
6: Zo < Qr; 27y — 5‘1’1"&‘&‘
7: €4 Br.2r;, + 0,V
8 iL“r];ng’wn A O“"z‘7120 +5T«L—1é
9: > Sample the known regions
10: e~N(0,1)ifi > 1,else 0

11: Zl::(iwln «— 057_7"_1Z1(<]nuwn + /87'7,_16
12: > Combine known and generated regions
13: Zr, < MOZE™ 4+ (1-m) O i'i‘:kfi’w"
14: > Reapply forward process
15: ifu < U andt > 1 then )
16: Z, ~ N (aari Zr_,, (1 _ ajn’ )I)
Ti—1 Ti—1
17: end if
18: end for
19: end for

20: return zr,

While originally proposed for DDPM-based models, RePaint can be adapted to velocity-based
objectives as used in our framework. We apply this adaptation in the sampling procedure described in
Algorithm[I] Setting the resampling count U = 1 recovers the canonical single-sample inpainting
method described in Appendix [B.T]

C Track-aware Inpainting Model with Adaptive Timesteps

Conventional diffusion-based inpainting methods apply a uniform noise schedule across both observed
and missing regions, failing to account for their differing uncertainty characteristics [19, 20, |86H88].
In the standard setup, a denoising model fy(z.,7) is trained to approximate the joint score of a
perturbed latent variable.

Recently, region-aware adaptations of diffusion inpainting — such as spatially varying noise schedules
[89] and per-pixel timestep conditioning in TD-Paint [90] — have demonstrated substantial improve-
ments in semantic consistency by preserving fidelity in observed regions. Inspired by TD-Paint, we
extend this idea to three-track music audio by assigning distinct timestep conditions to each track,
thereby improving inpainting quality in the latent space.

We describe our track-wise adaptive timestep conditioned model using general notation. Let K
be a set of tracks, and let N = |K| be the number of tracks. Define the clean latent tensor and
corresponding noise levels as:

7y = (Z(()k))keK S RNXCXL, T = (Tk)keK € [Tmina I]N,

where each 7, is either zero (for observed tracks) or equal to a shared sample 7 ~ U ([T, 1]),
depending on the inpainting configuration.

We define the track-wise product between a vector z- € R and a latent tensor z € RV*EXL ag:

Tr OZ:= (x,.kz(k))keK,
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Algorithm 2 Inpainting using adaptive timestep approach

Input:
Number of timesteps 7'
Re-denoising steps per reverse step U;
Noise schedule {Ti}lT:O with a7, Br;
Binary mask m (1 for known, O for unknown);
Known clean (masked) latents z5™%";
Denoiser network fp
: e~ N(0,1)
1 1r(1—m)
Zrp = mzg™ + (1 —m)e
cfori=1T,...,1do
> Partial DDIM sampling over unknown region

’i}‘"i — fO(ZTwTi)

20 < Qr;Zr;, — Br;Ur,
€4 BrZr, + Qr,0r;

9: 2N 20+ B, &
10: Ti—1 (—T/L'f1(1 —m)
11: z, , < mzd™™ + (1 —
12: end for
13: return z-

PRAINRERN

) zunknown
Ti—1

and extend this notation to the cosine noise schedule terms as:
Qr = (aTk)k€K7 6‘1‘ = (ﬂTk>kEK-

We perturb the joint latent using track-wise noise:
Zr=0a; 029+ B O€, €~N(0,1), 9)
where each track is independently scaled by its corresponding noise factor.
The denoiser fy(z.,T) is trained to regress the velocity target under v-objective:
Vr =ar O €— Br O 1z, (10)
resulting in the following training loss:

L(0) = Eypye,r || fo(2r, T) — v |[3. (11)

In our setup, we use N = 3 with K = {m, u, s}, corresponding to the mixture, submixture, and
source tracks, respectively. In practice, the loss is computed only over the unknown tracks.

During training, we first sample a noise level T ~ U ([Tiin, 1]), and set the per-track timestep vector
T € R? according to one of the following four patterns:

T e {(r,7,7),0,7,7),(r,0,7), (7,7,0)},

where each configuration is selected randomly for each training step.

Under this conditioning strategy, the full-noise setting 7 = (7,7, 7) corresponds to learning the
standard joint score. In contrast, a "single-zero" pattern allows the model to learn conditional score
functions for the unobserved tracks while treating the others as fixed observations.

For example when (7,,, 7y, 75) = (0, 7, 7), the model is trained to approximate the gradient:

V o o0, o8 gr (28, 20 2™). (12)

T

At inference time, we clamp observed tracks by setting their noise levels to zero, and apply standard
reverse diffusion updates to the remaining (missing) tracks.
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C.1 Interpretation from the Perspective of Score Approximation

Conventional inpainting approaches approximate the conditional score in Eq. (6) using a single
sampled estimate of the known latents. This corresponds to a high-variance Monte Carlo estimate of
the expectation over ¢, (z5}|z{!), which may lead to instability—especially at high noise levels.

By contrast, the adaptive timestep model—inspired by TD-Paint [90]—circumvents this marginalization
by training the model to directly approximate the conditional score.

We assume zp = [z};z{}] is a clean sample from the dataset. Then, using an alternative factorization:
rQ r Q) T
- (2-]25) = /QT(Zm Xq |2g')dxq

- / 4r (28 x5 22)g (x5 |28 AT

= Eyxrpe) [0 (21 %0, 25)] (13)
~ g7 (2; |2y, 25) = 4- (21 |25) (14)
= N5 arzp, B21), (15)

where the approximation assumes that z] ~ q(x}|z{}) is available from the dataset. Unlike the
marginalization-based approximation in Eq (8)), this expression introduces no sampling noise during
inference, thereby reducing variance.

From this, the conditional score can be written as:

a,zh — 1zt
V,r log ¢ (2128 ~ 0572 (16)
N a,2g(zL 2, T7) — 2L 17
~ 62 ’ ( )
or
=~z — " fo(zl 25, T )r, (18)

T

where fy(-)r denotes the output corresponding to the unknown region. The per-track timestep vector

7T is defined as:
r {T’ Trel  freachk € K. (19)

T =0, ifkeQ

The model is trained using the velocity objective in Eq. (TT)), restricted to the unknown region. This
allows the denoiser to explicitly learn the conditional score on zL, avoiding the need for the stochastic
marginalization and improving accuracy in conditional inpainting tasks. The full sampling procedure
is detailed in Algorithm 2}

D Iterative Generation

In addition to the one-stage mixture generation described in Section 2.3} MGE-LDM also supports an
iterative, stem-by-stem synthesis procedure. This approach constructs a full mixture by sequentially
generating individual sources, leveraging the partial generation mechanism at each step.

LetZ = {cgs) }: be an (ordered) set of CLAP embeddings corresponding to the desired instrument
description. At the first iteration (¢ = 1), we generate an initial source latent 2;5) by sampling with

the model conditioned only on the prompt cls):

2(7")72(10’2;9) ~ p@(z(m)az(u)vZ(S)|®7®7C§S))v

and set z%u) = 2%5) as the initial submixture latent. For each subsequent iteration i = 2, ..., |Z|, we
follow the iterative imputation strategy of partial generation, treating the current submixture as the

accumulated sum of decoded sources from the previous steps.
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Table 4: Abbreviations of instrument stems. The table lists all abbreviations used throughout the
paper along side their corresponding full instrument labels, grouped by dataset.

Common Slakh2100 MoisesDB
D G P v Brs. C.P Org. Pipe Reed Str. S.Lead S.Pad B.str Perc.

Abbr.

chromatic synth synth bowed

Inst. bass drums guitar piano vocals brass percussion organ pipe reed strings Tead pad strings

percussion

Finally, the full mixture waveform is constructed via decoding and summing the generated source

latents:
IZ|

=™ =3 D).
1=1

A preliminary evaluation of this iterative procedure is presented in Appendix [F

E Experimental Setup

In this section, we outline our experimental protocol, including baseline models, datasets, and
implementation details. All baseline results are re-evaluated using our test sets to ensure consistency
with our experimental setup.

E.1 Datasets

We train and evaluate on three multi-track music datasets: Slakh2100 [21]], MUSDB18 [14]}, and Moi-
sesDB [22]]. Each dataset follows its predefined train/test split. We train our models on various dataset
combinations to evaluate robustness under different source distributions and stem configurations. A
summary of stem abbreviations is provided in Table 4}

Slakh2100 is derived from the Lakh MIDI Dataset v0.1 [91] and contains synthesized tracks rendered
with sample-based virtual instruments. It comprises 2100 songs divided into training (1500), valida-
tion (375), and test (225) splits, totaling approximately 145 hours of audio. It includes a wide variety
of instrument classes (e.g., bass, drums, guitar, piano, strings, synth pad, etc.). We
adopt the naming S 4 to denote a subset containing only bass, drums, guitar, and piano-the
four classes used by MSDM and MSG-LD-and S g to denote the complementary subset of remaining
stems. We follow the official dataset splits provided by Slakh2100 for training, validation, and testing.

MUSDBI18 consists of 150 real-world music recordings with four stems: drums, bass, other,
and vocals. We use all 100 tracks from the official training split for training, and the 50-track test
split for evaluation. The total dataset length is approximately 10 hours.

MoisesDB comprises 240 songs (14 hours total) contributed by 47 artists across 12 genres. Each stem
in the song is annotated with a two-tier stem taxonomy. Each track is decomposed into its constituent
sources and annotated using a two-level hierarchical taxonomy of stem classes. We aggregate all
second-level tracks into their corresponding top-level class. Among the 11 stem classes, we evaluate
only the 7 unambiguous stems (e.g., bass, percussion, vocals, etc.). For evaluation, we
randomly sample 24 tracks (10%) as the test set and use the remaining tracks for training.

Data Construction. We train our model using randomly constructed 3-track tuples (mix, sub, src).
A source stem is randomly selected from the available stems, and the remaining stems are aggregated
into a submixture. We select non-silent segments from the source track whenever possible, allowing
up to 10 random resampling attempts per instance. The same temporal offset is applied across all
stems to ensure alignment. For generation evaluation, we sample 300 random segments per test set.
For source extraction, we sample between 150 and 700 non-silent segments per instrument class. All
audio is downsampled to 16 kHz.

E.2 Baselines
We use two recent multi-track diffusion models — MSDM [10] and MSG-LD [12] — as baselines,

both of which operate on a fixed set of stems: bass, drums, guitar, and piano. In addition to
generative and inpainting performance, we assess source extraction capabilities against Demucs [29],
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which separates the mixture into bass, drums, other, and vocals stems, and AudioSep [23]],
which performs text-conditioned separation based on natural language queries.

All baseline metrics are recomputed on our test splits for fair comparison, and baseline models are
implemented as follows:

* MSDM [10]: We use the official implementation and pretrained checkpointﬂ Since MSDM
operates at 22 kHz, we upsample our 16 kHz test audio for inference and downsample the
output back to 16 kHz.

* MSG-LD [12]: As no checkpoint is publicly released, we reproduce the model by retraining
it from the official codebase ]

* HDemucs [26]: We train a 16 kHz version of Hybrid Demucs using the
demucs_lightning implmentationE]

* AudioSep [23]]: We evaluate using the publicly available implementation and checkpoint
provided by the authorsﬂ Since AudioSep operates at a sampling rate of 32 kHz, we upsam-
ple all test audio from 16 kHz to 32 kHz before inference, and subsequently downsample
the separated outputs back to 16 kHz for evaluation consistency.

E.3 Implementation Details

Our models use the Stable Audio backbone [3]], comprising an autoencoder and a DiT-based diffusion
model. To better accommodate per-track variability in the joint latent space, we replace LayerNorm
[92] with GroupNorm [93]], using three groups to reflect the number of tracks.

To bridge the audio-text modality gap, we adopt stochastic linear interpolation between audio and
text embeddings on the source track, following prior work on multimodal fusion [52,94]]. Concretely,
we generate the prompt "The sound of the { Label}" and compute the source conditioning vector
¢(®) as a convex combination of the CLAP text embedding and its corresponding audio embedding,
where the interpolation weight o ~ U([0, 1]) is sampled randomly for each training example.

All of our models — except the one trained on the full dataset combination (S4,Sp, M, , M, ) —are
trained for 200K iterations with a batch size of 64, using 16 kHz audio segments of 10.24 seconds.
The full combination model is trained for 320K iterations with a batch size of 128. During sampling
and inpainting, we apply classifier-free guidance (CFG) with a guidance scale of 2.0 and a per-track
dropout probability of p = 0.1. All diffusion-based samples — including those from baseline models —
are generated using 250 inference steps. We adopt DDIM sampling [95]] for all our models, while
each baseline uses its originally proposed sampling method.

Autoencoder. We adopt the VAE-based architecture from Stable Audio [3]], with a downsampling
ratio of 2048, yielding a 7.8125 Hz latent resolution and 64 latent channels. We train the autoencoder
on all training subsets from Slakh2100, MUSDB 18, and MoisesDB using 16 kHz mono audio for
600K steps with batch size 16.

Diffusion Model. In practice, the three latent representations are concatenated along the channel
dimension, such that the input to the diffusion model becomes Concat[z(™, z(*), 2(5)] € R3C*L,
We use a DiT backbone [15] with 24 transformer blocks with 48 heads, and a projected latent
dimension of 1536 (3 tracks x 512 each). Timestep embeddings are prepended to the input vector of
the transformer. CLAP embeddings for each track are processed by independent projection layers
(without weight sharing) to produce scale and shift parameters for AdaIN-style conditioning [96].
These are applied group-wise via GroupNorm within each DiT layer to modulate the corresponding
track-specific activations. Text embeddings are obtained from CLAP [17] using the checkpoint
music_audioset_epoch_15_esc_90.14.pt via the laion-clap libraryE] Our imple-
mentation builds upon the official stable-audio-tools repository from Stability A]E] and the

"nttps://github.com/gladia-research-group/multi-source-diffusion-models
https://github.com/karchkha/MSG-LD
*https://github.com/KinWaiCheuk/demucs_lightning
‘nttps://github.com/Audio-AGI/AudioSep

Shttps://github.com/LAION-AI/CLAP
Shttps://github.com/Stability—-AI/stable-audio-tools
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Table 5: Source extraction performance of RePaint-based methods vs. MGE-LDM. Metrics are
reported as Log-Mel L1 distance |. T indicates the number of reverse timesteps, and U specifies the
number of denoising operations per reverse step (i.e., U —1 intermediate resampling steps). The case
U = 1 corresponds to the canonical single-sample conditional score approximation [20], as described
in Appendix [B.Tl MGE-LDM uses adaptive timestep conditioning without resampling.

S A SB
B D G P Avg. Brs. CP. Org. Pipe Reed Str. S.Lead S.Pad Avg.

Model T U

%\fﬁg 250 1 1.68 271 2.69 216 231 343 216 1.84 233 3.07 244 231 193 248
S 250 I 200 320 315 283 279 475 247 279 427 465 3.06 373 280 356

125 2 1.89 275 291 268 255 433 237 667 384 427 282 364 258 381
RePaint 50 5 180 243 283 255 240 389 232 257 335 381 264 356 242 3.07

86] 25 10 177 228 280 251 234 379 231 250 3.5 371 2.66 344 240 2.99

training framework from friendly—stable—audio—toolsﬂ All models were trained on a
single NVIDIA RTX 6000 GPU (48 GB memory).

F Ablation Study

This section presents ablation experiments designed to further analyze key components of our
framework. Unless otherwise specified, all models are trained on the combined S + Sp dataset.
Each of our models is evaluated with the same configuration as in Section[3] using 7" = 250 denoising
steps during sampling.

F.1 Comparison with Canonical Inpainting Methods

We assess the effectiveness of our adaptive timestep conditioning strategy by comparing it against
two prior approaches: the canonical one-sample conditional score approximation (Appendix [B.1) and
the RePaint method [86] (Appendix [B.2). Table [5|reports the results for the source extraction task.

In RePaint, U denotes the number of denoising steps performed per reverse timestep: one denoising
step followed by U —1 forward (resampling) steps. As a result, the total number of denoising steps
becomes 1" x U during the full inpainting process. Note that setting U = 1 recovers the canonical
single-sample estimator in Eq. (8).

We observe that, for a fixed number of denoising steps, using fewer timesteps 7' with more resampling
cycles U generally improves performance, confirming observations in the original RePaint paper. We
hypothesize that repeated resampling helps stabilize conditional generation by mitigating the noise
mismatch between observed and unobserved regions, particularly at high noise levels, where observed
latents contain little informative content and single-sample approximations of Eq. (8) become highly
unreliable. While this approach does not yield a precise marginal score estimate, it heuristically
improves inpainting quality through localized refinement.

Interestingly, we also observe that RePaint configurations with larger total denoising steps — such as
T =250,U =2and T = 250, U = 4 — consistently underperform compared to 7' = 25, U = 10,
across all stems in both S 4 and Sp . This suggests that, for inpainting tasks, accurately modeling
the conditional score at each timestep is more critical than simply increasing the number of reverse
steps. As RePaint approximates the conditional score by marginalizing over perturbed conditions
via resampling, performance benefits are observed primarily through increased resampling (U), not
longer trajectories (7).

Nevertheless, our adaptive timestep model outperforms all RePaint variants across both datasets,
with the sole exception of drums in S4 . By directly learning track-specific conditional scores
during training, our method eliminates the need for inference-time marginalization, resulting in lower
variance and improved reconstruction quality.

"nttps://github.com/yukara-ikemiya/friendly-stable-audio-tools
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Table 6: Total generation performance across modeling variants. Metrics are reported as FAD |.
All models are trained on S 4 + S . The baseline model uses uniform (non-adaptive) timesteps across
all tracks. MGE variants apply adaptive timestep conditioning and test the impact of normalizations
and CFG dropout rates. Values in parentheses indicate generation conditioned on the text prompt
"The sound of the bass, drums, guitar, and piano".

Model Testset
SA SFull Mu Mo
_Non-adaptive ~~ 3.26(2.00) 0.79 5.12 451
MGE (adaptive) 3.14(2.24) 0.63 546 4.73

- w/o GroupNorm 348 (2.44) 0.76 5.61 4.88
- CFG dropout p=0.5 3.12 (2.67) 0.58 543 4.82

Table 7: Source extraction performance under different architectural and CFG settings. Metrics
are reported as Log-Mel L1 distance |. All models are trained on S4 +Sp. GN and LN denote
GroupNorm and LayerNorm, respectively. p indicates the classifier-free guidance (CFG) dropout rate
applied to each track’s conditioning vector, and s refers to the CFG guidance scale.

| Sa Sp

| B D G P Avg. Brs. C.P. Org. Pipe Reed Str. S.Lead S.Pad Avg.

Norm. p s

LN 1.67 422 265 215 2.67 342 235 197 240 345 251 232 203 255
0.5 1.78 196 2.62 1.96 2.08 337 222 197 236 289 244 207 189 240

1.0 | 1.67 279 270 2.05 230 3.24 223 185 2.25 288 228 227 187 235

40 (177 249 279 227 233 364 217 191 242 320 266 231 206 254

8.0 | 1.93 249 293 241 244 435 228 201 257 347 327 242 230 283

A potential concern is whether optimizing for adaptive timestep-conditional inference might degrade
generation quality when using uniform timestep schedules across tracks. To assess this, we evaluate
our adaptive timestep model with a uniform timestep vector 7 = (7, 7, 7), which corresponds to total
generation task, and compare it to a baseline trained with non-adaptive, shared timesteps.

As shown in Table[6] comaprining non-adaptive uniform timstep basline model and our model, both
models achieve comparable FAD scores, indicating that timestep adaptation preserves generation
performance under uniform scheduling while providing significant advantages for inpainting tasks.

F.2 Additional Design Ablations

We additionally investigate the impact of various modeling and training choices, including normaliza-
tion strategies and classifier-free guidance (CFG) dropout rates.

Table [6] includes results from models trained with LayerNorm instead of GroupNorm, following
the original DiT architecture, as well as a variant using a higher CFG dropout rate of p = 0.5. We
observe that GroupNorm slightly outperforms LayerNorm across all test sets, supporting the use of
track-wise normalization in our multi-track setting. Regarding CFG dropout, increasing the dropout
rate improves unconditional generation performance, particularly on S 4 and S . However, when
conditioned on the text prompt (values in parentheses), the model trained with p = 0.5 performs
worse, suggesting that overly aggressive dropout may impair semantic conditioning for total mixture
generation.

We further examine how modeling and training design choices—such as normalization layers, classifier-
free guidance (CFG) dropout probability, and CFG scale—affect extraction performance, and report
the results in Table [/} When comparing normalization strategies, GroupNorm consistently matches
or outperforms LayerNorm across most stems, demonstrating the advantage of modeling track-
wise statistics in our multi-track architecture. This observation aligns with trends seen in mixture
generation results. For CFG dropout, a higher dropout probability (p = 0.5) leads to improved
performance compared to the default p = 0.1, suggesting that stronger stochastic conditioning is
beneficial during source extraction. While this differs from the trend observed in mixture generation
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Table 8: Preliminary results for iterative stem-wise generation. Metrics are reported as FAD |.
Evaluation is conducted using a model trained exclusively on S 4 . Each column header indicates the
generation order of stems (e.g., BDGP denotes bass— drums— guitar— piano).

Sa
Total Gen. BDGP BDPG DBGP DBPG DGBP DPGB GPBD GPDB PDGB PGBD
MGE 047 0.60 0.66 0.78 0.75 0.70 0.77 0.61 0.66 0.63 0.60

(Table [6)), the discrepancy may be explained by the fact that, in extraction, non-target tracks are
effectively treated as unconditioned. This makes overall performance more sensitive to the model’s
ability to generalize in the presence of dropout. We also evaluate various CFG scales (1, 2, 4,
8). A scale of 1 yields the best performance overall, although scales 2 and 4 remain competitive.
Performance degrades at scale 8, indicating that overly strong guidance can impair extraction quality.

F.3 Iterative Generation Variants

Table 8] presents preliminary results for the iterative generation procedure described in Appendix [D]
applied to a model trained on S 4 . The task involves sequentially generating the four canonical stems
(bass, drums, guitar, and piano) in various orders.

Across all tested permutations, iterative generation produced higher FAD scores compared to one-
stage mixture generation, indicating a degradation in perceptual quality. Nonetheless, iterative
generation may offer utility in settings that require fine-grained, source-specific control.

An interesting trend observed: generation sequences that began with drumsconsistently resulted in
poorer performance relative to other orderings. This suggests that the model may be more effective
at first establishing harmonic or melodic content before aligning rhythmic elements. While this
observation is speculative, it highlights a potential inductive bias in the model that warrants further
investigation, particularly in scenarios beyond the four-instrument configuration.

G Limitations

While MGE-LDM provides a flexible, class-agnostic framework for multi-track audio modeling,
several limitations remain. First, all experiments are conducted using 16 kHz monaural audio, which
constrains upper-frequency resolution and omits spatial cues, thereby limiting realism for high-fidelity
or stereo music applications. Second, the model relies on CLAP-based semantic conditioning, which
introduces a modality gap between text and audio [97]. This can occasionally lead to semantic drift
during extraction

Third, although MGE-LDM reduces dependence on fixed instrument classes, it still requires multi-
stem supervision during training. This dependency restricts applicability to fully unlabeled or
large-scale web audio collections. Fourth, training on MUSDB 18 alone with the same number of
iterations as other configurations leads to overfitting, likely due to the limited duration (approximately
10 hours) of its training split. This highlights the challenge of achieving robust performance in
low-resource multi-track settings.

Finally, our model is trained using triplets (mix, submix, source) that satisfy mix = submix+ source in
waveform space; however, the latent diffusion process does not enforce an explicit additivity constraint
for generated triplets. We believe this omission contributes directly to hallucination penomena, where
the model extracts source absent from the mixture. Postolache et al. [98]] addresses a related issue
by enforcing additivity in a discrete VQ-VAQE latent space, estimating the joint likelihood of two
sources by counting codebook co-occurrences — effectively modeling p(zmix| Zsrc, s Zsre, )» Where z.
are quantized latent codes. Our current pipeline, however, operates in a continuous latent space, which
precludes the direct use of such discrete bin-counting methods. Adapting this latent-domain likelihood
formulation to continuous spaces, for example, by designing suitable regularizers or adopting a VQ-
VAE-based encoder with discrete diffusion [99-101]] or MaskGiT [69]]-style generation, represents a
promising direction for future work.
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H Future Work

Future extensions of MGE-LDM include scaling to higher-resolution formats such as 44.1 kHz
stereo audio, enabling richer timbral detail and spatial fidelity. In particular, this can be achieved by
leveraging high-quality latent representations recently developed for the music domain [[102} [103].
To reduce the modality gap in text-conditioned extraction, fine-tuning on curated audio—text datasets
like MusicCaps [660] is a promising direction. Given its minimal reliance on precise stem boundaries,
MGE-LDM is naturally suited for incorporating weakly or noisily labeled multi-track data [22,[104],
which may expand training diversity.

Another promising avenue is to pre-train MGE-LDM on large-scale mixture-only corpora such as
MTG-Jamendo [1035] or the Free Music Archive [106] to learn general audio priors for mixture tracks,
followed by fine-tuning on multi-track datasets for source-aware generation. This two-stage training
strategy is expected to enhance generative quality and improve generalization.

We also plan to extend MGE-LDM to text-based music editing tasks, drawing inspiration from recent
instruction-guided frameworks such as AUDIT [79], InstructME [80], and Instruct-MusicGen [68]].
Leveraging MGE-LDM’s latent inpainting capabilities and language-conditioned generation, this ex-
tension could enable user-directed operations such as instrument replacement and style transformation
via natural language prompts, building upon the model’s unified training scheme and class-agnostic
design.

I Spectrogram Examples of Generated Samples

We present Mel-spectrogram visualizations of generated audio samples across the three primary tasks:
total generation, partial generation (imputation), and source extraction. All examples are produced by
MGE-LDM trained on the combined Slakh2100 (S 4 +Sg ), MUSDB18 (M,, ), and MoisesDB (M,, )
datasets.

We note that the model is capable of generating vocals in the unconditional setting, as
vocalsstems are present in the training data. Although MGE-LDM does not currently support
fine-grained control over vocal generation, this points to a promising direction for future work, such
as incorporating explicit vocal prompts or segment-level control for more expressive and structured
multi-track modeling.

J Ethics Statement

This work introduces a class-agnostic generative framework for multi-track music modeling, trained
exclusively on publicly available datasets (Slakh2100, MUSDB18, and MoisesDB). While the
model enables flexible music generation, source imputation, and source extraction, it also carries
potential risks, such as unauthorized manipulation, misuse in derivative content, or generation of
audio resembling copyrighted material. To mitigate these concerns, we commit to releasing the model
and code under a license with clear usage guidelines, emphasizing responsible research and ethical
creative applications.
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Figure 2: Total generation examples. Each sample displays Mel-spectrograms of the mixture,
submixture, and source tracks, all generated simultaneously by MGE-LDM. The mixture track is
used to evaluate the total generation output.
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Figure 3: Source imputation examples. Each row illustrates source inpainting results by MGE-LDM,
conditioned on the text prompt "The sound of the { Labe1}". The middle column shows the provided
context mixture (submix), the rightmost column is the generated source, and the leftmost column
is the recombined mixture of the submix and generated source. While some stems are imputed
accurately, others fail due to data imbalance during training.
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Figure 4: Source extraction examples. Source extraction results produced by MGE-LDM, condi-
tioned on the text query "The sound of the {1abel}". The leftmost column shows the input mixture,
the middle column is the extracted source predicted by the model, and the rightmost column is the
ground-truth source. We observe that extraction quality may degrade for underrepresented classes
such as strings, and in some cases, the model hallucinates unrelated instruments or incorrect timbres.
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