
MGIC: Multigrid-in-Channels Neural Network
Architectures

Moshe Eliasof ∗ Jonathan Ephrath ∗ Lars Ruthotto † Eran Treister ∗

Abstract

Multigrid (MG) methods are effective at solving numerical PDEs in linear complex-
ity. In this work we present a multigrid-in-channels (MGIC) approach that tackles
the quadratic growth of the number of parameters with respect to the number of
channels in standard convolutional neural networks (CNNs). Indeed, lightweight
CNNs can achieve comparable accuracy to standard CNNs with fewer parameters;
however, the number of weights still scales quadratically with the CNN’s width.
Our MGIC architectures replace each CNN block with an MGIC counterpart that
utilizes a hierarchy of nested grouped convolutions of small group size to address
this. Hence, our proposed architectures scale linearly with respect to the network’s
width while retaining full coupling of the channels as in standard CNNs. Our
extensive experiments on image classification, segmentation, and point cloud clas-
sification show that applying this strategy to different architectures reduces the
number of parameters while obtaining similar or better accuracy.

1 Introduction

Convolutional neural networks (CNNs) [23] have achieved impressive accuracy for many imaging
tasks [22, 11], and numerical PDE solvers [20, 2]. The main idea behind CNNs is to define the linear
operators in the neural network as convolutions with local kernels. This increases the network’s
computational efficiency (compared to the original class of networks) due to the compact convolu-
tion operators and the considerable reduction in the number of weights. The general trend in the
development of CNNs has been to make deeper and wider networks to achieve higher accuracy [35].

In practical applications of CNNs, a network’s feature maps are divided into channels, and the
number of channels, c, can be defined as the width of the layer. A standard CNN layer connects
any input channel with any output channel. Hence, the number of convolution kernels per layer is
equal to the product of the number of input channels and output channels. Assuming the number of
output channels is proportional to the number of input channels, this O(c2) growth of operations
and parameters causes immense computational challenges. When the number of channels is large,
convolutions are the most computationally expensive part of the training and inference of CNNs.

Wide architectures exacerbate this trend with hundreds or thousands of channels, which are particu-
larly effective in classification tasks involving a large number of classes. Increasing the network’s
width is advantageous in terms of accuracy and computational efficiency compared to deeper, nar-
rower networks [48]. However, the quadratic scaling causes the number of weights to reach hundreds
of millions and beyond [18], and the computational resources (power and memory) needed for
training and running such CNNs surpasses the resources of common systems [4]. This motivates us
to follow multigrid approaches that can solve numerical PDEs in linear complexity by utilizing a
hierarchy of grids. Using the same approach, we aim to design more efficient network architectures
with competitive performance.
∗Computer-Science Department, Ben-Gurion University of the Negev. (eliasof, ephrathj@post.bgu.ac.il,

erant@cs.bgu.ac.il)
†Departments of Mathematics and Computer Science, Emory University. (lruthotto@emory.edu)

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

Algorithm 1 Multigrid-in-channels block
xl+1 = MGIC-block(xl,CNN-block, sg , sc).
xl - input feature map with cin channels.
sg: group size. sc: coarsest grid size.
CNN-block: A reference CNN block.
x(0) = xl nlevels =

⌊
log2(

cin
sc
)
⌋

for j = 0 : nlevels do
x(j+1) = Rjx

(j)

end
x(nlevels) ← CNN-block(x(nlevels))
for j = nlevels − 1 : 0 do

x(j) ← x(j) + N
(
Pj(x

(j+1) −Rjx
(j))
)

x(j) ← CNN-block(x(j), group_size = sg)
end
return xl+1 = x(0).

+

+

Restrict

Restrict

FC CNN
block

Skip connection

Skip connection

CNN
block

CNN
block

Prolong
Residual

Prolong
Residual

xl xl+1

Figure 1: A three-level multigrid block for 16 input
channels and a group size of four. Restrict and Pro-
long Residual denote grid transfer operators, which
decrease and increase the number of channels, re-
spectively. All the channels in the block are of the
same spatial resolution. Each color denotes a group
of channels that are mixed in a CNN block. The
coarsest level uses a FC CNN block.

2 Multigrid-in-channels CNN architectures

Typical CNN architectures are composed of a series of blocks

xl+1 = CNN-block(xl), (1)

where xl and xl+1 are the input and output features of the l-th block, respectively. Each CNN-
block usually contains a sequence of basic layers, with associated weights which are omitted in the
following. A convolution layer takes cin channels of feature maps, and outputs cout such channels,
meaning O(cin · cout) parameters and FLOPs. We propose to replace the CNN-block in (1) by a
novel multigrid block to obtain the forward propagation

xl+1 = MGIC-block(xl,CNN-block, sg, sc), (2)

which, as illustrated in Fig. 1, uses a hierarchy of grids in the channel space and applies the original
CNN-block on the coarsest level. The parameter sg defines the group size of the convolution operators
in these CNN-blocks, and sc is the size of the coarsest grid. As we show in Sec. A, the number of
parameters and FLOPs in the MGIC-block scale linearly with respect to the number of channels,
assuming that the group size is fixed. Note that the MGIC block is agnostic to its CNN-block, and
therefore can be used for various CNN architectures, including future ones.

2.1 The multigrid hierarchy

We design a hierarchy of grids in the channel space (also referred to as “levels”), where the number
of channels in the finest level corresponds to the original width of the network. The number of
channels is halved between the levels until reaching the coarsest level, where the number of channels
is smaller or equal to the parameter sc. Our multigrid architecture is accompanied by a CNN block,
like a ResNet block [13] which is applied on each level. On the finest and intermediate levels, we
only connect disjoint groups of channels using grouped convolutions. These convolutions have
O(sg · cin) parameters, and we keep the group size sg fixed throughout the network. Hence, as
the network widens, the number of groups grows, and the number of parameters grows linearly.
We allow interactions between all the channels on the coarsest grid, where we use the original
CNN-block without grouping. Hence, that our architecture performs more convolution layers and
non-linear activations per MGIC-block, which is designed to replace a given CNN-block, yielding
higher capacity and expressiveness at similar computational cost.

2.2 The multigrid block

Assume that the CNN-block and the MGIC-block change neither the number of channels nor the
spatial resolution of the images. That is, both xl and xl+1 in (2) have cin channels of the same spatial
resolution. Given a CNN-block, a group size sg and a coarsest grid size sc, we define the multigrid

2

Figure 2: Left to right: Top - input image, a feature map,
and its reconstructions with sg = 32, 16, 8, 4, respectively
(sc = 8). Bottom - input feature maps, their coarsest grid
representation, and their MGIC reconstruction.

sg 32 16 8 4

MSE (10−3) 11 13 17 24
Params [K] 3.3 1.8 0.9 0.4

Table 1: Feature maps reconstruction
MSE v.s. sg . sc is fixed to 8.

block in Alg. 1, and as an example we present a two-level hierarchy denoted by levels 0, 1, where
x(0) = xl are the input feature maps at the finest level (level 0). The two-level block is as follows

x(1) = R0x
(0) (3)

x(1) ← CNN-block(x(1)) (4)

x(0) ← x(0) +N (P0(x
(1) −R0x

(0))) (5)

xl+1 = CNN-block(x(0), sg) (6)

We first down-sample the channel dimension of the input feature maps x(0) in Eq. (3) by a factor
of 2, using a restriction operator R0. This operation creates the coarse feature maps x(1), which
have the same spatial resolution as x(0), but half the channels. The operator R0 is implemented
by a grouped 1 × 1 convolution; see a detailed discussion in Appendix A. Then, in Eq. (4) a non-
grouped CNN block is applied on the coarse feature maps x(1). Following that, in Eq. (5) we use a
prolongation operator P0 to up-sample the residual x(1) −R0x

(0) from the coarse level to the fine
level (up-sampling in channel space) and obtain a tensor with cin channels. Finally, in Eq. (6) we
perform a grouped CNN block. An illustration of this architecture using three levels is presented in
Fig. 1. The multilevel block is applied to reduce the channel dimension to the coarsest grid size sc.

3 Experiments

In this section, we report several experiments with our MGIC approach. Additional experiments and
details are given in Appendix B.

Coarse channels representation We wish to quantify the effectiveness of our channel down and
up sampling mechanism by measuring how well we can encode feature maps on the coarsest grid.
We sample 1, 024 images from ImageNet, and extract their feature maps from the first convolution
layer of a pre-trained ResNet-50 with 64 channels. Then, we encode and decode the feature maps
using the restriction and prolongation operators, respectively. To study the transfer operators in
isolation, we remove the CNN blocks and long skip connections in Fig. 1 from the MGIC-block. We
experiment with several values of the group size parameter sg and present the mean squared error of
the feature maps reconstruction in Tab. 1. The original feature maps and their reconstructions in Fig.
2. According to this experiment, our method is capable of faithfully representing the original channel
space (obtaining low MSE values).

Performance in function approximation We claim that if a network can faithfully approximate
a function f(~x) : Rn → R, then its capacity, or representation power is high. This property is
important, especially in applications where we wish to model implicit function via a neural networks,
such as signed-distance fields for shape reconstruction and completion [31], and solution of PDEs
[30, 33, 3, 26]. Here, we approximate the function f(x, y) = cos(x) sin(20y), given (x, y) ∈ [0, 1]2.
We use three networks – MobileNetV3 [16], GhostNet [12] and our MGIC. The results are given in
Appendix B.1 suggesting that our MGIC has higher capacity, as it yields lower MSE with a lower
number of parameters.

3

Model Params
[M]

FLOPs
[M]

Top-1
Acc.%

MNetV3-S 0.75× 2.4 44 65.4
GhostNet 0.5× 2.6 42 66.2
MGIC 0.6× 2.3 48 67.0
MNetV3-L 0.75× 4.0 155 73.3
GhostNet 1.0× 5.2 141 73.9
MGIC 1.0× 5.2 145 74.8
MNetV3-L 1.0× 5.4 219 75.2
GhostNet 1.3× 7.3 226 75.7
MGIC 1.2× 7.1 233 76.1

Table 2: Comparison of light-weight networks
on ImageNet dataset classification. MNetV3 de-
notes MobileNetV3, and our MGIC operates with
MobileNetV3 as a CNN-block.

Figure 3: Accuracy on ImageNet.

ImageNet classification on a budget of FLOPs The ImageNet [9] challenge ILSVRC 2012 consists
of over 1.28M training images and 50K validation images from 1000 categories.We use SGD
optimizer with a mini-batch size of 256 for 100 epochs with cross-entropy loss. The initial learning
rate is 0.1, divided by 10 every 30 epochs. The weight decay is 0.0001, and the momentum is 0.9.
As data augmentation, for both datasets, we resize the images to 224× 224 and use standard random
horizontal flipping and crops, as in [13]. We follow the MobileNetV3-Large [16] architecture for its
efficiency and high accuracy, and replace the standard MobileNetV3 block with our MGIC block,
configured to sg = 64, sc = 64. Three scales of networks are reported with width factors of 0.6, 1.0
and 1.2, respectively. We find that our method obtains higher accuracy, with a similar number of
FLOPs. We present our results in Fig. 3 and Tab. 2.

Point cloud classification The previous experiments were performed on structured CNNs, i.e., on
2D images. To further validate our method’s generalization and usefulness, we incorporate it in graph
convolutional networks (GCNs) to perform point cloud classification. Specifically, we use a smaller
version of the architecture from [39], where we alter the width of the last three classifier layers from
1024, 512, 256 to 64 in all of them, as described in Appendix B.4. Table 3 summarizes the results

Table 3: ModelNet-10 classification.
Backbone Params[M] FLOPs [M] Accuracy %

DGCNN [39] 0.16 125 91.6
diffGCN [10] 0.57 64 92.5
MGIC-diffGCN (ours) 0.11 13.7 92.9

4 Conclusion

We present a novel multigrid-in-channels (MGIC) approach that improves the efficiency of con-
volutional neural networks (CNN) both in parameters and FLOPs, while using easy-to-implement
structured grouped convolutions in the channel space. Applying MGIC, we achieve full coupling
through a multilevel hierarchy of the channels, at only O(c) cost, unlike standard convolution layers
that require O(c2). This property is significant and desired both to reduce training and inference
times, which also translates to a reduction in energy consumption. We also note that MGIC is most
beneficial for wide networks, which are usually favored for state-of-the-art accuracy and performance.
Our experiments for various tasks suggest that MGIC achieves comparable or superior accuracy than
other recent light-weight architectures at a given budget. Our MGIC block offers a universal approach
for producing lightweight versions of networks suitable for different kinds of CNNs, GCNs, and
traditional NNs, where fully-connected layers are applied. Furthermore, it is future-ready, meaning it
can also compress future architectures when available.

4

Acknowledgments

The research reported in this paper was supported by the Israel Innovation Authority through Avatar
consortium, and by grant no. 2018209 from the United States - Israel Binational Science Foundation
(BSF), Jerusalem, Israel. ME is supported by Kreitman High-tech scholarship.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

References

[1] M. ABADI, P. BARHAM, J. CHEN, Z. CHEN, A. DAVIS, J. DEAN, M. DEVIN, S. GHEMAWAT,
G. IRVING, M. ISARD, ET AL., Tensorflow: A system for large-scale machine learning, in 12th
{USENIX} symposium on operating systems design and implementation ({OSDI} 16), 2016,
pp. 265–283.

[2] Y. AZULAI AND E. TREISTER, Multigrid-augmented deep learning preconditioners for the
helmholtz equation, submitted, (2021).

5

[3] L. BAR AND N. SOCHEN, Strong solutions for pde-based tomography by unsupervised learning,
SIAM Journal on Imaging Sciences, 14 (2021), pp. 128–155.

[4] M. BIANCHINI AND F. SCARSELLI, On the complexity of neural network classifiers: A
comparison between shallow and deep architectures, IEEE transactions on neural networks and
learning systems, 25 (2014), pp. 1553–1565.

[5] H. CAI, L. ZHU, AND S. HAN, ProxylessNAS: Direct neural architecture search on target
task and hardware, in International Conference on Learning Representations, 2019, https:
//arxiv.org/pdf/1812.00332.pdf.

[6] L.-C. CHEN, G. PAPANDREOU, F. SCHROFF, AND H. ADAM, Rethinking atrous convolution
for semantic image segmentation, arXiv preprint arXiv:1706.05587, (2017).

[7] W. CHEN, D. XIE, Y. ZHANG, AND S. PU, All you need is a few shifts: Designing efficient
convolutional neural networks for image classification, in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 7241–7250.

[8] M. CORDTS, M. OMRAN, S. RAMOS, T. REHFELD, M. ENZWEILER, R. BENENSON,
U. FRANKE, S. ROTH, AND B. SCHIELE, The cityscapes dataset for semantic urban scene
understanding, in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[9] J. DENG, W. DONG, R. SOCHER, L.-J. LI, K. LI, AND L. FEI-FEI, ImageNet: A Large-Scale
Hierarchical Image Database, in CVPR09, 2009.

[10] M. ELIASOF AND E. TREISTER, Diffgcn: Graph convolutional networks via differential
operators and algebraic multigrid pooling, Advances in Neural Information Processing Systems
(NeurIPS), (2020).

[11] R. GIRSHICK, J. DONAHUE, T. DARRELL, AND J. MALIK, Rich feature hierarchies for
accurate object detection and semantic segmentation, in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2014, pp. 580–587.

[12] K. HAN, Y. WANG, Q. TIAN, J. GUO, C. XU, AND C. XU, GhostNet: More features from
cheap operations, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 1580–1589.

[13] K. HE, X. ZHANG, S. REN, AND J. SUN, Deep residual learning for image recognition,
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 770–778.

[14] Y. HE, J. LIN, Z. LIU, H. WANG, L.-J. LI, AND S. HAN, Amc: Automl for model compression
and acceleration on mobile devices, in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 784–800.

[15] Y. HE, X. ZHANG, AND J. SUN, Channel pruning for accelerating very deep neural networks,
in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 1389–1397.

[16] A. HOWARD, M. SANDLER, G. CHU, L.-C. CHEN, B. CHEN, M. TAN, W. WANG, Y. ZHU,
R. PANG, V. VASUDEVAN, ET AL., Searching for MobileNetv3, in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 1314–1324.

[17] A. G. HOWARD, M. ZHU, B. CHEN, D. KALENICHENKO, W. WANG, T. WEYAND, M. AN-
DREETTO, AND H. ADAM, MobileNets: Efficient convolutional neural networks for mobile
vision applications, arXiv preprint arXiv:1704.04861, (2017).

[18] Y. HUANG, Y. CHENG, A. BAPNA, O. FIRAT, D. CHEN, M. CHEN, H. LEE, J. NGIAM,
Q. V. LE, Y. WU, ET AL., Gpipe: Efficient training of giant neural networks using pipeline
parallelism, in Advances in Neural Information Processing Systems, 2019, pp. 103–112.

[19] Z. HUANG AND N. WANG, Data-driven sparse structure selection for deep neural networks, in
Proceedings of the European conference on computer vision (ECCV), 2018, pp. 304–320.

[20] Y. KHOO AND L. YING, Switchnet: a neural network model for forward and inverse scattering
problems, SIAM Journal on Scientific Computing, 41 (2019), pp. A3182–A3201.

[21] A. KRIZHEVSKY AND G. HINTON, Learning multiple layers of features from tiny images,
(2009).

6

https://arxiv.org/pdf/1812.00332.pdf
https://arxiv.org/pdf/1812.00332.pdf

[22] A. KRIZHEVSKY, I. SUTSKEVER, AND G. E. HINTON, Imagenet classification with deep
convolutional neural networks, in Advances in Neural Information Processing Systems, 2012,
pp. 1097–1105.

[23] Y. LECUN, B. E. BOSER, AND J. S. DENKER, Handwritten digit recognition with a back-
propagation network, in Advances in neural information processing systems, 1990, pp. 396–404.

[24] H. LI, A. KADAV, I. DURDANOVIC, H. SAMET, AND H. P. GRAF, Pruning filters for efficient
ConvNets, in Proceedings of the International Conference on Learning Representations (ICLR),
2017.

[25] Z. LIU, H. MU, X. ZHANG, Z. GUO, X. YANG, K.-T. CHENG, AND J. SUN, Metapruning:
Meta learning for automatic neural network channel pruning, in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 3296–3305.

[26] L. LU, X. MENG, Z. MAO, AND G. E. KARNIADAKIS, Deepxde: A deep learning library for
solving differential equations, SIAM Review, 63 (2021), pp. 208–228.

[27] J.-H. LUO, J. WU, AND W. LIN, Thinet: A filter level pruning method for deep neural network
compression, in Proceedings of the IEEE International Conference on Computer Vision (ICCV),
2017, pp. 5058–5066.

[28] N. MA, X. ZHANG, H.-T. ZHENG, AND J. SUN, ShuffleNet V2: Practical guidelines for
efficient CNN architecture design, in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 116–131.

[29] P. MOLCHANOV, A. MALLYA, S. TYREE, I. FROSIO, AND J. KAUTZ, Importance estimation
for neural network pruning, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 11264–11272.

[30] G. PANG, L. LU, AND G. E. KARNIADAKIS, fpinns: Fractional physics-informed neural
networks, SIAM Journal on Scientific Computing, 41 (2019), pp. A2603–A2626.

[31] J. J. PARK, P. FLORENCE, J. STRAUB, R. NEWCOMBE, AND S. LOVEGROVE, Deepsdf:
Learning continuous signed distance functions for shape representation, in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 165–174.

[32] A. PASZKE, S. GROSS, S. CHINTALA, G. CHANAN, E. YANG, Z. DEVITO, Z. LIN, A. DES-
MAISON, L. ANTIGA, AND A. LERER, Automatic differentiation in pytorch, in Advances in
Neural Information Processing Systems, 2017.

[33] M. RAISSI, P. PERDIKARIS, AND G. E. KARNIADAKIS, Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations, Journal of Computational Physics, 378 (2019), pp. 686–707.

[34] M. SANDLER, A. HOWARD, M. ZHU, A. ZHMOGINOV, AND L.-C. CHEN, MobileNetV2:
Inverted residuals and linear bottlenecks, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 4510–4520.

[35] C. SZEGEDY, W. LIU, Y. JIA, P. SERMANET, S. REED, D. ANGUELOV, D. ERHAN, V. VAN-
HOUCKE, AND A. RABINOVICH, Going deeper with convolutions, in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 1–9.

[36] M. TAN, B. CHEN, R. PANG, V. VASUDEVAN, M. SANDLER, A. HOWARD, AND Q. V. LE,
Mnasnet: Platform-aware neural architecture search for mobile, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp. 2820–2828.

[37] E. TREISTER AND I. YAVNEH, On-the-fly adaptive smoothed aggregation multigrid for markov
chains, SIAM Journal on Scientific Computing, 33 (2011), pp. 2927–2949.

[38] U. TROTTENBERG, C. W. OOSTERLEE, AND A. SCHULLER, Multigrid, Elsevier, 2000.

[39] Y. WANG, Y. SUN, Z. LIU, S. E. SARMA, M. M. BRONSTEIN, AND J. M. SOLOMON,
Dynamic graph cnn for learning on point clouds, ACM Transactions on Graphics (TOG),
(2019).

[40] Y. WANG, C. XU, X. CHUNJING, C. XU, AND D. TAO, Learning versatile filters for efficient
convolutional neural networks, in Advances in Neural Information Processing Systems, 2018,
pp. 1608–1618.

7

[41] B. WU, X. DAI, P. ZHANG, Y. WANG, F. SUN, Y. WU, Y. TIAN, P. VAJDA, Y. JIA,
AND K. KEUTZER, Fbnet: Hardware-aware efficient convnet design via differentiable neural
architecture search, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 10734–10742.

[42] B. WU, A. WAN, X. YUE, P. JIN, S. ZHAO, N. GOLMANT, A. GHOLAMINEJAD, J. GONZA-
LEZ, AND K. KEUTZER, Shift: A zero flop, zero parameter alternative to spatial convolutions,
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 9127–9135.

[43] Z. WU, S. SONG, A. KHOSLA, F. YU, L. ZHANG, X. TANG, AND J. XIAO, 3d shapenets: A
deep representation for volumetric shapes, in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 1912–1920.

[44] S. XIE, R. GIRSHICK, P. DOLLÁR, Z. TU, AND K. HE, Aggregated residual transformations
for deep neural networks, in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 1492–1500.

[45] I. YAVNEH AND G. DARDYK, A multilevel nonlinear method, SIAM journal on scientific
computing, 28 (2006), pp. 24–46.

[46] J. YU, L. YANG, N. XU, J. YANG, AND T. HUANG, Slimmable neural networks, arXiv preprint
arXiv:1812.08928, (2018).

[47] R. YU, A. LI, C.-F. CHEN, J.-H. LAI, V. I. MORARIU, X. HAN, M. GAO, C.-Y. LIN,
AND L. S. DAVIS, Nisp: Pruning networks using neuron importance score propagation, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 9194–9203.

[48] S. ZAGORUYKO AND N. KOMODAKIS, Wide residual networks, in Proceedings of the British
Machine Vision Conference (BMVC), E. R. H. Richard C. Wilson and W. A. P. Smith,
eds., BMVA Press, September 2016, pp. 87.1–87.12, https://doi.org/10.5244/C.30.87,
https://dx.doi.org/10.5244/C.30.87.

[49] X. ZHANG, X. ZHOU, M. LIN, AND J. SUN, ShuffleNet: An extremely efficient convolutional
neural network for mobile devices, in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 6848–6856.

[50] D. ZHOU, Q. HOU, Y. CHEN, J. FENG, AND S. YAN, Rethinking bottleneck structure for
efficient mobile network design, ECCV, August, 2 (2020).

A Multigrid-in-channels CNN architectures

In this following section, we provide details about the design and implementation of our method.

The choice of transfer operators P and R

The transfer operators play an important role in multigrid methods. In classical methods, the restriction
R maps the fine-level state of the iterative solution onto the coarse grid, and the prolongation P
acts in the opposite direction, interpolating the coarse solution back to the fine grid. Clearly, in the
coarsening process we lose information, since we reduce the dimension of the problem and the state
of the iterate. The key idea is to design P and R such that the coarse problem captures the subspace
that is causing the fine-grid process to be inefficient. This results in two complementary processes:
the fine-level steps (dubbed as relaxations in multigrid literature), and the coarse grid correction.

To keep the computations low, at the j-th level we choose Rj to be a grouped 1 × 1 convolution
that halves the number of channels of its operand. We choose Pj to have the transposed structure of
Rj . For Rj and Pj we choose the same number of groups as in the CNN-block , e.g., for R0 it will
be cin

sg
groups. The operators Rj take groups of channels of size sg and using a 1× 1 convolution

distills the information to sg
2 channels. Similarly, the operators Pj interpolate the coarse channels

back to the higher channel dimension using grouped 1× 1 convolutions. This choice for the transfer
operators corresponds to aggregation-based multigrid coarsening [37], where aggregates (groups)
of variables are averaged to form a coarse grid variable. In Sec. 3, we exemplify that the transfer
operators preserve essential information of all channels.

8

https://doi.org/10.5244/C.30.87
https://dx.doi.org/10.5244/C.30.87

The weights of the transfer operators are learned as part of the optimization, and are initialized by
positive weights with row-sums of 1. The purpose of this initialization is that the feature maps will
not vanish as we multiply them by consecutive restrictions Rj to start the MGIC-block.

The importance of up-sampled residuals

Adding the up-sampled residual in (5) is the standard way to apply multigrid methods to solve
non-linear problems [38, 45]. Here, it allows us to have a skip connection between corresponding
levels of the multigrid, introducing an identity mapping in (5) as guided by [13]. To prevent exploding
gradients by feature maps summation, at each level j we up-sample only a residual defined by
subtracting the matching feature maps before and after traversing the levels j+1, . . . , nlevels. By this
definition, if the CNN-block has an identity mapping, then so does the whole MGIC-block in Alg. 1.

Changing the channel resolution blocks

The structure of the MGIC block as in Fig. 1 is more natural to equal input and output channel sizes,
i.e., cin = cout. Hence, when we wish to change the number of channels , we define a lightweight
shortcut that is designed to transform a tensor from cin to cout such that our MGIC-blocks will be
given an input where cin = cout. Specifically, to obtain low computational cost, we use a depth-wise
3× 3 convolution, although other alternatives such as a 1× 1 convolution are also possible. In case
we wish to change the spatial dimensions of the input tensor, we perform the same operation, only
with a stride of 2.

The complexity of the MGIC-block

Consider a case where we have c = cin = cout channels in the network, and we apply a standard
convolution layer using d × d convolution kernels (e.g., a 3 × 3 kernel). The output consists of c
feature maps, where each one is a sum of the c input maps, each convolved with a kernel. Hence, such
a convolution layer requires O(c2 · d2) parameters, inducing a quadratic growth in the parameters
and FLOPs.

Relaxation cost per level

On each level of an MGIC block, a relaxation step is performed. At the j-th level, this relaxation
step is realized by a grouped convolution of kernel size d× d, with a group size of sg that divides
c
2j (since at each level we halve the channels space, starting from c channels), yielding c

sg·2j groups.

Therefore, the number of parameters required for such relaxation step is sg·c·d2

2j . At the coarsest level,
we have sc channels which perform a fully-coupled relaxation step, requiring sc · d2 parameters.

The cost of restriction and prolongation

As discussed in Sec. A, the restriction and prolongation operators are implemented via grouped 1× 1
convolutions, halvening and doubling the feature space dimension, respectively. Those operators are
learned at each level of our MGIC block. Therefore, the number of parameters for those operators at
the j-th level is c

2j . The analysis here is similar to the case of the relaxtion steps, only here d = 1,
and we have no fully-coupled operators on the coarsest level.

The total cost of an MGIC block

Combining the analysis from the paragraphs above, the total number of parameters for an MGIC
block with n levels is as follows:

n−1∑
j=0

(
sg · c · (d2 + 1)

2j

)
+ s2c · d2 < 2

(
sg · c · (d2 + 1)

)
+ s2c · d2. (7)

If sc is small (typically, we choose sc = sg) , we can neglect the term s2c ·d2 to obtainO(sg ·c·(d2+1))
parameters. Therefore, since sg and sc are fixed and small, and the spatial dimension of the learned
relaxation step convolution kernel size d is typically of small size (3, 5, or 7), our method scales
linearly with respect to the network’s width. This will be most beneficial if c is large, which is typical
in and usually required in order to obtain state-of-the-art performance on various tasks as in discussed
in Sec. 1.

9

Table 4: Network architecture used in the implicit function representation experiment. – denotes a
non-applicable parameter. α denotes a width-multiplier. BN denotes a batch-normalization operator.
CNN-block can be any block (e.g., MGIC-block). n denotes the number of points.

Input Operations Expansion cout

n× 2 1× 1 Conv, BN, ReLU – 16
n× 16 CNN-block 2 α · 160
n× α · 160 CNN-block 2 α · 160
n× α · 160 1× 1 Conv, BN, ReLU – 64
n× 64 1× 1 Conv, BN, ReLU – 2

Memory footprint

During training, the memory footprint of MGIC is roughly twice larger than a single CNN block
since all the maps in the hierarchy are saved for backpropagation. However, during inference (which
is more important here), the coarser feature maps are released while going up the hierarchy. When
applying the upmost CNN block, the memory footprint is identical to a single block. Following the
complexity analysis above, all the feature maps {x(l)} require about ×2 the memory of x(0), but
the memory footprint of a CNN block can be higher than that. For example, some MobileNets[16]
involve an inverse bottleneck with ×6 expansion rendering it more than three times as expensive as
the additional MGIC overhead.

B Experiments

In this section we elaborate on the experiments in the main paper, and also report on additional
experiments that are carried to verify the effectiveness of our MGIC method. We conduct an
additional proof-of-concept experiment, measuring how good our MGIC is capable of approximating
implicit functions. Then, we test our method on image classification and segmentation and point
cloud classification benchmarks. Our goal is to compare how different architectures perform using
a relatively small number of parameters, aiming to achieve similar or better results with fewer
parameters and FLOPs. We train all our models using an NVIDIA Titan RTX and implement our
code using the PyTorch software [32]. The details of the architectures that we use throughout this
section are given in the supplementary material.

B.1 Performance in function approximation

We study the capacity of our network by experimenting its efficacy in function approximation in a
supervised learning setup. We claim that if a network can faithfully approximate a function f(~x) :
Rn → R, then its capacity, or representation power is high. This property is important, especially in
applications where we wish to model implicit function via a neural networks, such as signed-distance
fields for shape reconstruction and completion [31], and solution of PDEs [30, 33, 3, 26]—these works
in particular approximate functions in an unsupervised manner. Here, we wish to approximate the
function f(x, y) = cos(x) sin(20y), given (x, y) ∈ [0, 1]2. We use three networks – MobileNetV3
[16], GhostNet [12] and our MGIC. Since the input is a vector of two scalars (treated as channels
of size 1), the convolution kernels are effectively only 1 × 1 convolutions. (Note that in any case
these are the dominant operations in all the networks and are the driving force of neural network in
general.) Throughout all the experiments, we used the network described in Tab. 4, where CNN-block
is replaced with the respective method, with α = 0.6, 0.8, 1.2. The settings of this experiments are as
follows: we sample 50, 000 points from the surface of f and train each network for 1, 000 epochs
with a batch size of 128 points, using the SGD optimizer with a constant learning rate of 0.0001. The
loss function is the mean squared error (MSE). The results, summarized in Fig. 4 suggest that our
MGIC has higher capacity, as it yields lower MSE with a lower number of parameters.

B.2 Image classification

We compare our approach with a variety of popular and recent networks like ResNet-50 [13],
MobileNetV3 [16] and GhostNet [12] for image classification on the CIFAR10 and ImageNet

10

Figure 4: Reconstruction of f(x, y) = cos(x) sin(20y) with MobileNetV3, GhostNet and our MGIC.
Metric is in MSE as function of number of parameters.

datasets. We use SGD optimizer with a mini-batch size of 256 for ImageNet, and 128 for CIFAR-10,
both for 100 epochs. Our loss function is cross-entropy. The initial learning rates for CIFAR-10
and ImageNet are 0.001 and 0.1, respectively. We divide them by 10 every 30 epochs. The weight
decay is 0.0001, and the momentum is 0.9. As data augmentation, for both datasets, we use standard
random horizontal flipping and crops, as in [13].

B.2.1 CIFAR-10

The CIFAR-10 dataset [21] consists of 60K natural images of size 32× 32 with labels assigning each
image into one of ten categories. The data is split into 50K training and 10K test sets. Here, we use a
ResNet-56 [13] architecture together with our MGIC block, with parameters sg = 8, sc = 16. We
compare our method with other recent and popular architectures such as AMC-ResNet-56 [14] and
Ghost-ResNet-56 [12], and our baseline is the original ResNet-56. We report our results in Tab. 5,
where we see large improvement over existing methods, while retaining low number of parameters
and FLOPs.

Table 5: Comparison of state-of-the-art methods for compressing ResNet-56 on CIFAR-10. - indicates
unavailable results.

Architecture Params [M] FLOPs [M] Test acc.

ResNet-56 [13] 0.85 125 93.0%
CP-ResNet-56 [15] - 63 92.0%
`1 -ResNet-56 [24] 0.73 91 92.5%
AMC-ResNet-56 [14] - 63 91.9%
Ghost-ResNet-56 [12] 0.43 63 92.7%
MGIC-ResNet-56 (ours) 0.41 60 94.2%

B.2.2 ImageNet

ResNet-50 compression

We compress the ResNet-50 architecture, and compare our MGIC approach with other methods. As
the goal of this experiment is to compress a standard ResNet-50 [13], we follow the exact architecture
of the latter, only replacing each ResNet block layer by an MGIC-ResNet block, denoted as MGIC(·),
as depicted in Tab. 6. The results are reported in Tab. 7, where we propose three variants of our
MGIC-ResNet-50 network, differing in the sg and sc parameters. Our results outperform the rest of
the considered methods, and our network with sg = 64, sc = 64 also outperforms ResNeXt-50 [44]

11

Table 6: MGIC-ResNet50 architecture. MGIC (·) is the MGIC version of the given block. Conv2D is
a 2D convolution layer followed by a BatchNorm operation and a ReLU non-linear activation. # Rep
is the number of block repetitions. cout denotes the number of output channels. A maxpool operation
occurs after every convolution and MGIC layer.

Input Layer # Rep cout

2242 × 3 Conv2D 7× 7 1 64
1122 × 64 Conv2D 3× 3 1 64

1122 × 64 MGIC

([
1× 1 , 64
3× 3 , 64
1× 1 , 256

])
3 256

562 × 256 MGIC

([
1× 1 , 128
3× 3 , 128
1× 1 , 512

])
4 512

282 × 512 MGIC

([
1× 1 , 256
3× 3 , 256
1× 1 , 1024

])
6 1024

142 × 1024 MGIC

([
1× 1 , 512
3× 3 , 512
1× 1 , 2048

])
3 2048

72 × 2048 AvgPool2D 7× 7 1 2048
12 × 2048 FC 1 1000

Table 7: Comparison of state-of-the-art methods for compressing ResNet-50 on ImageNet dataset.

Model Params
[M]

FLOPs
[B]

Top-1
Acc.%

Top-5
Acc.%

ResNet-50 [13] 25.6 4.1 75.3 92.2

Thinet-ResNet-50 [27] 16.9 2.6 72.1 90.3
NISP-ResNet-50-B [47] 14.4 2.3 - 90.8
Versatile-ResNet-50 [40] 11.0 3.0 74.5 91.8
SSS-ResNet-50 [19] - 2.8 74.2 91.9
Ghost-ResNet-50 [12] 13.0 2.2 75.0 92.3
MGIC-ResNet-50 (sg = 32, sc = 64) (ours) 9.4 1.6 75.8 92.9
MGIC-ResNet-50 (sg = 64, sc = 64) (ours) 15.1 2.5 77.9 93.7
Shift-ResNet-50 [42] 6.0 - 70.6 90.1
Taylor-FO-BN-ResNet-50 [29] 7.9 1.3 71.7 -
Slimmable-ResNet-50 0.5× [46] 6.9 1.1 72.1 -
MetaPruning-ResNet-50 [25] - 1.0 73.4 -
Ghost-ResNet-50 (s=4) [12] 6.5 1.2 74.1 91.9
MGIC-ResNet-50 (sg = 16, sc = 64) (ours) 6.2 1.0 74.3 92.0

(25.0M parameters, 4.2B FLOPs, 77.8% top-1 accuracy), which is not shown in the table because the
ResNeXt architecture utilizes more channels than ResNet-50 and therefore is not directly comparable.

Image classification on a budget of FLOPs

In this experiment we compare our approach with recent light networks. In particular, we follow the
MobileNetV3-Large [16] architecture for its efficiency and high accuracy, and replace the standard
MobileNetV3 block with our MGIC block. Our building blocks are MGIC-Bottlenecks (dubbed
MGIC-bneck). That is, we build a MGIC version of the bottleneck from MobileNetV3. Our MGIC-
MobileNetV3 is given in Tab. 9. Note, this is the ×1.0 version, and can be modified via the width
multiplier α. Our parameter sg controls the group size – therefore it determines the number of groups
in each MGIC bottleneck. We denote the number of output channels by cout and the number of
hidden channels within a block (the dimension of the square operator Kl2 in a the block (??)), also

12

Table 8: Comparison of state-of-the-art light-weight networks on ImageNet dataset classification.

Model Params
[M]

FLOPs
[M]

Top-1
Acc.%

Top-5
Acc.%

ShuffleNetV1 0.5× (g=8) [49] 1.0 40 58.8 81.0
MobileNetV2 0.35× [34] 1.7 59 60.3 82.9
ShuffleNetV2 0.5× [28] 1.4 41 61.1 82.6
MobileNeXt 0.35× [50] 1.8 80 64.7 -
MobileNetV3-Small 0.75× [16] 2.4 44 65.4 -
GhostNet 0.5× [12] 2.6 42 66.2 86.6
MGIC-MobileNetV3 0.6× (ours) 2.3 48 67.0 87.3
MGIC-MobileNetV3 0.6× (ours) no h–swish 2.3 45 66.8 86.9
MobileNetV1 0.5× [17] 1.3 150 63.3 84.9
MobileNetV2 0.6× [34] 2.2 141 66.7 -
ShuffleNetV1 1.0× (g=3) [49] 1.9 138 67.8 87.7
ShuffleNetV2 1.0× [28] 2.3 146 69.4 88.9
MobileNeXt 0.75× [50] 2.5 210 72.0 -
MobileNetV3-Large 0.75× [16] 4.0 155 73.3 -
GhostNet 1.0× [12] 5.2 141 73.9 91.4
MGIC-MobileNetV3 1.0× (ours) 5.2 145 74.8 92.0
MGIC-MobileNetV3 1.0× (ours) no h–swish 5.2 138 74.3 91.6
MobileNetV2 1.0× [34] 3.5 300 71.8 91.0
ShuffleNetV2 1.5× [28] 3.5 299 72.6 90.6
FE-Net 1.0× [7] 3.7 301 72.9 -
FBNet-B [41] 4.5 295 74.1 -
ProxylessNAS [5] 4.1 320 74.6 92.2
MnasNet-A1 [36] 3.9 312 75.2 92.5
MobileNeXt 1.0× [50] 3.4 300 74.0 -
MobileNetV3-Large [16] 1.0× 5.4 219 75.2 -
GhostNet 1.3× [12] 7.3 226 75.7 92.7
MGIC-MobileNetV3 1.2× (ours) 7.1 233 76.1 93.2
MGIC-MobileNetV3 1.2× (ours) no h–swish 7.1 217 76.2 93.4

referred to as the expansion size, by #exp. In case cout and #exp are not divisible by sg, we set
sg to the closest (smaller) integer to its intended value such that it divides them. For example, in
our experiments we set sg = 64, and for the network defined in Tab. 9, the 5th MGIC-bneck layer
has #exp = 120 and cout = 40, meaning they do not divide by 64. Therefore we modify sg to be
the largest integer that is smaller than 64 and divides both #exp and cout, giving sg = 40 in this
example. Our experiment is divided into three scales - small, medium, and large, where we scale
our networks with width factors of 0.6, 1.0 and 1.2, respectively. We find that our method obtains
higher accuracy, with a similar number of FLOPs, as depicted from the results in Tab. 8 and Fig. 3.
Specifically, we compare our methods with and without the use of the h–swish activation function
[16], where we see similar results. Compared to other popular and recent methods like MobileNetV3,
GhostNet and ShuffleNetV2, we obtain better accuracy given the same FLOPs.

Inference times. We measure the single thread inference times on one image using lightweight
models on a Samsung Galaxy S8 mobile device (using the TFLite tool [1]), and an Intel i9-9820X
CPU—see Tab. 10 (averaged over 50 inferences). We observe that at least by these timings, the
runtime of MGIC is on par with the considered architectures while obtaining higher accuracy.

B.3 Image semantic segmentation

We compare our method with MobileNetV3 on semantic segmentation on the Cityscapes [8] dataset.
For the encoder part of the network, we build large and small variants, based on MobileNetV3-Large
and MobileNetV3-Small, described in Tables 1-2 in [16], respectively. We also utilize the same
LR-ASPP segmentation head and follow the observations from [16]. Namely, we reduce the number
of channels in the last block of our networks by a factor of two and use 128 filters in the segmentation

13

Table 9: MGIC-MobileNetV3 architecture. MGIC-bneck denotes a MGIC-Bottleneck . The bot-
tleneck is the same as in MobileNetV3, only in a multigrid-in-channels form. Conv2D is a 2D
convolution layer followed by a BatchNorm operation and a ReLU non-linear activation. # exp
denotes the expansion size. cout denotes the number of output channels. SE stands for Squeeze-Excite.
Pool denotes a maxpool operation, reducing the spatial size of the input . - denotes a non-applicable
option. Xand × denote True and False, respectively.

Input Operation # exp cout SE Pool

2242 × 3 Conv2D 3× 3 16 - × X
1122 × 16 MGIC-bneck 16 16 × ×
1122 × 16 MGIC-bneck 48 24 × X
562 × 24 MGIC-bneck 72 24 × ×
562 × 24 MGIC-bneck 72 40 X X
282 × 40 MGIC-bneck 120 40 X ×
282 × 40 MGIC-bneck 240 80 × X
142 × 80 MGIC-bneck 200 80 × ×
142 × 80 MGIC-bneck 184 80 × ×
142 × 80 MGIC-bneck 184 80 × ×
142 × 80 MGIC-bneck 480 112 X ×
142 × 112 MGIC-bneck 672 112 X ×
142 × 112 MGIC-bneck 672 160 X X
72 × 160 MGIC-bneck 960 160 × ×
72 × 160 MGIC-bneck 960 160 X ×
72 × 160 MGIC-bneck 960 160 × ×
72 × 160 MGIC-bneck 960 160 X ×
72 × 160 Conv2D 1× 1 - 960 × ×
72 × 960 AvgPool 7× 7 - 960 × ×
12 × 960 Conv2D 1× 1 - 1280 × ×
12 × 1280 FC - 1000 × ×

Table 10: Inference runtime of state-of-the-art small networks on a Samsung Galaxy S8 mobile
device and a PC CPU

Metric MobileNetV2
1.0x

MobileNetV3
0.75x

GhostNet
1.0x

MGIC
MobileNetV3

1.0x

Accuracy [%] 71.8 73.3 73.9 74.8
Mobile runtime [ms] 795 418 487 480
PC runtime [ms] 130 140 170 172

head. For training, we use the same data augmentation and optimization approach as in [6]. The
results are shown in Tab. 11, where report the mean intersection over union (mIoU) metric of our
MGIC-Large with sg = 64 and sg = 32. We note that the results for the former are slightly better
than those of MobileNetV3, while the performance of the latter are more favorble as they offer similar
accuracy for less FLOPs and parameters. In addition, we read similar accuracy when using our
MGIC-Small with sg = 64.

B.4 Point cloud classification

We define the architecture in Tab. 12, where G-conv denotes a graph convolution layer, according to
the methods listed in Tab. 3, followed by a BatchNorm operation and a ReLU non-linear activation.
MLP is realized by a simple 1 × 1 convolution followed by a BatchNorm operation and a ReLU
non-linear activation. FC is a fully connected layer. In all networks, we define the adjacency matrix
using the k-NN algorithm with k = 10 .Then, we replace the GCN block with each of the backbones

14

Table 11: Segmentation results on Cityscapes dataset. Metric is in mean intersection over union.
Backbone Params[M] FLOPs [B] mIoU %

MobileNetV3-Large 1.51 9.74 72.64
MobileNetV3-Small 0.47 2.90 68.38
MGIC-Large sg = 64 (ours) 1.67 9.62 72.69
MGIC-Large sg = 32 (ours) 1.32 8.87 71.02
MGIC-Small sg = 64 (ours) 0.48 2.73 68.52

listed in Tab. 3, where we also report their performance on point-cloud classification on ModelNet-10
[43] benchmark where we sample 1, 024 points from each shape.

Table 12: Graph neural network for point cloud classification. G-conv is a graph convolution layer.
MLP is a multi-layer perceptron. MaxPool is a global max-pooling layer. cout denotes the number of
output channels. × denotes the number of repetitions of the respective layer.

Input Operation cout

1024× 3 G-conv 64
1024× 64 2 × G-conv 64
1024× 64 MLP 64
1024× 64 3 × G-conv 64
1024× 64 MLP 64
1024× 64 MaxPool 64
1× 64 3 ×MLP 64
1× 64 FC 10

B.5 Ablation study

To determine the impact of the parameters sg and sc, we experiment on CIFAR-10 for image
classification. First, we fix sg to 16 and observe how the number of parameters, FLOPs, and accuracy
of MGIC-ResNet-56 change. Secondly, we fix sc to 16, while modifying sg , and examine our model’s
behavior. Our conclusion from the results reported in Tab. 13, is that a growth in sg or sc yields
better accuracy at the cost of more parameters and flops, since an increased communication between
the channels is allowed. However, we also note that in this experiment, an increase of sc past 16 or sg
past 8 does not yield significant accuracy improvement. Thus, it suggests that our method is capable
of faithfully reducing the feature space given a budget of parameters or FLOPs.

Table 13: Influence of sc and sg in our MGIC framework on ResNet-56 architecture and CIFAR-10
dataset. sg is fixed to 16.

sc sg Params[M] FLOPs [M] Accuracy %

64 16 0.53 91 94.7
32 16 0.5 76 94.6
16 16 0.47 65 94.3

16 32 0.79 100 94.8
16 16 0.53 85 94.7
16 8 0.41 60 94.2
16 4 0.29 45 92.8

15

	Introduction
	Multigrid-in-channels CNN architectures
	The multigrid hierarchy
	The multigrid block

	Experiments
	Conclusion
	Multigrid-in-channels CNN architectures
	Experiments
	Performance in function approximation
	Image classification
	CIFAR-10
	ImageNet

	Image semantic segmentation
	Point cloud classification
	Ablation study

