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Abstract

Generative world models excel at synthesizing plausi-001
ble visual sequences but still fall short in capturing the002
continuous 4D structure of real environments. We in-003
troduce UNICST, a unified 4D latent world model that004
jointly learns Continuous Spatio-Temporal representations005
with minimal inductive bias, enabling seamless, spatio-006
temporally coherent video generation. Built on a next-007
scale latent prediction paradigm, UNICST constructs its008
4D latent hierarchy in a coarse-to-fine fashion thus achiev-009
ing near real-time speeds. This makes it ideally suitable010
for controllable 4D generation and downstream embod-011
ied tasks. Extensive experiments on large-scale driving012
datasets demonstrate that UNICST outperforms state-of-013
the-art methods in both visual fidelity and inference latency,014
establishing a new baseline for practical world modeling in015
autonomous systems.016

1. Introduction017

Next-token prediction has become a key recipe in building018
Artificial General Intelligence (AGI), especially in language019
domains [9, 30, 37]. However, extending this paradigm020
to physical intelligence—which underlies embodied agents021
like autonomous vehicles and robots—poses unique and022
significant challenges. Unlike textual or symbolic domains,023
the physical world exists in continuous 4D space and is gov-024
erned by rigid physical laws, spatial geometric constraints,025
and multimodal sensory signals. Developing world founda-026
tion models (WFMs) [8, 25, 40, 54, 55] that can simulate027
and reason about such environments demands a coherent028
understanding of vision, geometry, motion, and interaction.029

Recent progress in visual generative models [1, 3, 8, 25,030
55] has demonstrated impressive capabilities in synthesiz-031
ing plausible video sequences from text, motion cues, or032
visual prompts, primarily enabled by large-scale pretrain-033
ing on internet-scale corpora. However, these models of-034
ten lack proper grounding in physical and geometric con-035

straints, limiting their applicability in domains that demand 036
physical plausibility, like robotics and autonomous driving. 037

To address these shortcomings, recent approaches have 038
introduced explicit geometric conditioning, incorporating 039
structured inputs such as 3D bounding boxes, HD maps, 040
depth maps, 3D occupancy, and LiDAR [31, 33, 49, 68, 71, 041
78]. While these techniques enhance realism under con- 042
strained settings, they typically require accurate annotations 043
and involve complex pre-processing pipelines, which limit 044
their scalability to heterogeneous or unlabeled datasets. 045
Moreover, such models often suffer from limited flexibility 046
due to strong inductive biases—such as assumptions about 047
adjacent camera views [19, 75, 78] or reliance on structured 048
3D video tokenizer [55, 62]—that reduce generalizability 049
across diverse real-world scenarios. In addition, most exist- 050
ing models depend heavily on video diffusion or pixel-wise 051
autoregressive generation methods. Although these tech- 052
niques yield high-quality visual outputs, they incur substan- 053
tial computational costs and suffer from prohibitively slow 054
inference speeds, which significantly hinder their suitability 055
for real-time simulation, interactive applications, or down- 056
stream control tasks. 057

To achieve true spatial intelligence, we argue for a uni- 058
fied architectural framework that minimizes inductive bias 059
while retaining physical meaning. Such a foundation is es- 060
sential not only for high-fidelity and controllable video syn- 061
thesis but also for enabling long-tail data generation [2, 31], 062
closed-loop training and evaluation [1, 26, 77], and in- 063
teractive decision-making within complex physical envi- 064
ronments while enjoying the realtime inference speed [5, 065
35, 90]. Inspired by “next-scale prediction” autoregressive 066
models [27, 65], we propose UNICST which emphasizes: 067

• Efficiency: Leveraging multiscale representations to 068
compress high-dimensional visual information, enabling 069
an efficient transition from coarse abstractions to fine- 070
grained details. 071

• Scalability and Generalization: Accommodating het- 072
erogeneous data from diverse sources, enhancing flexi- 073
bility and improving generalization to unseen scenarios. 074

• Unified 4D Latent Representation: Forming a continu- 075
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Figure 1. UNICST generates photorealistic, temporally coherent multi-view videos with precise 3D control—supporting continuous camera
rotations and translations, high-level text prompts for global appearance, and fine-grained 3D bounding-box cues for object category, posi-
tion, and scale. Across this diverse conditioning space, UNICST preserves cross-view spatial alignment and temporal stability, delivering
state-of-the-art fidelity (FID/FVD) and markedly higher throughput than previous multi-view video generators.

ous and coherent latent space across spatial and temporal076
dimensions for consistent reasoning.077

• Versatility: Supporting diverse sensor configurations and078
conditioning inputs by minimizing handcrafted spatial079
and temporal biases.080

We exploit extensive pretraining on natural images [27],081
subsequently fine-tuning the model on domain-specific082
street-view data. Each generated frame jointly incorpo-083
rates multiview images to ensure spatial consistency, while084
causal temporal conditions facilitate robust temporal coher-085
ence. Our scale-aware conditioning enables the model to086
capture intricate spatial-temporal correspondences across087
multiple abstraction levels. Furthermore, by adapting the088
next-scale autoregressive paradigm, our framework can089
generate realistic videos with near-real-time throughput.090

We benchmarked UNICST on a large-scale driving091
dataset and demonstrated its superiority in both visual re-092
alism and inference time. Capable of effectively scaling to093
datasets with varying sensor configurations and video fre-094
quencies, our method also adeptly supports diverse down-095
stream tasks through flexible input conditioning. The sub-096

stantial speed-up achieved by our framework enables near- 097
real-time video generation, significantly enhancing its prac- 098
ticality for interactive physical-world applications such as 099
autonomous driving. To the best of our knowledge, we are 100
the first to propose near-real-time multiview 4D video gen- 101
eration based on the next-scale prediction paradigm. 102

2. Related Works 103

2.1. Video Generative Models 104

Recent advances in generative modeling have pushed the 105
fidelity and diversity of 2D video synthesis to new heights. 106
Early transformer-based, masked autoregressive approaches 107
operate on discrete tokens to generate high-quality frames 108
in sequence [21, 52, 67, 79, 86]. In parallel, diffusion-based 109
pipelines iteratively denoise latent or pixel representations, 110
yielding vivid motion and appearance [2, 7, 22, 51, 55, 59, 111
61, 84]. In just a few years, these models excel at visual 112
quality, offering realistic and vivid generated videos. Most 113
of these approaches focus on text-to-video tasks, generating 114
videos conditioned on textual prompts [22, 51, 84]. Some 115
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other models also generate videos conditioned on reference116
images [60, 73], or reference videos [46].117

2.2. Spatio-Temporally Grounded Generation118

To more accurately simulate the geometry and dynamics119
of real-world scenes, several approaches leverage explicit120
3D priors via reconstruction techniques. Neural render-121
ing methods (e.g., NeRF [38, 53]) and Gaussian splatting122
variants [17, 56, 81, 91] produce highly consistent multi-123
view renderings but depend on costly per-scene optimiza-124
tion and often fail to generalize beyond their training trajec-125
tories. More recent feed-forward 3D reconstruction mod-126
els [42, 69, 70, 87] improve efficiency yet focus solely on127
recovering captured geometry rather than generating fully128
novel scenarios and handling the complex agent interac-129
tions. Building on these explicit representations, a sec-130
ond line of work injects spatial cues—depth maps, 3D131
bounding boxes, HD maps, or LiDAR scans—into diffu-132
sion or autoregressive backbones to enable end-to-end 4D133
generation [24, 31, 33, 68, 71, 78]. While these frame-134
works achieve improved geometric grounding, they intro-135
duce substantial inductive biases, require complex prepro-136
cessing pipelines, and impose stricter data requirements, ul-137
timately slowing down processing and hindering scalability138
to internet-scale datasets.139

2.3. World Models for Autonomous Driving140

Autonomous driving serves as an ideal testbed for physi-141
cally grounded world models due to its stringent demands142
on modeling complex geometric environments, dynamic143
actor interactions, and the need for coherent spatiotem-144
poral representations across multi-sensor inputs. Early145
works leveraged GANs [23] to synthesize realistic driv-146
ing scenarios [39, 64]. Subsequent approaches, such as147
DriveDreamer [72] and GAIA-1 [32], demonstrated action-148
conditioned video generation but were constrained primar-149
ily to front-view perspectives.150

More recent studies have expanded input modalities,151
views, and overall versatility. Notably, Drive-WM [74] in-152
troduced a diffusion-based, multi-view world model con-153
ditioned on images, textual descriptions, layout informa-154
tion, and ego motions, while Vista [20] harnessed pretrained155
Stable Video Diffusion [6] for high-resolution and versa-156
tile scenario conditioning. DriveDreamer [71] further inte-157
grated future ego-action predictions to enhance controllabil-158
ity. DrivingGPT [15] unified world modeling and planning159
tasks within an autoregressive transformer framework, em-160
phasizing the integration of perceptual understanding with161
decision-making. Copilot4D [88] extended this paradigm162
to LiDAR sensors using discrete latent diffusion models.163
Contemporary world models for autonomous driving have164
advanced in extending generative horizons [13, 50], while165
enhancing geometric consistency, sensor coherence, and166

structured controllability. These improvements have been 167
driven by both diffusion-based approaches [36, 48, 63] and 168
autoregressive frameworks [15, 33]. 169

In contrast, our approach uniquely learns a continu- 170
ous 4D latent representation that jointly encodes spatial 171
and temporal dimensions with minimal hand-crafted bi- 172
ases. By employing a hierarchical next-scale prediction 173
strategy, UNICST progressively constructs its latent repre- 174
sentation in a coarse-to-fine fashion, inherently enforcing 175
multi-view spatial consistency and frame-to-frame tempo- 176
ral coherence. Furthermore, our highly parallelizable infer- 177
ence architecture achieves near real-time generation, posi- 178
tioning UNICST optimally for practical simulation and di- 179
verse downstream embodied tasks. Comprehensive exper- 180
iments illustrate UNICST’s superior visual fidelity and re- 181
duced latency relative to prior methods, establishing a new 182
benchmark for practical and effective world modeling in au- 183
tonomous systems. 184

3. Methodology 185

UNICST, as shown in Fig. 2, works as a versatile foun- 186
dation model to generate driving scenes. In Sec. 3.2, we 187
formulate the next-scale prediction framework for multi- 188
view and multi-frame images. Allowing for various sensor 189
configurations, we unify all the representations and condi- 190
tions in an isotropic 4D world space (Sec. 3.3). To enhance 191
the spatial consistency and temporal coherence, we develop 192
scale-wise cross-view and inter-frame condition modules in 193
Sec. 3.4. 194

3.1. Preliminary: Next-Scale Prediction 195

Unlike vanilla auto-regressive models [41, 85] that flatten 196
the 2D grids of images into 1D tokens, recent work [65] 197
shifts from “next-token prediction” to “next-scale pre- 198
diction” strategy. Each image is quantized by the to- 199
kenizer [18] into K multiscale token maps R1:K = 200
(R1, R2, . . . , RK) with increasingly higher resolutions 201
hk × wk, k = 1, 2, . . . ,K. The autoregressive likelihood 202
is formulated as follows. 203

p(R1, R2, . . . , RK) =

K∏
k=1

p(Rk|R1, R2, . . . , Rk−1) (1) 204

where the Rk is the token map at scale k containing hk×wk 205
visual tokens. The sequence (R1, . . . , Rk−1) serves as the 206
prefixed context for the prediction of Rk. During the k-th 207
autoregressive step, all hk ×wk visual tokens are generated 208
in parallel. 209

3.2. Next-Scale Prediction for multi-view Videos 210

Formulation. Beyond single image, we give a formulation 211
to our proposed UNICST for the generation of multi-view 212
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Figure 2. Overview of UNICST. A multi-scale tokenizer converts the multi-view, multi-frame video stream into a hierarchy of
scale–spatial–temporal tokens. These tokens pass through Scale–Spatial–Temporal (SST) blocks, which factor scale, spatial, and tem-
poral attention, while AdaLN and cross-attention layers inject diverse conditioning signals (ego motion, camera pose, text, objects, partial
observations, etc.). An action decoder predicts the ego action; its rigid transform is applied to the 3D Plücker-ray embedding—visualized
by the rainbow-colored frustum—to update the viewpoint, enabling closed-loop roll-outs with consistent geometry and motion across time.

and multi-frame videos. For flexible generation and condi-213
tions, image Iv,t is tokenized independently as a multiscale214
token map Rv,t

1:K for each frame t = 1, 2, . . . , T and each215
camera view v = 1, 2, . . . , V . UNICST aims to model the216
joint distribution of multi-view and multi-frame data. De-217
spite different camera perspectives and timesteps, we con-218
sider all images from different cameras and timesteps in a219
unified 4D world representation space to enhance the con-220
sistency. Intuitively, each scale multi-view image genera-221
tion is conditioned on both their previous scales and past222
frames. For each frame t0, the generation of multi-view im-223
ages is written as:224

p
(
R1:V,t0

1:K

)
=

K∏
k=1

p
(
R1:V,t0

k |R1:V,t0
1:k−1, R

1:V,1:t0−1
1:K

)
. (2)225

However, it is obvious that Eq. 2 establishes a high time226
and memory complexity. To reduce the time and memory227
cost, we take a further step to decouple the scale, spatial228
and temporal reliance. In this case, we can formulate the229
scale-wise generation for each image separately as follows.230

p
(
Rv0,t0

1:K

)
=

K∏
k=1

p
(
Rv0,t0

k |Rv0,t0
1:k−1, R

v ̸=v0,t0
k , Rv0,1:t0−1

k

)
.

(3)231
where: 1) scale reliance (Rv0,t0

1:k−1) refers to the prefix scales232

of the same image; 2) spatial reliance (Rv ̸=v0,t0
k ) represents233

the same scale of other views for current frame; 3) tempo-234

ral reliance means the same scale of the same view image 235
in for historical frames. 236
Architecture. We construct the model according to Eq. 3. 237
Each input is quantized to multiscale tokens independently 238
similar with [27]. In the next-scale prediction block, each 239
image attends to prefix scales independently. Extra decou- 240
pled spatial and temporal condition modules enhance spa- 241
tial consistency and temporal coherence with masked self- 242
attention layers. To handle the text and object conditions, 243
we also insert additional cross-attention and AdaLN [57] 244
layers in each block. 245

3.3. Isotropic 4D World Representation Space 246

Spatial and temporal inductive biases, such as multi-view 247
adjacency or 3D video tokens, in previous work limit their 248
adaptivity to heterogeneous training data and versatile ap- 249
plications. Alternatively, UNICST shares a continuous 4D 250
world representation space for all the modules in the frame- 251
work including visual tokens and conditions, as shown in 252
Fig. 3. 253

To this end, we compute a token-wise Plücker ray em- 254
bedding [58] for the feature map at each scale. We start 255
from a discrete meshgrid of wk × hk × D in the camera 256
frustum of the token map Rv

k. Each point is the meshgrid is 257
represented as pcam

k,j = (uj × dj × swk , vj × dj × shk , dj , 1), 258
where (uj , vj) is the 2D coordinate on the token map of 259
scale k and shk = hK

hk
, swk = wK

wk
are the downsampling ra- 260

tio of scale k. These points associated to different views 261
can be transformed into a unified 3D coordinate space as 262
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Figure 3. 3D Plücker–Ray Embedding. Camera intrinsics and
extrinsics lift each token into a unified, continuous 4D space–time
frame. Because this embedding is shared across all cameras and
timesteps, any physical point in the 3d space (e.g. the red land-
mark or the building corner) is mapped to the same latent position.
This view- and time-consistent representation lets UNICST reason
jointly over multi-view, multi-frame observations while keeping
object identities and geometry coherent throughout the rollout.

follows like PETR [47].263

pv,0
k,j = K−1

v pcam
k,j (4)264

where Kv is the transformation matrix to project points265
from 3D ego coordinate to camera coordinate. We take a266
step further to unify the representation of multiple frames267
in a joint 4D space by considering the motion of each cam-268
era.269

pv,t
k,j = Tv,tp

v,0
k,j (5)270

The transformation matrix Tv,t represents the relative po-271
sition of the v-th camera at t-frame in the world coordi-272
nate. Unless otherwise specified, we set the ego-vehicle273
coordinate of the first frame as the world coordinate. The274
transformed the points of the original wk × hk ×D mesh-275
grid are transposed as P v,t

k = {p̂v,t
k,i ∈ R(D×3)×C |i =276

1, 2, . . . , wk × hk} with token-wise correspondence to the277
token map Rv,t

k , where each p̂v,t
k,i is associated with a visual278

token rv,tk,i. An additional time dimension it also attached279

to the ray embedding as (p̂v,t
k,i, t). This position embedding280

considers all the visual tokens from different camera views281
and frames in a continuous 4D world space.282

In the same time, we also represent conditions in the283
same world coordinate. For example, the object bounding284
boxes are represented by the corner coordinates as pt

obj,i =285
{(xcor,i, ycor,i, zcor,i), t|i = 1, 2, . . . , 8} in addition to the286
semantic label lobj,i.287

This unified 4D representation space considers every-288
thing in an isotropic and continuous manner without any289
handcrafted inductive biases. This representation allows the290
model to adaptively learn the interaction between different291
visual token across views and frames and handle diverse292
camera perspective view in the continuous 4D space.293

3.4. Decoupled Spatio-Temporal Condition 294

To enhance the spatio-temporal alignment, we insert two 295
masked self-attention modules to each next-scale prediction 296
block. For better 3D-awareness across views and frames, 297
we attach the ray position embeddings in Sec. 3.3, which 298
is encoded by a shared light-weighted MLP, to each visual 299
token before each block. 300

For multi-view condition, we perform self-attention on 301
all the visual tokens from all perspective views of the same 302
frame, which is written as follows. 303

Rv,t
k,out = Rv,t

k,in + Masked-SA
(
Rv,t

k,in, R
1:V,t
k,in

)
(6) 304

For multi-frame condition, we perform casual self- 305
attention on visual tokens from each view separately. Each 306
visual token attends to other tokens from the same camera 307
in historical frames at the same scale. 308

Rv,t
k,out = Rv,t

k,in + Masked-SA
(
Rv,t

k,in, R
v,1:t−1
k,in

)
(7) 309

It is worth mentioning that both spatial and temporal 310
conditions are performed in a scale-wise manner, i.e. each 311
visual token only attends to other visual tokens from the 312
same scale. This design not only reduces the computational 313
cost but also allow the model to learn the multi-level cross- 314
view and cross-frame relationship in a coarse-to-fine man- 315
ner. 316

3.5. Joint World Modeling and Motion Planning 317

As a world model, our method can plan the motion of the 318
ego vehicle along with generating future camera images. To 319
this end, we add a learnable action token rtact to the end of 320
each frame’s highest scale. Similar to [45], we slice all the 321
ego vehicle trajectories into segments of length Tact. These 322
segments are divided into N clusters via K-Means based on 323
the flattened waypoints in the ego-vehicle coordinate space 324
at each time step. 325

To predict the future ego motion, the action token is 326
passed through the same network as the visual tokens. Con- 327
sistent with Sec. 3.3, at each frame, the current position 328
pt
ego = (xt

ego, y
t
ego, θ

t
ego, t) in the same world coordinate is 329

embedded and attached to the action token. In each block, 330
the action token would skip the scale attention block and 331
share the rest spatial condition module, temporal condition 332
module, and feed-forward network with visual tokens. In 333
the spatial condition module, the action token attends to the 334
highest scale visual tokens as follows. 335

rtact,out = rtact,in + Masked-SA
(
rtact,in, R

1:V,t
K,in

)
(8) 336

For temporal condition module, the action token attends to 337
the action tokens in the previous frames. 338

rtact,out = rtact,in + Masked-SA
(
rtact,in, r

1:t−1
act,in

)
(9) 339
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Finally, a classification head attached to the action token340
would output the predicted cluster based on the action to-341
ken, based on which we can query the future ego trajectory.342

4. Experiments343

4.1. Experimental Setups344

4.1.1. Datasets.345

UNICST is trained on two multimodal driving datasets:346
nuScenes [11] and nuPlan [12]. We adopt the Scenari-347
oNet [43] format to segment each continuous log into fixed-348
length 20-second video sequences.349
nuScenes. The nuScenes [11] dataset was recorded at 2350
Hz in two geographically and structurally diverse urban351
areas—the Seaport district of Boston and the One North,352
Queenstown, and Holland Village districts of Singapore.353
Applying our 20-second segmentation yields approximately354
4.7 hour of data, from which we allocate 700 sequences355
(around 3.9 hours) for training and 150 sequences (0.8 h)356
for evaluation.357
nuPlan. The nuPlan [12] dataset spans 1,500 h of358
continuous driving data captured at 10 Hz across four359
cities—Boston, Pittsburgh, and Las Vegas (USA), and Sin-360
gapore—covering diverse urban, suburban, and highway361
scenarios . We filter the whole dataset based on complete362
sensor coverage, and extract 10,000 20-second sequences,363
around 55.6 hours in total for training.364

In summary, our training set comprises about 59.5 hours365
of 20-second video sequences drawn from four cities across366
North America and Asia, and our evaluation set adds an-367
other 0.8 hours reserved exclusively from nuScenes.368

4.1.2. Evaluation Metrics.369

For evaluation of the generated future frames, we adopt the370
Frechet Video Distance (FVD) [66] and the Frechet Incep-371
tion Distance (FID) [28]. We use the 150 validation se-372
quences from nuScenes for evaluation. To demonstrate the373
efficiency of our autoregressive framework, we also report374
the Frames Per Second (FPS) metric (i.e. number of gener-375
ated images per second).376

4.1.3. Baselines.377

We evaluate our method against several notable base-378
lines. Specifically, they can classified into three categories,379
GAN-based [39], diffusion-based methods like Vista [20],380
GenAD [89], WoVoGen [48], DriveDreamer [71], etc.381
and autoregressive approaches such as DrivingWorld [33].382
Among all these baselines, MagicDrive [19], X-Drive [78]383
can generate single-frame multi-view images, therefore we384
only report their FID score.385

4.2. Implementation386

We first trained our 3B model with the resolution of 192 ×387
336 for 50 epochs using the mixed data of nuscenes and388

Table 1. Comparison under single-view setting. DrivingWorld* is
trained without Private data . Results are sourced from [34]

Method Data Scale FID ↓

DriveGAN [39] 160h 73.4
GenAD [83] 2000h 15.4
Vista [20] 1740h 6.9
WoVoGen [48] 5h 27.6
DrivingWorld* [34] 120h 16.4
DrivingWorld [34] 3456h 7.4
Ours (single-view) 60h 4.5

nuplan. The batch size is 4. We randomly drop the bound- 389
ing boxes and camera views to improve the robustness of 390
our model. Then we finetune our model on high resolution 391
setting (384 × 672) with a batch size of 1. The training 392
is conducted on 64 NVIDIA A100 GPUs and we evaluate 393
the throughput per seconds on one A100 GPU. Our trained 394
model can generate arbitrary numbers of views. For com- 395
parison with those single-view models, we generate 6 views 396
and select the corresponding camera view for evaluation. 397

4.3. Video Generation 398

We evaluate UNICST on the nuScenes validation split and 399
report Fréchet Inception Distance (FID), Fréchet Video Dis- 400
tance (FVD), and generation throughput (images per sec- 401
ond) in Table 8 and Table 2. 402

Single-View Comparison. We first compare against 403
state-of-the-art models that generate a single camera view 404
in Table 8, namely DriveGAN [39], GenAD [4], Vista [4], 405
WoVoGen [48], and DrivingWorld [33]. Note that most 406
of these baselines are trained on hundreds to thousands of 407
hours of data, even including private driving dataset. By 408
contrast, UNICST is trained on only 60h of public data at 409
384 × 672 resolution. Despite this modest training bud- 410
get, our model achieves an FID of 4.5, outperforming Driv- 411
ingWorld’s FID of 7.4 (trained on 3,456h) and Vista’s 6.9 412
(trained on 1,740h). 413

Multi-View Comparison. Then, we evaluate the multi- 414
view image or video generation ability of UNICST by com- 415
paring to MagicDrive [19], X-Drive [78], DriveDreamer 416
[71], DrivingDiffusion [44], and Panacea [76] in Table 2. 417
Our multi-view model trained on 60h public data reaches 418
an FID of 14.5, improving over Panacea’s 17.0 and Mag- 419
icDrive’s 16.2. We also attain an FVD of 134, substan- 420
tially lower than DriveDreamer’s 341 and DrivingDiffu- 421
sion’s 332, demonstrating better temporal coherence. No- 422
tably, UNICST deliver a throughput of 2.17 images/s, much 423
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Table 2. Comparison with real-world driving world models.

Method Model Setups Metrics
Resolution Type FID FVD Throughput

MagicDrive [19] 224×400 Diffusion 16.2 - 1.76
X-Drive [78] 224×400 Diffusion 16.0 - 0.83
DriveDreamer [71] 256×448 Diffusion 14.9 341 0.37
DrivingDiffusion [44] 512×512 Diffusion 15.8 332 -
Panacea [76] 256×512 Diffusion 17.0 139 0.67
Ours 384×672 Next-scale AR 14.5 134 2.17

Figure 4. Qualitative Results. Our model can generate under different weather conditions, understand driving rules in different areas (1st
row). The camera view can be manipulated by adjusting the camera intrinsics (2nd row). We can also generate multi-view images from
single camera view (3rd row) and bounding boxes (4th row).

more than the throughput of the diffusion baseline (Magic-424
Drive at 1.76 images/s), demonstrating the efficiency of our425
next-scale autoregressive architecture.426

We also provide some qualitative visualizations in Fig.427
4. It can be observed that our model can generate under428
different conditions: text, front view, and bounding boxes.429

These results show that by leveraging a scale-wise au- 430
toregressive, UNICST not only matches or surpasses the 431
fidelity of models trained on orders of magnitude more pri- 432
vate data, but also operates at higher frame rates. This com- 433
bination of data efficiency, generation quality, and through- 434
put makes our approach especially well-suited for down- 435
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Table 3. Ablation on View Embedding.

View Embed FID ↓ FVD ↓

None 24.7 280.5
Leanrable 23.4 248.8

Ray 21.7 240.8

Table 4. Ablation on time embedding.

Time Embed FID ↓ FVD ↓

None 23.2 257.7
Learnable 25.1 261.3

Continuous 21.7 240.8

Table 5. Ablation on s.-t. condition.

S. Cond. T. Cond. FID ↓ FVD ↓

✗ ✓ 26.0 247.8
✓ ✗ 21.9 270.3

✓ ✓ 21.7 240.8

stream driving applications requiring both realism and real-436
time performance.437

4.4. Ablation Study438

To verify the efficacy of our proposed components, we con-439
ducted a series of ablation studies on the nuscenes dataset.440
To save the training time, we use the base model with441
fewer parameters (i.e. 200M) for ablation, and the model442
is trained on nuscenes dataset.443

View Embedding. The ray embedding in an isotropic444
world space is critical for the interaction across views. As445
shown in Table 3, without view embedding, the model446
struggles to learn the inter-relationship across views. With447
a leanrable embedding E ∈ Rv×c, where v is the num-448
ber of views, and c is the embedding dimension, the FID,449
FVD both improve incrementally. However, the model with450
our proposed ray embedding reports the best performance in451
terms of FID and FVD since it can benefit from the unified452
space.453

Time Embedding. For time embedding, we also consider454
three settings in Table 4. The performance of learnable em-455
bedding is unsatisfactory, even worse than the model with-456
out time embedding, since we adopt random time interval in457
the training. In contrast, the continuous embeddings allow458
us to adapt to data sampled with different frequencies.459

Spatial Temporal Condition. Finally, we ablate on the460
decoupled spatial and temporal attention modules, which461
both help to improve the spatial consistency and temporal462
coherence. In contrast, the full attention has a high space463
and time complexity, which is computationally prohibitive.464

5. Conclusion465

In this work, we have identified the key obstacles in ex-466
tending next-token prediction from language to physical467
intelligence: the continuous, multimodal, and physics-468
constrained nature of real-world environments. We have ar-469
gued that existing visual world foundation models, despite470
impressive generative power, lack the necessary grounding471
in geometry and physics and often rely on expensive dif-472
fusion or pixel-wise autoregressive decoders. To address473

these issues, we introduced a unified architectural frame- 474
work that (i) minimizes hand-crafted inductive biases, (ii) 475
incorporates explicit geometric and physical conditioning 476
in a flexible manner, and (iii) leverages a next-scale au- 477
toregressive decoder for realtime inference. Our approach 478
achieves high-fidelity, physically plausible video synthe- 479
sis without resorting to heavy pre-processing or proprietary 480
annotations, and it scales gracefully to diverse, unlabeled 481
datasets. Through extensive experiments on driving bench- 482
marks, we demonstrate that our model outperforms state-of- 483
the-art baselines in both visual quality and computational 484
efficiency. 485
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