
Generalizing Safety Beyond Collision-Avoidance
via Latent-Space Reachability Analysis

Kensuke Nakamura
Carnegie Mellon University

Lasse Peters
Delft University of Technology

Andrea Bajcsy
Carnegie Mellon University

No safety filter. Teleoperator pulls up 
from bottom of the bag, causing a spill. 

Safety filter overrides teleoperator when 
they pull up from the bottom of the bag.

Safety filter slows side-to-side 
movements with a bottom bag grasp. 

Same Latent Safety Filter (𝜋			 𝑉			, )
Safety filter allows teleoperator to 

pick up the bag when grasped securely. 
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Fig. 1: Far Left: Without a safety filter, a teleoperator lifts the closed end of the bag too quickly and spills the Skittles. Our
Latent Safety Filter overrides unsafe actions (Middle Left) and allows safe actions that do not violate constraints (Right).

Abstract—Hamilton-Jacobi (HJ) reachability is a rigorous
mathematical framework that enables robots to simultaneously
detect unsafe states and generate actions that prevent future
failures. While in theory, HJ reachability can synthesize safe
controllers for nonlinear systems and nonconvex constraints,
in practice, it has been limited to hand-engineered collision-
avoidance constraints modeled via low-dimensional state-space
representations and first-principles dynamics. In this work, our
goal is to generalize safe robot controllers to prevent failures
that are hard—if not impossible—to write down by hand, but
can be intuitively identified from high-dimensional observations:
for example, spilling the contents of a bag. We propose Latent
Safety Filters, a latent-space generalization of HJ reachability
that tractably operates directly on raw observation data (e.g.,
RGB images) to automatically computes safety-preserving actions
without explicit recovery demonstrations by performing safety
analysis in the latent embedding space of a generative world
model. Our method leverages diverse robot observation-action
data of varying quality to learn a world model. Constraint
specification is then transformed into a classification problem
in the latent space of the learned world model. In hardware
experiments, we use Latent Safety Filters to safeguard arbitrary
policies (from imitation-learned policies to direct teleoperation)
from complex safety hazards, like preventing a Franka Research
3 manipulator from spilling the contents of a bag.

I. INTRODUCTION

Imagine that a robot manipulator is deployed in your home,
like shown in Figure 1. What safety constraints should the
robot reason about? It is common to equate robot safety
with “collision avoidance”, but in unstructured open world
environments, a robot’s representation of safety should be
much more nuanced. For example, the household manipulator
should understand that pouring coffee too fast will cause
the liquid to overflow; pulling a mug too quickly from a

cupboard will cause other dishes to fall; or, in Figure 1,
aggressively pulling up from the bottom of an open bag
will cause the contents to spill. Safe control frameworks,
such as Hamilton-Jacobi (HJ) reachability analysis [13, 15]
mathematically model safety constraints as arbitrary sets in a
state space and automatically identify states that will inevitably
lead to robot failures by solving an optimal control problem.
However, the question remains how to practically instantiate
this theoretical framework to safeguard against more nuanced
failures—beyond collision-avoidance—in robotics.

Our key insight is that the latent representations learned
by generative world models [7, 20] enable safe control for
constraints not traditionally expressable in handcrafted state-
space representations. While world models require diverse
coverage (success, play, and/or failure data) to accurately
predict the dynamical consequences of robot actions, this
formulation makes constraint specification as easy as learning
a classifier in the latent space [18], and HJ reachability can
safely evaluate possible outcomes of different actions within
the “imagination” of the world model without additional
unsafe environment interactions.

We evaluate our approach in vision-based safe-control tasks
using hardware experiments with a Franka Research 3 arm,
which picks up an open bag of Skittles without spilling.
Our quantitative results show that, without assuming access
to ground-truth dynamics or hand-designed failure specifica-
tions, Latent Safety Filters can safeguard an unsafe imitation
learned policy [2] to reduce safety violations by 63.6% while
allowing performant policies to operate freely. In qualitative
experiments, we also find that Latent Safety Filters enable safe
teleoperation and can generalize to out-of-distribution Skittles



bag colors and background changes.

II. A BRIEF BACKGROUND ON HJ REACHABILITY

Traditionally, reachability assumes access to a privileged
state space s ∈ S and a corresponding bounde nonlinear
dynamics model st+1 = f(st, at). A domain expert will first
specify what safety means in this state space by imposing a
constraint, referred to as the failure set, F ⊂ S . Given the
failure set, HJ reachability will automatically compute two
entities: (i) a safety monitor, V : S → R, which quantifies if
the robot is doomed to enter F from its current state s despite
the robot’s best efforts, and (ii) a best-effort safety-preserving
policy, πè : S → A. These two entities are co-optimized via
the solution to an optimal control problem that satisfies the
fixed-point safety Bellman equation [4]:

V (s) = min
{
ℓ(s), max

a∈A
V (f(s, a))

}
, (1)

where ℓ : S → R is a bounded margin function that
encodes the safety constraint F via its zero-sublevel set
F = {s | ℓ(s) < 0}, typically modeled as a signed-
distance function. The maximally safety-preserving policy can
be obtained via πè(s) := argmaxa∈A V (f(s, a)). Finally, the
unsafe set, U ⊂ S, which models the set of states from which
the robot is doomed to enter F , can be recovered from the
zero-sublevel set of the value function: U := {s : V (s) < 0}.

At deployment time, the safety monitor and safety policy
can be utilized together to perform safety filtering: detecting
an unsafe action generated by any base policy, πtask, and min-
imally modifying it to ensure safety. While there are a myriad
of safety filtering schemes (see surveys [9, 17] for details),
a common minimally-invasive approach switches between the
nominal and the safety policy when the robot is on the verge of
being doomed to fail: aexec = 1{V (s)>0} ·πtask+1{V (s)≤0} ·πè.

III. LATENT SAFETY FILTERS

To tackle both detecting and mitigating hard-to-model fail-
ures, we present a latent-space generalization of HJ reachabil-
ity (from Section II) that tractably operates on raw observation
data (e.g., RGB images) by performing safety analysis in
the latent embedding space of a generative world model.
This also transforms nuanced constraint specification into a
classification problem in latent space and enables reasoning
about dynamical consequences that are hard to simulate.

Setup: Environment and Latent World Models. We model
the robot as operating in an environment E ∈ E that is partially
observable. While we never have direct access to the true
state, we leverage a world model that jointly infers a lower-
dimensional latent state which correspond to high-dimensional
observations (e.g., RGB images) and associated dynamics,

A world model consists of an encoder that maps observa-
tions ot (e.g., images, proprioception, etc.) and latent state ẑt
into a posterior latent zt, and a transition function that predicts
the future latent state conditioned on an action. This can be
mathematically described as:

Encoder: zt ∼ Eψ(zt | ẑt, ot)

Transition Model: ẑt+1 ∼ pϕ(ẑt+1 | zt, at).
This formulation describes a wide range of world models [5,
6, 7, 8, 20], and our latent safety filter is not tied to a particular
world model architecture. We focus on world models that are
trained via self-supervised learning (observation reconstruc-
tion, teacher forcing, etc.) and do not require access to a
privileged state. Specifically, we use DINO-WM [20], which
is trained via teacher-forcing.

Safety Specification: Failure Classifier on Latent State.
A common approach for representing F is to encode it as
the zero-sublevel set of a function ℓ(s) (as in Eq. 1). This
“margin function” is typically a signed distance function to the
failure set, which easily expresses constraints like collision-
avoidance. However, other types of constraints, such as spills,
are much more difficult to directly express with this class of
functions and traditional state spaces. We instead chose to
learn ℓµ(z) from data by modeling it as a classifier over latent
states z ∈ Z , with learnable parameters µ.

We train our classifier on labelled datasets of observations
corresponding to safe and unsafe states, o+ ∈ Dsafe and
o− ∈ Dunsafe, and optimize a loss function inspired by [19]:

L(µ) = 1

Nsafe

∑
o+∈Dsafe

ReLU
(
δ − ℓµ(Eψ(o+))

)
+

1

Nfail

∑
o−∈Dfail

ReLU
(
δ + ℓµ(Eψ(o−))

)
,

(2)

where the loss function is parameterized by δ ∈ R+ to prevent
degenerate solutions where all latent states are labeled as
zero by the classifier. Intuitively, this loss penalizes latent
states corresponding to observations in the failure set from
being labeled positive and vice versa. The learned classifier
represents the failure set Flatent in the latent space of the world
model via: Flatent = {z | ℓµ(z) < 0}. Our failure classifier can
be co-trained or trained after world model learning.

Latent-Space Reachability in Imagination. Traditionally,
reachability analysis requires either an analytic model of the
robot and environment dynamics [1, 14] or a high-fidelity
simulator [4, 10] to solve the fixed-point Bellman equation,
both of which are currently inadequate for complex system
dynamics underlying nuanced safety problems (e.g., liquid in-
teraction). Instead, we propose using the latent imagination of
a pretrained world model as our environment model, capturing
hard-to-design and hard-to-simulate interaction dynamics. We
introduce the latent fixed-point Bellman equation:

Vlatent(z) = min
{
ℓµ(z), max

a∈A
Eẑ′∼pϕ(· | z,a)

[
Vlatent(ẑ

′)
]}

.

(3)
Note that in contrast to Equation 1, this backup operates on the
latent state z and, for full generality, includes an expectation
over transitions to account for world models with stochastic
transitions (e.g., RSSMs). For world models with deterministic
transitions (e.g., DINO-WM), the expectation can be removed.

While the world model allows us to compress high-
dimensional observations into a compact informative latent



state, computing an exact solution to the latent reachability
problem is still intractable due to the dimensionality of the
latent embedding. This motivates the use of a learning-based
approximation to the value function in Equation 3. We follow
[4] and induce a contraction mapping for the Bellman backup
by adding a time discounting factor γ ∈ [0, 1):

Vlatent(z) = (1− γ)ℓµ(z)

+ γmin
{
ℓµ(z),max

a∈A
Eẑ′∼pϕ(· | z,a)[Vlatent(ẑ

′)]
}

(4)

In theory, if solved to optimality, this latent value function
would offer a safety assurance only with respect to the data
used to train the world model and the failure classifier.
Intuitively, this implies that the robot can only provide an
assurance that it will try its hardest to avoid failure in its
representation of the world. In the following section, we study
our overall latent safety framework in a high-dimensional
manipulation example on hardware.

IV. HARDWARE RESULTS:
PREVENTING HARD-TO-MODEL ROBOT FAILURES

We design a set of experiments in hardware to see if our
Latent Safety Filter can be applied in the real world (shown in
Figure 1). We use a Franka Research 3 manipulator equipped
with a 3D printed gripper from [3]. The robot is tasked with
interacting with an opened bag of Skittles on the table. The
safety constraint is not to spill any Skittles. We test the efficacy
of our approach by deploying the same Latent Safety Filter to
safeguard a human teleoperator (Section IV-A) and a strong
and weak Diffusion Policy [2] from spilling (Section IV-B),
as well as stress-testing our safety filter to out-of-distribution
candy bags and environment backgrounds (Section IV-C).

Safety Specification. Our safety specification is to prevent
the contents of the Skittles bag from falling out of the
bag. Given only image observations and proprioception, this
problem is clearly partially observed since the robot cannot
directly recover the position of the Skittles in the bag. Even
if privileged state information were available, designing a
function to characterize failure states or a dynamics model for
interactions between all relevant objects would be difficult.

Latent Safety Filter Setup. We use DINO-WM [20], a
Vision Transformer-based world model that uses DinoV2 as
an encoder [16]. The manipulator uses a 3rd person camera
and a wrist-mounted camera and records 3× 256× 256 RGB
images at 15 Hz. For world model training, we collected
a dataset DWM of 1,300 offline trajectories: 1,000 of the
trajectories are generated sampling random actions drawn from
a Gaussian distribution at each time step, 150 trajectories are
demonstrations where the bag is grasped without spilling any
Skittles, and 150 demonstrations pick up the bag while spilling
candy on the table. We manually labeled the observations in
the trajectory dataset for apparent failures.

Our world model is trained by first preprocessing and
encoding the two camera view using DINOv2 to obtain a set of
dense patch tokens for each image. We use the DINOv2 ViT-S,

the smallest DINOv2 model with 14M parameters, resulting
in latent states z of size 256×384 corresponding to 256 image
patches each with embedding dimension 384. The transition
function is implemented as a vision transformer, which takes
as input the past H = 3 patch tokens, proprioception, and
actions to predict the latent. The transformer employs frame-
level causal attention to ensure that predictions can only
depend on previous observations. The model is trained via
teacher-forcing minimizing mean-squared error between the
ground-truth DINO embeddings of observations and propri-
oception information from DWM and the embeddings and
proprioception predicted by the model. After world model
training, we separately train the failure classifier (implemented
as a 2-layer MLP with a hidden dimension of 788 and
ReLU activations) on the DINO patch tokens corresponding
to the manually labeled constraint-violating observations. For
approximating the HJ value function, we use DDPG [11, 12].

Setup. The safety filter operates according to the following
control law:

aexec
t =

{
πtask(zt), if V (ẑt+1) > ϵ

πè

latent(zt), otherwise
(5)

where ẑt+1 ∼ pϕ(ẑt+1 | zt, πtask(zt)) is a one-step rollout of
the world model using the action proposed by an unshielded
teleoperator or task policy. In hardware experiments, we set
ϵ = 0.3. The system was controlled at 15 Hz.

A. Shielding Human Teleoperators

To emphasize the policy-agnostic nature of our latent safety
filters, we demonstrate filtering a teleoperator in Figure 1.

Results: Shielding Unsafe Grasps and Dynamic Motions.
We visualize our qualitative results in Figure 1. Un-shielded
by our safety filter, the teleoperator can grab the opened
bag of Skittles by the base and pull up sharply, spilling its
contents on the table (left, Figure 1). By using LatentSafe,
the same behavior gets automatically overridden by the safety
filter, preventing the teleoperators “pull up” motion from being
executed and keeping the Skittles inside (center, Figure 1). At
the same time, the latent safety filter is not overly pessimistic
(right-most images in Figure 1). When the teleoperator moves
the Skittles bag side-to-side while grasping the bottom of the
opened bag, the safety filter accurately accounts for these
dynamics and minimally modifies the teleoperator to slow
them down, preventing any Skittles from falling out while
still allowing the general motion to be executed. When the
teleoperator chooses a safe grasp—grabbing the bag by the
top, open side—the safety filter does not activate and allows
the person to complete the task safely and autonomously.

B. Shielding Autonomous Imitation-Learned Policies

Next we study how well the same Latent Safety Filter from
Section IV-A can shield autonomous imitation-learned (IL)
policies. Specifically, we test whether the latent safety filter
does not impede a strong IL policy (i.e., our filter is not
overly conservative) and improves the safety of a suboptimal



Fig. 2: Shielding IL Policies. Percent of bag spilled (p) vs
number of runs that spilled at least p% of the bag.

IL policy (i.e., our filter shields effectively), while removing
teleoperator bias that may be present in our prior experiments.

Methods. For our base task policy, πtask(o), we use a gen-
erative imitation-learned (IL) policy trained with a diffusion
objective [2] and which takes as input RGB images and
end effector pose as observations o ∈ O. We train two
diffusion policies—DiffusionAdv and DiffusionOpt—which
represent relevant extremes of a base policy’s capabilities.
DiffusionOpt represents the “upper bound” of a strong base
policy that uses carefully curated demos of the task. We use
this baseline to study whether our safety filter is not overly
conservative when shielding a strong base policy. We train
it with 100 safe teleoperated demonstrations. We also train
DiffusionAdv, which represents a “lower bound” of a base
policy trained with demonstrations that could lead to unsafe
outcomes. This policy is trained with 100 potentially unsafe
teleoperated demonstrations. This results in a base policy that
has an incomplete understanding of how to interact safely with
the Skittles bag, allowing us to test our safety filter’s ability
to prevent failures in a controlled and repeatable manner.

Metrics. We compare the performance of the
πtask ∈ {DiffusionAdv,DiffusionOpt} with and without
using LatentSafe (yielding four methods in total). We use
exactly the same Latent Safety Filter as we used to shield
the human teleoperator in Section IV-A. For each method,
we record 15 rollouts where the policy successfully grasped
the bag (ignoring missed grasps) 15 times in hardware.
We measure the frequency of constraint violations (if even
one Skittle falls out during an episode) and spill severity
(percentage of the Skittles spilled) in each of these trajectories.

Results: Shielding IL Policies. We report in Figure 2 how
often each method spilled more than p% of the bag. While
DiffusionAdv frequently spills a large percentage of the bag
(∼ 85%), DiffusionAdv + LatentSafe spills less than 5%
of the bag in all but one of the constraint-violating rollouts.
DiffusionOpt with and without LatentSafe spills only 1
skittle in across all 15 rollouts. Overall, LatentSafe reduces
both the failure rate by 63.6% and failure severity for the base
DiffusionAdv policy that can cause difficult-to-model failures.
For the safe and performant DiffusionOpt, our safety filter
enables a strong base policy to operate without unnecessary
and over-conservative overrides. We also note that practically,

since the same Latent Safety Filter was used for both the weak
and the strong base IL policy, this provides a promising avenue
for safely improving a base task-driven policy without the need
to also change the safety representation and fallback controller

C. Testing Out-of-Distribution Generalization of Latent Safety

Finally, we stress-test the performance of the same Latent
Safety Filter on out-of-distribution (OOD) bag colors and
background changes by replaying a known unsafe demonstra-
tion in open-loop as our task “policy”. We reset the bag to the
same initial condition and shield this replayed demonstration
with LatentSafe filter for all OOD conditions. Results are
shown in Figures 3 and 4.

Fig. 3: OOD Generalization: Skittles. Our latent safety filter
is trained only on a red Skittles bag. It is deployed to shield an
open-loop known unsafe trajectory for two OOD skittles bag
colors and an OOD background. LatentSafe generalizes—
maintaining the same performance of preventing spills—to
OOD Skittles bag colors and OOD background change.

Fig. 4: OOD Generalization: M&Ms. Our latent safety filter
is trained only on a red Skittles bag. It is deployed to shield
an open-loop known unsafe trajectory. LatentSafe is deployed
with 3 M&M bags with different colors and dynamics. Our
filter does not prevent the manipulator from lifting these OOD
bags. For the brown bag, even though the filter begins to
override the recorded trajectory, it does not manage to prevent
the spill, potentially due to differing dynamics.

V. CONCLUSION

In this work, our goal was to generalize robot safety beyond
collision-avoidance, accounting for hard-to-model failures like
spills, items breaking, or items toppling. We introduced Latent
Safety Filters, a generalization of the safety filtering paradigm
that operates in the learned representation of a generative
world model. We instantiated our method on hardware, demon-
strating that our latent reachability formulation protects against
extremely hard-to-specify failures, such as spills, in the real
world for both generative IL policies and human teleoperation.
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