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Abstract

While conversational semantic role labeling001
(CSRL) has shown its usefulness on Chinese002
conversational tasks, it is still under-explored003
in non-Chinese languages due to the lack of004
multilingual CSRL annotations for the parser005
training. To avoid expensive data collection and006
error-propagation of translation-based meth-007
ods, we present a simple but effective approach008
to perform zero-shot cross-lingual CSRL. Our009
model implicitly learns language-agnostic, con-010
versational structure-aware and semantically011
rich representations with the hierarchical en-012
coders and elaborately designed pre-training013
objectives. Experimental results show that our014
cross-lingual model not only outperforms base-015
lines by large margins but it is also robust to016
low-resource scenarios. More importantly, we017
confirm the usefulness of CSRL to English con-018
versational tasks such as question-in-context019
rewriting and multi-turn dialogue response gen-020
eration by incorporating the CSRL information021
into the downstream conversation-based mod-022
els. We believe this finding is significant and023
will facilitate the research of English dialogue024
tasks which suffer the problems of ellipsis and025
anaphora.026

1 Introduction027

Conversational Semantic Role Labeling (CSRL)028

(Xu et al., 2021) is a recently proposed dialogue029

understanding task, which aims to extract predicate-030

argument pairs from the entire conversation. By031

recovering dropped and referred components in032

conversation, CSRL has shown its usefulness to033

a set of Chinese conversation-based tasks, includ-034

ing multi-turn dialogue rewriting (Su et al., 2019)035

and response generation (Wu et al., 2019). How-036

ever, there remains a paucity of evidence on its037

effectiveness towards non-Chinese languages ow-038

ing to the lack of multilingual CSRL models. To039

adapt a model into new languages, previous so-040

lutions can be divided into three categories: 1)041

manually annotating a new dataset in the target 042

language (Daza and Frank, 2020) 2) borrowing ma- 043

chine translation and word alignment techniques 044

to transfer the dataset in source language into tar- 045

get language (Daza and Frank, 2019; Fei et al., 046

2020a) 3) zero-shot transfer learning with multilin- 047

gual pre-trained language model (Rijhwani et al., 048

2019; Sherborne and Lapata, 2021). Due to the fact 049

that manually collecting annotations is costly and 050

translation-based methods might introduce trans- 051

lation or word alignment errors, zero-shot cross- 052

lingual transfer learning is more practical to the 053

NLP community. 054

Recent works have witnessed prominent perfor- 055

mances of multilingual pre-trained language mod- 056

els (PrLMs) (Devlin et al., 2019; Conneau and Lam- 057

ple, 2019; Conneau et al., 2020) on cross-lingual 058

tasks, including machine translation (Lin et al., 059

2020; Liu et al., 2020b; Fan et al., 2021; Chen 060

et al., 2021), semantic role labeling (SRL) (Conia 061

and Navigli, 2020; Conia et al., 2021) and semantic 062

parsing (Fei et al., 2020b; Sherborne et al., 2020; 063

Sherborne and Lapata, 2021). However, cross- 064

lingual CSRL, as a combination of three challeng- 065

ing tasks (i.e., cross-lingual task, dialogue task and 066

SRL task), suffers three outstanding difficulties: 1) 067

latent space alignment - how to map word repre- 068

sentations of different languages into an overlap- 069

ping space; 2) conversation structure encoding 070

- how to capture high-level dialogue features such 071

as speaker dependency and temporal dependency; 072

and 3) semantic arguments identification - how 073

to highlight the relations between the predicate and 074

its arguments, wherein PrLMs can only encode 075

multilingual inputs to an overlapping vector space 076

in a certain extend. Although there are also some 077

success that can separately achieve structural con- 078

versation encoding (Mehri et al., 2019; Xu and 079

Zhao, 2021; Zhang and Zhao, 2021) and semantic 080

arguments identification (Wu et al., 2021a; Conia 081

et al., 2021), a unified method for jointly solving 082
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these problems is still under-explored, especially083

in cross-lingual scenario.084

In this work, we summarize our contributions085

as follows: (1) We propose a simple but effective086

model which consists of three modules, namely087

cross-lingual language model (CLM), structure-088

aware conversation encoder (SA-Encoder) and089

predicate-argument encoder (PA-Encoder), and five090

well-designed pre-training objectives. Our model091

implicitly learns language-agnostic, conversational092

structure-aware and semantically rich representa-093

tions to perform zero-shot cross-lingual CSRL. (2)094

Experiments show that our proposed method out-095

performs all baselines and achieves impressive096

cross-lingual performance no matter whether in-097

corporating the pre-training. (3) We confirm the098

usefulness of CSRL to English dialogue tasks in-099

cluding question-in-context rewriting and response100

generation. We believe this finding is important101

and will facilitate the research of English dialogue102

tasks that suffer ellipsis and anaphora. (4) We will103

release our code, the new annotated English CSRL104

test sets and checkpoints of our best models to fa-105

cilitate the further research.106

2 Related Work107

Zero-shot cross-lingual transfer learning. Re-108

cently, thanks to the rapid development of multi-109

lingual pre-trained language models such as mul-110

tilingual BERT (Devlin et al., 2019), XLM (Con-111

neau and Lample, 2019) and XLM-R (Conneau112

et al., 2020), a number of approaches have been113

proposed for zero-shot cross-lingual transfer learn-114

ing on various downstream tasks, including natural115

language generation (Shen et al., 2018) and under-116

standing (Liu et al., 2019; Lauscher et al., 2020;117

Sherborne and Lapata, 2021). In this work, we118

claim our method is zero-shot because no non-119

Chinese CSRL annotations are seen during the120

CSRL training stage. For decoding, we directly121

use the cross-lingual CSRL model trained on Chi-122

nese CSRL data to analyze conversations in other123

languages. To the best of our knowledge, we are124

the first one to jointly model conversational and se-125

mantic features in zero-shot cross-lingual scenario.126

Conversational semantic role labeling. While127

ellipsis and anaphora frequently occur in dialogues,128

Xu et al. (2021) observed that most of dropped or129

referred components can be found in dialogue histo-130

ries. Following this observation, they proposed con-131

versational semantic role labeling (CSRL) which132

required the model to find predicate-argument struc- 133

tures over the entire conversation instead of a single 134

sentence. In this way, when analyzing a predicate 135

in the latest utterance, a CSRL model needs to 136

consider both the current turn and previous turns 137

to search potential arguments, and thus might re- 138

cover the omitted components. Furthermore, Xu 139

et al. (2020, 2021) also confirmed the usefulness 140

of CSRL to Chinese dialogue tasks by applying 141

CSRL information into downstream dialogue tasks. 142

However, there are still two main problems to be 143

solved for CSRL task: (1) the performance of cur- 144

rent state-of-the-art CSRL model (Xu et al., 2021) 145

is still far from satisfactory due to the lack of high- 146

level conversational and semantic features model- 147

ing; (2) the usefulness of CSRL to conversational 148

tasks in non-Chinese languages has not been con- 149

firmed yet due to the lack of cross-lingual CSRL 150

models. In this work, we primarily focus on the 151

latter problem and propose a simple but effective 152

model to perform cross-lingual CSRL. We would 153

like to distinct our work from the concurrent work 154

(Wu et al., 2021b) which purely focuses on im- 155

proving the CSRL performance. Wu et al. (2021b) 156

try to model predicate-aware representations which 157

could benefit to monolingual CSRL task, but hurt 158

the cross-lingual performance, because the rela- 159

tive positions of the predicates may differ from 160

language to language. 161

3 Methodology 162

Following Xu et al. (2021), we solve the CSRL 163

task as a sequence labeling problem. Our goal is to 164

find the arguments over the entire dialogue with the 165

given predicate and additional information such as 166

turn and speaker role indicators. 167

3.1 Architecture 168

Cross-lingual Language Model (CLM) Given 169

a dialogue C = {u1, u2, ..., uN} of N utterances, 170

where ui = {wi
1, w

i
2, ..., w

i
|ui|} consisting of a se- 171

quence of words, we first concatenate utterances 172

into a sequence and then use a pre-trained cross- 173

lingual language model such as XLM-R (Conneau 174

et al., 2020) or mBERT (Devlin et al., 2019) to 175

capture the syntactic and semantic characteristics. 176

Following Conia et al. (2021), we obtain word rep- 177

resentations e by concatenating the hidden states 178

of the four top-most layers of the language model. 179

Structure-aware Conversation Encoder (SC- 180

Encoder) Different from standard SRL(Carreras 181
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Figure 1: Overall model architecture.

and Màrquez, 2005), CSRL requires the models182

to find arguments from no only the current turn,183

but also previous turns, leading to more challenges184

of dialogue modeling. To address this problem,185

we propose a universal structure-aware conversa-186

tion encoder which comprises of two parts, i.e.,187

word-level encoder and utterance-level encoder.188

Following Xu et al. (2021), we also incorporate189

speaker role and dialogue turn indicators to re-190

serve high-level structural features of the dialogue,191

which could help the model to better handle coref-192

erence resolution and zero pronoun resolution. For-193

mally, given a sequence of word representations194

e = (e11, ..., e
i
k, ..., e

N
|uN |), dialogue turn embed-195

dings t = (t11, ..., t
i
k, ..., t

N
|uN |) and speaker role196

embeddings r = (r11, ..., r
i
k, ..., r

N
|uN |), the word-197

level encoder computes a sequence of timestep en-198

codings s as follows:199

sj(i,k) =

{
eik ⊕ tik ⊕ rik if j = 0

sj−1
(i,k) ⊕ MTRANSj(sj−1

(i,k)) otherwise
(1)200

where sj(i,k) is the timestep encoding of k-th to-201

ken in i-th utterance from j-th word-level encoder202

layer while j ∈ (0, . . . , N1), ⊕ represents vec-203

tor concatenation, and MTRANS is the Modified204

Transformer encoder layer. Concretely, we replace205

the [Add] operation in the first residual connec-206

tion layer with [Concat] because we argue that207

concatenation is a superior approach to reserve the208

information from previous layers1. 209

We obtain utterance representations u by max- 210

pooling over words in the same utterance. Then 211

we pass the resulting utterance representations 212

u through a stack of Bi-LSTM (Hochreiter and 213

Schmidhuber, 1997) layers to obtain the sequen- 214

tially encoded utterance representations u′. Finally, 215

we incorporate u′ with context representations s 216

from previous layer to obtain structure-aware dia- 217

logue context representations g as follows: 218

gi
k = Swish(Wg[sN1

(i,k) ⊕ u′
i] + bg) (2) 219

where Swish(x) = x · sigmoid(x) is a non-linear 220

activation function, sN1
i,k is the encoding of k-th 221

token in i-th utterance from the last layer of the 222

word-level encoder, and Wg and bg are trainable 223

parameters. 224

Predicate-Argument Encoder (PA-Encoder) 225

We introduce the third module (i.e., predicate- 226

argument encoder) whose goal is to capture the rela- 227

tions between each predicate-argument couple that 228

appears in the conversation. Similar with the word- 229

level encoder, we use a stack of MTRANS layers to 230

implement this encoder. Formally, with denoting 231

predicate embedding as p = (p1
1, ...,p

i
k, ...,p

N
|uN |), 232

the model calculates the predicate-specific argu- 233

1More details about MTRANS in Appendix B.
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ment encodings as follows:234

aj
(i,k) =

{
gi
k ⊕ pi

k if j = 0

aj−1
(i,k) ⊕ MTRANSj(aj−1

(i,k)) otherwise
(3)235

where gi
k is the token embedding from conversa-236

tion encoder, pi
k is the corresponding predicate237

indicator embedding, and aj
(i,k) is the argument238

encoding of k-th token in i-th utterance from j-th239

encoder layer while j ∈ (0, . . . , N2). Finally, we240

obtain the semantic role encoding l using the re-241

sulting argument encodings from the last layer of242

the predicate-argument encoder:243

lik = Swish(WlaN2

(i,k) + bl) (4)244

In particular, we emphasize that our proposed245

model is mostly language-agnostic since we do not246

explicitly introduce any language-specific knowl-247

edge such as word order, part-of-speech tags or248

dependent relations, and only incorporate the pred-249

icate indicator that might contain some language-250

specific information in the semantic module, which251

would not affect the latent space alignment and252

dialogue modeling.253

3.2 Pre-training Objectives254

Besides the universal model, we also elaborately255

design five pre-training objectives to model task-256

specific but language-agnostic features for better257

cross-lingual performance. In this section, we di-258

vide our pre-training objectives into three groups259

according to the challenges to be solved.260

Latent space alignment In cross-lingual lan-261

guage module, we use mBERT or XLM-R to align262

the latent space of different languages. Although263

mBERT and XLM-R have exhibited good align-264

ment ability, even both of which are trained with265

unpaired data, we may further improve it when we266

have access to parallel data.267

Following (Conneau and Lample, 2019), we first268

use translation language model (TLM) to make di-269

rect connections between parallel sentences. Con-270

cretely, we concatenate parallel sentences as a sin-271

gle consecutive token sequence with special tokens272

separating them and then perform masked language273

model (MLM) (Devlin et al., 2019) on the concate-274

nated sequence.275

Besides improving word-level alignment ability276

by TLM, we also attempt to enhance sentence-level277

alignment ability using hard parallel sentence iden-278

tification (HPSI). Specifically, we select a pair of279

parallel or non-parallel sentences from the train- 280

ing set with equal probability. Then the model is 281

required to predict whether the sampled sentence 282

pair is parallel or not. Different from the standard 283

PSI (Dou and Neubig, 2021), we sample the non- 284

parallel sentence upon the n-gram similarity or con- 285

struct it by text perturbation2 instead of in a random 286

manner. We think that closer the negative sample 287

is to the positive sample, better representations the 288

model can learn. 289

In practice, we use the initial context represen- 290

tation e from CLM as the input of TLM and HPSI 291

decoders, and pre-train the CLM using the combi- 292

nation of TLM and HPSI, finally achieving latent 293

space alignment. 294

Conversation structure encoding Although 295

there are a number of pre-training objectives pro- 296

posed to learn dialogue context representations 297

(Mehri et al., 2019), structural representations 298

(Zhang and Zhao, 2021; Gu et al., 2021) and se- 299

mantic representations (Wu et al., 2021a), we tend 300

to explicitly model speaker dependency and tempo- 301

ral dependency in the conversation, both of which 302

have been proven to be critical to CSRL task (Xu 303

et al., 2021). 304

We first propose speaker role identification (SPI) 305

to learn speaker dependency in the conversation. 306

Specifically, we randomly sample K1% utterances 307

and replace their speaker indicators with special 308

mask tags. To make the task harder and effective, 309

we split the utterances into clauses if only two inter- 310

locutors utter in turn in a conversation. The goal of 311

SPI is to predict the masked speaker roles accord- 312

ing to the corrupted speaker indicators and context. 313

Secondly, we borrow utterance order permutation 314

(UOR) to encourage the model to be aware of tem- 315

poral connections among utterances in the context. 316

Concretely, given a set of utterances, we randomly 317

shuffle the last K2% utterances and require the 318

model to organize them into a coherent context. 319

In practice, we drop the dialogue turn embedding 320

here to avoid temporal information leakage. We use 321

the sequentially informed utterance representations 322

u′ as the input of speaker role and utterance order 323

decoders, and pre-train SC-Encoder using the com- 324

bination of SPI and UOR. After the pre-training of 325

this stage, we respectively employ the transposed 326

speaker role and utterance order decoders as the 327

speaker role and dialogue turn embedding matrices 328

during the CSRL training stage. 329

2Details in Appendix A
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Semantic arguments identification The core of330

all SRL-related tasks is to recognize the predicate-331

argument pairs from the input. Therefore, we pro-332

pose semantic arguments identification (SAI) objec-333

tive to strengthen the correlations between the pred-334

icate and its arguments with the help of external335

standard SRL corpus, i.e., CoNLL-2012. Specifi-336

cally, for each SRL sample, we only focus on those337

arguments, including ARG0-4, ARG-LOC, ARG-338

TMP and ARG-PRP, all of which are defined in339

both SRL and CSRL tasks. The model is encour-340

aged to find the textual spans of these arguments341

with the given predicate. We believe this objective342

would benefit to boundary detection, especially for343

location and temporal arguments.344

In practice, we drop the utterance-level encoder345

of SC-Encoder to fit in standard SRL samples be-346

cause they do not have any conversational charac-347

teristics. We directly feed the word-level context348

representations s into PA-Encoder, and then use349

the argument encodings a to make classifications.350

3.3 Training351

Hierarchical Pre-training The pre-training is hi-352

erarchically conducted according to different mod-353

ules, and the pre-training of the upper module is354

based on the pre-trained lower modules. Specifi-355

cally, we first train CLM module with TLM and356

HPSI; then we train SC-Encoder with SPI and UOR357

while keeping the weights of pre-trained CLM mod-358

ule unchanged; finally we train PA-Encoder with359

SAI while freezing the weights of pre-trained CLM360

and SC-Encoder modules. Hopefully, we expect361

that each module could acquire different knowl-362

edge with specific pre-training objectives.363

CSRL training Our CSRL model is trained only364

using Chinese CSRL annotations and no additional365

data is introduced during the CSRL training stage.366

We train our model to minimize the cross-entropy367

error for a training sample with label y based on368

the semantic role encoding l,369

p = softmax(lt) LCSRL = −
L∑
l=1

y log p (5)370

4 Experiments371

We evaluate our method from two aspects: 1) the372

performance of cross-lingual CSRL parser; 2) the373

usefulness of CSRL parser on conversation-based374

tasks in target languages.375

4.1 Datasets 376

CSRL data We use the same split as Xu et al. 377

(2021) where DuConv annotations are splitted into 378

80%/10%/10% as train/dev/in-domain test set. Fur- 379

thermore, we manually collect two CSRL test 380

sets3 for cross-lingual evaluation based on Persona- 381

Chat(Zhang et al., 2018) and CMU-DoG(Zhou 382

et al., 2018), both of which are English conver- 383

sation datasets. Note that we only explore cross- 384

lingual CSRL on Chinese→English (Zh→En) here, 385

and we leave other languages for future work. 386

Pre-training data For TLM and HPSI objectives 387

which requires parallel data to enhance alignment 388

ability, we choose IWSLT’14 English↔Chinese 389

(En↔Zh) translations4. For SPI and UOR objec- 390

tives whose goal is to model high-level conversa- 391

tional features, we select samples from Chinese 392

conversation dataset (i.e., DuConv) and English 393

conversation datasets (i.e., Persona-Chat and CMU- 394

DoG) with equal probability. For SAI, we borrow 395

the Chinese and English SRL annotations from 396

CoNLL-2012(Pradhan et al., 2012). 397

We stress that by keeping the sampling balance 398

of Chinese and English data for every pre-training 399

objective and sharing all parameters across the 400

languages, our model would capture task-specific 401

but language-agnostic features. 402

4.2 Experimental Setup 403

We implement the model in PyTorch(Paszke et al., 404

2019), and use the pre-trained language model of 405

multilingual BERT (mBERT) or XLM-RoBERTa 406

(XLM-R) made available by the Transformer li- 407

brary (Wolf et al., 2020) as the backbone. We 408

train the model using AdamW(Loshchilov and Hut- 409

ter, 2018) with a linear learning rate schedule. For 410

each model, we run five different random seeds and 411

report the average score. More details and hyper- 412

parameters are listed in Table 6 (in Appendix G). 413

Following previous work(Xu et al., 2021), 414

we evaluate our system on micro-average F1all, 415

F1cross and F1intra over the (predicate, argument, 416

label) tuples, wherein we calculate F1cross and 417

F1intra over the arguments in the different, or same 418

turn as the predicate. We refer these two types of 419

arguments as cross-arguments and intra-arguments. 420

For language in-domain evaluation, we compare 421

to SimpleBERT (Shi and Lin, 2019), CSRL-BERT 422

(Xu et al., 2021) and CSAGN (Wu et al., 2021b), all 423

3More details are described in Appendix C.
4https://wit3.fbk.eu/
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Method
Trainable DuConv Persona-Chat CMU-DoG

parameters F1all F1cross F1intra F1all F1cross F1intra F1all F1cross F1intra

SimpleBERT 117 M 86.54 81.62 87.02 - - - - - -
CSRL-BERT 147 M 88.46 81.94 89.46 - - - - - -
CSAGN 163 M 89.47 84.57 90.15 - - - - - -
SimpleXLMR 292 M 84.75 63.44 85.12 62.96 14.29 63.03 50.54 14.29 58.50
CSRL-XLMR 320 M 88.03 78.12 89.33 63.18 18.71 65.05 53.84 34.20 59.78
CSAGN-XLMR 338 M 88.52 82.45 89.98 63.02 17.82 64.97 52.73 30.11 58.91
Back-translation - - - - 63.49 13.90 66.67 47.91 27.44 50.92
Fine-tune all parameters
OursmBERT 272 M 87.20 81.14 88.11 58.38 9.39 61.77 48.13 20.92 52.91
OursXLM-R 372 M 88.35 83.39 89.21 67.29 24.29 70.61 61.74 60.32 62.67
Oursw/ pretrain 372 M 88.60 84.10 89.24 67.23 25.43 69.89 59.24 58.94 60.89
Freeze parameters of the language model
OursmBERT 180 M 87.08 81.46 87.98 59.04 11.23 62.13 48.87 21.78 53.54
OursXLM-R 180 M 88.30 83.38 89.17 65.57 24.11 68.51 59.60 56.16 60.78
Oursw/ pretrain 180 M 88.60 83.72 89.27 66.75 24.13 69.44 58.45 58.92 58.82
Ablation studies
All objectives - 88.60 83.72 89.27 66.75 24.13 69.44 58.45 58.92 58.82
w/o TLM & HPSI - 88.07 81.90 89.06 65.07 23.91 68.34 58.23 53.15 59.24
w/o SPI & UOR - 87.75 81.56 88.81 68.35 22.86 71.29 58.08 47.93 60.22
w/o SAI - 88.00 83.16 89.06 64.74 23.33 67.99 59.94 54.68 61.87
w/ end2end pre-training - 87.28 81.02 88.73 64.37 21.17 67.77 57.86 50.40 58.20
OursXLM-R - 88.30 83.38 89.17 65.57 24.11 68.51 59.60 56.16 60.78
w/o SC-Encoder - 88.02 79.11 89.05 63.12 17.55 66.70 57.72 50.42 58.03
w/o PA-Encoder - 88.10 81.32 88.78 64.05 22.38 64.82 58.24 54.00 59.23
w/o MTRANS - 88.25 83.01 89.08 65.27 23.10 68.38 58.58 55.41 59.98

Table 1: Evaluation results on the DuConv, Persona-Chat and CMU-DoG datasets. Scores in GRAY are from the
concurrent work (Wu et al., 2021b).

of which employ the Chinese pre-trained language424

model as the backbone. For cross-lingual evalua-425

tion, we compare to SimpleXLMR, CSRL-XLMR426

and CSAGN-XLMR by simply replacing the BERT427

backbones of those models with XLM-R. Addition-428

ally, we also compare to a back-translation baseline.429

Specifically, the test data in English is translated430

and projected to Chinese annotations using Google431

Translate (Wu et al., 2016) and the state-of-the-art432

word alignment toolkit Awesome-align(Dou and433

Neubig, 2021). We feed the translated samples into434

CSAGN to obtain the back-translation results.435

4.3 Main Results436

Table 1 summarized the results of all compared437

methods on DuConv, Persona-Chat and CMU-DoG438

datasets.439

Firstly, we can see that our method achieves440

competitive performance over all datasets, espe-441

cially in cross-lingual scenario where our method442

outperforms the baselines by a large margin no443

matter fine-tuning or freezing the language model444

during the CSRL training stage. Although CSAGN445

exceeds our method on DuConv test set, it fails446

to work well in cross-lingual scenario. We think 447

the reasons are (1) it heavily relies on rich fea- 448

tures of the Chinese pre-trained language model 449

(2) it is overfitting on the predicate-aware infor- 450

mation. Superior to CSAGN, our model with the 451

multilingual backbone achieves outstanding per- 452

formance on both language in-domain and cross- 453

lingual datasets. This observation is expected be- 454

cause (1) our model is language-agnostic which 455

makes the cross-lingual transfer easier; (2) our 456

model captures more high-level conversational fea- 457

tures in SC-Encoder, thus enhancing the capaci- 458

ties of the model to recognize cross-arguments; (3) 459

rich semantic features are modeled by PA-Encoder, 460

which would improve the capacities of the model 461

to recognize intra-arguments. 462

Secondly, although our model has achieved good 463

performance over all datasets, further improve- 464

ments can be observed after incorporating our well- 465

designed pre-training objectives, especially when 466

freezing the parameters of the language model. Ex- 467

ceptionally, we find that the performance on the 468

CMU-DoG dataset heavily drops after introduc- 469

ing the pre-training objectives, especially in terms 470
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Figure 2: F1all scores of low-resource experiments on
DuConv, Persona-Chat and CMU-DoG.
of F1intra. We think this is because the seman-471

tic argument spans in CoNLL-2012 are relatively472

different from those in CMU-DoG, thus leading473

to the vague boundary detection and performance474

drop. To verify this assumption, we conduct abla-475

tion study by removing SAI from the pre-training476

stage. Interestingly, we observe substantial im-477

provements over F1all and F1intra, suggesting that478

pre-training on CoNLL-2012 does hurt the perfor-479

mance on CMU-DoG dataset. Furthermore, we480

also find that fine-tuning all parameters leads to481

slightly better performance than freezing the lan-482

guage model during the CSRL training stage. This483

finding is consistent with the previous work (Co-484

nia et al., 2021). However, we do not think this485

improvement is efficient since it consumes much486

more computation resources. To this end, we are487

more focused on the performance using the frozen488

language model.489

Finally, by analyzing the results of ablation stud-490

ies, we draw several conclusions: (1) removing491

PA-Encoder or MTRANS or TLM & HPSI objec-492

tives hurt performance consistently but slightly; (2)493

SPI, UOR objectives and SC-Encoder significantly494

affect the values of F1cross, especially on two cross-495

lingual datasets; (3) SAI objective helps to find496

intra-arguments on DuConv and Persona-Chat, but497

might hurt the F1intra score on CMU-DoG; (4)498

hierarchical pre-training is superior to end-to-end499

pre-training which simultaneously optimizes all500

auxiliary objectives.501

4.4 Low-resource cross-lingual CSRL502

We evaluate the robustness of our proposed method503

in low-resource scenario by artificially reducing504

the size of training set. Specifically, we examine on505

10%, 30%, 50% and 70% of training data, respec-506

tively. Figure 2 illustrates the F1all scores of these507

low-resource experiments over all datasets (Detail508

scores in Table 10). We can find that our method509

U1 how many games did the colts win?
U2 the ColtsARG0 finished with a 12-2 record.
Question who did they playpredicate in the playoffs?
Question′ who did the Colts play in the playoffs?

Table 2: One example of question-in-context rewriting.

with pre-training objectives can reach competitive 510

performance just with 30% training data while the 511

vanilla model needs around 50% training data. This 512

result is expected since our model could acquire 513

rich knowledge about dialogue encoding and se- 514

mantic role identification with the well-designed 515

pre-training objectives. Therefore, we believe that 516

our method is robust to low-resource scenarios, es- 517

pecially after introducing pre-training objectives. 518

This observation sheds more lights to extend CSRL 519

into low-resource languages. 520

4.5 Applications 521

Xu et al. (2021) has confirmed the usefulness of 522

CSRL by applying CSRL parsing results to two 523

Chinese dialogue tasks, including dialogue context 524

rewriting and dialogue response generation. In the 525

same vein, we also explore whether CSRL could 526

benefit to the same English dialogue tasks. 527

Question-in-context Rewriting Question-in- 528

context rewriting (Elgohary et al., 2019) is a 529

challenging task which requires the model to 530

resolve the conversational dependencies between 531

the question and the context, and then rewrite the 532

original question into independent one. This is an 533

example in Table 2. The question “who did they 534

play in the playoffs?" cannot be independently 535

understood without knowing “they” refer to, but it 536

can be resolved with the given context. 537

Since the CSRL models can identify the 538

predicate-argument structures from the entire con- 539

versation, we believe that it can help this rewriting 540

task by searching the dropped or referred compo- 541

nents from the context. For example, in Table 2, 542

our CSRL parser can find that the ARG0 of the 543

predicate “play" is “the Colts". Motivated by this 544

observation, we attempt to borrow CSRL to help 545

the question rewriting with the context. We first 546

employ the pre-trained cross-lingual CSRL parser 547

to extract predicate-argument pairs from conversa- 548

tions. Then, we adopt the model proposed in (Xu 549

et al., 2020) to achieve the rewriting. More details 550

about the model are in Appendix E. 551

We evaluate on CANARD (Elgohary et al., 2019) 552

which is a widely used English question rewriting 553

dataset, and report the BLEU scores. Table 3 lists 554
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Method B1 B2 B4
Seq2Seq - - 49.67
SARG(Huang et al., 2020) - - 54.80
RUN(Liu et al., 2020a) 70.50 61.20 49.10
Human evaluation - - 59.92
Ourswo/ CSRL 69.24 62.93 52.78
Oursw/ CSRL 70.26 64.19 54.23

Table 3: Evaluation results on the dataset of CANARD.

Method B1/2 D1/2 Human
Seq2Seq 0.138/0.069 0.051/0.094 2.72
Ourswo/ CSRL 0.188/0.113 0.114/0.217 3.02
Oursw/ CSRL 0.195/0.122 0.116/0.223 3.16

Table 4: Evaluation results on Persona-Chat.

the results of our model on CANARD. We can see555

that our implementation achieves competitive per-556

formance against the state-of-the-art rewriting mod-557

els, i.e., SARG (Huang et al., 2020) and RUN (Liu558

et al., 2020a), and significantly outperforms the559

baseline method (Bahdanau et al., 2014). However,560

in this part, we are more focused on the improve-561

ments after introducing CSRL information. We562

find that the scores across all metrics are improved563

with the aid of CSRL. To figure out the reasons of564

these improvements, we investigate which type of565

questions could benefit from CSRL information.566

By comparing the rewritten questions of different567

methods, we find that the questions that requires in-568

formation completion, especially those containing569

referred components (around 15% cases), benefit570

from CSRL most. This observation is naturally571

in line with our expectation that our CSRL parser572

could consistently offer essential guidance by re-573

covering dropped or referred text components.574

Multi-turn Dialogue Response Generation In575

addition to the rewriting task that is heavily affected576

by omitted components, we also explore the use-577

fulness of CSRL to multi-turn dialogue response578

generation, one of the main challenges in dialogue579

community. In contrast to single-turn dialogue580

response generation, multi-turn dialogues suffers581

more frequently occurred ellipsis and anaphora,582

which leads to vague context representations. To583

this end, we attempt to employ CSRL to build better584

context representations. Specifically, we highlight585

the words picked up by the CSRL parser, and then586

teach the model to pay more attention on those587

words which would hold more semantic informa-588

tion. We first employ the pre-trained cross-lingual589

CSRL parser to analyze the latest utterance, and590

then concatenate the extracted predicate-argument591

pairs with the context and target response into a592

sequence. Our model for response generation is 593

borrowed from Dong et al. (2019) which can flexi- 594

bly support both bi-directional encoding and uni- 595

directional decoding via special attention masks. 596

We evaluate on Persona-Chat (Zhang et al., 597

2018) which is an English persona-based dialogue 598

dataset containing 162,064 utterances over 10,907 599

dialogues, and report BLEU-1/2 and Distinct-1/2 600

scores. Note that our goal is to verify the effec- 601

tiveness of CSRL to multi-turn dialogue response 602

generation, so we drop the persona knowledge in 603

our experiments and directly compare the perfor- 604

mance with and without CSRL information. Table 605

4 summarize the results of response generation on 606

Persona-Chat dataset. We can see that our imple- 607

mentation significantly outperforms the baseline 608

method (Bahdanau et al., 2014) even without CSRL 609

information. After introducing CSRL information, 610

we obtain further gains across all metrics. Apart 611

from automatic evaluation criteria, we also conduct 612

human evaluation. Specifically, we randomly select 613

200 generated responses for each method, and then 614

recruit three annotators to evaluate the coherence 615

and informativeness of the response against the con- 616

versation context by giving a score ranging from 617

1(worst) to 5(best). We find that our model with 618

CSRL wins in 35% cases, and ties with the vanilla 619

model in around 55% cases. With more careful 620

analysis, we find that the responses that contains 621

entities mentioned in histories benefit from CSRL 622

information most. We think this is because none- 623

phrases are more likely to be recognized as seman- 624

tic arguments by CSRL parser, and then receive 625

more attentions during encoding. 626

With the impressive experimental results on 627

these two tasks, we firmly believe that CSRL infor- 628

mation is helpful to English downstream dialogue 629

tasks. In addition, our cross-lingual CSRL parser 630

is also proven to be capable to analyze English 631

conversations and generate reasonable predicate- 632

argument structures. 633

5 Conclusion 634

In this work, we propose a simple but effective 635

model with five pre-training objectives to perform 636

zero-shot cross-lingual CSRL, and also confirm the 637

effectiveness of CSRL to English dialogue tasks 638

by introducing CSRL information into these tasks. 639

Future work can be conducted to further improve 640

cross-lingual CSRL performance or explore more 641

applications of CSRL. 642
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A Hard Parallel Sentence Identification910

Sampling911

Following previous work (Robinson et al., 2020;912

Wei et al., 2020) which suggests that contrastive913

learning of representations benefits from hard neg-914

ative samples, we also try to select hard negative915

samples for PSI task based on n-gram similarity916

and text perturbation. Specifically, for each sen-917

tence, we calculate its n-gram similarity scores to918

other sentences, where n = 1, 2, 3, 4, and then we919

select the sentence with the highest score at each920

gram as the candidate sentence; additionally, we921

construct the corrupted sentence as the candidate922

by token deletion, token replacement and token923

order permutation. Finally, we sample from the924

candidate set created by n-gram similarity at 40%925

time and from the candidate set created by text926

perturbation at 60% time.927

B Modified Transformer Encoder Layer928

To overcome the information forgetting of hierar-929

chical models, we attempt to modify the standard930

Transformer to better reserve the information from931

the previous layers. In specific, we try following932

variants:933

• MTRANS. Replacing the [Add] operation934

in the first residual connection layer with935

[Concat].936

• LATER-MTRANS. Replacing the [Add] op-937

eration in the second residual connection layer938

with [Concat].939

• BOTH-MTRANS. Replacing the [Add] op-940

erations in both the first and second residual941

connection layers with [Concat].942

Our intuition of substituting the summation943

with concatenation is that the residual layer with944

concatenation would introduce additional param-945

eters, and we expect these additional parame-946

ters to retain more history information. As947

shown in Table 1, we obtain some gains while948

using MTRANS. Additionally, we also report949

the F1all scores on DuConv/Persona-Chat/CMU-950

DoG datasets while using LATER-MTRANS and951

BOTH-MTRANS here. LATER-MTRANS achieves952

88.18/65.32/58.44 points, and BOTH-MTRANS953

achieves 88.40/66.12/59.72 points against the stan-954

dard Transformer achieving 88.25/65.27/58.58955

points. Although BOTH-MTRANS achieves the956

best performance, we finally choose MTRANS 957

since BOTH-MTRANS brings a large volume of 958

additional parameters which leads to a huge model 959

size while the increasing of model parameters 960

caused by MTRANS is acceptable. 961

C Dataset Statistics 962

Following the instructions in Xu et al. (2021), we 963

manually collect two out-of-domain CSRL test sets 964

based on English dialogue datasets Persona-Chat 965

(Zhang et al., 2018) and CMU-DoG (Zhou et al., 966

2018). Specifically, we also annotate the arguments 967

ARG0-4, ARG-TMP, ARG-LOC and ARG-PRP 968

and require that the labeled arguments can only 969

appear in the current turn or the previous turns. We 970

employ three annotators who have studied Chinese 971

CSRL annotations for a period time before this 972

annotation. The first two annotators are required to 973

label all cases and any disagreement between them 974

is solved by the third annotator. The statistics of 975

the datasets are listed in Table 5. 976

D Baselines 977

We compare to following baseline models, 978

1. SimpleBERT/SimpleXLMR (Shi and Lin, 979

2019). It uses the Chinese BERT or XLM-R 980

as the backbone and simply concatenates the 981

entire dialogue context with the predicate. 982

2. CSRL- BERT/XLMR (Xu et al., 2021). It 983

uses the Chinese BERT or XLM-R as the back- 984

bone but attempts to encode the conversation 985

structural information by integrating the di- 986

alogue turn and speaker embeddings in the 987

input embedding layer. 988

3. CSAGN/CSAGN-XLMR (Wu et al., 2021b). 989

It uses the Chinese BERT or XLM-R as the 990

backbone and employ the relational graph neu- 991

ral network to model predicate- and speaker- 992

aware dependencies. We implement this base- 993

line based on the code https://github. 994

com/hahahawu/CSAGN. 995

E Application Models 996

Rewriting Model. We adopt the model proposed 997

in (Xu et al., 2020) which directly concatenates 998

the predicate-argument structures, the conversation 999

context and the question as a sequence, and then 1000

feeds them into the model with special attention 1001
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Dataset language #dialogue #utterance #predicate #tokens per utterance cross ratio
DuConv ZH 3,000 27,198 33,673 10.56 21.89%
Persona-Chat EN 50 2,669 477 17.96 17.74%
CMU-DoG EN 50 3,217 450 12.57 7.41%

Table 5: Statistics of the annotations on DuConv, NewsDialog and PersonalDialog.

masks. During decoding, the model takes CSRL1002

pairs and the context to generate the rewritten ques-1003

tion word by word. The input representation, atten-1004

tion strategies and loss function of our model are1005

same as (Xu et al., 2020)’s. We initialize the model1006

using the base BERT model and use AdamW with1007

a linear learning rate schedule to update parameters.1008

We list the hyper-parameters in Table 7.1009

Response Generation Model. Our model for1010

response generation is analogous to Dong et al.1011

(2019) which can flexibly support both bi-1012

directional encoding and uni-directional decoding1013

via special self-attention masks. Specifically, we1014

concatenate the extracted predicate-argument pairs1015

with the context and target response into a se-1016

quence, and then feed the sequence into the en-1017

coder for training; during decoding, our model1018

takes semantic information and the context as in-1019

put to generate the response word by word. The1020

input representation, attention strategies and loss1021

function are same as the rewriter model’s. We ini-1022

tialize the model using the base BERT model and1023

use AdamW with a linear learning rate schedule to1024

update parameters. We list the hyper-parameters in1025

Table 8.1026

F More Experimental Results1027

We report some more detailed experimental results1028

here. Table 9 summarize the standard deviations1029

of the main evaluation results on three datasets.1030

Table 10 gives the detailed scores of low-source1031

experiments.1032

G Hyper-parameters1033

We list the hyper-parameters of CSRL experiments1034

(Table 6), rewriting experiments (Table 7) and re-1035

sponse experiments (Table 8) below.1036

Name Value
Language model xlm-roberta-base
Hidden state size 512
Word-level encoder layers 2
Pred.-arg encoder layers 1
Batch size per GPU 24
Max learning rate 5e-5
Min learning rate 1e-5
Max lr for LM fine-tuning 1e-5
Min lr for Lm fine-tuning 1e-6
Max sequence length 512
Max training epochs 50
Max training steps 15000
Early-stop patience 10

Table 6: Hyper-parameters in CSRL experiments.

Name Value
Language model bert-base-cased
Hidden state size 768
Batch size per GPU 16
Max learning rate 3e-5
Min learning rate 1e-5
Max sequence length 512
Max decode length 32
Max training epochs 20
Early-stop patience 5

Table 7: Hyper-parameters in rewriting experiments.

Name Value
Language model bert-base-cased
Hidden state size 768
Batch size per GPU 16
Max learning rate 5e-5
Min learning rate 3e-5
Max sequence length 512
Max decode length 64
Max training epochs 20
Early-stop patience 5

Table 8: Hyper-parameters in response generation ex-
periments.
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Method
DuConv Persona-Chat CMU-DoG

F1all F1cross F1intra F1all F1cross F1intra F1all F1cross F1intra

SimpleXLMR ± 0.32 ± 0.61 ± 0.20 ± 1.16 ± 1.95 ± 0.72 ± 0.68 ± 1.73 ± 0.17
CSRL-XLMR ± 0.25 ± 0.63 ± 0.13 ± 1.24 ± 1.40 ± 0.87 ± 0.52 ± 0.99 ± 0.40
CSAGN-XLMR ± 0.27 ± 0.32 ± 0.21 ± 1.31 ± 2.18 ± 0.78 ± 0.54 ± 1.04 ± 0.43
Back-translation - - - ± 0.67 ± 1.12 ± 0.56 ± 0.42 ± 0.55 ± 0.44
Fine-tune all parameters
OursmBERT ± 0.31 ± 0.46 ± 0.24 ± 0.94 ± 1.23 ± 0.70 ± 0.51 ± 1.12 ± 0.32
OursXLM-R ± 0.16 ± 0.21 ± 0.13 ± 0.71 ± 0.82 ± 0.49 ± 0.33 ± 0.47 ± 0.26
Oursw/ pretrain ± 0.13 ± 0.19 ± 0.12 ± 0.65 ± 0.79 ± 0.45 ± 0.74 ± 1.10 ± 0.72
Freeze parameters of the language model
OursmBERT ± 0.41 ± 0.64 ± 0.34 ± 1.62 ± 2.23 ± 1.32 ± 1.15 ± 1.20 ± 1.22
OursXLM-R ± 0.23 ± 0.38 ± 0.17 ± 1.07 ± 1.41 ± 1.10 ± 0.82 ± 1.30 ± 0.87
Oursw/ pretrain ± 0.23 ± 0.31 ± 0.18 ± 1.00 ± 1.25 ± 0.90 ± 1.12 ± 1.35 ± 1.20

Table 9: The standard deviations of the main evaluation results on the DuConv, Persona-Chat and CMU-DoG
datasets. For SimpleBERT, CSRL-BERT and CSAGN, we directly copy their evaluation scores from (Wu et al.,
2021b), so we do not report the standard deviations here.

Method
DuConv Persona-Chat CMU-DoG

F1all F1cross F1intra F1all F1cross F1intra F1all F1cross F1intra

OursXLM-R / 10% data 47.73 45.60 47.90 35.14 6.51 36.97 24.88 22.58 25.31
OursXLM-R / 30% data 77.62 72.00 78.81 54.20 16.19 56.91 43.88 42.26 44.86
OursXLM-R / 50% data 85.03 78.84 86.34 60.78 22.87 63.70 53.57 48.97 55.37
OursXLM-R / 70% data 87.18 81.61 88.20 64.51 23.71 67.43 56.87 53.61 58.25
OursXLM-R / pre-train / 10% data 54.74 56.33 53.70 38.91 8.71 41.08 26.96 24.66 26.84
OursXLM-R / pre-train / 30% data 85.56 79.72 86.57 61.02 18.46 63.50 52.43 52.67 52.88
OursXLM-R / pre-train / 50% data 87.31 82.31 88.07 63.60 25.04 65.94 54.87 50.82 56.20
OursXLM-R / pre-train / 70% data 88.31 83.07 89.08 65.32 22.12 68.02 57.64 56.32 58.26

Table 10: Low-resource experiments on the DuConv, Persona-Chat and CMU-DoG datasets.
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