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Abstract

While conversational semantic role labeling
(CSRL) has shown its usefulness on Chinese
conversational tasks, it is still under-explored
in non-Chinese languages due to the lack of
multilingual CSRL annotations for the parser
training. To avoid expensive data collection and
error-propagation of translation-based meth-
ods, we present a simple but effective approach
to perform zero-shot cross-lingual CSRL. Our
model implicitly learns language-agnostic, con-
versational structure-aware and semantically
rich representations with the hierarchical en-
coders and elaborately designed pre-training
objectives. Experimental results show that our
cross-lingual model not only outperforms base-
lines by large margins but it is also robust to
low-resource scenarios. More importantly, we
confirm the usefulness of CSRL to English con-
versational tasks such as question-in-context
rewriting and multi-turn dialogue response gen-
eration by incorporating the CSRL information
into the downstream conversation-based mod-
els. We believe this finding is significant and
will facilitate the research of English dialogue
tasks which suffer the problems of ellipsis and
anaphora.

1 Introduction

Conversational Semantic Role Labeling (CSRL)
(Xu et al., 2021) is a recently proposed dialogue
understanding task, which aims to extract predicate-
argument pairs from the entire conversation. By
recovering dropped and referred components in
conversation, CSRL has shown its usefulness to
a set of Chinese conversation-based tasks, includ-
ing multi-turn dialogue rewriting (Su et al., 2019)
and response generation (Wu et al., 2019). How-
ever, there remains a paucity of evidence on its
effectiveness towards non-Chinese languages ow-
ing to the lack of multilingual CSRL models. To
adapt a model into new languages, previous so-
lutions can be divided into three categories: 1)

manually annotating a new dataset in the target
language (Daza and Frank, 2020) 2) borrowing ma-
chine translation and word alignment techniques
to transfer the dataset in source language into tar-
get language (Daza and Frank, 2019; Fei et al.,
2020a) 3) zero-shot transfer learning with multilin-
gual pre-trained language model (Rijhwani et al.,
2019; Sherborne and Lapata, 2021). Due to the fact
that manually collecting annotations is costly and
translation-based methods might introduce trans-
lation or word alignment errors, zero-shot cross-
lingual transfer learning is more practical to the
NLP community.

Recent works have witnessed prominent perfor-
mances of multilingual pre-trained language mod-
els (PrLMs) (Devlin et al., 2019; Conneau and Lam-
ple, 2019; Conneau et al., 2020) on cross-lingual
tasks, including machine translation (Lin et al.,
2020; Liu et al., 2020b; Fan et al., 2021; Chen
et al., 2021), semantic role labeling (SRL) (Conia
and Navigli, 2020; Conia et al., 2021) and semantic
parsing (Fei et al., 2020b; Sherborne et al., 2020;
Sherborne and Lapata, 2021). However, cross-
lingual CSRL, as a combination of three challeng-
ing tasks (i.e., cross-lingual task, dialogue task and
SRL task), suffers three outstanding difficulties: 1)
latent space alignment - how to map word repre-
sentations of different languages into an overlap-
ping space; 2) conversation structure encoding
- how to capture high-level dialogue features such
as speaker dependency and temporal dependency;
and 3) semantic arguments identification - how
to highlight the relations between the predicate and
its arguments, wherein PrLMs can only encode
multilingual inputs to an overlapping vector space
in a certain extend. Although there are also some
success that can separately achieve structural con-
versation encoding (Mehri et al., 2019; Xu and
Zhao, 2021; Zhang and Zhao, 2021) and semantic
arguments identification (Wu et al., 2021a; Conia
et al., 2021), a unified method for jointly solving



these problems is still under-explored, especially
in cross-lingual scenario.

In this work, we summarize our contributions
as follows: (1) We propose a simple but effective
model which consists of three modules, namely
cross-lingual language model (CLM), structure-
aware conversation encoder (SA-Encoder) and
predicate-argument encoder (PA-Encoder), and five
well-designed pre-training objectives. Our model
implicitly learns language-agnostic, conversational
structure-aware and semantically rich representa-
tions to perform zero-shot cross-lingual CSRL. (2)
Experiments show that our proposed method out-
performs all baselines and achieves impressive
cross-lingual performance no matter whether in-
corporating the pre-training. (3) We confirm the
usefulness of CSRL to English dialogue tasks in-
cluding question-in-context rewriting and response
generation. We believe this finding is important
and will facilitate the research of English dialogue
tasks that suffer ellipsis and anaphora. (4) We will
release our code, the new annotated English CSRL
test sets and checkpoints of our best models to fa-
cilitate the further research.

2 Related Work

Zero-shot cross-lingual transfer learning. Re-
cently, thanks to the rapid development of multi-
lingual pre-trained language models such as mul-
tilingual BERT (Devlin et al., 2019), XLLM (Con-
neau and Lample, 2019) and XLM-R (Conneau
et al., 2020), a number of approaches have been
proposed for zero-shot cross-lingual transfer learn-
ing on various downstream tasks, including natural
language generation (Shen et al., 2018) and under-
standing (Liu et al., 2019; Lauscher et al., 2020;
Sherborne and Lapata, 2021). In this work, we
claim our method is zero-shot because no non-
Chinese CSRL annotations are seen during the
CSRL training stage. For decoding, we directly
use the cross-lingual CSRL model trained on Chi-
nese CSRL data to analyze conversations in other
languages. To the best of our knowledge, we are
the first one to jointly model conversational and se-
mantic features in zero-shot cross-lingual scenario.

Conversational semantic role labeling. While
ellipsis and anaphora frequently occur in dialogues,
Xu et al. (2021) observed that most of dropped or
referred components can be found in dialogue histo-
ries. Following this observation, they proposed con-
versational semantic role labeling (CSRL) which

required the model to find predicate-argument struc-
tures over the entire conversation instead of a single
sentence. In this way, when analyzing a predicate
in the latest utterance, a CSRL model needs to
consider both the current turn and previous turns
to search potential arguments, and thus might re-
cover the omitted components. Furthermore, Xu
et al. (2020, 2021) also confirmed the usefulness
of CSRL to Chinese dialogue tasks by applying
CSRL information into downstream dialogue tasks.
However, there are still two main problems to be
solved for CSRL task: (1) the performance of cur-
rent state-of-the-art CSRL model (Xu et al., 2021)
is still far from satisfactory due to the lack of high-
level conversational and semantic features model-
ing; (2) the usefulness of CSRL to conversational
tasks in non-Chinese languages has not been con-
firmed yet due to the lack of cross-lingual CSRL
models. In this work, we primarily focus on the
latter problem and propose a simple but effective
model to perform cross-lingual CSRL. We would
like to distinct our work from the concurrent work
(Wu et al., 2021b) which purely focuses on im-
proving the CSRL performance. Wu et al. (2021b)
try to model predicate-aware representations which
could benefit to monolingual CSRL task, but hurt
the cross-lingual performance, because the rela-
tive positions of the predicates may differ from
language to language.

3 Methodology

Following Xu et al. (2021), we solve the CSRL
task as a sequence labeling problem. Our goal is to
find the arguments over the entire dialogue with the
given predicate and additional information such as
turn and speaker role indicators.

3.1 Architecture

Cross-lingual Language Model (CLM) Given
a dialogue C' = {uy,ug, ...,un} of N utterances,
where u; = {w!, w, ..., wfui‘} consisting of a se-
quence of words, we first concatenate utterances
into a sequence and then use a pre-trained cross-
lingual language model such as XLM-R (Conneau
et al., 2020) or mBERT (Devlin et al., 2019) to
capture the syntactic and semantic characteristics.
Following Conia et al. (2021), we obtain word rep-
resentations e by concatenating the hidden states
of the four top-most layers of the language model.

Structure-aware Conversation Encoder (SC-
Encoder) Different from standard SRL(Carreras
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Figure 1: Overall model architecture.

and Marquez, 2005), CSRL requires the models
to find arguments from no only the current turn,
but also previous turns, leading to more challenges
of dialogue modeling. To address this problem,
we propose a universal structure-aware conversa-
tion encoder which comprises of two parts, i.e.,
word-level encoder and utterance-level encoder.
Following Xu et al. (2021), we also incorporate
speaker role and dialogue turn indicators to re-
serve high-level structural features of the dialogue,
which could help the model to better handle coref-
erence resolution and zero pronoun resolution. For-
mally, given a sequence of word representations
e = (ei, ...,e};, ""GIJXNI)’ dialogue turn embed-
dings t = (¢,...., ¢, ""tIJXNI) and speaker role
embeddings r = (r{,..., 7}, ...,qu\jm), the word-
level encoder computes a sequence of timestep en-
codings s as follows:

i | eaotor ' if j=0
Stik) ~ sfijkl) ® MTRANS/ (s{z_kl)) otherwise
A (1
where s{i k) is the timestep encoding of k-th to-

ken in ¢-th utterance from j-th word-level encoder
layer while j € (0,...,N1), @ represents vec-
tor concatenation, and MTRANS is the Modified
Transformer encoder layer. Concretely, we replace
the [Add] operation in the first residual connec-
tion layer with [Concat ] because we argue that
concatenation is a superior approach to reserve the

information from previous layers'.

We obtain utterance representations v by max-
pooling over words in the same utterance. Then
we pass the resulting utterance representations
u through a stack of Bi-LSTM (Hochreiter and
Schmidhuber, 1997) layers to obtain the sequen-
tially encoded utterance representations u’. Finally,
we incorporate u’ with context representations s
from previous layer to obtain structure-aware dia-
logue context representations g as follows:

g, = Swish(Wg[sg}k) @dull+b%) (2
where Swish(z) = x - sigmoid(z) is a non-linear
activation function, sf\% is the encoding of k-th
token in i-th utterance from the last layer of the
word-level encoder, and W9 and b¥ are trainable
parameters.

Predicate-Argument Encoder (PA-Encoder)
We introduce the third module (i.e., predicate-
argument encoder) whose goal is to capture the rela-
tions between each predicate-argument couple that
appears in the conversation. Similar with the word-
level encoder, we use a stack of MTRANS layers to
implement this encoder. Formally, with denoting
predicate embedding as p = (p}, ..., pi, ...,prM),
the model calculates the predicate-specific argu-

"More details about MTRANS in Appendix B.



ment encodings as follows:

oo g, © P}, o if j=0
(ik) a‘gi_,j) & MTRANS’ (a%i_lj)) otherwise
3)

where g/,"c is the token embedding from conversa-
tion encoder, p}'c is the corr@sponding predicate
indicator embedding, and a%i’ k) is the argument
encoding of k-th token in ¢-th utterance from j-th
encoder layer while j € (0, ..., N2). Finally, we
obtain the semantic role encoding I using the re-
sulting argument encodings from the last layer of
the predicate-argument encoder:

i = Swish(W'a 7%
In particular, we emphasize that our proposed
model is mostly language-agnostic since we do not
explicitly introduce any language-specific knowl-
edge such as word order, part-of-speech tags or
dependent relations, and only incorporate the pred-
icate indicator that might contain some language-
specific information in the semantic module, which
would not affect the latent space alignment and
dialogue modeling.

+b) 4)

3.2 Pre-training Objectives

Besides the universal model, we also elaborately
design five pre-training objectives to model task-
specific but language-agnostic features for better
cross-lingual performance. In this section, we di-
vide our pre-training objectives into three groups
according to the challenges to be solved.

Latent space alignment In cross-lingual lan-
guage module, we use mBERT or XLM-R to align
the latent space of different languages. Although
mBERT and XLM-R have exhibited good align-
ment ability, even both of which are trained with
unpaired data, we may further improve it when we
have access to parallel data.

Following (Conneau and Lample, 2019), we first
use translation language model (TLM) to make di-
rect connections between parallel sentences. Con-
cretely, we concatenate parallel sentences as a sin-
gle consecutive token sequence with special tokens
separating them and then perform masked language
model (MLM) (Devlin et al., 2019) on the concate-
nated sequence.

Besides improving word-level alignment ability
by TLM, we also attempt to enhance sentence-level
alignment ability using hard parallel sentence iden-
tification (HPSI). Specifically, we select a pair of

parallel or non-parallel sentences from the train-
ing set with equal probability. Then the model is
required to predict whether the sampled sentence
pair is parallel or not. Different from the standard
PSI (Dou and Neubig, 2021), we sample the non-
parallel sentence upon the n-gram similarity or con-
struct it by text perturbation? instead of in a random
manner. We think that closer the negative sample
is to the positive sample, better representations the
model can learn.

In practice, we use the initial context represen-
tation e from CLM as the input of TLM and HPSI
decoders, and pre-train the CLM using the combi-
nation of TLM and HPSI, finally achieving latent
space alignment.

Conversation structure encoding Although
there are a number of pre-training objectives pro-
posed to learn dialogue context representations
(Mehri et al., 2019), structural representations
(Zhang and Zhao, 2021; Gu et al., 2021) and se-
mantic representations (Wu et al., 2021a), we tend
to explicitly model speaker dependency and tempo-
ral dependency in the conversation, both of which
have been proven to be critical to CSRL task (Xu
et al., 2021).

We first propose speaker role identification (SPI)
to learn speaker dependency in the conversation.
Specifically, we randomly sample K1% utterances
and replace their speaker indicators with special
mask tags. To make the task harder and effective,
we split the utterances into clauses if only two inter-
locutors utter in turn in a conversation. The goal of
SPI is to predict the masked speaker roles accord-
ing to the corrupted speaker indicators and context.
Secondly, we borrow utterance order permutation
(UOR) to encourage the model to be aware of tem-
poral connections among utterances in the context.
Concretely, given a set of utterances, we randomly
shuffle the last K>% utterances and require the
model to organize them into a coherent context.

In practice, we drop the dialogue turn embedding
here to avoid temporal information leakage. We use
the sequentially informed utterance representations
u’ as the input of speaker role and utterance order
decoders, and pre-train SC-Encoder using the com-
bination of SPI and UOR. After the pre-training of
this stage, we respectively employ the transposed
speaker role and utterance order decoders as the
speaker role and dialogue turn embedding matrices
during the CSRL training stage.

Details in Appendix A



Semantic arguments identification The core of
all SRL-related tasks is to recognize the predicate-
argument pairs from the input. Therefore, we pro-
pose semantic arguments identification (SAI) objec-
tive to strengthen the correlations between the pred-
icate and its arguments with the help of external
standard SRL corpus, i.e., CoNLL-2012. Specifi-
cally, for each SRL sample, we only focus on those
arguments, including ARGO0-4, ARG-LOC, ARG-
TMP and ARG-PRP, all of which are defined in
both SRL and CSRL tasks. The model is encour-
aged to find the textual spans of these arguments
with the given predicate. We believe this objective
would benefit to boundary detection, especially for
location and temporal arguments.

In practice, we drop the utterance-level encoder
of SC-Encoder to fit in standard SRL samples be-
cause they do not have any conversational charac-
teristics. We directly feed the word-level context
representations s into PA-Encoder, and then use
the argument encodings a to make classifications.

3.3 Training

Hierarchical Pre-training The pre-training is hi-
erarchically conducted according to different mod-
ules, and the pre-training of the upper module is
based on the pre-trained lower modules. Specifi-
cally, we first train CLM module with TLM and
HPSI; then we train SC-Encoder with SPI and UOR
while keeping the weights of pre-trained CLM mod-
ule unchanged; finally we train PA-Encoder with
SAI while freezing the weights of pre-trained CLM
and SC-Encoder modules. Hopefully, we expect
that each module could acquire different knowl-
edge with specific pre-training objectives.

CSRL training Our CSRL model is trained only
using Chinese CSRL annotations and no additional
data is introduced during the CSRL training stage.
We train our model to minimize the cross-entropy
error for a training sample with label y based on
the semantic role encoding [,

L

p = softmax(ly) Lcsrr = — Zylogp )
=1

4 Experiments

We evaluate our method from two aspects: 1) the
performance of cross-lingual CSRL parser; 2) the
usefulness of CSRL parser on conversation-based
tasks in target languages.

4.1 Datasets

CSRL data We use the same split as Xu et al.
(2021) where DuConv annotations are splitted into
80%/10%/10% as train/dev/in-domain test set. Fur-
thermore, we manually collect two CSRL test
sets for cross-lingual evaluation based on Persona-
Chat(Zhang et al., 2018) and CMU-DoG(Zhou
et al., 2018), both of which are English conver-
sation datasets. Note that we only explore cross-
lingual CSRL on Chinese—English (Zh—En) here,
and we leave other languages for future work.

Pre-training data For TLM and HPSI objectives
which requires parallel data to enhance alignment
ability, we choose IWSLT’ 14 English<+Chinese
(En<+Zh) translations*. For SPI and UOR objec-
tives whose goal is to model high-level conversa-
tional features, we select samples from Chinese
conversation dataset (i.e., DuConv) and English
conversation datasets (i.e., Persona-Chat and CMU-
DoG) with equal probability. For SAI, we borrow
the Chinese and English SRL annotations from
CoNLL-2012(Pradhan et al., 2012).

We stress that by keeping the sampling balance
of Chinese and English data for every pre-training
objective and sharing all parameters across the
languages, our model would capture task-specific
but language-agnostic features.

4.2 Experimental Setup

We implement the model in PyTorch(Paszke et al.,
2019), and use the pre-trained language model of
multilingual BERT (mBERT) or XLM-RoBERTa
(XLM-R) made available by the Transformer li-
brary (Wolf et al., 2020) as the backbone. We
train the model using AdamW (Loshchilov and Hut-
ter, 2018) with a linear learning rate schedule. For
each model, we run five different random seeds and
report the average score. More details and hyper-
parameters are listed in Table 6 (in Appendix G).
Following previous work(Xu et al.,, 2021),
we evaluate our system on micro-average F1 .y,
Fl.0ss and F1;,4. over the (predicate, argument,
label) tuples, wherein we calculate F1..,ss and
Fl;n4rq over the arguments in the different, or same
turn as the predicate. We refer these two types of
arguments as cross-arguments and intra-arguments.
For language in-domain evaluation, we compare
to SimpleBERT (Shi and Lin, 2019), CSRL-BERT
(Xuetal., 2021) and CSAGN (Wu et al., 2021b), all

3More details are described in Appendix C.
*https://wit3.fok.eu/



Method Trainable DuConv Persona-Chat CMU-DoG
parameters Fla;  Fleross Flintra Flau Fleross Flintra Flai Fleross Flintra

SimpleBERT 117M 86.54 81.62 87.02 - - - - - -
CSRL-BERT 147 M 88.46 81.94 89.46 - - - - - -
CSAGN 163 M 89.47 84.57 90.15 - - - - - -
SimpleXLMR 292 M 84.75 63.44 85.12 62.96 14.29 63.03 50.54 14.29 58.50
CSRL-XLMR 320M 88.03 78.12 89.33 63.18 18.71 65.05 53.84 34.20 59.78
CSAGN-XLMR 338 M 88.52 8245 89.98 63.02 17.82 64.97 52.73  30.11 58.91
Back-translation - - - 63.49 13.90 66.67 4791 2744 50.92
Fine-tune all parameters
Oursy,BerT 272 M 87.20 81.14 88.11 58.38  9.39 61.77 48.13 2092 5291
Oursxrm-r 372 M 88.35 83.39 89.21 67.29 2429 70.61 61.74 60.32 62.67
Oursyy pretrain 372 M 88.60 84.10 89.24 67.23 2543 69.89 59.24  58.94 60.89
Freeze parameters of the language model
Oursy,BerT 180 M 87.08 81.46 87.98 59.04 11.23 62.13 48.87 21.78 53.54
OursxLM-R 180 M 88.30  83.38 89.17 65.57 24.11 68.51 59.60 56.16 60.78
OurSwy pretrain 180 M 88.60 83.72 89.27 66.75 24.13 69.44 58.45 58.92 58.82
Ablation studies
All objectives - 88.60  83.72 89.27 66.75 24.13 69.44 58.45 5892 58.82

"w/oTLM & HPST - 8807 8190 8906 6507 2391 6834 5823 5315 5924
w/o SPI & UOR - 87.75 81.56 88.81 68.35 22.86 71.29 58.08 47.93 60.22
w/o SAI - 88.00 83.16 89.06 64.74  23.33 67.99 59.94  54.68 61.87

" w/end2end pre-training - 8728 81.02 8873 6437 21.17 6777  57.86 5040 5820
OursxLm-R - 88.30  83.38 89.17 65.57 24.11 68.51 59.60 56.16 60.78

" w/o SC-Encoder - 8802 79.11 8905 6312 1755 6670 5772 5042  58.03
w/o PA-Encoder - 88.10  81.32 88.78 64.05 22.38 64.82 58.24  54.00 59.23
w/o MTRANS - 88.25 83.01 89.08 65.27 23.10 68.38 58.58 55.41 59.98

Table 1: Evaluation results on the DuConv, Persona-Chat and CMU-DoG datasets. Scores in GRAY are from the

concurrent work (Wu et al., 2021b).

of which employ the Chinese pre-trained language
model as the backbone. For cross-lingual evalua-
tion, we compare to SimpleXLMR, CSRL-XLMR
and CSAGN-XLMR by simply replacing the BERT
backbones of those models with XLM-R. Addition-
ally, we also compare to a back-translation baseline.
Specifically, the test data in English is translated
and projected to Chinese annotations using Google
Translate (Wu et al., 2016) and the state-of-the-art
word alignment toolkit Awesome-align(Dou and
Neubig, 2021). We feed the translated samples into
CSAGN to obtain the back-translation results.

4.3 Main Results

Table 1 summarized the results of all compared
methods on DuConv, Persona-Chat and CMU-DoG
datasets.

Firstly, we can see that our method achieves
competitive performance over all datasets, espe-
cially in cross-lingual scenario where our method
outperforms the baselines by a large margin no
matter fine-tuning or freezing the language model
during the CSRL training stage. Although CSAGN
exceeds our method on DuConv test set, it fails

to work well in cross-lingual scenario. We think
the reasons are (1) it heavily relies on rich fea-
tures of the Chinese pre-trained language model
(2) it is overfitting on the predicate-aware infor-
mation. Superior to CSAGN, our model with the
multilingual backbone achieves outstanding per-
formance on both language in-domain and cross-
lingual datasets. This observation is expected be-
cause (1) our model is language-agnostic which
makes the cross-lingual transfer easier; (2) our
model captures more high-level conversational fea-
tures in SC-Encoder, thus enhancing the capaci-
ties of the model to recognize cross-arguments; (3)
rich semantic features are modeled by PA-Encoder,
which would improve the capacities of the model
to recognize intra-arguments.

Secondly, although our model has achieved good
performance over all datasets, further improve-
ments can be observed after incorporating our well-
designed pre-training objectives, especially when
freezing the parameters of the language model. Ex-
ceptionally, we find that the performance on the
CMU-DoG dataset heavily drops after introduc-
ing the pre-training objectives, especially in terms
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Figure 2: F1,;; scores of low-resource experiments on
DuConv, Persona-Chat and CMU-DoG.

of Fl,,+ro. We think this is because the seman-
tic argument spans in CoNLL-2012 are relatively
different from those in CMU-DoG, thus leading
to the vague boundary detection and performance
drop. To verify this assumption, we conduct abla-
tion study by removing SAI from the pre-training
stage. Interestingly, we observe substantial im-
provements over F1,;; and Fl;,,4,4, suggesting that
pre-training on CoNLL-2012 does hurt the perfor-
mance on CMU-DoG dataset. Furthermore, we
also find that fine-tuning all parameters leads to
slightly better performance than freezing the lan-
guage model during the CSRL training stage. This
finding is consistent with the previous work (Co-
nia et al., 2021). However, we do not think this
improvement is efficient since it consumes much
more computation resources. To this end, we are
more focused on the performance using the frozen
language model.

Finally, by analyzing the results of ablation stud-
ies, we draw several conclusions: (1) removing
PA-Encoder or MTRANS or TLM & HPSI objec-
tives hurt performance consistently but slightly; (2)
SPI, UOR objectives and SC-Encoder significantly
affect the values of F1,,.,ss, especially on two cross-
lingual datasets; (3) SAI objective helps to find
intra-arguments on DuConv and Persona-Chat, but
might hurt the Fl;,;,, score on CMU-DoG; (4)
hierarchical pre-training is superior to end-to-end
pre-training which simultaneously optimizes all
auxiliary objectives.

4.4 Low-resource cross-lingual CSRL

We evaluate the robustness of our proposed method
in low-resource scenario by artificially reducing
the size of training set. Specifically, we examine on
10%, 30%, 50% and 70% of training data, respec-
tively. Figure 2 illustrates the F1,;; scores of these
low-resource experiments over all datasets (Detail
scores in Table 10). We can find that our method

Ul how many games did the colts win?

U2 the Coltsargo finished with a 12-2 record.
Question who did they playpredicate in the playoffs?
Question’  who did the Colts play in the playoffs?

Table 2: One example of question-in-context rewriting.

with pre-training objectives can reach competitive
performance just with 30% training data while the
vanilla model needs around 50% training data. This
result is expected since our model could acquire
rich knowledge about dialogue encoding and se-
mantic role identification with the well-designed
pre-training objectives. Therefore, we believe that
our method is robust to low-resource scenarios, es-
pecially after introducing pre-training objectives.
This observation sheds more lights to extend CSRL
into low-resource languages.

4.5 Applications

Xu et al. (2021) has confirmed the usefulness of
CSRL by applying CSRL parsing results to two
Chinese dialogue tasks, including dialogue context
rewriting and dialogue response generation. In the
same vein, we also explore whether CSRL could
benefit to the same English dialogue tasks.

Question-in-context Rewriting Question-in-
context rewriting (Elgohary et al., 2019) is a
challenging task which requires the model to
resolve the conversational dependencies between
the question and the context, and then rewrite the
original question into independent one. This is an
example in Table 2. The question “who did they
play in the playoffs?" cannot be independently
understood without knowing “they” refer to, but it
can be resolved with the given context.

Since the CSRL models can identify the
predicate-argument structures from the entire con-
versation, we believe that it can help this rewriting
task by searching the dropped or referred compo-
nents from the context. For example, in Table 2,
our CSRL parser can find that the ARGO of the
predicate “play" is “the Colts". Motivated by this
observation, we attempt to borrow CSRL to help
the question rewriting with the context. We first
employ the pre-trained cross-lingual CSRL parser
to extract predicate-argument pairs from conversa-
tions. Then, we adopt the model proposed in (Xu
et al., 2020) to achieve the rewriting. More details
about the model are in Appendix E.

We evaluate on CANARD (Elgohary et al., 2019)
which is a widely used English question rewriting
dataset, and report the BLEU scores. Table 3 lists



Method B1 B2 B4

Seq2Seq - - 49.67
SARG(Huang et al., 2020) - - 54.80
RUN(Liu et al., 2020a) 70.50 61.20 49.10
Human evaluation - - 59.92
Oursyo/ cSRL 69.24 6293 52.78
Oursw/ CSRL 70.26 64.19 54.23

Table 3: Evaluation results on the dataset of CANARD.

Method B1/2 D1/2 Human
Seq2Seq 0.138/0.069  0.051/0.094 2.72
Oursworcsre 0.188/0.113  0.114/0.217 3.02
Oursy, csrL 0.195/0.122  0.116/0.223 3.16

Table 4: Evaluation results on Persona-Chat.

the results of our model on CANARD. We can see
that our implementation achieves competitive per-
formance against the state-of-the-art rewriting mod-
els, i.e., SARG (Huang et al., 2020) and RUN (Liu
et al., 2020a), and significantly outperforms the
baseline method (Bahdanau et al., 2014). However,
in this part, we are more focused on the improve-
ments after introducing CSRL information. We
find that the scores across all metrics are improved
with the aid of CSRL. To figure out the reasons of
these improvements, we investigate which type of
questions could benefit from CSRL information.
By comparing the rewritten questions of different
methods, we find that the questions that requires in-
formation completion, especially those containing
referred components (around 15% cases), benefit
from CSRL most. This observation is naturally
in line with our expectation that our CSRL parser
could consistently offer essential guidance by re-
covering dropped or referred text components.

Multi-turn Dialogue Response Generation In
addition to the rewriting task that is heavily affected
by omitted components, we also explore the use-
fulness of CSRL to multi-turn dialogue response
generation, one of the main challenges in dialogue
community. In contrast to single-turn dialogue
response generation, multi-turn dialogues suffers
more frequently occurred ellipsis and anaphora,
which leads to vague context representations. To
this end, we attempt to employ CSRL to build better
context representations. Specifically, we highlight
the words picked up by the CSRL parser, and then
teach the model to pay more attention on those
words which would hold more semantic informa-
tion. We first employ the pre-trained cross-lingual
CSRL parser to analyze the latest utterance, and
then concatenate the extracted predicate-argument
pairs with the context and target response into a

sequence. Our model for response generation is
borrowed from Dong et al. (2019) which can flexi-
bly support both bi-directional encoding and uni-
directional decoding via special attention masks.

We evaluate on Persona-Chat (Zhang et al.,
2018) which is an English persona-based dialogue
dataset containing 162,064 utterances over 10,907
dialogues, and report BLEU-1/2 and Distinct-1/2
scores. Note that our goal is to verify the effec-
tiveness of CSRL to multi-turn dialogue response
generation, so we drop the persona knowledge in
our experiments and directly compare the perfor-
mance with and without CSRL information. Table
4 summarize the results of response generation on
Persona-Chat dataset. We can see that our imple-
mentation significantly outperforms the baseline
method (Bahdanau et al., 2014) even without CSRL
information. After introducing CSRL information,
we obtain further gains across all metrics. Apart
from automatic evaluation criteria, we also conduct
human evaluation. Specifically, we randomly select
200 generated responses for each method, and then
recruit three annotators to evaluate the coherence
and informativeness of the response against the con-
versation context by giving a score ranging from
1(worst) to 5(best). We find that our model with
CSRL wins in 35% cases, and ties with the vanilla
model in around 55% cases. With more careful
analysis, we find that the responses that contains
entities mentioned in histories benefit from CSRL
information most. We think this is because none-
phrases are more likely to be recognized as seman-
tic arguments by CSRL parser, and then receive
more attentions during encoding.

With the impressive experimental results on
these two tasks, we firmly believe that CSRL infor-
mation is helpful to English downstream dialogue
tasks. In addition, our cross-lingual CSRL parser
is also proven to be capable to analyze English
conversations and generate reasonable predicate-
argument structures.

5 Conclusion

In this work, we propose a simple but effective
model with five pre-training objectives to perform
zero-shot cross-lingual CSRL, and also confirm the
effectiveness of CSRL to English dialogue tasks
by introducing CSRL information into these tasks.
Future work can be conducted to further improve
cross-lingual CSRL performance or explore more
applications of CSRL.
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A Hard Parallel Sentence Identification
Sampling

Following previous work (Robinson et al., 2020;
Wei et al., 2020) which suggests that contrastive
learning of representations benefits from hard neg-
ative samples, we also try to select hard negative
samples for PSI task based on n-gram similarity
and text perturbation. Specifically, for each sen-
tence, we calculate its n-gram similarity scores to
other sentences, where n = 1,2, 3,4, and then we
select the sentence with the highest score at each
gram as the candidate sentence; additionally, we
construct the corrupted sentence as the candidate
by token deletion, token replacement and token
order permutation. Finally, we sample from the
candidate set created by n-gram similarity at 40%
time and from the candidate set created by text
perturbation at 60% time.

B Modified Transformer Encoder Layer

To overcome the information forgetting of hierar-
chical models, we attempt to modify the standard
Transformer to better reserve the information from
the previous layers. In specific, we try following
variants:

* MTRANS. Replacing the [Add] operation
in the first residual connection layer with
[Concat].

* LATER-MTRANS. Replacing the [Add] op-
eration in the second residual connection layer
with [Concat].

* BOTH-MTRANS. Replacing the [Add] op-
erations in both the first and second residual
connection layers with [Concat].

Our intuition of substituting the summation
with concatenation is that the residual layer with
concatenation would introduce additional param-
eters, and we expect these additional parame-
ters to retain more history information. As
shown in Table 1, we obtain some gains while
using MTRANS. Additionally, we also report
the F1,;; scores on DuConv/Persona-Chat/CMU-
DoG datasets while using LATER-MTRANS and
BOTH-MTRANS here. LATER-MTRANS achieves
88.18/65.32/58.44 points, and BOTH-MTRANS
achieves 88.40/66.12/59.72 points against the stan-
dard Transformer achieving 88.25/65.27/58.58
points. Although BOTH-MTRANS achieves the
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best performance, we finally choose MTRANS
since BOTH-MTRANS brings a large volume of
additional parameters which leads to a huge model
size while the increasing of model parameters
caused by MTRANS is acceptable.

C Dataset Statistics

Following the instructions in Xu et al. (2021), we
manually collect two out-of-domain CSRL test sets
based on English dialogue datasets Persona-Chat
(Zhang et al., 2018) and CMU-DoG (Zhou et al.,
2018). Specifically, we also annotate the arguments
ARGO0-4, ARG-TMP, ARG-LOC and ARG-PRP
and require that the labeled arguments can only
appear in the current turn or the previous turns. We
employ three annotators who have studied Chinese
CSRL annotations for a period time before this
annotation. The first two annotators are required to
label all cases and any disagreement between them
is solved by the third annotator. The statistics of
the datasets are listed in Table 5.

D Baselines

We compare to following baseline models,

1. SimpleBERT/SimpleXLMR (Shi and Lin,
2019). It uses the Chinese BERT or XLLM-R
as the backbone and simply concatenates the
entire dialogue context with the predicate.

CSRL- BERT/XLMR (Xu et al., 2021). It
uses the Chinese BERT or XLM-R as the back-
bone but attempts to encode the conversation
structural information by integrating the di-
alogue turn and speaker embeddings in the
input embedding layer.

. CSAGN/CSAGN-XLMR (Wu et al., 2021b).
It uses the Chinese BERT or XLLM-R as the
backbone and employ the relational graph neu-
ral network to model predicate- and speaker-
aware dependencies. We implement this base-
line based on the code https://github.
com/hahahawu/CSAGN.

E Application Models

Rewriting Model. We adopt the model proposed
in (Xu et al., 2020) which directly concatenates
the predicate-argument structures, the conversation
context and the question as a sequence, and then
feeds them into the model with special attention


https://github.com/hahahawu/CSAGN
https://github.com/hahahawu/CSAGN
https://github.com/hahahawu/CSAGN

Dataset language #dialogue #utterance #predicate #tokens per utterance cross ratio
DuConv ZH 3,000 27,198 33,673 10.56 21.89%
Persona-Chat| EN 50 2,669 477 17.96 17.74%
CMU-DoG EN 50 3,217 450 12.57 7.41%

Table 5: Statistics of the annotations on DuConv, NewsDialog and PersonalDialog.

masks. During decoding, the model takes CSRL
pairs and the context to generate the rewritten ques-
tion word by word. The input representation, atten-
tion strategies and loss function of our model are
same as (Xu et al., 2020)’s. We initialize the model
using the base BERT model and use AdamW with
a linear learning rate schedule to update parameters.
We list the hyper-parameters in Table 7.

Response Generation Model. Our model for
response generation is analogous to Dong et al.
(2019) which can flexibly support both bi-
directional encoding and uni-directional decoding
via special self-attention masks. Specifically, we
concatenate the extracted predicate-argument pairs
with the context and target response into a se-
quence, and then feed the sequence into the en-
coder for training; during decoding, our model
takes semantic information and the context as in-
put to generate the response word by word. The
input representation, attention strategies and loss
function are same as the rewriter model’s. We ini-
tialize the model using the base BERT model and
use AdamW with a linear learning rate schedule to
update parameters. We list the hyper-parameters in
Table 8.

F More Experimental Results

We report some more detailed experimental results
here. Table 9 summarize the standard deviations
of the main evaluation results on three datasets.
Table 10 gives the detailed scores of low-source
experiments.

G Hyper-parameters

We list the hyper-parameters of CSRL experiments
(Table 6), rewriting experiments (Table 7) and re-
sponse experiments (Table 8) below.
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Name Value
Language model xIm-roberta-base
Hidden state size 512
Word-level encoder layers 2
Pred.-arg encoder layers 1
Batch size per GPU 24
Max learning rate Se-5
Min learning rate le-5
Max Ir for LM fine-tuning le-5
Min /r for Lm fine-tuning le-6
Max sequence length 512
Max training epochs 50
Max training steps 15000
Early-stop patience 10

Table 6: Hyper-parameters in CSRL experiments.

Name Value
Language model bert-base-cased
Hidden state size 768
Batch size per GPU 16
Max learning rate 3e-5
Min learning rate le-5
Max sequence length 512
Max decode length 32
Max training epochs 20
Early-stop patience 5

Table 7: Hyper-parameters in rewriting experiments.

Name Value
Language model bert-base-cased
Hidden state size 768
Batch size per GPU 16
Max learning rate Se-5
Min learning rate 3e-5
Max sequence length 512
Max decode length 64
Max training epochs 20
Early-stop patience 5

Table 8: Hyper-parameters in response generation ex-
periments.



DuConv Persona-Chat CMU-DoG
Flou  Fleross Flintra Flou  Fleross Flintra Flau  Fleross Flintra
SimpleXLMR +032 +061 £0.20 +1.16 +195 £0.72 +0.68 +1.73 +0.17
CSRL-XLMR +025 4+0.63 +£0.13 +124 +140 +£0.87 +0.52 4+099 +£0.40
CSAGN-XLMR +0.27 +£032 +0.21 + 131 +2.18 +0.78 +054 +1.04 4043

Method

Back-translation - - - +0.67 +1.12 £0.56 +042 +055 +£044
Fine-tune all parameters

OursmperT +031 +046 £0.24 +094 +123 £0.70 +051 +1.12 £0.32
Oursxim-r +0.16 +021 £0.13 +0.71 +0.82 4049 +0.33 +047 4026
Oursw/ pretrain +0.13 £0.19 =+0.12 +£065 +£079 +£045 +074 +1.10 +£0.72
Freeze parameters of the language model

OursmperT +041 +£064 +034 +162 +£223 +1.32 +1.15 +£120 +£1.22
Oursxim-r +023 +£038 £0.17 +1.07 £141 =+1.10 +082 +£130 +£0.87
Oursyy pretrain +023 +£031 £0.18 +1.00 +125 =£0.90 +1.12 +£135 £1.20

Table 9: The standard deviations of the main evaluation results on the DuConv, Persona-Chat and CMU-DoG
datasets. For SimpleBERT, CSRL-BERT and CSAGN, we directly copy their evaluation scores from (Wu et al.,
2021b), so we do not report the standard deviations here.

DuConv Persona-Chat CMU-DoG
Method
Flall Flcrass Flz’ntra Flall Flcross Flintra Flall Flcross Flim‘,ra,
Oursxi MR /10% data 4773 4560  47.90 35.14  6.51 36.97 24.88 22.58 25.31
Oursxi MR /30% data 77.62 72.00  78.81 5420 16.19 5691 43.88 4226  44.86
OursxpM-R / 50% data 85.03 78.84 86.34 60.78 22.87 63.70 53.57 48.97 55.37
OUrsSxLM-R /70% data 87.18 81.61 88.20 64.51 23.71 67.43 56.87 53.61 58.25

OursSxy MR / pre-train / 10% data ~ 94.74  56.33  53.70 3891 8.71 41.08 2696 24.66 26.84
OursXLM_R / pre-train / 30% data 85.56 79.72 86.57 61.02 18.46 63.50 52.43 52.67 52.88
Oursxi MR / pre-train / 50% data ~ 87.31  82.31 88.07 63.60 25.04 65.94 54.87 50.82  56.20
Oursxi MR / pre-train/ 70% data ~ 88.31  83.07  89.08 65.32 2212 68.02 57.64 5632  58.26

Table 10: Low-resource experiments on the DuConv, Persona-Chat and CMU-DoG datasets.
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