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Abstract
Vision foundation models can automate surgical video analysis, enabling applications that
support patient care and training. For cataract surgery, existing models are limited by small
datasets, privacy concerns, and poor generalizability. In this paper, we introduce JHU-
VPT(JEPA), a self-supervised vision foundation model leveraging Joint-Embedding Pre-
dictive Architecture (JEPA) to learn spatiotemporal representations via latent feature pre-
diction on a large corpus of unlabeled cataract videos, without requiring extensive labeled
datasets or pixel-level reconstruction. JHU-VPT(JEPA) is pretrained on 2591 videos from
multiple sites, capturing diverse surgical techniques and styles. Comprehensive evaluations
on step recognition, surgical feedback, and skill assessment tasks show JHU-VPT(JEPA)
outperforms existing methods. Its effectiveness is evident even with attentive probing using
a frozen encoder, highlighting feature robustness and addressing privacy by not needing
raw video access for downstream tasks. Our approach offers a scalable, generalizable, and
privacy-preserving solution for surgical video analysis, with significant potential to advance
patient care and surgical education.
Keywords: Surgical Pretraining, Joint Embedding Predictive Network, Cataract Surgery

1. Introduction

Vision foundation models analyzing surgical videos can substantially impact global patient
care. Intraoperative surgical videos offer rich data for algorithms enabling critical applica-
tions like activity recognition, and skill/feedback prediction for surgeon learning and evalua-
tion (Maier-Hein et al., 2017; Yu et al., 2019; Padoy, 2019; Shah et al., 2025b). Surgical data
science has accelerated models for analyzing surgical videos. However, current models face
constraints like small/convenience datasets (Shah et al., 2023), limited evaluation, and poor
generalizability (Lecuyer et al., 2020; Padoy, 2019; Funke et al., 2019). While foundation
models are rapidly being trained for applications in several domains (Kang et al., 2023; Lu
et al., 2023), vision foundation models pretrained on large surgical video datasets have not
yet been developed.
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Self-supervised learning (SSL) has emerged as a powerful paradigm to leverage large cor-
pora of unlabeled video data and train vision foundation models. Traditional SSL methods
for medical imaging often involve multimodal cues, e.g., textual radiology reports paired
with X-ray images (Boecking et al., 2022; Moon et al., 2022). By contrast, surgical videos
typically lack accompanying text annotations, necessitating visual self-supervised schemes.
To address this, we propose a self-supervised approach for complex spatio-temporal surgical
video information. Building on the Joint-Embedding Predictive Architecture (JEPA) (As-
sran et al., 2023; Weimann and Conrad, 2024), our method focuses on feature prediction
in latent space, a strategy that captures both spatio-temporal coherence and surgical scene
semantics without requiring direct pixel-level reconstruction.

Unlike prior self-supervised strategies that primarily rely on contrastive learning or
masked autoencoders (MAEs) (He et al., 2022; Tong et al., 2022; Shah et al., 2025a), our
approach masks tokens and predicts them in a latent feature space rather than reconstruct-
ing raw pixel values. This reduces the effect of low-level artifacts such as reflections and
blur, while emphasizing higher-level semantic details that are crucial for tasks like recog-
nition, feedback, and skill assessment. By eliminating the need for a pixel decoder and a
separate reconstruction loss, the learning process is simplified to focus solely on meaningful
feature extraction. Moreover, the use of an exponential moving average (EMA) stabilizes
training by reducing gradient noise, which is particularly important in surgical video anal-
ysis where lighting changes and rapid motion clips can disrupt learning. We develop our
model, JHU-VPT(JEPA):Cataract, which we refer to as JHU-VPT(JEPA), by pretraining
on a large corpus of cataract surgery videos including multiple sites and surgeons. The
dataset diversity allows the learning of domain-robust embeddings. The resultant repre-
sentations can be shared more readily than raw videos (protecting patient privacy), and
they excel in label-scarce scenarios, reducing the need for extensive manual annotations
and data-hungry fine-tuning protocols. We comprehensively evaluate JHU-VPT(JEPA)’s
learned embeddings on three key tasks: (1) Step Recognition, wherein the aim is to
identify surgical steps or phases; (2) Surgical Feedback, to predict specific performance
feedback for the surgeon; and (3) Skill Assessment, which is essential for both surgeon
training and credentialing. By varying the size of the annotated subsets used for fine-tuning,
we show that JHU-VPT(JEPA) achieves strong performance even with limited labels, high-
lighting its data efficiency. Furthermore, we validate cross-domain generalization by testing
on previously unseen videos, demonstrating JHU-VPT(JEPA)’s capacity to adapt to new
surgical styles or camera configurations.

Contributions. In summary, our main contributions are:

• JEPA-based approach for cataract videos. We introduce JHU-VPT(JEPA), a novel
architecture for surgical video analysis employing latent space feature prediction to learn
rich spatio-temporal representations. These are validated via attentive probing with a
frozen encoder, confirming high transferability and effectiveness without fine-tuning.

• Large-scale video pretraining using a large dataset. We use an extensive, multi-
institution unlabeled surgical video dataset, ensuring robust, domain-generalizable em-
beddings.
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• Comprehensive downstream evaluation. We test JHU-VPT(JEPA) on three impor-
tant tasks—step recognition, surgical feedback, and skill assessment—showing notable
gains with varying labeled data, underscoring its potential clinical utility.

2. JHU-VPT(JEPA): Cataract model

In this section, we describe our proposed Vision Foundation Model for Cataract Surgery
JHU-VPT(JEPA), which builds upon the JEPA principle (Garrido et al., 2024; Bardes
et al., 2024) for learning rich, robust visual representations from cataract surgery videos. Our
goal is to exploit feature prediction as a stand-alone objective, enabling the model to learn
meaningful spatio-temporal embeddings without extra supervision. A high-level overview of
JHU-VPT(JEPA) is shown in Figure 1.

2.1. Overview

At the core of feature prediction as a stand-alone objective, the model learns by predicting
the representation of a target input y from the representation of a context input x. Specif-
ically, an encoder Eψ(·) projects x into latent space, while a predictor Pϕ(·) attempts to
recover the embedding of y given x. A conditioning variable δ, indicating the transforma-
tion or corruption that links x and y, guides the predictor to generate distinct outputs for
different transformations. In our setting, x and y are disjoint spatio-temporal patches from
a surgical clip, and δ encodes the masking pattern (or offset) between these two regions.
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Figure 1: Overview of the JHU-VPT(JEPA) architecture. The framework consists of Block
Masking, an Encoder, a Predictor, and an EMA-updated Target Encoder. The
Encoder processes the non-masked tokens, predicting their feature representa-
tions. The Predictor combines these representations with learnable mask tokens
and a conditioning variable to predict the embeddings of masked regions. The
Target Encoder encodes all tokens, generating target embeddings for the feature-
prediction loss.
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2.2. Training Objective

To learn robust representations, we train the visual encoder Eψ(·) and the predictor Pϕ(·)
via a feature-prediction loss. Let the context region x and target region y be two non-
overlapping subsets of video tokens from a video X, selected according to a masking scheme
(see Section 2.3). We define the loss function to encourage the predicted representation of
y to match the actual representation of y, generated by a target encoder Eψ̄(·). Concretely,
we minimize:

min
ψ,ϕ

∥∥Pϕ(Eψ(x), δ) − sg
(
Eψ̄(y)

)∥∥
1
, (1)

where sg(·) is a stop-gradient blocking updates to Eψ̄(·). In practice, ψ̄ is maintained
as an exponential moving average (EMA) of ψ, consistent with prior work that mitigates
representation collapse (Garrido et al., 2024). Using L1 loss and a stop-gradient on the
target encoder prevents trivial solutions (i.e., feature collapse) by forcing the encoder and
predictor to capture meaningful spatio-temporal information in the surgical video.

Collapse Prevention. Combining an EMA target encoder, a stop-gradient, and a pre-
dictor prevents representation collapse in various self-supervised contexts (Grill et al., 2020;
Assran et al., 2023). Intuitively, ψ̄ changes more slowly than ψ, compelling Eψ(x) to cap-
ture detailed information needed by Pϕ(·) to match the slowly evolving target representation.
This strategy drives the encoder to encode distinct semantic cues (e.g., instruments, ocular
structures, movements) rather than collapsing to constant outputs.

2.3. Prediction Task and Masking Strategy

We implement the feature-prediction objective using a masked modeling approach. Each
video clip is partitioned into 3D tokens, and large continuous blocks are sampled to form the
masked regions y; the remaining tokens constitute the visible regions x. Applying large or
continuous masks across time creates a challenging prediction task, encouraging the model
to capture dynamic interactions between surgical instruments and ocular tissue.

To achieve this, we use multi-block masking (Bardes et al., 2024). First, short-range
masks involve sampling several small blocks (e.g., 8) that cover about 15% of each frame,
applied consistently across all frames. This forces the model to rely on temporal cues
to infer fine-grained details and quick instrument movements. Second, long-range masks
involve sampling fewer, larger blocks (e.g., 2) covering approximately 70% of each frame
and extending over time, forcing the model to understand broader surgical phases and
slower eye changes from limited visible areas. This multi-block masking strategy challenges
the predictor to reconstruct features of large masked regions from small visible segments,
enhancing the model’s understanding of actions and anatomy in surgery videos.

2.4. Implementation Details

JHU-VPT(JEPA) comprises three learnable modules and an EMA-updated target encoder.
Tokenizer: The tokenizer converts the raw video X ∈ RT×C×H×W into non-overlapping
3D tokens representing spatio-temporal volumes. We apply a 3D convolutional layer with
kernel and stride (t, h, w), producing N = T

t ×
H
h ×

W
w tokens, each of dimension k. Fixed 3D
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positional encodings (He et al., 2022; Tong et al., 2022) are added to retain spatio-temporal
information.
Encoder Eψ(·): The encoder is a Vision Transformer (ViT) backbone (Dosovitskiy et al.;
Arnab et al., 2021) that processes the visible tokens x, producing an embedding Fx ∈ R|x|×d,
where d is the embedding dimension. This embedding is passed to the predictor.
Predictor Pϕ(·): The predictor is a lightweight transformer that maps Fx to a predicted
embedding F̃y. It also receives learnable mask tokens M (one per masked patch) with
positional encodings and the conditioning variable δ, which encodes positional offsets or
transformations between x and y. Formally,

F̃y = Pϕ
(
Fx, M, δ

)
. (2)

Target Encoder Eψ̄(·): The target encoder is an EMA copy of the encoder, updated at
each training iteration by

ψ̄ ← α ψ̄ + (1− α)ψ, (3)

where α ∈ [0, 1) is a momentum coefficient. It processes the masked tokens y, generating
Fy for the loss in Eq. (1).

2.5. Pretraining Architecture Analysis

Predicting large, masked video region representations from limited visible cues allows JHU-
VPT(JEPA) to capture fine-grained details and long-range context in cataract surgery. The
joint-embedding mechanism directs the encoder to focus on discriminative aspects like sur-
gical instruments, subtle eye movements, and relevant clinical steps. The EMA target en-
coder, stop-gradient, and predictor prevent collapse, enabling learning of temporally coher-
ent, anatomically relevant features. This design is scalable to various downstream tasks,
including surgical phase recognition and skill assessment, and demonstrates strong general-
ization with minimal labeled data. Section 3.3 demonstrates JHU-VPT(JEPA)’s effective-
ness in capturing real-world surgical workflow complexities while maintaining low annotation
requirements.

2.6. Downstream Task Evaluation

After pretraining JHU-VPT(JEPA), we evaluate its representations on downstream tasks
using two approaches: fine-tuning and attentive probing. In fine-tuning, we initialize the
encoder Eψ(·) with the pretrained weights and attach a linear classification head. The
entire model, including the encoder and the classification head, is then optimized jointly on
the downstream dataset.

In contrast, attentive probing keeps the pretrained encoder Eψ̄(·) fixed to assess the
quality of the learned features without updating them. We introduce a learnable cross-
attention layer with a query token that attends to the output features of the frozen encoder.
The output of the cross-attention layer is added to the query token via a residual connection
and passed through a two-layer multilayer perceptron (MLP) for prediction:

h = MLP
(
q+ CrossAttn(q, Eψ̄(x))

)
, (4)
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where q is the learnable query token, and h is the output used for classification or regression
tasks. Attentive probing evaluates the robustness of the pretrained features while keeping
the feature extractor unchanged, ensuring that the representation quality is not influenced
by further training. This approach is useful when labeled data is limited or when data
privacy restrictions prevent sharing raw videos, as it allows training downstream models on
new tasks using shared features without accessing the raw video data.

2.7. Datasets

For Pretraining JHU-VPT(JEPA), we assembled a multi-institutional dataset of 2,591
unlabeled cataract surgery videos. This dataset includes 1,838 internal videos (avg. 30 min,
59 fps) and 753 from Cataract-1k (Ghamsarian et al., 2024) (avg. 8 min), totaling 2591
unique videos. We did not pretrain on the Cataract-1k videos for which step recognition
annotations are available. All videos were subsampled to 1 fps and resized to 250 × 250
pixels for pretraining, following prior protocols (Gao et al., 2021; Twinanda et al., 2016).
CSMAE (Shah et al., 2025a) was pretrained on the D-450 dataset (an extension of D99
videos), following the methodology for MAE-based pretraining (Bandara et al., 2023).

We evaluated JHU-VPT(JEPA) on three downstream tasks: step recognition, surgical
feedback, and skill assessment. For step recognition, experiments were conducted under
both low-data (10%, 25%, 50%) and full-data settings using four cataract surgery datasets:
Cataract-101 (Schoeffmann et al., 2018), D99 (Yu et al., 2019), Cataract-1k (subset for
which annotations were provided with the original dataset) (Ghamsarian et al., 2024), and
a larger subset of Cataract-1k which we internally annotated (referred to as Cataract-1k-
JHU and includes the annotated videos in the original dataset). Cataract-101 contains 101
videos at 25 fps with 10 annotated steps and a resolution of 720× 540 pixels, split into 50
training, 10 validation, and 40 testing videos (Shah et al., 2023). D99 comprises 99 videos
at 59 fps with 12 annotated steps and a resolution of 640 × 480 pixels, partitioned into 60
training, 20 validation, and 19 testing videos (Shah et al., 2023). For Cataract-1k, we used
25 training, 7 validation, and 24 testing videos. For Cataract-1k-JHU, we employed 181
training, 31 validation, and 91 testing videos. All evaluation videos were subsampled to
1 fps and resized to 250× 250 pixels for consistency.

Table 1: Qualitative Results on Step Recognition Task for Attentive and Linear Probing
Methods across four Datasets. JHU-VPT(JEPA) consistently outperforms Video-
MAE across both probes when pretrained on the same pretraining set (D-2591).
Results are presented as percentage accuracies, with improvements of our method
relative to VideoMAE shown in green.

Dataset Attentive Probing Linear Probing

VideoMAE Ours VideoMAE Ours

Cataract-101 79.31 89.82 (+13.3%) 65.49 67.04 (+2.4%)
Cataract-1k 63.75 79.58 (+24.8%) 52.26 52.51 (+0.5%)
Cataract-1k-JHU 70.03 83.65 (+19.5%) 58.76 59.04 (+0.5%)
D99 66.13 77.20 (+16.7%) 47.75 48.75 (+2.1%)

In the surgical feedback task, we evaluated JHU-VPT(JEPA) on feedback items (Xia
et al., 2025) during the capsulorhexis step using the D99 dataset (Hira et al., 2022) of 99
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videos. Frames were resized to 224× 224 pixels, applying data augmentations like rotation
and color jitter. Data was split into training (60%), validation (20%), and testing (20%)
sets; we repeated experiments with three random splits and averaged the results.

For skill assessment in the main incision and capsulorhexis steps, we used 56 videos
from D99 and an additional 37 videos captured under consistent conditions. Expert surgeons
evaluated the videos using ICO-OSCAR:Phacoemulsification (Puri et al., 2017). Skill was
categorized as novice (scores 2–4) and expert (score 5) for main incision, and similarly for
capsulorhexis, following (Hira et al., 2022; Kim et al., 2019).

3. Experiments and Results

3.1. Evaluation Metrics

We evaluate JHU-VPT (JEPA) using Accuracy, Precision, Recall, and Jaccard Index for
step recognition (Shah et al., 2023; Kim et al., 2019; Shah et al., 2025b), and Accuracy,
Sensitivity, Specificity, and AUC for surgical feedback and skill assessment.

3.2. Comparison to State-of-the-Art Cataract Pretraining Models

We compare JHU-VPT(JEPA) with existing pretraining models on the Cataract-101, D99,
Cataract-1k, and Cataract-1k-JHU datasets. Table 1 shows the model’s performance in at-
tentive and linear probing settings (frozen encoder). Our approach consistently outperforms
VideoMAE in both, especially with attentive probing (over 20% improvement for Cataract-
1k), highlighting pretrained feature effectiveness and applicability in privacy-aware training.
Table 3 shows that in attentive probing, JHU-VPT (JEPA) consistently outperforms Video-
MAE (Tong et al., 2022) (pretrained on the same set) across all four datasets, often by over
10 percentage points with full data. Even with only 10% labeled data on Cataract-1k-JHU,
JHU-VPT (JEPA) achieves 63.81% accuracy versus VideoMAE’s 58.36%. Strong gains on
Cataract-101 and D99 (different sources) indicate better generalization, showing JHU-VPT
(JEPA)’s learned features effectively capture key surgical patterns without needing encoder
updates in downstream tasks.

In full fine-tuning (Tab. 2, Fig. 3), JHU-VPT(JEPA) is competitive with CSMAE (Shah
et al., 2025a) across several metrics/datasets. Pretraining on larger, diverse data enhances
JHU-VPT(JEPA)’s performance, emphasizing data diversity’s role in SSL for surgical video.
While JHU-VPT(MAE) (VideoMAE on our pretraining set) often yields higher accuracy
with full fine-tuning (Feichtenhofer et al., 2022), JHU-VPT(JEPA)’s predictive objective
learns abstract, high-level features that excel with attention probes (frozen encoder), show-
casing robustness. In contrast, full fine-tuning adjusts all parameters, which can perturb
these representations. Overall, JHU-VPT(JEPA)’s feature prediction with large, diverse
pretraining data yields significant gains in cataract surgery analysis, and its robust features
enable privacy-constrained surgical video analysis with minimal fine-tuning (Garrido et al.,
2024).

Overall, JHU-VPT(JEPA)’s feature prediction approach, enabled by large and diverse
pretraining data, yields significant performance gains in cataract surgery analysis. Its robust
features allow surgical video analysis in privacy-constrained scenarios with minimal fine-
tuning (Garrido et al., 2024).
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Table 2: Quantitative results of step recognition from different methods on the Cataract-101
and D99 datasets.

Method Cataract-101 D99
Jaccard Precision Recall Accuracy Jaccard Precision Recall Accuracy

ResNet(He et al., 2016) 62.58 76.68 74.73 82.64 37.98 54.76 52.28 72.06
SV-RCNet(Jin et al., 2017) 66.51 84.96 76.61 86.13 39.15 58.18 54.25 73.39
OHFM(Yi and Jiang, 2019) 69.01 85.37 78.29 87.82 40.01 59.12 55.49 73.82

TeCNO(Czempiel et al., 2020) 70.18 86.03 79.52 88.26 41.31 61.56 55.81 74.07
TMRNet(Jin et al., 2021) 71.83 85.09 82.44 89.68 41.42 61.37 56.02 75.11

Trans-SVNet(Gao et al., 2021) 72.32 86.72 81.12 89.45 42.06 60.12 56.36 74.89
ViT(Dosovitskiy et al.) 64.77 78.51 75.62 84.56 38.18 55.15 53.60 72.45

TimesFormer(Bertasius et al., 2021) 75.97 85.38 84.47 90.76 42.69 64.24 55.17 77.83
STMAE(Feichtenhofer et al., 2022) 70.54 81.47 78.67 85.29 41.67 59.38 53.22 74.16

VideoMAE(Tong et al., 2022) 71.39 82.13 80.16 86.47 42.58 61.24 56.35 74.39
CSMAE(Shah et al., 2025a) 76.82 84.26 86.73 89.83 43.51 64.32 52.45 78.14

JHU-VPT(MAE) 79.95 87.80 89.10 92.00 49.95 64.78 64.46 78.69
JHU-VPT(JEPA) 79.58 87.88 88.89 91.52 43.63 55.39 62.19 75.61

Table 3: Comparison of Step Recognition Accuracy across different dataset splits (100%,
50%, 25%, 10%) with Attentive Probing. Results are presented as percentage
accuracies. For each split, the higher value between VideoMAE (Tong et al., 2022)
and JHU-VPT(JEPA) - Ours is highlighted in bold.

Dataset 100% Split 50% Split 25% Split 10% Split

VideoMAE Ours VideoMAE Ours VideoMAE Ours VideoMAE Ours

Cataract-101 79.31 89.82 72.41 84.79 70.64 79.73 58.60 56.95
D99 66.13 77.20 51.10 71.51 47.56 63.21 42.10 45.56
Cataract-1k 63.75 79.58 59.65 58.80 46.91 45.09 36.61 35.12
Cataract-1k-JHU 70.03 83.65 66.18 80.71 63.93 74.55 58.36 63.81

Qualitative Results: As shown in Fig. 2, our JHU-VPT (JEPA) model outperforms
VideoMAE in overall prediction quality across all four datasets. We observe clearer and
more accurate step-transition boundaries, as well as reduced temporal jitter, which indicate
more robust and stable features from JHU-VPT (JEPA) for Attentive Probing. These
improvements arise from the JEPA-based latent space modeling, which emphasizes richer
spatiotemporal representations over pixel-level reconstructions.

3.3. Comparison on Feedback and Skill Performance

Table 4(a) shows that our method improves feedback prediction by approximately 13% in
AUC compared to TimeSformer (Bertasius et al., 2021). Compared to other methods, JHU-
VPT(JEPA) improves specificity, i.e., reduces false positives, indicating that the model has
meaningful discrimination between positive and negative labels. Table 4(b,c) demonstrates
our model’s performance on skill assessment for main incision and capsulorhexis. We observe
a steady improvement of 10%-20% for both phases, which highlights the robustness of its
learned feature representations across various phases.

4. Conclusion

We introduced JHU-VPT(JEPA) for cataract surgery video analysis. JHU-VPT(JEPA), us-
ing latent feature prediction, captures rich spatio-temporal representations without needing
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Figure 2: Qualitative results for the step recognition task. Subfigures A, B, C, and D cor-
respond to the datasets Cataract-101, D99, Cataract-1k, and Cataract-1k-JHU,
respectively. Within each dataset, the small subfigures a, b, and c are ribbon
plots showing the prediction for VideoMAE (Tong et al., 2022), JHU-VPT (JEPA)
trained with Attentive Probing, and the ground truth, respectively.

Table 4: Model evaluation for predicting feedback items, skill assessment in main incision,
and skill assessment in capsulorhexis.

Feedback Prediction (Table 4a)
Model Accuracy Sensitivity Specificity AUC

CNN-LSTM (Wan et al., 2024) 76.3± 1.6 94.3± 1.5 15.3± 1.7 0.659± 0.049
CNN-LSTM-GNN (Xia et al., 2025) 75.0± 1.1 85.6± 2.6 34.5± 6.7 0.559± 0.048
JHU-VPT(MAE) (D-2591) 80.4± 2.9 93.1± 8.0 35.9± 8.2 0.817± 0.032
TimeSformer (Bertasius et al., 2021) 77.2± 1.1 85.7± 5.9 40.2± 12.4 0.710± 0.066
JHU-VPT(JEPA) (Ours) 82.3± 1.4 92.6± 6.9 40.8± 16.5 0.842± 0.045

Main Incision Skill Assessment (Table 4b)
Model Accuracy Sensitivity Specificity AUC

CNN-LSTM (Hira et al., 2022) 63.0 92.0 36.0 0.64
ViT (Dosovitskiy et al.) 62.0 10.0 100.0 0.55
JHU-VPT(JEPA) (Ours) 73.0 60.0 63.0 0.72

Capsulorhexis Skill Assessment (Table 4c)
Model Accuracy Sensitivity Specificity AUC

ResNet-101 (He et al., 2016) 62.0 76.0 80.0 0.45
STMAE (Feichtenhofer et al., 2022) 66.0 68.0 80.0 0.55
JHU-VPT(MAE) (D-2591) 71.0 85.0 90.0 0.55
JHU-VPT(JEPA) (Ours) 80.0 70.0 56.25 0.80

pixel-level reconstruction or extensive labeled data. It allows clinical use while preserving
patient privacy. While JHU-VPT (JEPA) shows strong performance, further improvements
are possible by increasing temporal resolution and incorporating finer motion features for
feedback and skill assessment. Future work may explore domain adaptation to improve
generalization across surgical environments.
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Appendix A. More results of comparison on Pretraining dataset and
Ablations

Table 5 presents a detailed comparison of JHU-VPT(JEPA) with several state-of-the-art
methods for D99 Step Recognition under various data-regime settings (10%, 25%, 50%, and
100% of labeled data). The table categorizes methods by their pretraining datasets (e.g.,
Kinetics-400, D-450, D-2591) and the employed masking strategies (e.g., Random, Frame,
Tube, Token Selection, and Multi-block).

Notably, JHU-VPT(JEPA), which is pretrained on the large and diverse D-2591 dataset
using a Multi-block masking approach, achieves the highest performance in low-data regimes
(62.2 at 10%, 65.86 at 25%, and 70.42 at 50%). These results underscore JHU-VPT(JEPA)’s
ability to learn robust representations that are particularly effective when labeled data is
scarce. While some methods, such as GLSFormer, surpass JHU-VPT(JEPA) at the full data
regime (100%), our approach offers a compelling advantage in scenarios where extensive
labeled data is unavailable.

Overall, these findings highlight the effectiveness of combining extensive pretraining
with tailored masking strategies, positioning JHU-VPT(JEPA) as a strong candidate for
applications with privacy constraints and limited annotation resources.

Figure 3 shows the step recognition accuracy across different dataset splits after full
fine-tuning. Both our JHU-VPT(JEPA) and the D-2591 models (VideoMAE pretraining)
consistently outperform CSMAE on the Cataract-1k and Cataract-1k-JHU datasets, rein-
forcing the robustness of our pretraining with a large dataset.
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Table 5: Comparison of JHU-VPT(JEPA) with other state-of-the-art methods on D99 Step
Recognition, under different data-regime settings and pretraining datasets.

Methods Pre-training Dataset Masking Data Regime (%)

10 25 50 100

MaskFeat (Wei et al., 2022) Kinetics-400 Random 47.28 59.32 60.47 72.85
GLSFormer (Shah et al., 2023) Kinetics-400 - 47.19 61.54 63.76 80.24
VideoMAE (Tong et al., 2022) D-450 Frame 48.62 58.73 60.84 70.91

STMAE (Feichtenhofer et al., 2022) D-450 Random 52.37 60.42 63.58 74.16
VideoMAE (Tong et al., 2022) Kinetics-400 Tube 46.16 59.76 60.99 73.35
VideoMAE (Tong et al., 2022) D-450 Random 50.24 60.89 62.34 72.98
VideoMAE (Tong et al., 2022) D-450 Tube 52.11 61.59 63.72 74.39
CSMAE (Shah et al., 2025a) D-450 Token Selection 54.75 63.12 65.83 78.14

JHU-VPT(JEPA) D-2591 Multi-block 62.2 65.86 70.42 75.61

Figure 3: Step Recognition Accuracy across different dataset splits after complete fine-
tuning.

For ablation experiments on model architecture, our results show that as the number of
pretraining epochs increases, accuracy improves smoothly, demonstrating the scaling capa-
bilities of the JEPA architecture. For instance, on D99 accuracy increased from 65.65% to
77.20%, and on Cataract-101 from 80.42% to 89.82% (see Table 6).

Table 6: Epoch Ablation on Step Recognition Accuracy. Accuracy values (in %) for each
checkpoint are shown for the D99 and C101 datasets. The best performance for
each dataset is highlighted in bold.

Dataset 60 100 200 240 300

D99 65.65 69.97 70.84 74.03 77.20
Cataract-101 80.42 83.72 86.38 88.17 89.82

Our ablation study evaluating various classification strategies—ranging from simple lin-
ear probing and attentive probing to full fine-tuning—shows that full fine-tuning generally
achieves the best performance. However, attentive probing offers a compelling trade-off,
particularly for the D99 dataset where it outperforms full fine-tuning, as it requires less
computation and enables privacy-aware fine-tuning by avoiding back-propagation through
the visual encoder. These findings suggest that the choice of classification strategy can
be tailored based on labeled data availability, privacy requirements, and computational re-
sources (see Table 7).
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Table 7: Ablation experiments on JHU-VPT(JEPA) for the step recognition task with Full
Finetuning, Attentive Probing, and Linear Probing across four datasets.

Dataset Full Finetuning Attentive Probing Linear Probing

Cataract-101 91.52 89.82 67.04
Cataract-1k 94.25 79.58 52.51
Cataract-1k-JHU 86.55 83.65 59.04
D99 75.61 77.20 48.75
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