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Abstract

Mainstream spoken dialogue language models (SDLMs) primarily han-
dle turn-based interactions by alternating between processing user speech
and generating responses. Recently emerging full-duplex SDLMs have
showcased more natural and engaging conversational performance by si-
multaneously listening and speaking. However, the complex dynamics of
human conversation introduce unique challenges to full-duplex SDLMs:
Beyond generating reasonable responses, these models must exhibit di-
verse and prompt conversational behaviors in real-time interactions with
the user. In this work, we present an efficient full-duplex SDLM optimized
by Online Reinforcement with Interactive Speech Evaluation (ORISE). In
ORISE, we design a customized reward function derived from automated
annotations of online generated speech to guide the model toward well-
formed and speech-text aligned responses. Experimental results show that
ORISE effectively improves robustness and accuracy in handling conversa-
tional dynamics, including turn-taking, user barge-in, and backchanneling.
Furthermore, ORISE enables the model to adapt to unseen noise conditions
without relying on any labeled data, demonstrating the generalization of
ORISE in real-world scenarios.

1 Introduction

Spoken dialogue is the most intuitive form of human-computer interaction, enabling users
to communicate effortlessly and naturally with AI agents (Rebman Jr et al., 2003). Con-
sequently, research on spoken dialogue language models (SDLMs) has emerged as an
important topic within conversational AI (Freed, 2021), exemplified by popular voice assis-
tants such as Siri and Alexa, which facilitate various aspects of daily life.

As shown in Figure 1 (a), most existing SDLMs rely on turn-based interactions and process
user speech inputs one segment at a time to generate speech or textual responses (Kulkarni
et al., 2019). However, these half-duplex systems, which must alternate strictly between
“listening” and “speaking” modes, struggle to handle complex conversational dynamics
commonly observed in human dialogue, such as user barge-in or backchanneling (Lin
et al., 2025a). Therefore, developing full-duplex SDLMs has emerged as a more attractive
goal (Wang et al., 2024b) to simultaneously process streaming user inputs and generate
agent voices, as shown in Figure 1 (b). This simultaneous modeling of input and output
channels facilitates a more responsive and flexible form of interaction (Défossez et al., 2024).

Beyond comprehending speech content, full-duplex SDLMs are expected to learn timing
information in spoken conversations to provide prompt responses. As illustrated in Figure 1
(b), we highlight three key conversational behaviors: (1) User barge-in: agent should
gracefully allow users to interrupt its ongoing speech and switch seamlessly to listening
mode; (2) Turn-taking: the agent should determine appropriate moments to begin speaking
once the user finishes the utterance; and (3) Backchanneling: the agent should remain
unaffected by users’ short affirmative response (e.g., “yeah”, and “Mm-hmm”, etc.) or
third-party voice. Additionally, considering the variability of conversational environments,
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Figure 1: (a) Half-duplex SDLMs with turn-based interaction. (b) Full-duplex SDLMs can
listen and speak simultaneously, which allows the system to handle conversation dynamics,
including 1⃝ User barge-in, 2⃝ turn-taking, and 3⃝ user backchanneling.

the overall system needs to demonstrate robustness against background noise. Collectively,
these factors significantly increase the complexity of conversation modeling and pose
challenges for full-duplex SDLMs.

To address these challenges, this work aims to develop a robust SDLM to effectively handle
real-time conversational dynamics. We first present an efficient and direct speech-to-speech
modeling approach for adapting a text-based LLM into a full-duplex SDLM. Building on this
model, we focus on applying reinforcement learning (RL) as a post-training optimization to
refine the agent’s conversational behaviors. This motivation stems from the long-standing
utilization of RL to mitigate the mismatch between training and evaluation in sequence
generation problems (Bahdanau et al., 2016; Rennie et al., 2017; Prabhavalkar et al., 2018),
a.k.a., exposure bias introduced by the Teacher-forcing algorithm (He et al., 2019b).

We propose ORISE, which adopts an online sampling and evaluation strategy that leverages
a voice activity detection (VAD) model (Team, 2021) and automatically assigns multiple
rewards for the predicted speech. Through policy gradient optimization, the likelihood of
sequences exhibiting desirable conversational behaviors is promoted, allowing the model
to pursue higher reward expectation. Experimental evidence demonstrates that ORISE
effectively improves the robustness in handling conversational behaviors, including turn-
taking, user barge-in, and backchanneling. Furthermore, as our rule-based reward function
does not requires labeled examples, we apply ORISE to unseen background noise and
improve the accuracy of barge-in and backchanneling in a fully unsupervised adaptation
manner. In summary, our contribution is as follows:

• We propose ORISE, the first RL-based optimization method specifically designed for
full-duplex SDLMs. ORISE leverages automated annotations to guide the model’s
conversational behaviors using self-generated samples, effectively mitigating the
exposure bias commonly observed in long-sequence generation under SFT.

• Enhanced by ORISE, our SDLM is more robust and efficient, achieving higher
accuracy and lower latency in handling conversational dynamics such as user
barge-in and backchanneling. Our SDLM delivers high-quality responses with only
1/6 the parameter size of Moshi (Défossez et al., 2024).

• ORISE is also empirically shown to mitigate the model performance degradation in
unseen background noises without relying on any supervised labels, demonstrating
its practical value for deploying conversational AI in real-world scenarios.

2 Related Work

2.1 Full-Duplex Spoken Dialogue Language Models

To address the limitation of half-duplex models, recent works such as GPT-4o voice
mode (Hurst et al., 2024) have been proposed to build full-duplex models capable of
simultaneous speaking and listening capacities (Lin et al., 2025b). According to modeling
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approaches, existing full-duplex models can be categorized into two types: cascaded models
and end-to-end models.

Cascaded approaches break down the process into distinct stages—first converting speech
to text and then handling the linguistic content. For example, Wang et al. (2024a) propose
using control, speak, and listen tokens on a large language model with additional perception
and motor modules, although this approach still depends on separate speech-to-text and
text-to-speech components. Similarly, MiniCPM-Duplex (Zhang et al., 2024c) and MiniCPM-
Duo (Xu et al., 2024) incorporate time-sliced text tokens via time-synchronous methods,
while systems like VITA (Fu et al., 2024) and Freeze-Omni (Wang et al., 2024c) accept raw
speech inputs to speed up inference, though they still require text to complete the loop.

In contrast, end-to-end two-channel models aim to jointly process both user and agent
channels without intermediate conversion. For instance, dGSLM (Nguyen et al., 2023)
employs a Siamese network with cross-attention to handle two-channel dialogue, and
Moshi (Défossez et al., 2024) utilizes parallel streams to separately process speaker and
listener speech. SyncLLM (Veluri et al., 2024) introduces a time-synchronous mechanism for
autoregressive decoding across channels, while OmniFlatten (Zhang et al., 2024b) adopts
progressive post-training to jointly process flattened sequences of speech and text tokens.
Other works, including SALMONN-omni (Yu et al., 2024), MinMo (Chen et al., 2025), Parrot
(Wang et al., 2025), RTTL-DG (Mai & Carson-Berndsen, 2025), and neural FSM in (Wang
et al., 2024b) explore techniques such as augmenting state tokens, next-token-pair prediction,
and dialogue management to refine two-channel processing.

2.2 Reinforcement Learning in Language Generation

Before the advent of LLMs, optimization methods based on reinforcement learning had
already been widely applied to language generation tasks (He et al., 2019a;b). For exam-
ple, in the speech domain for ASR tasks (Prabhavalkar et al., 2018), image domain for
image captioning (Rennie et al., 2017), and NLP for machine translation (Bahdanau et al.,
2016), these methods aim to optimized SFT models based on the traditional REINFORCE
algorithm (Williams, 1992) or improved variants (Zhang et al., 2021).

In the LLM era, RL-based optimization methods are increasingly explored in the form of
RLHF technique (Ouyang et al., 2022). Given that LLMs already exhibit strong generation
capabilities, RLHF primarily serves as a post-processing technique to align model outputs
with human preferences in various scenarios (Dai et al., 2023; Dong et al., 2024). Early RLHF
algorithms rely on an independent reward model to score generated samples (Zheng et al.,
2023), whereas later approaches adopt implicit reward modeling, directly learning human
preferences from chosen/rejected pairs (Rafailov et al., 2024; Meng et al., 2024).

3 Speech to speech (S2S) Full-Duplex Modeling

An overview of our proposed full-duplex SDLM is illustrated in Figure 3. Given a (possibly
noisy) user stream X, our duplex S2S model θ is designed to concurrently process the
incoming signal while streaming predictions for both text Y1 and speech Y2 outputs. This
simultaneous “listening” and “speaking” autoregressive generation process is formalized
as follows:

Pθ(Y1, Y2 | X) =
T

∏
t=1

P
[
⟨y1

t , y2
t ⟩ | y1

<t, y2
<t, X≤t

]
, (1)

where X≤t represents the user stream up to time step t, and y1
t and y2

t denote the text and
speech outputs at time step t, respectively. We hereby highlight following key factors of
modeling a text-only LLM to a full-duplex SDLM:

Speech Tokenization. We employ the neural audio codec to represent the speech predicted
by SDLMs, i.e., the agent stream can be represented as an acoustic matrix with length T
and K channels of codebooks. Unlike commonly used RVQ in TTS technique (Wang et al.,
2023), we adopt NanoCodec (Anonymous, 2025) with Finite Scalar Quantization (Casanova
et al., 2025) to ensure independence among multiple codebooks. This independence allows
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all K codebooks to be predicted in parallel at each timestep, thereby enabling fully parallel
modeling with low latency.

Alignment between generated text and speech. Due to different modalities, Y2 is typically
longer than Y1, making synchronous prediction unfeasible. To align Y1 and Y2, we introduce
a padding mechanism for the text channel to coordinate a bi-modal response. As illustrated
in the Figure 3, after the text output is predicted, the model continues to generate a special
⟨pad⟩ token until the predicted audio codecs reach the end of sequence. This approach
eliminates the need for word-level alignment like Moshi (Défossez et al., 2024), and even if
the prediction process of Y2 is interrupted by the user, the generated Y1 can serve as context
for subsequent dialogue.

User stream perception. We employ a pretrained streaming speech encoder to extract
continuous embeddings X′ ∈ RT×d1 from the user channel in real time. The frame rate
of the encoder is set to match the frame rate of the audio codec model. Consequently, for
each time step t, a projection layer maps X′t to match the embedding dimension of LLM,
d2 after which (y1

t−1, y2
t−1, X′t) are fused at the embedding level as the input to the LLM.

Notably, compared to discretizing user speech using an audio codec (Défossez et al., 2024),
the streaming speech encoder can be trained end-to-end, capturing subtle nuances in the
user stream and more flexibly adapting to diverse acoustic environments.

LLM backbone. To adapt any text-based LLM to receive and predict audio tokens, we
first expand its original word embedding matrix W ∈ Rv1×d2 with K layers of codebooks,
resulting in a new word embedding matrix W ′ ∈ R(v1+v2×K)×d2 . After obtaining the hidden
representation ht from the final transformer block, the original LLM’s linear layer is reused to
map ht to the logits of vocabulary size v1, while K parallel linear layers independently map
ht to the logits with size v2 for each audio codec codebook. In practice, we observe that the
text channel typically learns knowledge first and predominantly influences conversational
behavior. Therefore, two techniques are implemented to enhance model performance. First,
the text channel is assigned a higher weight when computing the cross-entropy loss. Second,
a one-token delay (i.e., 80ms) is introduced between the text channel and the audio channel.
Our SDLM is trained with cross-entropy loss as follows:

LCE = −
T

∑
t=1

[
λ1 log p

(
y1

t | ht

)
+ λ2 log p

(
y2

t−1 | ht

)]
(2)

where λ1 and λ2 are the hyper-parameters to balance the weights between speech and text
channels.

S2S Training Data. Existing publicly available conversational datasets, such as Fisher (Cieri
et al., 2004), capture human dialogue behaviors but are insufficient for training an helpful
agent to effectively respond to a wide range of inquiries. To address this gap, we construct
dialogue-style data featuring two speech streams: one for the user and one for the agent.
When the user begins speaking, the agent is expected to predict silence; once the agent
takes over the turn, appropriate silence is inserted into the user stream to allow the agent to
respond. Further details are provided in the Appendix A.1.

4 Online Reinforce with Interactive Speech Evaluation (ORISE)

Given an SFT model, reinforcement learning aims to improve its generation quality by
maximizing a customized reward R. In the mainstream RLHF, R is typically determined
by an independent reward model trained with human feedback, or directly learns human
preference from annotated chosen/rejected pairs. To circumvent the high cost associated
with human annotations, this paper focuses on automated metricsR to measure the conver-
sational performance of generated samples, thus eliminating the need for any ground truth
involvement throughout the optimization process. In general, the maximizing objective can
be written as:

EX∈D,Y1,Y2∈πθ
[R(X, Y1, Y2)]− βDKL(πθ(⟨Y1, Y2⟩|X)∥πref(⟨Y1, Y2⟩|X)), (3)
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Table 1: Ideal agent behaviors in respond to different user speech intents, where 0 and 1 in
transition denote “silence” and “speaking” modes of agent, respectively.

Index User intent Transition Agent Behavior Description Reward

C2-1 normal query 0→ 1 take the turn within delay ∆t1 -
C2-2 barge-in 1→ 0 stop speaking within delay ∆t2 1
C2-3 backchanneling 1→ 1 continue speaking until t′ + ∆t3 1

where a reference model πref with KL divergence penalty is introduced to prevent the model
πθ from making radical update, and β is a balancing weight. To annotate the quality of
generation, we define three automatic reward criteria for evaluating generated samples:

• C1: Turns Consistency. In multi-turn dialogues, the number of turns predicted by
the agent should be equal to the number of user turns, excluding those backchan-
nel responses: R1 = −|Number of turns(X)−Number of turns(Y2)|, where the
Number of turns(Y2) is examined by a VAD model Silero (2024).

• C2: Conversational behavior. Given a segment of user speech X′ with ending
timestamp of t′, we define speaking state of agent as 1 and silence state as 0, and
the desirable behaviors of agent are illustrated in Table 1. Due to the awareness of
t′ and transition of user speech, the generated agent speech Y2 can be detected by a
VAD model to determine whether the desirable action has been executed, without
any reliance on ground-truth. Since C2-1 is easy to learn from SFT, we define the
R2 = I[C2-2] + I[C2-3], where the indicator function I returns 1 if the condition
inside is satisfied for the whole conversation, and 0 otherwise.

• C3: Alignment between Y1 and Y2. Since the agent generates text and speech
independently, their content should remain consistent. To evaluate this, we employ
an ASR model (Galvez et al., 2024) to transcribe the generated speech into text and
then compute the word error rate (WER) between the predicted transcription and
the generated text. Note that R3 is applied only to those samples that were not
interrupted, as when a user barges in, the text channel, Y1 may have more content
than the speech channel, Y2. In such cases, a high WER does not necessarily indicate
a mis-alignment between the two predicted modalities.

To avoid introducing excessive hyperparameters, we directly sum theR1 ∼ R3 to measure
the quality of Y2. Additionally, preference-based optimization can also be conducted in
terms of positive/negative samples selected from these criteria. We consider preference
optimization methods as baseline and introduce more details in the Appendix A.2.

For optimization, we adapt typical REINFORCE algorithm (Williams, 1992) with online
sampling strategy. Specifically, based on user speech X, we perform online decoding to
sample N pairs of ⟨Ŷ1, Ŷ2⟩ using πθ . Then the expectation in Eq. (3) is approximated using
an empirical average over these samples, and the optimization objective is written as:

L = − 1
N

N

∑
n=1

[(
λ1Pθ(Ŷ1

n | X) + λ2Pθ(Ŷ2
n | X)

)
An − βDKL(πθ ∥πref)

]
, (4)

where λ1 and λ2 are keep consistent with SFT process in Eq. (2). Pθ(Ŷ1
n | X) and Pθ(Ŷ2

n | X)
λ1 are normalized by the sequence length T. A is the advantage function (Schulman et al.,
2017), and KL-item is estimated using the approximator introduced by (Schulman, 2020):

An =
R(X, Ŷ2

n)−mean(R(X, Ŷ2)

std(R(X, Ŷ2))
, (5)

R = R1 +R2 +R3, (6)

DKL [πθ ∥ πref] =
T

∑
t=1

[
πref

(
y1

t , y2
t | X, y1

<t, y2
<t
)

πθ

(
y1

t , y2
t | X, y1

<t, y2
<t
) − log

πref
(
y1

t , y2
t | X, y1

<t, y2
<t
)

πθ

(
y1

t , y2
t | X, y1

<t, y2
<t
) − 1

]
(7)
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In Eq. (4), if Y2
n obtain higher rewards than other samples, its likelihood generated by πθ

would be increase due to the positive value of An, and vice versa. Additionally, although
the reward is computed based on Y2, the behavior of Y1 remains largely consistent with it,
as text channel is predicted one token ahead of the speech channels. The pseudo code of
ORISE is summarized as Algorithms 1.

Algorithm 1 ORISE Algorithm

Require: SFT model πθ , VAD model ϕ, Unlabeled dataset D = {Xi, t′i}I
i=1

Ensure: Optimized Model πθ
1: Duplicate πθ to get reference model πref
2: for each training step do
3: Sample user input X
4: Obtain N pairs of ⟨Y1, Y2⟩ online samples with πθ

5: Calculate reward Rn for Y2
n using ϕ, t′, and states of X

6: Compute loss L in Eq. (4)
7: Update parameters: θ ← θ − η∇θL
8: end for
9: return Optimized model parameters θ

5 Experimental Setup

5.1 Dataset

Training Data. To generalize spoken QA capability, we use a multi-speaker TTS model (Hus-
sain et al., 2025) to synthesize context, question, and answer from text-based datasets such
as Alpaca (Taori et al., 2023) and MS-MARCO (Bajaj et al., 2018). To prevent the model from
overfitting to synthetic speech, we follow the approach proposed in (Noroozi et al., 2024)
to construct an additional QA dataset using the Mistral LLM, where the user speech is a
mixture of real and TTS-generated audio, referred to as the ASR-QA set. Furthermore, we
construct two multi-turn dialogue datasets, Topic and UltraChat, to enhance the agent’s
capabilities to leverage context information. In UltraChat, the original text data (Ding et al.,
2023) is reformulated into a dialogue format, while Topic simulates user-agent conversa-
tions based on a specified topic. For RL, only the UltraChat user speech is employed for
optimization. Detailed data statistics is shown in Appendix A.1 Table 6.

Background Noise. We utilize WHAM (Wichern et al., 2019) to create noisy dataset, which
are dynamically mixed into the user channel during training in an online manner. The
signal-to-noise ratio (SNR) is randomly sampled from a range of 10dB to 30dB. For unseen
noise setting, we randomly sample some noise from MUSAN (Snyder et al., 2015).

User Backchannel. To simulate user backchanneling, we first use GPT-4o to generate
20 affirmative short utterance that commonly occurs in dialogue backchanneling. We
then sample 200 speakers from the LibriTTS dataset and randomly paired them with the
generated phrases. Using multi-speaker TTS model (Du et al., 2024), we have synthesized
a total of 4,000 distinct backchannel audio samples. Next, these backchannel samples are
randomly selected during training and inserted into silent segments of the user channel that
exceed 4 seconds. The insertion point is set to 2 seconds after the agent begins speaking to
simulate real backchannel. During inference, since the agent’s response time is uncertain,
we ensure that the user backchannel is inserted before the agent completes its response.

5.2 Training Details and Baselines

Our model is implemented in PyTorch using the NeMo Toolkit (Kuchaiev et al., 2019) and
trained on 32 A100 (80G) GPUs, with each GPU handling a batch duration of 1000 seconds.
The speech encoder is derived from a 100M-parameter streaming pretrained model with an
80ms right context (NVIDIA, 2023), while the LLM is initialized from the 1.1B TinyLlama
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Model E2E Turn-Taking Barge-in Backchannel MOSLatency (s) Acc (%) Latency (s) Acc (%)

Freeze-Omni ✗ 1.17* 79.5* 1.20* - 4.3

dGSLM ✓ 0.57 85 0.86 - 2.2

Moshi ✓ n.a. 55.1 0.81 - 3.9

ORISE ✓ 0.43 96.8 0.61 95.7 4.2

Table 2: Conversational Behaviors of different models under various conditions. Turn-taking
and Backchannel are evaluated on UltraChat, and Barge-in is evaluated on Impatient. The
number with “*” denotes it is reported in (Lin et al., 2025a), and ”–” indicates that the model
does not support the corresponding functionality.

(Zhang et al., 2024a). For tokenization, we employ a 32k SentencePiece model for text and a
customized 0.6 kbps NanoCodec (Anonymous, 2025) for speech. The speech representation
utilizes four codebook layers, each containing a vocabulary of 4,037 entries. The training
loss is balanced across modalities, with weights set to λ1 = 3 for text and λ2 = 1 for
speech. Optimization is performed using FusedAdam with an inverse square root annealing
learning rate schedule, beginning with a peak learning rate of 3e-4 for SFT and 1e-5 for RL.
To maintain stability, gradient clipping is enforced at a threshold of 1.0. The β to balance the
KL-item is set as 0.2.

We adopt two preference optimization baselines DPO (Rafailov et al., 2024) and IPO (Azar
et al., 2024), as well as a baseline that does not rely on pairwise preferences, KTO (Ethayarajh
et al., 2024). Since these methods are originally designed for LLMs, several necessary
adaptations are made to apply them to SDLMs. Further implementation details are provided
in the Appendix A.2.

5.3 Evaluation Dataset and Metric

Response Quality. We evaluate our model in two scenarios: 1) multi-turn conversations:
UltraChat, Roleplay, and Topic, and 2) spoken QA reasoning: ASR-QA and Alpaca. All these
test sets are unseen during training. To measure the response quality, we utilize GPT score1

ranging from 0 to 10 based on the hypotheses and references of all the agent turns. The
agent speech response is transcribed by ASR model2 as GPT input. We also report the
UTMOS automatically evaluate by pre-trained UTMOS model (Saeki et al., 2022). As a S2S
model, we do not report the quality of the predicted text, while it is generally better than
the predicted speech content in terms of quality and coherence.

User Barge-in. Since the response time of agent is unpredictable, the natural occurrence
probability of user barge-in is relatively low. To evaluate the barge-in performance, we
create a test set based on ASR-QA, called impatient, where the agent is given barely an
average of 2 seconds to respond. Then the user barge-in occurs in more than 95% cases,
showcasing a obvious mismatch with training set. The ∆t1 is set as 1.5 second, meaning that
if the agent does not stop speaking within 1.5 seconds, it is considered a barge-in failure. We
report both accuracy and average latency as metric to measure the barge-in performance.

User Backchanneling. Different with training, we insert random backchannel utterance in
every response of agent turn. UltraChat is selected as test set due to its long agent response,
and if agent stops speaking within 1.5 second, it is considered backchannel failure. We
report the average accuracy calculated across the all backchannels.

Turn-taking. As the basic behavior for the model, we evaluate it by measuring the latency
between the end of the user’s speech and the start of the agent’s response. Notably, this we
introduce a 0.64-second delay in the training label to make the conversation more natural.

1https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
2https://huggingface.co/nvidia/parakeet-tdt ctc-110m
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ID Models LLM Backbone Multiturn Conversation Spoken QA
UltraChat Roleplay Topic ASR-QA Alpaca

1 Moshi Helium-7B 3.4 1.7 2.8 1.9 1.7

2 SFT Model Qwen2-1.5B 3.7 3.7 6.1 6.3 3.3

3 SFT Model TinyLLaMA-1.2B 3.5 4.6 6.1 7.8 2.9
4 + ORISE 4.0 4.1 5.8 7.7 2.9

5 GT+LLM TinyLLaMA-1.2B 6.4 4.9 5.5 5.8 5.0

Table 3: GPT-score of multi-turn conversation and spoken QA. GT+LLM denotes an oracle
cascaded system which feeds every ground-truth user turn to the LLM.

Metric Test set SFT Augmented by RL Optimization
0 % 20% 80% DPO IPO KTO ORISE

BLEU
UltraChat

10.5 10.0 10.1 6.2 8.3 5.5 9.8
Barge-in-Acc 83.0 74.1 70.7 66.9 70.9 75.5 83.7

Backchannel-Acc - 85.8 86.4 88.0 92.7 96.0 95.7

Barge-in-Acc Impatient 94.5 94.1 96.5 94.7 94.7 95.2 96.8

Table 4: Comparison of conversational behavior improvements using RL, where “Aug-
mented by 80%” is the starting point of RL optimization.

6 Result and Analysis

6.1 Main Results

We first report the conversational behavior in Table 2, where Moshi (Défossez et al., 2024),
Freeze-Omni (Wang et al., 2024c), and dGSLM (Nguyen et al., 2023) are employed as
baselines. We observe that: (1) For turn-taking, end-to-end models exhibit lower latency
compared with cascaded model. The “n.a.” entries for Moshi are due to its frequent behav-
ior of responding before the user finishes speaking. In contrast, our model introduces a
0.64-second delay during training, while during inference, the latency dynamically varies
between 0.4 and 0.9 seconds across different datasets. (2) For barge-in, our model demon-
strates strong robustness compared with other baselines. Under both clean and noisy
conditions, it significantly outperforms the baselines in terms of both accuracy and latency.
(3) For backchanneling, our model achieves high accuracy, indicating its effectiveness in
distinguishing normal user query and affirmative response.

In Table 3, we report our model’s reasoning capabilities by comparing it against E2E
baseline Moshi and an oracle cascaded system, where ground-truth transcriptions of user
turns are directly provided to a language model (denoted as GT+LLM in Table 3). The
dGSLM is not included in the comparison as it cannot function as an agent capable of
responding to user requests. By comparing System ID-2 and System ID-3, we demonstrate
that our S2S modeling can efficiently adapt different text-based LLM into a full-duplex
SDLM. Furthermore, the comparison between System ID-3 and System ID-4 shows that
ORISE effectively enhances dialog capabilities without compromising the model’s reasoning
performance. We attach listening examples are in anonymous link3.

6.2 Effect of ORISE

We then evaluate the efficacy of RL-based optimization and report the accuracy in Table 4.
We use the SFT model augmented by a certain percentage of synthesized user backchannel
speech inserted into the training data. When it is 0%, any user voice is considered as
barge-in for agent. Building upon the model trained with 80% backchannel augmentation,

3https://2025anonymous1.github.io/COLM-demo/
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we apply various post-training optimization methods, including DPO, IPO, KTO, and our
proposed ORISE. Additionally, since the reward function focuses solely on conversational
behaviors, we report the BLEU score on the text channel to assess the model’s ability to
generate high-quality response content and to monitor whether the quality of the generated
responses degrades due to the conservation-specific optimization.

From Table 4, we observe that post-training methods consistently improve backchannel
accuracy, as backchannel events occur frequently and the model can simply continue speak-
ing to receive a high reward. The −R1 andR2 (backchanneling) is visualized in Figure 2.
However, for barge-in, different methods exhibit distinct behaviors across the UltraChat
and Impatient evaluation settings. Despite the limited response window in Impatient, the
agent demonstrates strong robustness and is often successfully interrupted across differ-
ent models. In contrast, in the multi-turn conversations of UltraChat, the success rate of
barge-ins drops—particularly as the proportion of backchannel examples increases in the
training data. Compared to preference-based optimization methods, our approach offers
two key advantages. First, it achieves balanced improvements in both backchannel and
barge-in handling. Second, it demonstrates higher BLEU score, indicating that the quality
of generated responses remains stable.

Figure 2: Visualization of −R1 (turns consis-
tency) andR2 (backchanneling) during training.

Noise Model Accuracy
TT BI BC

W. SFT Model 79.1 62.0 94.2
+ORISE 84.1 72.6 96.7

M. SFT Model 75.4 76.3 94.3
+ORISE 77.2 84.0 92.5

Table 5: Accuracy of conversational be-
haviors on unseen noises. “TT”, “BI”,
and “BC” denote turn-taking, barge-in,
and backchanneling,“W.” and “M.” indi-
cate noise from Wham and MUSAN.

6.3 Adaptation on Unseen Noises

In this section, we first analyze the impact of unseen noise on SDLM behaviors, and then
examine the efficacy of ORISE to alleviate it. As shown in Table 5, ”SFT Model” is trained
with online augmented noisy segments from Wham training set, and we evaluate the
model on Wham evaluation set and MUSAN noises. From the results, we observe that
when noise is introduced during training, backchannel performance improves significantly
(86.4%→94+%) comparing with result in Table 4, as the model becomes desensitized to third-
party voices. However, the performance of both turn-taking and barge-in degrades notably
under the same conditions. ORISE effectively mitigates these challenges without relying
on labeled data, thereby demonstrating its capacity to preserve balanced conversational
behaviors under domain shift.

7 Conclusion

In this paper, we introduce robust full-duplex SDLM enhanced by ORISE, a reinforcement
learning method to improve model’s conversational behaviors in real-time interaction. The
proposed ORISE leverages automated annotations of online generated speech to guide
the model toward well-formed and speech-text aligned responses. Through extensive
experiments, our model demonstrates strong performance in handling user barge-in, turn-
taking, and backchanneling, while remaining resilient to unseen background noise without
the reliance of labeled data. These results highlight that our approach enables SDLMs
to handle diverse interactive spoken dialogue dynamics within a unified system, thereby
serving as a universal optimization framework for next-generation conversational AI.
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Ethics Statement

Our research utilizes publicly available and synthetic data, ensuring that no private or
sensitive information is employed. We have carefully considered potential biases inherent
in conversational models and have designed our approach to minimize harmful behaviors.
The proposed system is intended for academic exploration and serves as a prototype for
further research; its future deployment in real-world applications should be accompanied
by comprehensive ethical review and oversight. We also encourage future studies to
further investigate the societal and ethical implications of next-generation conversational
AI systems.
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Figure 3: Full-duplex Model structure (left) and data alignment between audio and text
channels (right). We visualize 1 turn of agent response to illustrate the predicted channels
of LLM. ”T1 ∼ T3” are the text tokens and the blue chunks are composed by audio tokens.

A Appendix

A.1 Details of Training Data

Figure 4 illustrates the format of our training data. Since the agent cannot anticipate the
user’s behavior in advance, we introduce an offset of ∆=0.64 second into the training labels
for both turn-taking and barge-in. This offset enables the agent to detect the appropriate
timing from the user’s speech input and exhibit the correct conversational behaviors. Each
token in the figure corresponds to 80 ms in real-world time.

Statistics of our training data are presented in Table 6. For MS MARCO and Alpaca, we
adopt their predefined test splits. For other synthetic datasets, we reserve an unseen shard
(approximately 5 hours) as the test set.

Table 6: Synthetic training data with multi-turn and barge-in.

Task Dataset #Hours Speech Multi-turn Barge-in

ASR-QA 20k Mix Augment ✗
Spoken QA MS MARCO 0.2k TTS Augment ✗

Alpaca 0.2k TTS Augment ✗
Internal SFT 3k TTS Real ✓

Conversation UltraChat 3k TTS Augment ✓
Topic 0.3k TTS Augment ✓

A.2 Preference-optimization Baseline

To enable preference optimization, we utilize the implicit reward modeling (Rafailov et al.,
2024) though the log-probability between policy model πθ and reference model πref:

R(Y1, Y2, X) = λ1 log
πθ(Y1|X)

πref(Y1|X)
+ λ2 log

πθ(Y2|X)

πref(Y2|X)
(8)

where λ1 and λ2 keep consistent with SFT to balance the weight of channels. Given user
input X, we utilize online sampling to obtain a batch of text-speech pairs B = {⟨Y1

i , Y2
i ⟩}B

i=1.
Using C1 and C2, we filter positive and negative samples from B:

B+ = {⟨Y1
i , Y2

i ⟩ ∈ B | (C1 ∧ C2 ∧ C3)(⟨Y1
i , Y2

i ⟩)}, (9)

B− = {⟨Y1
i , Y2

i ⟩ ∈ B | ¬(C1 ∧ C2 ∧ C3)(⟨Y1
i , Y2

i ⟩)}. (10)

where ∧ is the logical “and” and ¬ is logical “not”. For DPO baseline (Rafailov et al., 2024),
we reduce the β for negative examples in its loss function, as we observed that in our system,
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Figure 4: Multi-turn training data formulation, where ∆ is set as 0.64 second for agent to take
the turn and handle user bargi-in. The backchannel utterance (i.e., ”great”) is synthesized
and insert into the training data points with > 4 silence.

positive and negative samples frequently yield identical predictions (i.e., the pad token).
Maintaining the same β for both positive and negative samples introduces high instability
during training.

A.3 Limitations and Future works

One limitation of this work is that our speech-to-speech modeling framework requires full
fine-tuning of the LLM, which restricts our current exploration to relatively small models
around 1.5B parameters. In future work, we plan to adopt larger LLMs as backbones to
investigate whether they lead to substantial improvements in reasoning capabilities. An-
other important research direction is how to effectively preserve the real-world knowledge
encoded in pretrained LLMs during SDLM modeling. As observed in challenging datasets
such as UltraChat, there remains a performance gap between our system and the GT+LLM
baseline as shown in Table 3. This highlights a promising avenue for future work aimed at
better integrating knowledge retention with interactive spoken dialogue generation.

Furthermore, we find that evaluating dialogue data is inherently complex and challenging.
Beyond the content generated by the agent, a wide range of paralinguistic cues—such as
emotion, speaker identity, and interaction style—must also be considered for a intelligent
AI system. These factors play a critical role in reinforcement learning, as they directly
impact reward design and model behavior. In future work, we plan to develop a more
comprehensive evaluation framework to support continued progress in this field.
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