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Abstract

Existing continual relation learning (CRL)001
methods rely on plenty of labeled training data002
for learning a new task, which can be hard to003
acquire in real scenario as getting large and004
representative labeled data is often expensive005
and time-consuming. It is therefore necessary006
for the model to learn novel relational pat-007
terns with very few labeled data while avoid-008
ing catastrophic forgetting of previous task009
knowledge. In this paper, we formulate this010
challenging yet practical problem as contin-011
ual few-shot relation learning (CFRL). Based012
on the finding that learning for new emerg-013
ing few-shot tasks often results in feature dis-014
tributions that are incompatible with previ-015
ous tasks’ learned distributions, we propose a016
novel method based on embedding space regu-017
larization and data augmentation. Our method018
generalizes to new few-shot tasks and avoids019
catastrophic forgetting of previous tasks by en-020
forcing extra constraints on the relational em-021
beddings and by adding extra relevant data in a022
self-supervised manner. With extensive experi-023
ments we demonstrate that our method can sig-024
nificantly outperform previous state-of-the-art025
methods in CFRL task settings.1026

1 Introduction027

Relation Extraction (RE) aims to detect the re-028

lationship between two entities in a sentence, for029

example, predicting the relation birthdate in the030

sentence “Kamala Harris was born in Oakland,031

California, on October 20, 1964.” for the two enti-032

ties Kamala Harris and October 20, 1964. It serves033

as a fundamental step for downstream tasks such as034

search and question answering (Dong et al., 2015;035

Yu et al., 2017). Traditionally, RE methods were036

built by considering a fixed static set of relations037

(Miwa and Bansal, 2016; Han et al., 2018a). How-038

ever, similar to entity recognition, RE is also an039

open-vocabulary problem (Sennrich et al., 2016),040

1Code and models are available at <redacted>

where the relation set keeps growing as new rela- 041

tion types emerge with new data. 042

A potential solution is to formalize RE as Contin- 043

ual Relation Learning or CRL (Wang et al., 2019). 044

In CRL, the model learns relational knowledge 045

through a sequence of tasks, where the relation 046

set changes dynamically from the current task to 047

the next. The model is expected to perform well 048

on both the novel and previous tasks, which is chal- 049

lenging due to the existence of Catastrophic Forget- 050

ting phenomenon (McCloskey and Cohen, 1989; 051

French, 1999) in continual learning. In this phe- 052

nomenon, the model forgets previous relational 053

knowledge after learning new relational patterns. 054

Existing methods to address catastrophic forget- 055

ting in CRL can be divided into three categories: 056

(i) regularization-based methods, (ii) architecture- 057

based methods, and (iii) memory-based methods. 058

Recent work shows that memory-based methods 059

which save several key examples from previous 060

tasks to a memory and reuse them when learning 061

new tasks are more effective in NLP (Wang et al., 062

2019; Sun et al., 2020). Successful memory-based 063

CRL methods include EAEMR (Wang et al., 2019), 064

MLLRE (Obamuyide and Vlachos, 2019), EMAR 065

(Han et al., 2020), and CML (Wu et al., 2021). 066

Despite their effectiveness, one major limitation 067

of these methods is that they all assume plenty 068

of training data for learning new relations (tasks), 069

which is hard to satisfy in real scenario where con- 070

tinual learning is desirable, as acquiring large la- 071

beled datasets for every new relation is expensive 072

and sometimes impractical for quick deployment 073

(e.g., RE from news articles during the onset of an 074

emerging event like Covid-19). In fact, one of the 075

main objectives of continual learning is to quickly 076

adapt to new environments or tasks by exploiting 077

previously acquired knowledge, a hallmark of hu- 078

man intelligence (Lopez-Paz and Ranzato, 2017). 079

If the new tasks are few-shot, the existing meth- 080

ods suffer from over-fitting as shown later in our 081
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experiments (§4). Considering that humans can ac-082

quire new knowledge from a handful of examples,083

it is expected for the models to generalize well on084

the new tasks with few data. We regard this prob-085

lem as Continual Few-shot Relation Learning or086

CFRL (Appendix A.1). Indeed, in relation to CFRL,087

Zhang et al. (2021), Zhu et al. (2021) and Chen and088

Lee (2021) recently introduce methods for incre-089

mental few-shot learning in Computer Vision.090

Based on the observation that the learning of091

emerging few-shot tasks may result in distorted fea-092

ture distributions of new data which is incompatible093

with previous embedding space (Ren et al., 2020),094

this work introduces a novel model based on Em-095

bedding space Regularization and Data Augmenta-096

tion (ERDA) for CFRL. In particular, we propose097

a multi-margin loss and a pairwise margin loss in098

addition to the traditional cross-entropy loss to im-099

pose further relational constraints in the embedding100

space. We also introduce a novel contrastive loss101

to learn more effectively from the memory data.102

Our proposed data augmentation method selects103

relevant samples from unlabeled text to provide104

more relational knowledge for the few-shot tasks.105

The empirical results show that our method can106

significantly outperform previous state-of-the-art107

methods. In summary, our main contributions are:108

• To the best of our knowledge, we are the first one109

to consider CFRL. We define the CFRL problem110

and construct a benchmark for the problem.111

• We propose ERDA, a novel method for CFRL112

based on embedding space regularization and113

data augmentation.114

• With extensive experiments, we demonstrate the115

effectiveness of our method compared to existing116

ones and analyse our results thoroughly.117

2 Related Work118

Conventional RE methods include supervised (Ze-119

lenko et al., 2002; Liu et al., 2013; Zeng et al., 2014;120

Miwa and Bansal, 2016), semi-supervised (Chen121

et al., 2006; Sun et al., 2011; Hu et al., 2020) and122

distantly supervised methods (Mintz et al., 2009;123

Yao et al., 2011; Zeng et al., 2015; Han et al.,124

2018a). These methods rely on a predefined rela-125

tion set and have limitations in real scenario where126

novel relations are emerging. There have been127

some efforts which focus on relation learning with-128

out predefined types, including open RE (Shinyama129

and Sekine, 2006; Etzioni et al., 2008; Cui et al.,130

2018; Gao et al., 2020) and continual relation learn-131

ing (Wang et al., 2019; Obamuyide and Vlachos, 132

2019; Han et al., 2020; Wu et al., 2021). 133

Continual Learning (CL) aims to learn knowl- 134

edge from a sequence of tasks. The main problem 135

CL attempts to address is catastrophic forgetting 136

(McCloskey and Cohen, 1989), i.e., the model for- 137

gets previous knowledge after learning new tasks. 138

Existing methods to alleviate this problem can be 139

divided into three categories. First, regularization- 140

based methods impose constraints on the update of 141

neural weights important to previous tasks to alle- 142

viate catastrophic forgetting (Li and Hoiem, 2017; 143

Kirkpatrick et al., 2017; Zenke et al., 2017; Ritter 144

et al., 2018). Second, architecture-based meth- 145

ods dynamically change model architectures to ac- 146

quire new information while remembering previous 147

knowledge (Chen et al., 2016; Rusu et al., 2016; 148

Fernando et al., 2017; Mallya et al., 2018). Finally, 149

memory-based methods maintain a memory to save 150

key samples of previous tasks to prevent forgetting 151

(Rebuffi et al., 2017; Lopez-Paz and Ranzato, 2017; 152

Shin et al., 2017; Chaudhry et al., 2019). 153

Few-shot Learning (FSL) aims to solve tasks con- 154

taining only a few labeled samples, which faces 155

the issue of over-fitting. To address this, exist- 156

ing methods have explored three different direc- 157

tions: (i) data-based methods use prior knowledge 158

to augment data to the few-shot set (Santoro et al., 159

2016; Benaim and Wolf, 2018; Gao et al., 2020); 160

(ii) model-based methods reduce the hypothesis 161

space using prior knowledge (Rezende et al., 2016; 162

Triantafillou et al., 2017; Hu et al., 2018); and 163

(iii) algorithm-based methods try to find a more 164

suitable strategy to search for the best hypothesis in 165

the whole hypothesis space (Hoffman et al., 2013; 166

Ravi and Larochelle, 2017; Finn et al., 2017). 167

Summary. Existing work in CRL which involves 168

a sequence of tasks containing sufficient training 169

data, mainly focuses on alleviating the catastrophic 170

forgetting of previous relational knowledge when 171

the model is trained on new tasks. The work in few- 172

shot learning mostly leverages prior knowledge to 173

address the over-fitting of novel few-shot tasks. In 174

contrast to these lines of work, we aim to solve a 175

more challenging yet more practical problem CFRL 176

where the model needs to learn relational patterns 177

from a sequence of few-shot tasks continually. 178

3 Methodology 179

In this section, we first formally define the CFRL 180

problem. Then, we present our method for CFRL. 181
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3.1 Problem Definition182

CFRL involves learning from a sequence of tasks183

T = (T 1, . . . , T n), where every task T k has its184

own training set Dk
train, validation set Dk

valid, and185

test set Dk
test. Each dataset D contains several sam-186

ples {(xi, yi)}|D|i=1, whose labels yi belong to the187

relation set Rk of task T k. In contrast to the previ-188

ously addressed continual relation learning (CRL),189

CFRL assumes that except for the first task which190

has enough data for training, the subsequent new191

tasks are all few-shot, meaning that they have only192

few labeled instances (see Appendix A.1). For193

example, consider there are three relation learn-194

ing tasks T 1, T 2 and T 3 with their corresponding195

relation sets R1, R2, and R3, each having 10 rela-196

tions. In CFRL, we assume the existing task T 1 has197

enough training data (e.g., 100 samples for every198

relation in R1), while the new tasks T 2 and T 3 are199

few-shot with only few (e.g., 5) samples for every200

relation in R2 and R3. Assuming that the relation201

number of each few-shot task is N and the sample202

number of every relation isK, we call this setupN -203

wayK-shot continual learning. The problem setup204

of CFRL is aligned with the real scenario, where we205

generally have sufficient data for an existing task,206

but only few labeled data as new tasks emerge.207

The model in CFRL is expected to first learn T 1208

well, which has sufficient training data to obtain209

good ability to extract the relation information in210

the sentence. Then at time step k, the model will211

be trained on the training set Dk
train of few-shot task212

T k. After learning T k, the model is expected to213

perform well on both T k and the previous k−1214

tasks, as the model will be evaluated on D̂k
test =215

∪ki=1D
i
test consisting of all known relations after216

learning T k, i.e., R̂k = ∪ki=1R
i. This requires the217

model to overcome the catastrophic forgetting of218

previous knowledge and to learn new knowledge219

well with very few labeled data.220

To overcome the catastrophic forgetting problem,221

a memory M =
{
M1,M2, ...

}
, which stores222

some key samples of previous tasks is maintained223

during the learning. When the model is learning224

T k, it has access to the data saved in memory225

M1, ...,Mk−1. As there is no limit on the number226

of tasks, the size of memoryMk is constrained to227

be small. Therefore, the model has to select only228

key samples from the training set Dk
train to save229

them inMk. In our CFRL setting, only one sample230

per relation is allowed to be saved in the memory.231

Figure 1: Our framework for CFRL. The Data Augmentation
component is used only for few-shot tasks (k > 1).

3.2 Overall Framework 232

Our framework for CFRL is shown in Fig. 1 and 233

Alg. 1 describes the overall training process (see 234

Appendix A.2 for a block diagram). At time step 235

k, given the training data Dk
train for the task T k, 236

depending on whether the task is a few-shot or 237

not, the process has four or three working modules, 238

respectively. The general learning process (§3.3) 239

has three steps that apply to all tasks. If the task 240

is a few-shot task (k > 1), we apply an additional 241

step to create an augmented training set D̃k
train. For 242

the initial task (k = 1), we have D̃k
train = Dk

train. 243

For any task T k, we use a siamese model to en- 244

code every new relation ri ∈ Rk into ri ∈ IRd 245

as well as the sentences, and train the model on 246

D̃k
train to acquire relation information of the new 247

data (§3.3.2). To overcome forgetting, we select the 248

most informative sample for each relation ri ∈ Rk 249

from Dk
train and update the memory M̂k (§3.3.3). 250

Finally, we combine D̃k
train and M̂k as the train- 251

ing data for learning new relational patterns and 252

remembering previous knowledge (§3.3.4). We 253

also simultaneously update the representation of all 254

relations in R̂k, which involves making a forward 255

pass through the current model. The learning and 256

updating are done iteratively for convergence. 257

For data augmentation in the few-shot tasks 258

(§3.4), we select reliable samples with high rela- 259

tional similarity score from an unlabelled corpus 260

C using a fine-tuned BERT (Devlin et al., 2019), 261

which serves as the relational similarity model Sπ. 262

In the interests of coherence, we first present the 263

general learning method followed by the augmen- 264

tation process for few-shot learning. 265

3.3 General Learning Process 266

We first introduce the encoder network as it is the 267

basic component of the whole framework. 268

3.3.1 The Encoder Network 269

The siamese encoder (fθ) aims at extracting generic 270

and relation related features from the input. The 271
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Algorithm 1 Training process at time step k

Require: the training set Dk
train and the relation set Rk of

the current task T k, the current memory M̂k−1 and the
known relation set R̂k−1, the model θ, the similarity
model Sπ , and the unlabeled text corpus C.

1: if k == 1 then . initial task
2: D̃k

train = Dk
train

3: else . few-shot task
4: SELECT similar samples from C using Sπ for every

sample in Dk
train and store them in A

5: D̃k
train = A ∪Dk

train
6: end if
7: INITIALIZE ri for every relation ri ∈ Rk
8: for i = 1, . . . , iter1 do
9: UPDATE θ with Lnew on D̃k

train . Train on new task
10: end for
11: SELECT key samples from Dk

train for every relation ri ∈
Rk to save inMk

12: R̂k = R̂k−1 ∪Rk
13: M̂k = M̂k−1 ∪Mk . Update memory
14: H̃k = D̃k

train ∪ M̂k . Combine two data sources
15: for i = 1, . . . , iter2 do
16: UPDATE θ with Lmem on H̃k

17: UPDATE ri for every relation ri ∈ R̂k
18: end for

input can be a labeled sentence or the name of a272

relation. We adopt two kinds of encoders:273

Bi-LSTM To have a fair comparison with previ-274

ous work, we use the same architecture as Han et al.275

(2020). It takes GloVe embeddings (Pennington276

et al., 2014) of the words in a given input and pro-277

duces a vector representation through a Bi-LSTM278

(Hochreiter and Schmidhuber, 1997).279

BERT We adopt BERTbase which has 12 layers280

and 110M parameters. As the new tasks are few-281

shot, we only fine-tune the 12-th encoding layer282

and the extra linear layer. We include special tokens283

around the entities (‘#’ for the head entity and ‘@’284

for the tail entity) in a given labeled sentence to285

improve the encoder’s understanding of relation286

information. We use the [CLS] token features as287

the representation of the input sequence.288

3.3.2 Learning with New Data289

At time step k, to have a good understanding of the290

new relations, we fine-tune the model on the ex-291

panded dataset D̃k
train. The model fθ first encodes292

the name of each new relation rj ∈ Rk into its293

representation rj ∈ IRd by making a forward pass.294

Then, we optimize the parameters (θ) by minimiz-295

ing a loss Lnew that consists of a cross entropy loss,296

a multi-margin loss and a pairwise margin loss.297

The cross entropy loss Lce is used for relation298

classification as follows. 299

−
∑

(xi,yi)∈D̃k
train

|R̂k|∑
j=1

δyi,rj× log
exp(g(fθ(xi), rj))∑|R̂k|
l=1 exp(g(fθ(xi), rl))

(1) 300

where R̂k is the set of all known relations at step 301

k, g(, ) is a function used to measure similarity 302

between two vectors (e.g., cosine similarity or L2 303

distance), and δa,b is the Kronecker delta function– 304

δa,b = 1 if a equals b, otherwise δa,b = 0. 305

In inference, we choose the relation label that 306

has the highest similarity with the input sentence 307

(Eq. 8). To ensure that an example has the highest 308

similarity with the true relation, we additionally 309

design two margin-based losses, which increase 310

the score between an example and the true label 311

while decreasing the scores for the wrong labels. 312

The first one is a multi-margin loss defined as: 313

Lmm =
∑

(xi,yi)∈D̃k
train

|R̂k|∑
j=1,j 6=ti

max
(
0,

m1 − g(fθ(xi), rti) + g(fθ(xi), rj)
) (2) 314

where ti is the correct relation index in R̂k satis- 315

fying rti = yi and m1 is a margin value. The 316

Lmm loss attempts to ensure intra-class compact- 317

ness while increasing inter-class distances. The 318

second one is a pairwise margin loss Lpm: 319∑
(xi,yi)∈D̃k

train

max
(
0,m2 − g(fθ(xi), rti) + g(fθ(xi), rsi)

)
(3) 320

where m2 is the margin for Lpm and si = 321

argmaxs g(fθ(xi), rs) s.t. s 6= ti, the closest 322

wrong label. The Lpm loss penalizes the cases 323

where the similarity score of the closest wrong 324

label is higher than the score of the correct label 325

(Yang et al., 2018). Both Lmm and Lpm improve 326

the discriminative ability of the model (§4.4). 327

The total loss for learning on T k is defined as: 328

Lnew = λceLce + λmmLmm + λpmLpm (4) 329

where λce, λmm and λpm are the relative weights of 330

the component losses, respectively. 331

3.3.3 Selecting Samples for Memory 332

After training the model fθ with Eq. (4), we use it 333

to select one sample per new relation. Specifically, 334

for every new relation rj ∈ Rk, we obtain the 335

centroid feature cj by averaging the embeddings 336

of all samples labeled as rj in Dk
train as follows. 337

cj =
1

|Dk
rj |

∑
(xi,yi)∈Dkrj

fθ(xi) (5) 338
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where Dk
rj = {(xi, yi)|(xi, yi) ∈ D

k
train, yi = rj}.339

Then we select the instance closest to cj from Dk
rj340

as the most informative sample and save it in mem-341

oryMk. Note that the selection is done fromDk
train,342

not from the expanded set D̃k
train.343

3.3.4 Alleviating Forgetting through Memory344

As the learning of new relational patterns may345

cause catastrophic forgetting of previous knowl-346

edge (see baselines in §4), our model needs to347

learn from the memory data to alleviate forget-348

ting. We combine the expanded set D̃k
train and the349

whole memory data M̂k = ∪kj=1Mj into H̃k to350

allow the model to learn new relational knowledge351

and consolidate previous knowledge. However, the352

memory data is limited containing only one sample353

per relation. To learn effectively from such limited354

data, we design a novel method to generate a hard355

negative sample set Pi for every sample in M̂k.356

The negative samples are generated on the fly.357

After sampling a mini-batch Bt from H̃k, we con-358

sider all memory data inBt asMBt . For every sam-359

ple (x̂i, ŷi) in MBt , we replace its head entity ehi or360

tail entity eti with the corresponding entity of a ran-361

domly selected sample in the same batch Bt to get362

the hard negative sample set Pi = {(x̂Pij , ŷi)}
|Pi|
j=1.363

Then (x̂i, ŷi) and Pi are used to calculate a margin-364

based contrastive loss Lcon as follows.365

Lcon =
∑

(x̂i,ŷi)∈MBt

max
(
0,m3 − g(fθ(x̂i), rt̂i)+

∑
(x̂

Pi
j ,ŷi)∈Pi

g(fθ(x̂
Pi
j ), rt̂i)

) (6)366

where t̂i is the relation index satisfying rt̂i = ŷi367

and m3 is the margin value for Lcon. This loss368

forces the model to distinguish the valid relations369

from the hard negatives so that the model learns370

more precise and fine-grained relational knowledge.371

In addition, we also use the three losses Lce and372

Lmm and Lpm defined in §3.3.2 to update θ on Bt.373

The total loss on the memory data is:374

Lmem = λceLce + λmmLmm + λpmLpm + λconLcon (7)375

where λce, λmm, λpm and λcon are the relative376

weights of the corresponding losses.377

Updating Relation Embeddings After training378

the model on H̃k for few steps, we use the mem-379

ory M̂k to update the relation embedding ri of all380

known relations. For a relation ri ∈ R̂k, we aver-381

age the embeddings (obtained by making a forward382

pass through fθ) of the relation name and memory 383

data to obtain its updated representation ri. The 384

training of θ and updating of ri is done iteratively 385

to grasp new relational patterns while alleviating 386

the catastrophic forgetting of previous knowledge. 387

3.3.5 Inference 388

For a given input xi in D̂k
test, we calculate the simi- 389

larity between xi and all known relations, and pick 390

the one with the highest similarity score: 391

y∗i = argmax
r∈R̂k

g(fθ(xi), r) (8) 392

3.4 Data Augmentation for Few-shot Tasks 393

For each few-shot task T k, we aim to get more data 394

by selecting reliable samples from an unlabeled cor- 395

pus C with tagged entities before the general learn- 396

ing process (§3.3) begins. We achieve this using a 397

relational similarity model Sπ and sentences from 398

WikiPedia as C. The model Sπ (described later) 399

takes a sentence as input and produces a normal- 400

ized vector representation. The cosine similarity 401

between two vectors is used to measure the rela- 402

tional similarity between the two corresponding 403

sentences. A higher similarity means the two sen- 404

tences are more likely to have the same relation 405

label. We propose two novel selection methods, 406

which are complementary to each other. 407

(a) Augmentation via Entity Matching For 408

each instance (xi, yi) in Dk
train, we extract its entity 409

pair (ehi , e
t
i) with ehi being the head entity and eti be- 410

ing the tail entity. As sentences with the same entity 411

pair are more likely to express the same relation, we 412

first collect a candidate set Q = {x̃j}|Q|j=1 from C, 413

where x̃j shares the same entity pair (ehi , e
t
i) with 414

xi. If Q is a non-empty set, we pair all x̃j in Q 415

with xi, and denote each pair as 〈x̃j , xi〉. Then we 416

use Sπ to obtain a similarity score sj for 〈x̃j , xi〉. 417

After getting scores for all pairs, we pick the in- 418

stances x̃j with similarity score sj higher than a 419

predefined threshold α as new samples and label 420

them with relation yi. The selected instances are 421

then augmented to Dk
train as additional data. 422

(b) Augmentation via Similarity Search The 423

hard entity matching could be too restrictive at 424

times. For example, even though the sentences 425

“Harry Potter is written by Joanne Rowling” and 426

“Charles Dickens is the author of A Tale of Two 427

Cities” share the same relation author, hard match- 428

ing fails to find any relevance. Therefore, in cases 429
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when entity matching returns an empty Q, we re-430

sort to similarity search using Faiss (Johnson et al.,431

2017). Given a query vector qi, it can efficiently432

search for vectors {vj}Kj=1 with the top-K highest433

similarity scores in a large vector set V . In our case,434

qi is the representation of xi and V contains the435

representations of the sentences in C. We use Sπ436

to obtain these representations; the difference is437

that V is pre-computed while qi is obtained dur-438

ing training. We labeled the top-K most similar439

instances with yi and augment them to Dk
train.440

Similarity Model To train Sπ, inspired by441

Soares et al. (2019), we adopt a contrastive learn-442

ing method to fine-tune a BERTbase model on C,443

whose sentences are already tagged with entities.444

Based on the observation that sentences with the445

same entity pair are more likely to encode the same446

relation, we use sentence pairs containing the same447

entities in C as positive samples. For negatives,448

instead of using all sentence pairs containing dif-449

ferent entities, we select pairs sharing only one450

entity as hard negatives (i.e., pair (xi, xj) where451

ehi = ehj and eti 6= etj or eti = etj and ehi 6= ehj ).452

We randomly sample the same number of negative453

samples as the positive ones to balance the training.454

For an input pair (xi, xj), we compute the simi-455

larity score based on the following formula.456

σ(xi, xj) =
1

1 + exp(−Sπ(xi)TSπ(xj))
(9)457

where Sπ(x) is the normalized representation of x458

obtained from the final layer of BERT. Then we459

optimize the parameters π of Sπ by minimizing a460

binary cross entropy loss Lpretrain as follows.461

−
∑

(xi,xj)∈Cp

log σ(xi, xj)−
∑

(x′i,x
′
j)∈Cn

log(1− σ(x′i, x′j)) (10)462

where Cp is a positive batch and Cn is a negative463

batch. This objective tries to ensure that sentence464

pairs with the same entity pairs have higher cosine465

similarity than those with different entities.466

4 Experiment467

We define the benchmark and evaluation metric for468

CFRL before presenting our experimental results.469

4.1 Benchmark and Evaluation Metric470

Benchmark As the benchmark for CFRL needs471

to have sufficient relations as well as data and be472

suitable for few-shot learning, we create the CFRL473

benchmark based on FewRel (Han et al., 2018b).474

FewRel is a large-scale dataset for few-shot RE, 475

which contains 80 relations with hundreds of sam- 476

ples per relation. We randomly split the 80 relations 477

into 8 tasks, where each task contains 10 relations 478

(10-way). To have enough data for the first task 479

T 1, we sample 100 samples per relation. All the 480

subsequent tasks T 2, ..., T 8 are few-shot; for each 481

relation, we conduct 2-shot, 5-shot and 10-shot ex- 482

periments to verify the effectiveness of our method. 483

In addition, to demonstrate the generalizability 484

of our method, we also create a CFRL benchmark 485

based on the TACRED dataset (Zhang et al., 2017) 486

which contains only 42 relations. We filter out the 487

special relation “n/a” (not available) and split the 488

remaining 41 relations into 8 tasks. Except for the 489

first task that contains 6 relations, all other tasks 490

have 5 relations (5-way). Similar to FewRel, we 491

randomly sample 100 examples per relation in T 1 492

and conduct 5-shot and 10-shot experiments. 493

Metric At time step k, we evaluate the model 494

performance through relation classification accu- 495

racy on the test sets D̂k
test = ∪ki=1D

i
test of all seen 496

tasks {T i}ki=1. This metric reflects whether the 497

model can alleviate catastrophic forgetting while 498

acquiring novel knowledge well with very few data. 499

Since the model performance might be influenced 500

by task sequences and few-shot training samples, 501

we run every experiment 6 times with different 502

random seeds and report the average accuracy. 503

4.2 Model Settings & Baselines 504

We follow the settings in (Han et al., 2020) for the 505

Bi-LSTM encoder to have a fair comparison. For 506

data augmentation, we set the threshold α = 0.65 507

and the number of samples selected by Faiss (K) 508

as 1. We adopt 0.2, 0.2 and 0.01 for the three mar- 509

gin values m1,m2 and m3, respectively. The loss 510

weights λce, λmm, λpm and λcon are set to 1.0, 1.0, 511

1.0 and 0.01, respectively. In Alg. 1, we set 1 for 512

iter1 and 2 for iter2. Hyperparameter search was 513

done on the validation sets (Appendix A.3). We 514

compare our approach with the following baselines: 515

• SeqRun fine-tunes the model only on the train- 516

ing data of the new tasks without using any mem- 517

ory data. It may face serious catastrophic forget- 518

ting and serves as a lower bound. 519

• Joint Training stores all previous samples in the 520

memory and trains the model on all data for each 521

new task. It serves as an upper bound in CRL. 522

• EMR (Wang et al., 2019) maintains a memory 523

for storing selected samples from previous tasks. 524
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Method Task index

1 2 3 4 5 6 7 8

SeqRun 92.78 52.11 30.08 24.33 19.83 16.90 14.36 12.34
Joint Training 92.78 76.29 69.39 64.75 60.45 57.64 52.80 50.03

EMR 92.78 69.14 56.24 50.03 46.50 43.21 39.88 37.51
EMAR 85.20 62.02 52.45 48.95 46.77 44.33 40.75 39.04
IDLVQ-C 92.23 69.15 57.42 51.66 49.31 46.24 42.25 40.56

ERDA 92.57 79.17 70.43 65.01 61.06 57.54 54.88 53.23
ERDA(BERT) 94.22 87.72 82.66 78.29 73.99 69.45 68.08 65.30

Table 1: Accuracy (%) of different methods at every
time step on FewRel benchmark for 10-way 5-shot CFRL.
ERDA represents our method with a Bi-LSTM encoder and
ERDA(BERT) represents our method with a BERT encoder.

Figure 2: Comparison of the results at each time step on the
FewRel benchmark for 10-way 2-shot and 10-shot settings.

When training on a novel task, EMR combines525

the new training data and memory data.526

• EMAR (Han et al., 2020) is the state-of-the-art527

on CRL, which adopts memory activation and re-528

consolidation to alleviate catastrophic forgetting.529

• IDLVQ-C (Chen and Lee, 2021) introduces530

quantized reference vectors to represent previous531

knowledge and mitigates catastrophic forgetting532

by imposing constraints on the quantized vectors533

and embedded space. It was originally proposed534

for image classification with state-of-the-art re-535

sults in incremental few-shot learning.536

4.3 Main Results537

FewRel Benchmark We report our results on 10-538

way 5-shot in Table 1, while Fig. 2 shows the re-539

sults on the 10-way 2-shot and 10-way 10-shot540

settings. From the results, we can observe that:541

• Our proposed ERDA outperforms previous base-542

lines in all CFRL settings, which demonstrates the543

superiority of our method. Simply fine-tuning the544

model with new few-shot examples leads to rapid545

drops in accuracy due to severe over-fitting and546

catastrophic forgetting. Although EMR and EMAR547

adopt a memory module to alleviate forgetting,548

their performance still decreases quickly as they549

require plenty of training data for learning a new550

task. Compared with EMR and EMAR, IDLVQ-C551

is slightly better as it introduces quantized vectors552

Figure 3: t-SNE visualization of IDLVQ-C and ERDA at
two stages. Colors represent different relation classes with
numbers being the relation indices. The initial embeddings
of four base classes after learning the first task are shown
in the upper row. As the data for the first task is sufficient,
both methods can obtain separable embedding space. The
lower row shows the embeddings of four base classes and two
novel classes (Id 5 and 9) after learning a new few-shot task.
Compared with IDLVQ-C, ERDA shows better intra-class
compactness (circled regions) and larger inter-class distances
(see the distances between 5 and 9, and 9 and 65).

that can better represent the embedding space of 553

few-shot tasks. However, IDLVQ-C does not nec- 554

essarily push the samples from different relations 555

to be far apart in the embedding space and the up- 556

dating method for the reference vectors may not be 557

optimal. ERDA outperforms IDLVQ-C by a large 558

margin through embedding space regularization 559

and self-supervised data augmentation. To verify 560

this, we show the embedding space of IDLVQ- 561

C and ERDA using t-SNE (Van der Maaten and 562

Hinton, 2008). We randomly choose four classes 563

from the first task of FewRel and two classes from 564

the new task, and visualize the test data of these 565

classes in Fig. 3. As can be seen, the embedding 566

space obtained by ERDA shows better intra-class 567

compactness and larger inter-class distances. 568

• Unlike CRL, joint training does not always serve 569

as an upper bound in CFRL due to the extremely 570

imbalanced data distribution. Benefiting from the 571

ability to learn feature distribution with very few 572

data, both ERDA and IDLVQ-C perform better 573

than joint training in the 2-shot setting. However, 574

as the number of few-shot samples increases, the 575

performance of IDLVQ-C falls far behind joint 576

training, while ERDA still performs better. In the 577

5-shot setting, ERDA could achieve better results 578

than joint training which verifies the effectiveness 579

of self-supervised data augmentation (more on this 580

in §4.4). Although ERDA performs worse than 581

joint training in the 10-shot setting, its results are 582
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Figure 4: Comparison results at every time step on TA-
CRED benchmark for 5-way 5-shot and 10-shot settings.

still much better than other baselines.583

• After learning all few-shot tasks, ERDA outper-584

forms IDLVQ-C by 9.69%, 12.67% and 11.49% in585

the 2-shot, 5-shot and 10-shot settings, respectively.586

Moreover, the relative gain of ERDA keeps grow-587

ing with the increasing number of new few-shot588

tasks. This demonstrates the ability of our method589

in handling a longer sequence of CFRL tasks. In590

addition, compared with ERDA, ERDA(BERT)591

achieves much better performance. At the last592

time step, ERDA(BERT) outperforms ERDA by593

12.07%, which demonstrates the power of using594

pre-trained language models for CFRL.595

TACRED Benchmark Fig. 4 shows the 5-way596

5-shot and 5-way 10-shot results on TACRED. We597

can see that here also ERDA outperforms all other598

methods by a large margin which verifies the strong599

generalization ability of our proposed method.600

4.4 Ablation Study601

We conduct several ablations to analyze the contri-602

bution of different components of ERDA on the603

FewRel 10-way 5-shot setting. In particular, we604

investigate six other variants of ERDA by remov-605

ing one component at a time: (a) the multi-margin606

loss Lmm, (b) the pairwise margin loss Lpm, (c) the607

margin-based contrastive loss Lcon, (d) the whole608

2-stage data augmentation module, (e) the entity609

matching method of augmentation, and (f) the sim-610

ilarity search method of augmentation.611

From the results in Table 2, we can observe that612

all components improve the performance of our613

model. Specifically, Lmm yields about 1.51% per-614

formance boost as it brings samples of the same615

relation closer to each other while enforcing larger616

distances among different relation distributions.617

The Lpm improves the accuracy by 3.18%, which618

demonstrates the effect of contrasting with the near-619

est wrong label. The adoption of Lcon leads to620

1.28% improvement, which shows that generating621

hard negative samples for memory data can help to622

better remember previous relational knowledge.623

Method Task index

1 2 3 4 5 6 7 8

ERDA 92.57 79.17 70.43 65.01 61.06 57.54 54.88 53.23
w.o. Lmm 91.67 78.38 70.21 63.77 60.23 56.32 53.45 51.72
w.o. Lpm 91.37 75.80 67.11 61.13 57.14 54.04 51.59 50.05
w.o. Lcon 91.63 79.05 69.28 63.86 59.66 56.68 54.12 51.95
w.o. DA 92.57 77.84 69.76 63.74 58.31 56.12 53.21 51.51
w.o. EM 92.57 78.33 70.17 64.18 59.63 57.14 54.18 52.39
w.o. SS 92.57 78.56 69.94 63.98 59.85 56.92 53.75 52.27

Table 2: Ablations on FewRel benchmark (10-way 5-shot).

The data augmentation module improves the per- 624

formance by 1.72% as it can extract informative 625

samples from unlabeled text which provide more re- 626

lational knowledge for few-shot tasks. The results 627

of variants without entity matching or similarity 628

search verify that the two data augmentation meth- 629

ods are generally complementary to each other. 630

One could argue that the data augmentation mod- 631

ule increases the complexity of ERDA compared to 632

other models. However, astute readers can find that 633

even without data augmentation, ERDA outper- 634

forms IDLVQ-C significantly for all tasks (compare 635

‘ERDA w.o. DA’ with the baselines in Table 1). 636

ERDA’s Performance under CRL Although 637

ERDA is designed for CFRL, we also evaluate the 638

embedding space regularization (‘ERDA w.o. DA’) 639

on the CRL setting. We sample 100 examples per 640

relation for every task in FewRel and compare our 641

method with the state-of-the-art method EMAR. 642

The results are shown in Appendix A.4. We can 643

see that ERDA outperforms EMAR in all tasks by 644

1.01 - 5.90% proving that the embedding regular- 645

ization can be a general method for CRL. 646

5 Conclusion 647

We have introduced continual few-shot relation 648

learning (CFRL), a challenging yet practical prob- 649

lem where the model needs to learn new relational 650

knowledge with very few labeled data continually. 651

We have proposed a novel method, named ERDA, 652

to alleviate the over-fitting and catastrophic forget- 653

ting problems which are the core issues in CFRL. 654

ERDA imposes relational constraints in the em- 655

bedding space with innovative losses and adds ex- 656

tra informative data for few-shot tasks in a self- 657

supervised manner to better grasp novel relational 658

patterns and remember previous knowledge. Ex- 659

tensive experimental results and analysis show that 660

ERDA significantly outperforms previous methods 661

in all CFRL settings investigated in this work. In 662

the future, we would like to investigate ways to 663

combine meta-learning with CFRL. 664
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A Appendix1019

A.1 Difference between CRL and CFRL1020

Figure 5: Except for the first task which has enough training
data, the subsequent new tasks are all few-shot in CFRL. In
contrast, CRL assumes enough training data for every task.

A.2 Block Diagram of ERDA Training1021

Figure 6: The block diagram of ERDA’s training at time
step k.

A.3 Hyperparameter Search 1022

We follow EMAR (Han et al., 2020) and use a grid 1023

search to select the hyperparameters. Specifically, 1024

the search spaces are: 1025

• Search range for α is [0.3, 0.8] with a step size 1026

of 0.05. 1027

• Search range for K is [1, 3] with a step size of 1. 1028

• Search range for m1 and m2 is [0.1, 0.3] with a 1029

step size of 0.1. 1030

• Search range for m3 is [0.01, 0.03] with a step 1031

size of 0.01. 1032

• Search range for iter2 in Alg. 1 is [1, 3] with a 1033

step size of 1. 1034

A.4 Relation Extraction Results for ERDA 1035

and EMAR in the CRL Setting 1036

Figure 7: Relation extraction results for ERDA (our) and
EMAR (Han et al., 2020) on the FewRel benchmark under the
CRL setting. We randomly split the 80 relations into 8 tasks,
where each task contains 10 relations. And we sample 100
examples per relation. From this figure, we can observe that
ERDA outperforms EMAR in all CRL tasks.
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