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Abstract
Estimating causal effects is crucial in domains like
healthcare, economics, and education. Despite
advances in machine learning (ML) for estimat-
ing conditional average treatment effects (CATE),
the practical adoption of these methods remains
limited, due to the complexities of implement-
ing, tuning, and validating them. To address these
challenges, we formalize the search for an optimal
ML pipeline for CATE estimation as a counter-
factual Combined Algorithm Selection and Hy-
perparameter (CASH) optimization. We intro-
duce AutoCATE, the first end-to-end, automated
solution for CATE estimation. Unlike prior ap-
proaches that address only parts of this problem,
AutoCATE integrates evaluation, estimation, and
ensembling in a unified framework. AutoCATE
enables comprehensive comparisons of different
protocols, yielding novel insights into CATE es-
timation and a final configuration that outper-
forms commonly used strategies. To facilitate
broad adoption and further research, we release
AutoCATE as an open-source software package.

1. Introduction
Accurately estimating causal effects is crucial in domains
like healthcare, education, and economics. Despite advances
in machine learning (ML) for estimating the conditional av-
erage treatment effect (CATE), real-world adoption remains
limited due to the complexity of developing ML pipelines for
CATE estimation. Methods often involve numerous hyperpa-
rameters, and their performance varies significantly across
data sets and applications. Moreover, validating counterfac-
tual predictions and tuning pipelines is highly challenging,
and the performance of evaluation criteria also varies with
the data generating process (Curth & van der Schaar, 2023).
For practitioners unfamiliar with ML, such as clinicians or
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marketers, these challenges may outweigh potential benefits,
hindering the practical use of these techniques. To address
this, we advocate for automated, end-to-end solutions for
learning ML pipelines for CATE estimation.

The challenge of automated CATE estimation. Despite
significant progress in automated ML (AutoML) (see He
et al., 2021), existing solutions do not address the unique
challenges of CATE estimation. A key problem is the lack
of ground truth: the treatment effect is the difference in out-
comes with and without treatment, but only one outcome is
observed per instance. Which outcome is observed depends
on confounding variables (e.g., older patients more often
receive treatment), leading to covariate shift (Shalit et al.,
2017). Finally, CATE estimation pipelines are highly com-
plex: metalearners combine multiple baselearners, and often
include both classification and regression models. Risk
measures require predictions themselves and, thus, tuning
ML pipelines. These challenges complicate training and
validation of ML pipelines for CATE estimation.

Contributions. To address these challenges, we propose
AutoCATE, the first automated, end-to-end framework for
constructing and validating an ML pipeline for CATE esti-
mation. In doing so, we make the following contributions:
• COUNTERFACTUAL CASH—We formalize the search
for an ML pipeline for CATE estimation as a counterfac-
tual Combined Algorithm Selection and Hyperparameter
(CASH) optimization. Our solution, AutoCATE, automati-
cally searches across preprocessors, metalearners, evalua-
tors, baselearners, and their hyperparameters. The process
is organized into three stages–evaluation, estimation, and
ensembling–each including several design choices.
• END-TO-END AUTOMATION—We develop automated
protocols that perform well across data sets and applica-
tions. Our end-to-end approach includes often-overlooked
aspects of CATE estimation, such as preprocessing, fea-
ture selection, and ensembling. Our perspective uncovers
novel insights (see Figure 14), questions (e.g., the trade-off
to use data for training or validation) and solutions (e.g.,
multi-objective optimization across evaluation criteria).
• SOFTWARE PACKAGE—We release AutoCATE as an
open-source tool to support future research on all aspects
of CATE estimation. For practitioners unfamiliar with ML,
AutoCATE makes automated CATE estimation with ad-
vanced ML techniques accessible in a few lines of code.
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2. Related Work
Our work is related to two areas in ML research: (1) Au-
toML, and (2) CATE estimation and model validation.

2.1. Automated Machine Learning (AutoML)

AutoML aims to efficiently and automatically construct per-
formant ML pipelines. This involves a series of design
choices regarding preprocessing, feature transformation and
selection, ML algorithms, and hyperparameter tuning (Kar-
maker et al., 2021). As the optimal choices depend on
the data and task, AutoML is essentially a search problem.
Therefore, efficient search methods have been developed
(Bergstra et al., 2011; Snoek et al., 2012; Alaa & van der
Schaar, 2018) and meta-learning is used to incorporate in-
formation across settings (Feurer et al., 2015). A key as-
pect of AutoML is accessibility through low-code tools for
practitioners unfamiliar with ML (LeDell & Poirier, 2020;
Erickson et al., 2020; Jarrett et al., 2021; Wang et al., 2021).

AutoML solutions exist for a wide range of tasks, including
reinforcement learning (Runge et al., 2019), time series fore-
casting (Jarrett et al., 2021), semantic segmentation (Chen
et al., 2018), and machine translation (So et al., 2019). For
more comprehensive overviews, see (Elsken et al., 2019)
and (He et al., 2021). However, to the best of our knowledge,
AutoML has not yet been applied to CATE estimation. As
discussed, estimating treatment effects presents unique chal-
lenges, such as the absence of a ground truth, covariate shift
due to confounding, and the need for intermediary models in
metalearners and risk measures. These complexities render
standard AutoML approaches ill-suited for CATE estima-
tion and illustrate the need for specialized approaches.

Research gap—No existing AutoML solutions address
the unique and complex challenges of CATE estimation.

2.2. Treatment Effect Estimation and Model Validation

Estimation. Various ML methods have been proposed
for CATE estimation. Metalearners are general strategies
for using supervised learning algorithms for CATE esti-
mation (Künzel et al., 2019). Additionally, various ML
algorithms have been adapted for CATE estimation, such as
Gaussian processes (Alaa & van der Schaar, 2017), neural
networks (Shalit et al., 2017; Yoon et al., 2018), decision
trees (Rzepakowski & Jaroszewicz, 2012), or random forests
(Wager & Athey, 2018; Oprescu et al., 2019). Other com-
ponents of the ML pipeline also present complexities when
estimating treatment effects, such as missing value imputa-
tion (Berrevoets et al., 2023), feature selection (Zhao et al.,
2022), and ensemble selection (Mahajan et al., 2023).

Building an ML pipeline for CATE estimation presents sig-
nificant challenges, related to the absence of ground truth

and the many design choices involved. Not only will no ML
algorithm be optimal in all possible settings, there is also no
globally optimal metalearner, as performance similarly de-
pends on the (unknown) data generating process and sample
size (Curth & van der Schaar, 2021). Finally, tuning is more
involved: for example, a DR-Learner combines four mod-
els (to estimate the propensity, the outcome per treatment
group, and the final treatment effect)–each of which can be
a different baselearner with separate hyperparameters.

Model validation. As the CATE is unobserved, evaluation
criteria have been proposed to validate CATE estimators. A
common approach is the error in predicting the observed
outcome µ (the µ-risk). However, this criterion has several
limitations (Curth & van der Schaar, 2023; Doutreligne &
Varoquaux, 2023): it does not account for confounding, may
not accurately predict CATE error1, and is not applicable
to metalearners that directly predict the CATE. To mitigate
the first issue, an inverse propensity weighted variant µIPW-
risk, can be considered. Other evaluation criteria address
all issues by constructing labels based on plug-in estimates
(e.g., S- or T -risk) or metalearner pseudo-outcomes (e.g.,
R- and DR-risk), see Appendix B.2 for a detailed overview.

There is no consensus on the optimal validation criterion.
Schuler et al. (2018) and Doutreligne & Varoquaux (2023)
advocate for the R-risk, while Mahajan et al. (2023) favor
the T - and DR-risk. Conversely, Curth & van der Schaar
(2023) show that a risk measure’s effectiveness varies with
different factors, such as the metalearner and data generating
process, with no single criterion being universally optimal.
Additionally, Doutreligne & Varoquaux (2023) highlight the
importance of using flexible estimators to construct pseudo-
labels, with (Mahajan et al., 2023) advocating the use of
AutoML. The lack of consensus and design choices involved
stress the need for end-to-end, automated procedures.

Research gap—Despite significant progress in using ML
for CATE estimation and model validation, key questions
remain unresolved: when to use particular methods, how
to tune them effectively, and how to optimize critical but
overlooked aspects like preprocessing or ensembling.

3. Problem Formulation
Notation and assumptions. We represent an instance by
a tuple (x, t, y) with covariates X ∈ X ⊂Rd, a treatment
T ∈T ={0, 1}, and an outcome Y ∈Y ⊂R. The potential
outcome Y associated with a treatment t is denoted as Y (t).
We aim to estimate the conditional average treatment effect
(CATE): τ = E[Y (1)−Y (0)|X]. CATE estimation with
observational data requires standard assumptions (see Ap-

1For example, if both potential outcomes are overestimated by
the same amount, the µ-risk would indicate a poor model quality
while the resulting CATE estimates would still be accurate.
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Figure 1: AutoCATE builds a pipeline in three stages. (1) Evaluation–learning the appropriate risk measure(s), (2)
Estimation–tuning a CATE estimation pipeline, and (3) Ensembling–selecting a final model or constructing an ensemble. We
build ML pipelines for evaluation and estimation based on a collection of preprocessing algorithms and ML baselearners.

pendix A.2). More background is provided in Appendix A.

Goals and challenges. Given observational data Dtrain, we
aim to find the optimal ML pipeline for CATE estimation.
This is a counterfactual Combined Algorithm Selection and
Hyperparameter (CASH) optimization, involving a search
over pipelines ah with algorithms a∈A and hyperparam-
eters h ∈ Ha to minimize the error L on test data Dtest:

argmin
a,h

L(ah|Dtest). (1)

An algorithm a can be an ML method tailored for CATE esti-
mation or a metalearner with one or more baselearners. The
counterfactual CASH problem involves unique challenges.
A pipeline’s quality of fit on the train data L(ah|Dtrain) is
unobserved, as there is no ground truth CATE. In addition,
there is covariate shift between the observational training
data and test data due to confounding. Both points present
challenges for both building and validating an ML pipeline.

4. AutoCATE: End-To-End, Automated CATE
Estimation

AutoCATE automatically finds the optimal ML pipeline
in three stages: evaluation, estimation, and ensembling.
(1) EVALUATION: In the first stage, we construct a proxy
risk for L based on a risk measure (e.g., R-risk) and evalua-
tion metric (e.g., MSE). To accurately estimate this risk on
the validation data, we perform an automated search over
preprocessors, ML algorithms, and their hyperparameters.

(2) ESTIMATION: The second stage searches over combina-
tions of preprocessors, metalearners, baselearners, and their
hyperparameters to obtain pipelines for CATE estimation.

(3) ENSEMBLING: Finally, we use the first stage’s proxy risk
to select and combine estimation pipelines from the second
stage. The result can be a single pipeline or an ensemble.

Figure 1 shows a high-level overview of AutoCATE’s
functionalities per stage and the underlying building blocks.

4.1. Stage 1: Evaluation—Designing a Proxy Risk and
Evaluation Protocol

The counterfactual CASH problem requires minimizing
L(ah|Dtest), which involves two challenges: the lack of
ground truth τ and the presence of covariate shift due to
confounding. To tackle these, we measure risk based on
validation data’s predicted pseudo-labels–i.e., proxies for τ .

Risk measures. AutoCATE includes different possible
risk measures, described in Appendix B.2. We include
pseudo-labels used in metalearners (DR-, R-, Z-, U -, and
F ), plug-in risks (T and 1NN ), and a risk approximation
with influence functions (IF ). We exclude the µ- and µIPW-
risks as they do not apply to all metalearners, and the S-risk
due to poor results in prior work (e.g., Mahajan et al., 2023).
As constructing these risk measures requires estimating
nuisance parameters, we search over preprocessing and ML
algorithms to find good-performing ML pipelines.

There is no ground truth and different measures may be
preferable depending on the (unknown) data generating pro-
cess. To make our evaluation more robust, we allow for com-
bining different measures. Similarly, as pseudo-outcomes
are predictions, there is no “true” version, enabling us to
construct multiple version of a single risk (e.g., two R-risks).
Using multiple risk measures results in a multi-objective
search problem. To account for the varying scales of differ-
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ent risks, we normalize them by comparing each model’s
performance to an average treatment effect (ATE) baseline.

Metrics and implementation. Different metrics can com-
pare the pseudo-labels and CATE predictions to evaluate
their quality. We include general metrics of predictive accu-
racy, like the mean squared error (MSE) or mean absolute
percentage error (MAPE), and metrics related to a down-
stream application, like the Area Under the Qini Curve
(AUQC) for ranking effects (Vanderschueren et al., 2024).
The R-risk requires a metric that accommodates weights.
Finally, we include a stratified training-validation split and a
stratified k-fold cross-validation procedure. Figure 7 shows
more information on the evaluation frameworks.

4.2. Stage 2: Estimation—Building a CATE Estimation
Pipeline

Different metalearners can estimate the CATE. Metalearn-
ers are general frameworks for using ML algorithms to
estimate treatment effects. They are versatile, accommodate
various ML algorithms, and can be efficiently trained us-
ing existing ML packages. Common examples include the
S-Learner (single model with the treatment as a feature),
Lo-Learner (single model with treatment interaction terms),
and T -Learner (separate models for each treatment group).
Other metalearners use pseudo-outcomes that converge to
the treatment effect, such as the DR-, X-, R-, RA-, Z-,
U -, and F -Learners. Appendix B.1 provides more detailed
information on each metalearner. Where available, we use
the CausalML implementations (Chen et al., 2020).

4.3. Stage 3: Ensembling—Selecting and Ensembling
Estimation Pipelines

The final ensembling stage evaluates the pipelines from the
estimation stage with risk measures from the evaluation
stage and select the best pipeline(s) for prediction. No estab-
lished methods exist for ensembling CATE estimators and,
due to the lack of ground truth, most standard ensembling
methods are not applicable. We can select the best pipeline,
or the best five for improved robustness and accuracy. We
also include a novel stacking procedure that assigns weights
(between zero and one) to each pipeline and optimizes these
to minimize the squared error with the pseudo-outcomes.
The weights are regularized, with tuning on a holdout set.
Finally, we include stacking with softmax weights (Mahajan
et al., 2023)–to the best of our knowledge, this is the only ex-
isting ensemble method for CATE estimation. Appendix B.5
provides more details on each ensembling approach.

With multiple risk measures in a multi-objective search,
model selection is more complex as there may not be one
optimal pipeline, but rather a Pareto frontier. One strategy
is to select all Pareto optimal pipelines, though pipelines
performing well on only one measure may not work well

in general. For good general performance, we can select
the pipeline (or the top five) with the lowest average risk
across objectives. Similarly, we can select based on each
pipeline’s Euclidean distance to the origin, or its average
rank across objectives. Finally, we can apply the abovemen-
tioned stacking procedure for each risk measure separately
and averaging the weights in a final stacked pipeline.

4.4. ML Pipeline Building Blocks

We construct ML pipelines in the evaluation and estima-
tion stages. Pipelines consist of preprocessors and ML
algorithms, built on top of scikit-learn (Pedregosa
et al., 2011). For preprocessing, we provide different fea-
ture selection and scaling algorithms. As baselearners, we
include different ML algorithms with classification and re-
gression counterparts, ranging from linear regression to
random forests. Appendix B.3 provides more information.

The final search space includes a variety of preproces-
sors, metalearners, baselearners, and their hyperparameters.
While efficient optimization strategies such as Bayesian ap-
proaches could be used, we use random search throughout
this work to focus on other design choices in AutoCATE.
Nevertheless, as the search is implemented with optuna
(Akiba et al., 2019), we could use a range of optimizers.

4.5. AutoCATE Provides Low-Code CATE Estimation

AutoCATE is implemented in Python2, following
scikit-learn’s design principles (Pedregosa et al.,
2011). The low-code API enables automated CATE es-
timation with only four lines of code, as shown below:
1 from src.AutoCATE import AutoCATE
2

3 autocate = AutoCATE()
4 autocate.fit(X_train, t_train, yf_train)
5 cate_pred = autocate.predict(X_test)

Different initialization arguments can be specified (e.g., the
number of estimation trials; see Appendix B.6).

5. Empirical Results
This section analyzes AutoCATE’s design choices per
stage: evaluation (5.2), estimation (5.3), and ensembling
(5.4). We identify best practices and benchmark the result-
ing configuration against common alternatives (5.5).

5.1. Experimental Setup: Data and Evaluation Metrics

Our experiments compare various automated, end-to-end
strategies for learning a CATE estimation pipeline. Using
AutoCATE, we can evaluate a range of design choices. To

2The software package and accompanying experimental code
are publicly online at https://github.com/toonvds/AutoCATE.
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DR F IF kNN R T U Z

IHDP 2.12±.34 3.33±.55 3.13±.45 2.22±.36 3.37±.71 2.15±.35 3.58±.72 5.40±.86

ACIC 1.56±.09 1.74±.10 2.52±.16 1.74±.10 1.63±.10 1.52±.09 1.72±.09 2.40±.15

Twins .333±.00 .340±.00 .340±.01 .323±.00 .335±.00 .323±.00 .359±.01 .350±.01

News 2.42±.07 2.48±.07 2.73±.09 2.43±.07 2.51±.08 2.42±.07 2.60±.09 3.02±.11

(a) Comparing downstream performance for different risk measures

Combining risks T -risk—Multiple versions Best
All DR,T DR,T,kNN Top 1 Top 2 Top 3 Top 5 single

IHDP 2.48±.36 2.19±.35 2.13±.35 2.15±.35 2.15±.35 2.17±.35 2.11±.36 2.12±.34

ACIC 1.94±.13 1.58±.09 1.60±.09 1.52±.09 1.54±.08 1.55±.09 1.52±.08 1.52±.09

Twins .331±.01 .323±.00 .324±.00 .323±.00 0.323±.00 .323±.00 .324±.00 .323±.00

News 2.52±.07 2.41±.06 2.41±.07 2.42±.07 2.41±.07 2.43±.07 2.43±.07 2.42±.07

(b) Comparing downstream performance for different combinations of risk measures

Table 1: Comparing risk measures for model selection. Results in
√

PEHE±SE (↓). Bold highlights the best, underlined
values fall within a standard error. Results for 50 evaluation and 50 estimation trials with a T -Learner and gradient boosting.
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Figure 2: The importance of tuning validation models. We analyze the impact of tuning the models underlying the
evaluation more extensively. Results for a T -risk and 50 estimation trials with a T -Learner and gradient boosting.

obtain general insights, we leverage a collection of stan-
dard benchmarks for CATE estimation: IHDP (Hill, 2011),
ACIC (Dorie et al., 2019), News (Johansson et al., 2016),
and Twins (Louizos et al., 2017); see Appendix C for details.
These semi-synthetic benchmarks include 247 distinct data
sets that vary in outcome (regression and classification), di-
mensionality, size, and application area, allowing for a com-
prehensive analysis AutoCATE. Unless noted otherwise,
results are reported in precision in estimating heterogeneous
treatment effects (PEHE):

√
PEHE =

√
(τ − τ̂)2.

For each experimental result, the caption describes the
AutoCATE configuration that was used. For the evalua-
tion and estimation stages, we describe the search strategy
for automatically find the ML pipeline(s), including the base-
and metalearners involved and the number of optimization
trials per stage. Unless stated otherwise, AutoCATE selects
the best ML pipeline based on best average performance.

5.2. Stage 1: Evaluation Design Choices

We examine design choices for each stage, while keeping the
other stages fixed. For the evaluation stage, we compare risk
measures, metrics, and evaluation procedures to analyze the
impact on model selection and downstream performance.

5.2.1. HOW TO MEASURE CATE PREDICTION QUALITY?

What risk measure works best? We compare performance
of different risk measures for model selection in Table 1a.
Three options consistently perform well: the DR-, kNN -,
and T -risk. These results largely correspond with exist-
ing work. Curth & van der Schaar (2023); Mahajan et al.
(2023) similarly found the DR-risk to work well, though the
kNN -risk works comparatively better in our experiments.
Although Curth & van der Schaar (2023) reported worse
results for the T -risk, both our and Mahajan et al. (2023)’s
findings show that it can give good results with proper tun-
ing of the underlying models. We analyze the impact of
tuning in Figure 2: tuning the evaluation models more in-
deed results in better downstream performance. We test
whether congeniality bias (Curth & van der Schaar, 2023)
affects our results by repeating this experiment for different
metalearners in Table 6, but find similar results.

Is it beneficial to use multiple risk measures? We can
combine different risk measures in a multi-objective search,
leading to possibly more robust model selection, as each risk
offers a different proxy to the same ground truth. Table 1b
shows both results for risk measure combinations and for
multiple versions of a single measure based on different
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Figure 3: How much data to use for evaluation? Results for varying holdout ratios, with a fitted polynomial to gain insight
into the optimal ratio. Evaluation with a T -risk and 50 trials; estimation with 50 trials, a T -Learner and gradient boosting.
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Figure 4: What meta- and baselearners to include? We compare different search spaces for AutoCATE, either including
all metalearners (AllMeta) or only the best (BestMeta), as well as all baselearners (AllBase) or only the best (BestBase).
Results for 50 evaluation trials with a T -risk.

estimates. Combining different types or different versions
of risk measures can indeed improve performance, but no
strategy consistently improves upon the best single measure.

5.2.2. WHAT EVALUATION PROCEDURE TO USE?

How to set the holdout ratio? As risk measures require
learning estimates on validation data, there is a trade-off
between using data for evaluation or estimation. Figure 3
presents results for different holdout ratios, illustrating this
trade-off and showing that a holdout ratio of 30-50% gener-
ally works well. We use 30% in the rest of this work. Al-
though more folds in cross-validation often improve model
performance in supervised settings, we do not observe this
effect for AutoCATE (see Table 5), likely due to the inter-
action between the number of folds and the holdout ratio.

What evaluation metric to use? All previous experiments
used the mean squared error (MSE) to compare CATE pre-
dictions and pseudo-outcome(s), corresponding to the goal
of minimizing PEHE. However, depending on the down-
stream application, alternative objectives might be more
important. AutoCATE provides several metrics. Table 7
shows results for evaluating based on the mean absolute

percentage error (MAPE) and area under the Qini curve
(AUQC). As hypothesized, selecting models using a partic-
ular metric generally improves performance for that metric.

5.3. Stage 2: Estimation Design Choices

Given an evaluation protocol, we compare choices in the es-
timation stage. We look at the impact of including different
metalearners and baselearners in AutoCATE’s search.

Metalearners. Figure 4 compares different versions of
AutoCATE with either all meta- and baselearners (see Fig-
ure 1 for an overview), or only the selected best per cate-
gory. The complete “AllMeta-AllBase” sometimes performs
poorly. Performance generally improves with more trials,
but poor results persist even after 100 trials on the News
data. Further inspection reveals that bad iterations are due
to instability of the R- and U -Learners: while these perform
well on the validation set, they can perform exceptionally
poor on the test data after retraining on all data. Other
metalearners (F and Z) are almost never chosen. There-
fore, “BestMeta” excludes these metalearners (R, F , Z,
and U ), resulting in improved stability and performance.
Appendix D.2 compares metalearners’ precision and time
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Best model(s) Stacking

Top 1 Top 5 COP Softmax

IHDP 2.15±.35 1.90±.34 1.96±.34 2.83±.51

ACIC 1.52±.09 1.34±.08 1.42±.09 1.33±.09

Twins .323±.00 .325±.00 .344±.00 .331±.00

News 2.42±.07 2.33±.06 2.33±.06 2.32±.06

(a) Comparing ensemble strategies for a single T -risk

Average Distance Ranking Stacking

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 COP Softmax Pareto

IHDP 2.19±.35 1.84±.31 2.27±.37 2.99±.54 3.58±.66 2.99±.54 1.94±.32 2.83±.51 2.19±.36

ACIC 1.58±.09 1.35±.08 1.55±.08 1.41±.08 1.69±.08 1.41±.08 1.43±.09 1.33±.09 1.50±.08

Twins .323±.00 .325±.00 .323±.00 .341±.00 .367±.01 .341±.00 .349±.00 .331±.00 .326±.00

News 2.41±.06 2.32±.06 2.42±.07 2.38±.07 2.58±.08 2.38±.07 2.34±.06 2.32±.06 2.39±.07

(b) Comparing ensemble strategies when combining DR- and T -risks

Table 2: Ensemble strategies. We compare ensembling strategies for a single or multiple objectives in terms of
√

PEHE.
Bold highlights the best results, underlined values lie within 1 standard error. Results for 50 evaluation trials and 50
estimation trials with a T -Learner and gradient boosting.

efficiency, and shows how often metalearners are chosen.

Baselearners. The “BestBase” versions in Figure 4 only
use baselearners that typically perform well with tabular
data (random forests, extremely randomized trees, gradient
boosting, and multilayer perceptrons), for both evaluation
and estimation stages. Choosing the best baselearners im-
proves performance, but less so than metalearner selection.

5.4. Stage 3: Ensembling Design Choices

The ensemble stage selects CATE estimation pipelines using
the risk(s) from the evaluation stage. Selected pipelines are
re-trained on all training data and saved for inference.

Single objective. With one objective, we can select the best
pipeline (Top 1), the best five (Top 5), or apply stacking to
combine all pipelines in an ensemble. Table 2a compares
these strategies, showing that combining pipelines improves
performance for all data except Twins. An ensemble also
enables assessing predictive uncertainty, see Appendix D.3.

Multiple objectives. Model selection is more complex
with multiple objectives. We can select the top or top five
pipelines based on the average risk, Euclidean distance to the
origin, or average rank. Alternatively, we can create stack-
ing estimators for each objective and average their weights
(“Stacking”), or select all Pareto optimal models (“Pareto”).
Table 2b compares these strategies. Single pipelines typi-
cally perform worse than the top five pipelines, the Pareto
ensemble, or stacking. Selection using average risk per-
forms well generally, but no strategy is consistently optimal.

5.5. Benchmarking AutoCATE

This section compares the optimized configuration of
AutoCATE with common alternative approaches for tuning
CATE estimation pipelines. The benchmarks select the best
model using the error in predicting observed outcomes (µ-
risk). We include both S- and T -Learners. For T -Learners,
we tune models separately for the control and treatment
groups. First, we compare a T -Learner with gradient boost-
ing tuned based on the µ-risk against AutoCATE using only
a T -Learner and gradient boosting optimized for T -risk.
While these strategies are similar, AutoCATE evaluates the
entire pipeline jointly and (potentially) adds preprocessing.
Conversely, the traditional T -Learner’s search is more ef-
ficient as it tunes models separately per group. Figure 5
compares the two approaches: the µ-risk strategy performs
worse for Twins, but better for ACIC. Finally, Figure 6 com-
pares AutoCATE with S- and T -Learners using random
forests and gradient boosting. These approaches are concep-
tually simple, but represent common and proven baselines.
We observe that AutoCATE can obtain at least competitive
performance to the best approach for each data set. These re-
sults are due to two factors. First, AutoCATE offers greater
flexibility through a larger search space, including more
meta- and baselearners and preprocessing (Table 10 illus-
trates the value of preprocessing). Second, model selection
is better aligned with the goal of CATE estimation, using
the T -risk, and can include an ensemble of pipelines to im-
prove performance. Appendix D.4 shows more results on
ranking treatment effects (i.e. uplift modeling) and validates
AutoCATE’s robustness to confounding with synthetic data.
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Figure 5: Comparing AutoCATE with tuning based on µ-risk. We compare tuning a T -Learner with gradient boosting
using either AutoCATE (based on a T -risk) or tuning based on the MSE on the observed outcome. AutoCATE uses a
T -risk with 50 evaluation trials and top 1 model selection.

1 2 5 10 20 50 100 200 500 1000

Estimation trials

0

2

4

6

√
P

E
H

E

IHDP

1 2 5 10 20 50 100 200 500 1000

Estimation trials

1.5

2.0

2.5

√
P

E
H

E

ACIC
S-RF

T-RF

S-GB

T-GB

AutoCATE–1

AutoCATE–5

1 2 5 10 20 50 100 200 500 1000

Estimation trials

0.32

0.33

0.34

√
P

E
H

E

Twins

1 2 5 10 20 50 100 200 500 1000

Estimation trials

2.25

2.50

2.75

3.00
√

P
E

H
E

News

Figure 6: Benchmarking AutoCATE. We compare AutoCATE with common benchmarks using S- and T -Learners with
random forests and gradient boosting. AutoCATE uses a T -risk with 50 evaluation trials and BestMeta-BestBase search
spaces, with either Top 1 or Top 5 model selection.

6. Conclusion
Despite the advances in ML for CATE estimation, adoption
remains limited, due to the complexity of implementing,
tuning, and validating them. We framed the problem of find-
ing an ML pipeline for CATE estimation as a counterfactual
CASH problem and proposed AutoCATE: the first end-to-
end, automated solution tailored to CATE estimation. Based
on this solution, we analyzed design choices for evaluation,
estimation, and ensembling, and identified best practices.
The resulting configuration was validated empirically and
outperformed widely used strategies for CATE estimation.

To maximize AutoCATE’s practical impact, several limita-
tions need to be addressed. Although AutoCATE relies on
standard assumptions for causal inference, it is crucial to
assess its robustness against violations of these assumptions
and to develop protocols for such cases. Additionally, most
of the data used in this work is semi-synthetic (IHDP, ACIC,
and News), which may not fully capture the complexities
of real-world data. Although validating CATE estimates
remains inherently challenging, approaches from related
fields could offer inspiration (see e.g. Devriendt et al., 2020).

While AutoCATE is an effective and versatile tool, no single
method excels in all scenarios. It may be less suitable when
data and compute are limited, when heavy customization
or preprocessing are needed, and in settings violating our
causal assumptions (e.g., instrumental variables). In such
cases, alternative or tailored approaches may be preferable.

AutoCATE enables a comprehensive analysis of existing
methods (see Figure 14 and Appendix D.5), facilitating a
better understanding of CATE estimation and guiding the
development of new approaches. We envision opportunities
for future research in all stages. For evaluation, advanced
multi-objective strategies could improve performance and
robustness. Novel methods for estimation could be automat-
ically discovered using Neural Architecture Search. Gen-
erally, efficiency can be improved with better search algo-
rithms or strategies (e.g., by re-using nuisance models across
metalearners). Related to this, the optimal time allocation
between the stages remains an open question, where meta-
learning could help by incorporating data set characteristics
(Feurer et al., 2015). Finally, more advanced ensembling
could be developed (e.g., combining different metalearners).
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The appendix starts with a more detailed introduction and background to CATE estimation in Appendix A. The next sections
provide more details on AutoCATE (Appendix B), describe the data used in this work (Appendix C), and present additional
empirical results (Appendix D). Finally, we compare AutoCATE with other packages for CATE estimation in Appendix E.

A. Background on CATE Estimation
This section provides a more detailed introduction and background on treatment effect estimation. In accordance to the main
body, we denote an instance by a tuple (x, t, y), with covariates X ∈ X ⊂ Rd, a treatment T ∈ T ={0, 1}, and an outcome
Y ∈ Y ⊂ R. Following the potential outcomes framework (Rubin, 1974; 2005), we describe an instance’s potential outcome
Y for a given treatment T = t as Y (t). The Conditional Average Treatment Effect (CATE) is then defined as the expected
difference in outcomes between treating and not treating:

E
[
Y (1)− Y (0)|X

]
. (2)

Knowing this effect is crucial in a variety of domains, such as education (Olaya et al., 2020), healthcare (Feuerriegel et al.,
2024), and maintenance (Vanderschueren et al., 2023). Estimating the CATE from observational data involves significant
challenges (Appendix A.1), requires standard assumptions (Appendix A.2), and tailored ML methods (Appendix A.3). We
explain these in the following.

A.1. Challenges: The Fundamental Problem and Confounding

The fundamental problem of causal inference (Holland, 1988) is that, for each instance, we only observe either Y (0) or
Y (1), depending on what treatment was administered. We refer to the observed outcome as the factual outcome and the
unobserved outcome as the counterfactual outcome. Because one outcome is always unobserved, we never know the true
CATE τ , which means that there is no ground truth CATE available for training or validation.

In observational data, the outcome that was observed is typically not random: some instances were more likely to be treated,
while other instances were more likely not to receive treatment. For example, in healthcare, patients may be more likely
to receive a new treatment if they have access to better healthcare, have no pre-existing conditions, and are younger. The
covariates that influence both the outcome and treatment assignment are called confounders, with the resulting non-random
treatment assignment sometimes referred to as confounding.

Confounding presents an additional challenge for CATE estimation and validation as it results in covariate shift. Some
instance-treatment pairs (the counterfactuals) will be absent in the observational training data compared to the hypothetical
test data that contains all instance-treatment pairs (both factuals and counterfactuals). Because of this, an ML model may
focus too much on the observed data points at the cost of worse predictions for the counterfactuals and, as such, the test data
overall.

A.2. Assumptions For Identifiability

Identifying the causal effect from observational data requires making standard assumptions: consistency, overlap, and
unconfoundedness. This section explains these assumptions in more detail.

Assumption A.1 (Consistency). The observed outcome given a treatment is the potential outcome under that treatment:
Y |X, t = Y (t)|X .

Assumption A.2 (Overlap). For each instance, there is a non-zero probability of receiving each treatment given their
covariates: ∀ x ∈ X and t ∈ T : P (T = t|X = x) > 0. This condition ensures that there is sufficient variability in the
treatment assignment.

Assumption A.3 (Unconfoundedness). Given an instance’s covariates, its potential outcomes are independent of the
treatment assignment: Y (0), Y (1) ⊥⊥ T |X . This condition implies that all factors influencing both the treatment assignment
and outcome are included in X . In other words, there are no unobserved confounders.

There has recently been much interest in CATE estimation under violation of these assumptions. For example, by
quantifying the uncertainty or sensitivity of an estimate to a possible violation (Franks et al., 2020; Jesson et al., 2020;
2021), characterizing overlap violations (Oberst et al., 2020), or developing metalearners that can deal with unobserved
confounders (Oprescu et al., 2023). We believe that extending AutoCATE to deal with these settings and to incorporate
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these methods will improve its potential for real-world applicability even further. As such, we consider it an important
direction for future versions.

A.3. CATE Estimation: Meta- and Baselearners

We briefly describe the approach of estimating the CATE with a metalearner here. A straightforward way of estimating the
CATE is using a single ML model, where the treatment variable is considered an ordinary input variable. This metalearner
is called the S-Learner and can be implemented with a wide variety of baselearners (i.e., ML algorithms that predict an
outcome based on data, such as a decision tree or neural network). An alternative metalearner, the T -learner, fits two
models–one model for each treatment group. Both models can use the same baselearner or a different one. More information
on the metalearners in AutoCATE is provided in Appendix B.1. For more extensive overviews, we refer to (Devriendt et al.,
2018), (Zhang et al., 2021), and (Feuerriegel et al., 2024).

B. AutoCATE: Additional Information
This section presents information on metalearners (Appendix B.1), risk measures for evaluation (Appendix B.2), and
AutoCATE’s search spaces for preprocessors and baselearners (Appendix B.3).

B.1. Metalearners

We describe the metalearners implemented in AutoCATE in more detail below. We first define the estimates that make up
the building blocks of these models: the estimated propensity score ê(x) = E(t|x), the treatment-group specific outcome
ŷ0(x) = E(y|x, t = 0) and ŷ1(x) = E(y|x, t = 1), and the treatment-unaware outcome µ̂(x) = E(y|x). In the following,
the function f describes a model that is learned with a base learner such as a neural network or gradient boosting.

S-Learner. The S-Learner, or single learner, simply uses the treatment as a variable: fS(x, t) = E(y|x, t). The CATE τ
is then estimated as τ̂ = ŷ1 − ŷ0 = fS(x, t = 1)− fS(x, t = 0).

Lo-Learner (Lo, 2002). The Lo-Learner is similar to an S-Learner, in the sense that it uses the treatment as a variable,
but it adds interaction terms between the covariates x and treatment t: fLo(x, t) = E(y|x, t, x · t). The CATE τ is then
estimated as τ̂ = ŷ1 − ŷ0 = fLo(x, t = 1)− fLo(x, t = 0).

T -Learner. The T -Learner constructs two models–one per treatment group: f0
T (x) = E(y|x, t = 0) and f1

T (x) =
E(y|x, t = 1), and predicts the CATE as τ̂ = ŷ1 − ŷ0 = f1

T (x)− f0
T (x).

X-Learner (Künzel et al., 2019). The X-Learner first learns two treatment-specific outcome models: ŷ0(x) and ŷ1(x). It
then uses these to impute the counterfactual outcome for each instance and, as such, obtain a pseudo-outcome τ̃X for the
treatment effect: τ̃0X = ŷ1(x)−y if t = 0, and τ̃1X = y−ŷ0(x) else. For each treatment group, a model is then learned on these
pseudo-outcome: f0

X(x) = τ̃0X and f1
X(x) = τ̃1X . The final effect model then estimates fX(x) = g(x)f0

X + (1− g(x))f1
x

and predicts the treatment effect as τ̂ = fX(x). g(x) ∈ [0, 1] is a weighting function, typically the estimated propensity
score g(x) = ê(x).

RA-Learner (Curth & van der Schaar, 2021). The RA-Learner or regression-adjusted learner is similar to an X-
Learner, but directly learns the final model on the pseudo-outcomes: fRA(x) = E(τ̃X |x), predicting the treatment effect as
τ̂ = fRA(x).

Z-Learner. The transformed outcome approach (Jaskowski & Jaroszewicz, 2012; Powers et al., 2018) or inverse propensity
weighted estimator (Curth & van der Schaar, 2021) uses a pseudo-outcome based on the Horvitz-Thompson transformation
(Horvitz & Thompson, 1952): τ̃Z =

(
t

ê(x) − 1−t
1−ê(x)

)
y. The Z-Learner then estimates fZ(x) = E(τ̃Z |x) and predicts the

treatment effect as τ̂ = fZ(x).

U -Learner. The U -Learner is based on a pseudo-outcome τ̃U = y−µ̂(x)
t−ê(x) . The final model fits fU (x) = E(τ̃U |x) and

predicts the treatment effect as τ̂ = fU (x).
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Figure 7: Evaluation framework. We show two possible frameworks for validating pipelines based on a single split or
a cross-validation procedure. For each, the data is split in three groups to (1) train the estimation pipelines, (2) train the
validation pipelines, and (3) validate the validation pipelines.

F -Learner (Athey & Imbens, 2015). The F -Learner uses the pseudo-outcome τ̃F = t−ê(x)
ê(x)(1−ê(x))y. The final model fits

fF (x) = E(τ̃F |x) and predicts the treatment effect as τ̂ = fF (x).

DR-Learner (Kennedy, 2023). The DR-Learner is a robust version of the Z-Learner, based on the pseudo-outcome
τ̃Z =

(
t

ê(x) − 1−t
1−ê(x)

)
y +

(
1− t

ê(x)

)
ŷ1(x)−

(
1− 1−t

1−ê(x)

)
ŷ0(x). The final model is fDR(x) = E(τ̃DR|x) and predicts

the treatment effect as τ̂ = fDR(x).

R-Learner (Nie & Wager, 2021). The R-Learner, based on Robinson’s decomposition (Robinson, 1988), fits a model
fR(x) using a weighted loss function with pseudo-outcomes τ̃R = y−µ̂(x)

t−ê(x) and weights w = (t− ê(x))2. The treatment
effect can then directly be predicted as τ̂ = fR(x).

B.2. Evaluation and Risk Measures

The evaluation framework and data splitting underlying AutoCATE is shown in Figure 7. Below, we describe the different
types of risk measures included in our framework.

Metalearner pseudo-outcomes. An instance’s true CATE τ is unknown, but we can use the pseudo-outcomes τ̃ used by
the T -, Z-, U -, F -, DR-, and R-Learners (see above) as ground truth.

Influence Function (IF) (Alaa & van der Schaar, 2019). The influence function criterion gives an estimate of an ML
pipeline’s estimation error. It is based on a pseudo-outcome of the treatment effect τ̃ , estimated with a T -Learner. This
pseudo-outcome is then debiased using the influence function. The final criterion is:

(1−B) τ̃2 +By(τ̃ − τ̂)−D(τ̃ − τ̂)2 + τ̃2

with D = t− ê(x), C = ê(x)(1− ê(x)), and B = 2tDC−1.

k-Nearest Neighbor (kNN) (Rolling & Yang, 2014). The nearest neighbor matching measure finds the nearest neighbor
in the opposite group, defined using the Euclidean distance, and uses its outcome as the counterfactual outcome. As such, it
is essentially a T -Learner pseudo-outcome where the baselearner is restricted to a nearest neighbor model. We extend upon
this by allowing alternative versions to be constructed by increasing k.
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Hyperparameter Range

VarianceThreshold
threshold [0, 0.04]

SelectPercentile
k [5, n dim]
score func mutual info {regression, classif}

(a) Feature Selection

Hyperparameter Range

StandardScaler
—

RobustScaler
—

(b) Feature Scaling

Table 3: Preprocessor search spaces. We describe the search spaces for the different preprocessors. If a hyperparameter is
not mentioned, we use its default. All preprocessors are implemented with scikit-learn (Pedregosa et al., 2011); we
refer to their documentation for more information.

B.3. Preprocessor and Baselearner Search Spaces

Preprocessors. ML pipelines include three (optional) steps to preprocess the data before being fed to a model: feature
selection, transformation, and scaling. For feature selection, include VarianceThreshold, SelectPercentile, or no selection.
For feature scaling, we include StandardScaler, RobustScaler, or no scaling. Finally, we include feature transformation
algorithms in our software package (SplineTransformer, PolynomialFeatures, KBinsDiscretizer), but do not include them
in the experiments as they significantly slowed down training times. Other steps for feature selection and scaling from
scikit-learn are similarly supported, but not included in the experiments, which is why we do not discuss them here. Table 3
provides detailed information on the search spaces.

Baselearners. We present the search spaces for all baselearners’ hyperparameters in Table 4. These are based largely
upon existing AutoML packages (e.g., FLAML (Wang et al., 2021)) and some (limited) experimentation, so these may be
improved in future versions.

AutoCATE’s resulting search space of ML pipelines for CATE estimation is vast, with 2,187 possible pipelines even without
considering hyperparameters:

3 feature selection × 3 scaling × 27 metalearner-baselearner configurations × 9 baselearners (3)

with 27 = 1 (S) + 2 (T ) + 4 (DR) + 5 (X) + 4 (R) + 3 (RA) + 1 (Lo) + 2 (Z) + 3 (U) + 2 (F ), i.e., the sum of all
baselearners required per metalearner.

B.4. Example ML Pipeline

We give an example of a pipeline built by AutoCATE, excluding baselearner hyperparameters. Evaluation using a T -Risk
evaluation, with control outcomes estimated with gradient boosting and treatment outcomes estimated using a neural network.
Estimation by first selecting a top percentile of features based on the F-value between the label and feature, followed by a
DR-Learner where propensity scores are estimated with a support vector machine, control outcomes with gradient boosting,
treatment outcomes with a linear regression, and the final effect with a random forest. This example illustrates the complexity
of an ML pipeline for CATE estimation–in this case, there are six different ML models with several hyperparameters each.
If an ensemble is used for estimation, this complexity increases even more.

B.5. Ensembling and Multi-Objective Model Selection

This section describes the different approaches for ensembling and multi-objective model selection included in our framework.
With multiple objectives, no globally optimal ML pipeline may exist. We explore various strategies for ranking and selecting
models in this context. We denote a pipeline i’s normalized score on objective j as sij . As different risk measures and
metrics have different scales, we normalize each of these scores by dividing the raw score s̃ij with the raw score of a
constant ATE baseline s̃ATE

j : sij =
s̃ij
s̃ATE
j

.
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Hyperparameter Range

Gradient Boosting
n estimators [50, 2000]
subsample [0.4, 10]
min samples split [2, 500]
learning rate [0.05, 0.5]
n iter no change [5, 100]
max leaf nodes None
max depth None

Random Forest
n estimators [50, 500]
max depth None
min samples split [2, 100]
max features [0.4, 1.0]

Extra Trees
n estimators [50, 500]
max depth None
min samples split [2, 100]
max features [0.4, 1.0]

Decision Tree
max depth [1, 2000]
min samples split [2, 500]
min samples leaf [1, 500]
max features [0.4, 1.0]

Hyperparameter Range

Linear/Logistic Regression
alpha [1e−6, 1e6]

Gaussian Process
n restarts optimizer [0, 5]
normalize y [True,False]
alpha [1e−5, 1e2]
max iter predict [100, 1000]

Support Vector Machine
C [1e−6, 1e6]
kernel [linear, poly, rbf, sigmoid]
degree [1, 10]

k-Nearest Neighbors
n neighbors [1, 30]
weights [uniform, distance]

Neural Network
hidden layers [1, 3]
hidden neurons [8, 64]
alpha [1e−6, 1e1]
learning rate init [5e−4, 1e−2]
batch size [16, 64]
activation [tanh, relu]
max iter 200
solver adam
early stopping True

Table 4: Baselearner search spaces. We describe the search spaces for each baselearner. If a hyperparameter is not
mentioned, we use its default. All baselearners are implemented with scikit-learn (Pedregosa et al., 2011); we refer to
their documentation for more information.

16



AutoCATE: End-to-End, Automated Treatment Effect Estimation

Average (normalized) score. For each pipeline i, we compute the normalized average score across objectives:

Si =
1

m

m∑
j=1

sij ,

with m the number of objectives. We then select the pipeline(s) with the best Si.

Euclidean distance to the origin. We compute each pipeline i’s Euclidean distance to the origin:

Di =
1

m

√√√√ m∑
j=1

s2ij ,

with m the number of objectives. We then select the pipeline(s) with the lowest Di.

Average rank. Rank all pipelines i for each objective j, denoted as rij , and compute the average rank:

Ri =
1

m

m∑
j=1

rij .

Select the pipeline(s) with the lowest Ri.

Stacking—Constrained Optimization Problem. To combine multiple pipelines into a stacked estimator, we introduce
a procedure that assigns weights wij (where 0 ≤ wi ≤ 1) to each pipeline i, optimizing these weights to minimize the
squared error of the weighted prediction with respect to those pseudo-outcomes of objective j. We additionally add an l2
regularization term, which can be tuned on a validation set. With multiple objectives, we repeat this for each objective and
then average the weights Wi =

∑m
j=1 wij .

Stacking—Softmax (Mahajan et al., 2023). An alternative stacking procedure is to determine the weight of each
estimator with a softmax function:

wij =
exp(κsij)∑m
j=1 exp(κsik)

,

with κ a temperature parameter that can be tuned. With multiple objectives, we repeat this for each objective and then
average the weights Wi =

∑m
j=1 wij .

Pareto. We select all pipelines that are Pareto optimal, meaning no other pipeline k satisfies:

skj ≥ sij ∀j and skj > sij for at least one j.

B.6. AutoCATE’s API: Additional Information

We give more information on AutoCATE’s initialization arguments in Listing 1.
1 class AutoCATE:
2 def __init__(
3 self,
4 # evaluation_metrics: Risk measures to evaluate the performance
5 evaluation_metrics=None,
6 # preprocessors: Preprocessors to try (defaults added later)
7 preprocessors=None,
8 # base_learners: Baselearners to try (defaults added later)
9 base_learners=None,

10 # metalearners: Metalearners to try (defaults added later)
11 metalearners=None,
12 # task: Type of task (’regression’ or ’classification’)
13 task="regression",
14 # metric: Metric used to evaluate the model (e.g., ’MSE’)
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15 metric="MSE",
16 # ensemble_strategy: Strategy for selecting a final model
17 ensemble_strategy="top1average",
18 # single_base_learner: Use only one base learner
19 single_base_learner=False,
20 # joint_optimization: Same hyperparameters for baselearners
21 joint_optimization=False,
22 # n_folds: Number of folds for cross-validation
23 n_folds=1,
24 # n_trials: How many trials to optimize the estimation pipeline
25 n_trials=50,
26 # n_eval_versions: Number of versions of each risk measure
27 n_eval_versions=1,
28 # n_eval_trials: Number of trials for evaluating the model
29 n_eval_trials=50,
30 # seed: Random seed for reproducibility
31 seed=42,
32 # visualize: Whether to visualize results
33 visualize=False,
34 # max_time: Maximum time allowed for fitting the model
35 max_time=None,
36 # n_jobs: Number of parallel jobs to run
37 n_jobs=-1,
38 # cross_val_predict_folds: Folds for cross-validated estimates
39 cross_val_predict_folds=1,
40 # holdout_ratio: Ratio of data for validation (if single fold)
41 holdout_ratio=0.3
42 ):
43

44 # Initialization code (not included here)
45 ...

Listing 1: Arguments for the AutoCATE class initialization. We describe each argument and its default initialization.

C. Data: Additional Information
This section describes the data used in this work in more detail.

IHDP (Hill, 2011). The data come from the Infant Health and Development Program, describing the impact of child care
and home visits on children’s cognitive development. Treatments and outcomes were simulated for a total of 100 data sets.
Each version contains n = 747 instances and d = 25 covariates.

ACIC (Dorie et al., 2019). The data from the ACIC 2016 competition was based on data from the Collaborative Perinatal
Project, studying drivers of developmental disorders in pregnant women and their children. 77 distinct data sets were created,
each with n = 4,802 instances and d = 58 covariates. 100 iterations were originally created for each data set, but we use
only the first one for each.

Twins (Louizos et al., 2017). The Twins data studies the effect of being the heavier twin on mortaility. n = 11,984 pairs
of twins are included, with d = 46 features each. Only one version of this data set exists, so we run 10 iterations of each
experiment.

News (Johansson et al., 2016). This data simulates a reader’s reading experience (y) based on the device they use for
reading (t) and the news article (x). There are 50 distinct data sets, each with n = 5,000 instances with and d = 3,477
covariates.

Below, we include results for two data sets on uplift modeling:

Hillstrom (Hillstrom, 2008). This data contains records of customers (n = 64,000) that were contacted by a marketing
campaign over e-mail. Originally, customers received either no mail, a mail with men’s merchandise, or one with women’s
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merchandise, but we convert it to not contacted (t = 0) or contacted (t = 0). For each customer, d = 10 covariates are
available. As the outcome y, we consider whether the customer visited the website or not.

Information (Larsen, 2023). The information data set comes from the R Information package. It describes customers
(n = 10,000, d = 68) in the insurance industry, as well as whether they were contacted with a marketing campaign and
whether they made a purchase.

D. Additional Results
D.1. Stage 1: Evaluation

Table 5 shows results for evaluating with k-fold cross validation for different values of k.

1 2 3 4 5 10

IHDP 2.15±.35 2.16±.35 2.10±.35 2.07±.33 2.29±.42 2.25±.41

ACIC 1.52±.09 1.58±.08 1.48±.08 1.51±.09 1.50±.08 1.53±.09

Twins .323±.00 .324±.00 .322±.00 .324±.00 .344±.00 .346±.00

News 2.42±.07 2.40±.07 2.41±.06 2.41±.07 2.45±.07 2.45±.07

Table 5: The effect of k in k-fold cross validation. For each data set, we show result for a varying number of cross-validation
folds. Results for 50 evaluation trials with a T -risk and 50 estimation trials with a T -Learner and gradient boosting.

Risk measures may suffer from congeniality bias, by being predisposed to favor their related metalearners (Curth & van der
Schaar, 2023). For example, a T -risk may pick a T -Learner more often, even when it is suboptimal. The results in our main
body found that the T -risk works very well with a T -Learner, but these results may not hold in general due to congeniality
bias. Therefore, we again compare the different risk measures when estimating with either S-Learners only or selected
metalearners in Table 6.

Depending on the downstream application, there may be different objectives for estimating treatment effects. Corresponding
to these objectives, different evaluation metrics may be important. Table 7 shows the results of using a different metric
for AutoCATE’s optimization: as hypothesized, selecting models based on a particular metric results in better test time
performance for that metric. These findings illustrate the importance of including a diversity of metrics in our framework.

D.2. Stage 2: Estimation

Figure 8 shows how often each metalearner gets picked in AutoCATE’s BestMeta configuration. The difference in
metalearner selection rates illustrates the importance of data-driven metalearner selection, as facilitated by AutoCATE.
Interestingly, other metalearners are preferred for a binary outcome (Twins) than for continuous outcomes (all others). This
finding suggests that different BestMeta configurations may be optimal for different outcomes.
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Figure 8: Metalearner selection. We show how many times a metalearner gets picked (in % of all data set iterations) for a
given data set. Results for AutoCATE’s BestMeta configuration, including the S-, T -, Lo-, X-, RA-, DR-, and U -Learners,
with 50 evaluation and 500 estimation trials.

We compare different metalearners in terms of
√

PEHE in Table 8. These results show that searching across metalearners
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DR F IF kNN R T U Z

IHDP 3.21±.55 3.64±.60 4.60±.78 3.11±.53 3.48±.58 3.10±.54 3.62±.58 4.12±.70

ACIC 1.61±.09 1.79±.10 2.07±.10 1.88±.09 1.73±.10 1.58±.09 1.85±.10 2.16±.12

Twins .328±.00 .328±.00 .347±.02 .320±.00 .325±.00 .320±.00 .321±.00 .330±.00

News 2.47±.09 2.51±.08 2.97±.13 2.49±.09 2.76±.12 2.46±.08 2.78±.13 2.99±.14

(a) Estimation with an S-Learner

DR F IF kNN R T U Z

IHDP 2.07±.32 3.43±.60 5.75±.70 2.11±.34 3.45±.56 2.17±.37 3.18±.56 4.38±.71

ACIC 1.40±.09 1.87±.11 2.24±.14 1.97±.13 1.57±.10 1.35±.09 1.79±.11 2.16±.11

Twins .328±.00 .327±.00 .384±.03 .324±.00 .328±.00 .326±.00 .344±.01 .348±.01

News 2.42±.07 2.60±.08 2.95±.12 2.42±.07 2.75±.15 2.43±.07 2.78±.13 2.77±.11

(b) Estimation with selected metalearners (BestMeta configuration: S, T , DR, X , RA, Lo)

Table 6: Performance for validation based on different risk measures. Results in
√

PEHE±SE (lower is better). Bold
highlights the best results, with underlined values falling within 1 standard error. Results for 50 evaluation trials and 50
estimation trials with a gradient boosting baselearner.

MSE MAPE AUQC
√

PEHE 2.15±0.35 2.28±.36 2.26±.41

MAPE 1.76±1.30 1.40±.94 0.50±.15

AUQC 0.92±0.01 0.88±.02 0.96±.01

(a) IHDP

MSE MAPE AUQC
√

PEHE 1.52±.09 1.67±.09 1.50±.08

MAPE 1.10±.21 1.03±.14 1.11±.24

AUQC 0.91±.01 0.90±.01 0.91±.01

(b) ACIC

MSE MAPE AUQC
√

PEHE .323±.00 .323±.00 .344±.00

MAPE — — —
AUQC 0.00±.00 0.00±.01 0.03±.01

(c) Twins

MSE MAPE AUQC
√

PEHE 2.42±.07 2.52±.07 2.46±.07

MAPE 5.75±.74 5.83±.69 5.86±.85

AUQC 0.66±.01 0.64±.01 0.65±.01

(d) News
Table 7: Comparing evaluation metrics. We compare model selection with different evaluation metrics. For the Twins data
set, MAPE cannot be calculated, as the true CATE can be zero. Bold highlights the best results, with underlined values
falling within 1 standard error. Colored cells show the hypothesis that matching metrics will yield the best performance.
Results for 50 evaluation trials with a T -risk and 50 estimation trials with a T -Learner and gradient boosting.

typically significantly improves precision compared to using only one metalearner. Moreover, some metalearners can
result in very poor performance even after 200 optimization trials. Typically, these results are due to exceptionally poor
performance in some iterations (e.g., the R-Learner). Additionally, we compare the performance trade-off in terms of time
and precision for best metalearners in Figure 9. These results show that the S-, T -, and Lo-Learner are often the fastest
to train and the most precise in terms of

√
PEHE. These results illustrate the potential of improving AutoCATE’s time

efficiency by considering these trade-offs. To give a sense of AutoCATE’s runtime, we include the required computation
times to run AutoCATE on different data sets in Table 9. Although some time is required, running our framework locally is
feasible for small to moderate data sets.

A key innovation for AutoCATE is that it optimizes the entire ML pipeline, including preprocessing steps. In Table 10, we
present an ablation study for our framework with and without preprocessing. For all data sets, AutoCATE achieves the best
performance with preprocessing, though the improvement is only significant for the IHDP and Twins data.

We can also apply explainability techniques to understand what drives a pipeline’s predictions. Figure 10 illustrates this and
shows how permutation feature importance can be used with AutoCATE.
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S T DR X R RA Lo Z U F AllMeta

IHDP 4.52±.74 2.52±.37 5.91±.98 5.46±.87 2752.36±1613.91 5.80±.89 2.47±.34 50.09±6.21 7.45±1.12 9.58±.95 1.54±.25 (−37.5%)
ACIC 4.00±.24 4.26±.14 3.61±.22 3.09±.16 477325.02±87957.53 3.27±.19 3.07±.13 150829.14±56790.59 5.75±.43 4.65±.35 1.62±.09 (−47.3%)
Twins .318±.00 .345±.01 .320±.00 .333±.00 77.408±33.07 .323±.00 .360±.00 .546±.01 .418±.01 .376±.00 .321±.00 (+00.9%)
News 2.89±.14 2.53±.07 3.38±.15 2.93±.13 36448.74±13452.34 3.14±.13 2.57±.08 16.06±1.80 2.74±.13 3.41±.11 2.40±.08 (−05.0%)

Table 8: Comparing metalearner precision. For each data set, we compare the different metalearner’s performance in
terms of

√
PEHE, with the best result highlighted in bold. We also include a comparison with searching over all metalearners

(AllMeta) and, in brackets, show how much this outperforms the best single metalearner. For each result, AutoCATE uses a
T -risk with 50 evaluation trials, 200 estimation trials, and top 1 average model selection.
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Figure 9: Comparing metalearner precision and time efficiency. We show each metalearner’s performance in precision
(
√

PEHE) and time (excluding outliers, see Table 8). For each, AutoCATE uses a T -risk with 50 evaluation trials, 200
estimation trials, and top 1 average model selection.

D.3. Stage 3: Ensembling

The ensemble built by AutoCATE can be used to gauge the uncertainty regarding a prediction, by highlighting the spread
of predictions. We illustrate such an analysis in Figure 11.

D.4. Benchmarking AutoCATE

Table 11 presents results for additional benchmarks: S- and T-Learners based on linear or logistic models (without
regularization).

A key challenge in CATE estimation is to deal with covariate shift due to confounding. To validate AutoCATE’s robustness
to this phenomenon, we use a synthetic experiment to precisely conrol selection into treatment and covariate shift and
systematically evaluate performance of different methods. To this end, we use a synthetic data set in which we vary the degree
of selection bias with the parameter γ. We generate 1, 000 instances with covariates X ∼ N (0, 1)5, treatment T ∼ Bin(0, π)
where σ(γutX) and ut ∼ U(−1, 1)5, and non-linear response surfaces–based on vectors u0, u1 ∼ U(−1, 1)5–as:

Y0 = sin(u0X) + ϵ,

Y1 = Y0 + u1X + ϵ2

where ϵ ∼ N (0, 0.1). At γ = 1, less than 1% of the propensities are extreme (< 0.01 or > 0.99). As gamma increases,
this percentage grows to 72% (γ = 10) up to 99% (γ = 1,000). We repeat this experiment ten times. Following the
experiments in the main body, we use a 70 − 30% train-test split. Our results in Figure Figure 12 indicate that while

Data set IHDP ACIC Twins News
Size and dimensions n = 747; d = 25 n = 4,802; d = 58 n = 11,984; d = 46 n = 5,000; d = 3,477

Time required 1’21” 6’00” 29’38” 6’49”

Table 9: AutoCATE time complexity. We show the average runtime required to run AutoCATE’s complete, end-to-end
optimization on a single iteration of different data sets. For each data set, we include the size (n) and dimensionality (d).
AutoCATE uses 50 evaluation trials and 50 estimation trials with the BestMeta–BestBase configuration. These experiments
were conducted locally, on a machine with an AMD Ryzen 7 PRO 4750U processor (1.70 GHz), 32 GB of RAM, and a
64-bit operating system.
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Preprocessing

✓ ✗

IHDP 1.25±.18 1.69±.27

ACIC 1.52±.09 1.58±.09

Twins .315±.00 .320±.00

News 2.33±.06 2.38±.07

Table 10: Analayzing the added value of preprocessing. We compare AutoCATE’s performance with and without
preprocessing included in the search space, in terms of

√
PEHE, with the best result highlighted in bold. Preprocessing

includes feature scaling and selection. AutoCATE results for a T -risk with 50 evaluation trials and 50 estimation trials with
the BestMeta–BestBase configuration.

5 2 9 0 18 19 16 13 4 11 10 3 7 12 15 14 1 24 22 20 21 6 17 8 23

Feature

0.0

0.1

0.2

0.3

0.4

S
q
u

ar
ed

d
is

ta
n

ce

Figure 10: Analyzing AutoCATE’s feature importance. We can analyze how much each feature contributes to treatment
effect heterogeneity. We illustrate this analysis for the first iteration of IHDP using permutation feature importance, showing
the squared distance to the original prediction when permuting a feature column.

AutoCATE’s performance degrades as selection bias increases, increasing the number of search trials helps mitigate this
effect. Even under strong overlap violations (γ > 10), AutoCATE can result in good performance. Compare AutoCATE’s
to benchmark models across different bias levels. These results confirm that AutoCATE consistently performs competitive
to each baseline in settings with moderate bias and remains relatively robust under extreme bias.

Figure 13 shows additional results for two data sets for uplift modeling (see Appendix C for more information on the data).
The effectiveness of AutoCATE is related to at least three factors. First, by using the AUQC metric, the search is aligned
with the downstream task: prioritizing instances for treatment (Vanderschueren et al., 2024). Second, the search space for
AutoCATE includes more meta- and baselearners than the benchmarks. Third, the top five ensemble seems to improve the
stability and accuracy of the predicted ranking.

D.5. Analyzing AutoCATE’s Results

We analyze the results of AutoCATE’s optimized pipelines in Figure 14. These results illustrate how AutoCATE can
facilitate a higher-level, comprehensive analysis of methods for CATE estimation and model validation.

E. Comparing Software Packages for CATE Estimation
Table 12 lists software packages for CATE estimation, comparing their functionalities with AutoCATE. Notably, no other
package is focused on automated, end-to-end CATE estimation.
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Figure 11: Assessing uncertainty with AutoCATE. The ensemble returned by AutoCATE can be used to analyze
uncertainty regarding the prediction. We illustrate this for the first 20 instances of the first iteration of the IHDP data. For
each instance, the (usually unknown) ground truth is shown in green, while the predictions from the top five pipelines are
shown in blue and with a violinplot.

AutoCATE Benchmarks
Top 1 Top 5 S–RF T–RF S–GB T–GB S–LR T–LR

IHDP 1.25±.18 1.38±.21 3.30±.57 2.61±.45 3.02±.52 1.86±.29 5.73±.89 2.41±.39

ACIC 1.52±.09 1.45±.10 1.67±.08 1.65±.09 1.48±.10 1.38±.09 4.13±.25 3.08±.15

Twins .315±.00 .314±.00 .318±.00 .331±.00 .319±.00 .334±.00 .320±.00 .335±.00

News 2.33±.06 2.29±.06 2.46±.09 2.39±.07 2.68±.11 2.40±.06 3.68±.17 2.93±.12

Table 11: Comparing AutoCATE with common benchmarks on CATE estimation. We compare performance in terms of√
PEHE, with the best result highlighted in bold. AutoCATE results for a T -risk with 50 evaluation trials and 50 estimation

trials with the BestMeta–BestBase configuration.
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Figure 12: Analyzing the robustness of AutoCATE to confounding with synthetic data. Using synthetic data, we control
the strength of confounding with a parameter γ. This setup allows to compare the performance of AutoCATE for a different
number estimation and evaluation trials (left) and benchmark its performance to other methods (right).
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Figure 13: Benchmarking AutoCATE for treatment prioritization. We present additional results in terms of AUQC for
two uplift data sets, Hillstrom and Information. These show that AutoCATE is a useful tool for prioritizing instances for
treatment, and highlight that its optimization is more effective at optimizing AUQC compared to the benchmarks based on
µ-risk. AutoCATE uses a T -risk with 50 evaluation trials and the AUQC metric, the BestMeta-BestBase search space, and
Top 1 or Top 5 ensembling.
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Figure 14: AutoCATE enables insights into CATE estimation. We analyze hundreds of pipelines optimized by AutoCATE
(see Section 5). Metalearners—(a) Different metalearners can be optimal for a data set, highlighting the need for searching
across them. (b) The top five pipelines often feature a mix of different metalearners (e.g.{T, T,RA,RA,DR}: 3 unique
types), showing that different metalearners can perform well and suggesting potential for combining them. Baselearners—(c)
The chosen baselearners are also diverse, and (d) different model types favor different ones. Using a single baselearner
is thus likely suboptimal, supporting our choice to tune submodels independently. Risk measures—(e) The correlations
between risk measures, shown here for a single IHDP iteration, can vary strongly. Surprisingly, risk measures can be
strongly negatively correlated, suggesting potential for more advanced multi-objective approaches that adaptively learn
which objectives are reliable for a given data set. Optimal pipelines—(f) There is variability in the optimal pipelines learned
across ten iterations for the Twins data, suggesting that the data generating process is not the only relevant factor.

24



AutoCATE: End-to-End, Automated Treatment Effect Estimation

PACKAGE FUNCTIONALITIES GENERAL INFORMATION
Name (1) (2) (3) (4) Language Reference Link

CausalML ✗* ✓ ✗ ✗ Python (Chen et al., 2020) GitHub
EconML ✓§ ✓ ✓§ ✗ Python — GitHub
DoWhy ✗† ✓ ✗ ✗ Python (Sharma & Kiciman, 2020) GitHub
Causica ✗ ✓ ✗ ✗ Python (Geffner et al., 2022) GitHub

UpliftML ✗ ✓ ✗ ✗ Python (Teinemaa et al., 2021) GitHub
scikit-uplift ✗ ✗ ✗ ✗ Python — GitHub

grf ✗ ✓ ✓‡ ✗ R (Wager & Athey, 2018) CRAN

AutoCATE ✓ ✓ ✓ ✓ Python This work GitHub
*CausalML offers provides some tools for internal validity, such as comparing results across segments.
§EconML includes an R-risk and can provide an ensemble based on this risk measure.
†DoWhy includes robustness checks for assumption violations.
‡The grf package allows for evaluation based on the Targeting Operating Characteristics curve.

Table 12: Software package comparison. We provide an overview of commonly used packages for CATE estimation and
compare their functionalities with AutoCATE, showing whether they support (1) evaluation, (2) estimation, (3) ensembling,
and (4) automated, end-to-end optimization—as provided by AutoCATE or similar.
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https://github.com/uber/causalml
https://github.com/py-why/EconML
https://github.com/py-why/dowhy
https://github.com/microsoft/causica
https://github.com/bookingcom/upliftml
https://github.com/maks-sh/scikit-uplift
https://cran.r-project.org/web/packages/grf/index.html
https://github.com/toonvds/AutoCATE

