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Abstract: Balancing is a fundamental task in the motion control of bipedal robots. Compared to

two-foot balancing, one-foot balancing introduces new challenges, such as a smaller supporting

polygon and control difficulty coming from the kinematic coupling between the center of mass

(CoM) and the swinging leg. Although nonlinear model predictive control (NMPC) may solve this

problem, it is not feasible to implement it on the actual robot because of its large amount of calculation.

This paper proposes the three-particle model predictive control (TP-MPC) approach. It combines

with the hierarchical whole-body control (WBC) to solve the one-leg balancing problem in real

time. The bipedal robot’s torso and two legs are modeled as three separate particles without inertia.

The TP-MPC generates feasible swing leg trajectories, followed by the WBC to adjust the robot’s

center of mass. Since the three-particle model is linear, the TP-MPC requires less computational

cost, which implies real-time execution on an actual robot. The proposed method is verified in

simulation. Simulation results show that our method can resist much larger external disturbance

than the WBC-only control scheme.

Keywords: model predictive control; whole-body control; biped robot balance

1. Introduction

1.1. Background

Motion control of a bipedal robot is a typical multi-task control problem. The robot has
to keep its balance while moving or standing, interact with the environment, and complete
tasks assigned by the user. Among the various tasks, balancing under external disturbance
is a fundamental one for the robot to complete other tasks. Therefore, the balance control of
a bipedal robot while walking or standing on both feet has been widely studied in recent
years. However, the situation where robots stand on one leg and keep their balance has
received little attention. Examples of such a situation include a humanoid trying to reach a
distant object with its arms or a bipedal robot kicking a football. Compared with balancing
on both feet, one-foot balancing presents new challenges, such as significantly reduced
support polygons and reduced overall system stability. Furthermore, if the swing leg is
heavy enough, its motion may significantly affect the motion of the entire robot [1]. In this
sense, the problem of robot balance control with one foot is similar to that of robot balance
control with two arms [2]. From a physical point of view, maintaining the balance of a
biped robot with its arms reduces the difficulty of the control problem because the robot’s
supporting polygon remains unchanged, while extra degrees of freedom can be used to
accomplish the balance task [3]. Therefore, the single-leg balancing stance method can be
applied to dual-arm robots and vice versa.

1.2. Motivation

A bipedal robot’s balancing on one foot is a typical multi-task control problem. The
robot must keep the torso and the stance foot stable, move the swing foot properly, and
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conform to external and internal constraints. The whole-body control (WBC) method has
been widely adopted in the balancing control of bipedal robots due to its capabilities to gen-
erate dynamically feasible control outputs and to handle various tasks and constraints [4].
However, the WBC only considers the current states of the robot and cannot handle strongly
infeasible reference trajectories [5]. The model predictive control (MPC) is commonly used
in conjunction with WBC to complement these insufficiencies [6]. In case of large external
disturbance, the MPC foresees the robot’s future states according to a specific dynamical
model and acts as an online re-planner for the WBC. However, the full dynamics of a
one-foot standing robot are high degrees of freedom and strongly nonlinear. Therefore, an
MPC employing full dynamics has to solve a complicated nonlinear optimization problem.
Thus, the full-dynamics MPC is computationally expensive and cannot be executed in real
time on an actual robot [7–11].

Current MPC algorithms for legged robots usually adopt simplified models [12], for
example, the linear inverted pendulum (LIP) model [2,13,14], the single particle model [15]
or the single rigid body (SRB) model [6], to balance between model precision and computa-
tion time. In the case of balancing on one foot, these models are unsuitable because they
adopt the dynamics model of a particle or a rigid body. Thus, the motion of the swinging
leg cannot be predicted in MPC. In this research, we propose to adopt a three-particle
model in the model predictive control, which is called the three-particle model predictive
control (TP-MPC) approach. It considers the motion of the swing leg and requires far less
computation time than a full-dynamics MPC. As a result, the TP-MPC combined with the
WBC will solve the problem of one-foot balance control for practical biped robots with
real-time computing requirements.

1.3. Related Work

Simplified models have been widely used in the balance control of bipedal robots. For
example, Vukobratovic et al. first proposed the zero moment point (ZMP) concept and
applied it to balance a bipedal robot [16]. Next, Kajita et al. proposed the LIP model, which
simplifies the biped robot into a single mass point moving horizontally and connected to the
ground by a massless retractable stick [17]. Finally, Pratt et al. extended the LIP model to a
Linear Flywheel Inverted Pendulum Model, which takes the robot’s angular momentum
into account [18]. Their method can resist a large external disturbance by computing the
robot’s Capture Point and Capture Region. Li et al. used the momentum to control the
balance of a biped robot, and they found that linear momentum was more critical than
angular momentum in the balance control task. When the two momentum tasks cannot
be satisfied simultaneously due to a significant disturbance, the linear momentum will be
given priority [19].

WBC has also been applied to the bipedal robot’s balancing. Xie et al. used the
hierarchical WBC to maintain a balance of a standing biped robot [20]. Their algorithm
can execute on an onboard computer in real time by optimizing the computing process.
However, their control scheme needs a planner to generate feasible trajectories followed
by the WBC to resist large external disturbances. Kim et al. proposed a new whole-body
control approach called whole-body motion control [21]. It can realize dynamic walking on
a bipedal robot with a passive ankle and maintain balance under external disturbance.

Model predictive control repeatedly solves a finite-horizon optimal control problem
starting from the system’s current states [22]. Moreover, the MPC can prepare for future
motions in advance. Therefore, it is very suitable for highly dynamic motion control of
legged robots. Li et al. applied a single rigid body model predictive control to a biped robot
with light legs [23]. The MPC generates optimal contact forces and torques at each foot,
which are converted to joint torque commands through contact Jacobians. Their method
enables the robot to walk at a speed of 1.6 m/s on complex terrains and achieve a wide
range of dynamic motions. Luo et al. proposed a three-mass model predictive control
method for gait control of biped robots [24]. Their planar three-mass model considers
the robot’s ZMP and angular momentum. The swing leg trajectories are generated by
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heuristics rather than the MPC. Therefore, their method did not utilize the swing leg to
balance the robot.

From a biomimicry point of view, swinging the legs is crucial for the balanced control
of the torso [1]. Boston Dynamics released a video in 2013 of using swinging legs and
arms to adjust posture but did not release relevant technical details [25]. To the best of our
knowledge, other than the two works mentioned above, no literature has been published
on the use of swinging legs to control the balance of biped robots.

1.4. Contribution

The main contributions of this paper are as follows:

1. The proposed TP-MPC method can generate feasible swing leg trajectories that balance
the robot while standing on one foot. The WBC tracks the generated swing leg trajectories.
As a result, the overall control scheme can resist large external disturbances.

2. The TP-MPC catches the main effects of the swing leg motion while being simple
enough to operate at the same frequency as the WBC.

The overall structure of this paper is as follows: In Section 2, the three-particle model
and the TP-MPC are derived. Section 3 introduces the hierarchical whole-body control
approach and the overall control scheme. Section 4 discusses the simulation setups and
results. Finally, Section 5 is for the conclusions and future work.

2. Three-Particle Model Predictive Control

In this section, we derive the three-particle model predictive control method. First, we
introduce the simplified three-particle model for a bipedal robot standing on a single foot.
Our MPC method requires to solve repeatedly a discrete, finite-horizon optimal control
problem as follows:

min
X,U

=
n−1

∑
k=0

∥∥xk+1 − xk+1,re f

∥∥
Qk

+
∥∥uk

∥∥
Rk

(1)

s.t. xk+1 = Akxk + Bkuk, k = 0, 1, · · · , n − 1 (2)

lbk ≤ Ckuk ≤ ubk, k = 0, 1, · · · , n − 1 (3)

where n is the MPC’s prediction length; xk and xk,re f are the actual state and reference state

at step k, uk is the input of step k, and Qk and Rk are the weight matrices,
∥∥λ

∥∥
Γ
= λ⊤

Γλ

means the weighted value of λ of weight Γ . Equations (2) and (3) are equality and inequality
constraints, respectively.

2.1. Three-Particle Simplified Model

Figure 1 shows the three-particle simplified model. The stance leg of the biped robot
is fixed, and the position of the robot’s center of mass can be adjusted by moving the torso
and the swing leg to fall near the desired position. Here, we simplified the legs and the
torso into three mass points without rotational inertia. In most cases, the torso’s center of
mass is located directly above the midpoint of the two hip joints but has an offset in the
sagittal direction.

As shown in Figure 1, pst =
[
pst,x pst,y pst,z

]⊤
, psw =

[
psw,x psw,y psw,z

]⊤
are

the positions of the end of the stance leg and the swing leg in the world coordinate

system, pb =
[
pb,x pb,y pb,z

]⊤
is the position of the torso in the world coordinate system,

ṗst =
[
ṗst,x ṗst,y ṗst,z

]⊤
, ṗsw =

[
ṗsw,x ṗsw,y ṗsw,z

]⊤
are the velocities of the end of

the stance leg and the swing leg in the world coordinate system, ṗb =
[
ṗb,x ṗb,y ṗb,z

]⊤
is the velocity of the torso in the world coordinate system. mst, msw, and mb denote the
mass of the stance leg, swing leg, and torso, respectively. In general, bipedal robots are
symmetrical in the y direction, so the hip joint’s distance from the hip’s center in the y
direction is ly. Let the distance between the torso center of mass and the hip plane be lz,
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and lx is the distance between the torso center of mass in the x direction and the hip motor
of both legs.
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Figure 1. Three-Particle Model.

Let pm,st,pm,sw be the center of mass position of the stance leg and the swing leg,
respectively. To simplify the model, we assume that each leg’s center of mass lies on the
midpoint of the hip and foot, which means

pm,st =
1

2




pb,x + lx + pst,x

pb,y + ly + pst,y

pb,z − lz + pst,z


 (4)

pm,sw =
1

2




pb,x + lx + psw,x

pb,y − ly + psw,y

pb,z − lz + psw,z


 (5)

The robot system’s center of mass can be derived as follows:

mpCoM = mb pb + mst pm,st + msw pm,sw (6)

where m = mb + mst + msw represents the robot’s total mass. Therefore, the robot’s center
of mass at time k is:

pCoM,k =
mb pb,k + mst pm,st,k + msw pm,sw,k

m
(7)

Let x =
[
p⊤

b p⊤
sw ṗ⊤

b ṗ⊤
sw

]⊤
be the state variables of the system, u =

[
p̈⊤

b p̈⊤
sw

]⊤
be the control input. For the model predictive control design, using Taylor expansion, we
obtain the state equation of the discrete-time linear system as:

xk+1 =




I3×3 03×3 ∆tI3×3 03×3

03×3 I3×3 03×3 ∆tI3×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3




︸ ︷︷ ︸
A

xk +

[
1
2 ∆t2 I6×6

∆tI6×6

]

︸ ︷︷ ︸
B

uk (8)



Biomimetics 2022, 7, 244 5 of 22

Substituting Equations (4) and (5) into Equation (7) yields the location of the biped
robot’s center of mass:

pCoM,k =
1

m

[
m1 I3×3 m2 I3×3 03×6

]

︸ ︷︷ ︸
C

xk +
1

2m




mstxst + (msw + mst)lx

mstyst + (msw − mst)ly
mstzst − (msw + mst)lz




︸ ︷︷ ︸
D

(9)

where m1 = 1
2 (msw + mst) + mb and m2 = 1

2 msw.

2.2. Tasks

For the one-foot balance control of a biped robot, the primary task is to minimize the
position and velocity tracking errors of the robot’s center of mass. The position tracking
error of the swing leg should also be minimized. Moreover, the system input should be
regularized to avoid excessive joint torques. Therefore, we formulate the cost function of
the MPC as follows:

J = min
U

n

∑
k=1

∥∥pCoM,k − pCoM,re f ,k

∥∥
Q
+

∥∥ṗCoM,k

∥∥
T
+

∥∥∥psw,k − psw,re f ,k

∥∥∥
S
+

∥∥∥pb,k − pb,re f ,k

∥∥∥
W

+
∥∥uk−1

∥∥
R

(10)

where
∥∥pCoM,k − pCoM,re f ,k

∥∥
Q

is the CoM position tracking task where pre f ,k is the reference

trajectory of the CoM;
∥∥ṗCoM,k

∥∥
T

is the CoM velocity tracking task, where the desired

velocity is set to 0;
∥∥∥psw,k − psw,re f ,k

∥∥∥
S

is the position and velocity tracking task of the

swing leg, where psw,k and psw,re f ,k are the actual and desired trajectory of the swing leg,

respectively;
∥∥∥pb,k − pb,re f ,k

∥∥∥
W

is the position and velocity tracking task of the torso; pb,k

and pb,re f ,k are the actual trajectory and the desired trajectory of the torso;
∥∥uk

∥∥
R

is the input

penalty term; Q ∈ R
3×3, T ∈ R

3×3, S ∈ R
6×6, W ∈ R

6×6, R ∈ R
6×6 are the correspondent

weight matrices.
Substituting Equation (8) into Equation (9), the position of the robot’s center of mass

can be expressed as:

pCoM,k = Cxk + D = CAxk−1 + CBuk−1 + D (11)

The velocity of the center of mass can be obtained by taking the derivative of Equation (6).
Then, its discrete form can be obtained:

ṗCoM,k = Fxk = FAxk−1 + FBuk−1 (12)

where
F =

[
03×3 03×3

m1
m I3×3

m2
m I3×3

]
(13)

The position and velocity of the swing leg can be derived by psw,k = Exk, where

E =

[
03×3 I3×3 03×3 03×3

03×3 03×3 03×3 I3×3

]
(14)

is the selection matrix. Similarly, for the torso position and velocity, pb,k = Gxk, where

G =

[
I3×3 03×3 03×3 03×3

03×3 03×3 I3×3 03×3

]
(15)
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2.3. Constraints

In order to ensure the real-time performance of the model predictive control algo-
rithm, there should not be too many constraints in the MPC. Here, we only constrain the
length of the swing leg to avoid the kinematic singularity. Since the Cartesian distance
L =

√
(x − x1)2 + (y − y1)2 + (z − z1)2 is a nonlinear function of coordinates x, y, z, we

use the Manhattan distance instead. The swing leg’s length constraint is written as

∣∣xb − xsw

∣∣+
∣∣yb − ysw

∣∣+
∣∣zb − zsw

∣∣ ≤ Lleg (16)

Take the intermediate variable sleg =
[
sx sy sz

]⊤
, which satisfies

{
sleg ≥ pb − psw

sleg ≥ psw − pb

(17)

Then,
∣∣sleg

∣∣ ≤ Lleg is equivalent to the constraints of Equation (16). The matrix form of
the constraints can be derived as:





sleg ≥ C1xk

sleg ≥ C2xk

1⊤sleg ≤ Lleg

(18)

where
C1 =

[
I3×3 −I3×3 03×3 03×3

]
(19)

C2 =
[
−I3×3 I3×3 03×3 03×3

]
(20)

1 =
[
1 1 1

]⊤
(21)

2.4. MPC Optimization Problem

2.4.1. Tasks

In order to improve the calculation efficiency, we eliminate the intermediate variables
by substituting system dynamics into the cost function. Equation (8) can be expanded to

x1 =Ax0 + Bu0

x2 =Ax1 + Bu1 = A2x0 + ABu0 + Bu1

...

xn =Axn−1 + Bun−1 = Anx0 + An−1Bu0 + · · ·+ ABun−2 + Bun−1

(22)

Rewrite Equation (22) into matrix form as




x1

x2
...

xn




︸ ︷︷ ︸
X

=




A

A2

...
An




︸ ︷︷ ︸
Ã

x0 +




B 0 · · · 0

AB B · · · 0
...

...
. . .

...

An−1B An−2B · · · B




︸ ︷︷ ︸
B̃




u0

u1
...

un−1




︸ ︷︷ ︸
U

(23)

Then, by replacing the matrices with X, Ã, B̃ and U, Equation (23) can be rewritten as:

X = Ãx0 + B̃U (24)

Similarly, for the robot’s center of mass position,

PCoM = C̃X + D̃ (25)
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where C̃ = diag(C, C, · · · , C) ∈ R
3n×12n, D̃ =

[
D⊤, D⊤, · · · , D⊤

]⊤
∈ R

3n×1. The CoM
velocity can be written as:

ṖCoM = F̃X (26)

where
F̃ = diag(F, F, · · · , F) ∈ R

3n×12n (27)

The position and velocity equations of the swing leg can be written as:

Psw = ẼX (28)

where
Ẽ = diag(E, E, · · · , E) ∈ R

6n×12n (29)

Similarly, the position and velocity equations of the torso can be written as:

Pb = G̃X (30)

where
G̃ = diag(G, G, · · · , G) ∈ R

6n×12n (31)

The stacked acceleration vector is as follows:

U =
[
u⊤

0 , u⊤
1 , · · · , u⊤

n−1

]⊤
∈ R

6n×1 (32)

Therefore, the cost function of Equation (10) can be rewritten as

J̃ = min
U

∥∥PCoM − PCoM,re f

∥∥
Q̃
+

∥∥ṖCoM

∥∥
T̃
+

∥∥Psw − Psw,re f

∥∥
S̃
+

∥∥Pb − Pb,re f

∥∥
W̃

+
∥∥U

∥∥
R̃

(33)

where
Q̃ = diag(Q, Q · · · Q) ∈ R

3n×3n (34)

T̃ = diag(T , T · · · T) ∈ R
3n×3n (35)

S̃ = diag(S, S · · · S) ∈ R
6n×6n (36)

W̃ = diag(W , W · · ·W) ∈ R
6n×6n (37)

R̃ = diag(R, R · · · R) ∈ R
6n×6n (38)

By eliminating the intermediate variables, Equation (33) can be rewritten as

J̃ = min
U

∥∥∥C̃Ãx0 + C̃B̃U + D̃ − PCoM,re f

∥∥∥
Q̃
+

∥∥F̃ Ãx0 + F̃ B̃U
∥∥

T̃
+

∥∥∥ẼÃx0 + ẼB̃U − Psw,re f

∥∥∥
S̃
+

∥∥∥G̃Ãx0 + G̃B̃U − Pb,re f

∥∥∥
W̃

+
∥∥U

∥∥
R̃

(39)

2.4.2. Constraints

According to Equation (3), the stacked form of the swing leg length constraint can be
derived as {

1̃⊤C̃1B̃U ≤ L̃leg − 1̃⊤C̃1 Ãx0

1̃⊤C̃2B̃U ≤ L̃leg − 1̃⊤C̃2 Ãx0

(40)

where
C̃1 = diag(C1, C1, · · · , C1) ∈ R

3n×12n (41)

C̃2 = diag(C2, C2, · · · , C2) ∈ R
3n×12n (42)

L̃leg =
[
Lleg, Lleg, · · · , Lleg

]⊤
∈ R

n×1 (43)

1̃ = diag(1, 1, · · · , 1) ∈ R
3n×n (44)
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2.4.3. The Quadratic Programming Problem

The MPC problem can finally be transformed into the following quadratic optimization
problem, which can be solved by off-the-shell QP solvers:

min
U

1

2
U⊤HqpU + g⊤qpU

s.t. lbqp ≤ AqpU ≤ ubqp

(45)

where

Hqp = H1 + H2 + H3 + H4 + H5 (46)

gqp = g1 + g2 + g3 + g4 + g5 (47)

Aqp =

[
1̃⊤C̃1B̃U

1̃⊤C̃2B̃U

]
(48)

ubqp =

[
L̃leg − 1̃⊤C̃1 Ãx0

L̃leg − 1̃⊤C̃2 Ãx0

]
(49)

H1 = 2B̃⊤C̃⊤Q̃C̃B̃ (50)

H2 = 2B̃⊤ F̃⊤T̃ F̃B̃ (51)

H3 = 2B̃⊤Ẽ⊤S̃ẼB̃ (52)

H4 = 2B̃⊤G̃⊤W̃G̃B̃ (53)

H5 = 2R̃ (54)

g1 = 2B̃⊤C̃⊤Q̃
(
−PCoM,re f + C̃Ãx0 + D̃

)
(55)

g2 = 2B̃⊤ F̃⊤T̃ F̃ Ãx0 (56)

g3 = 2B̃⊤Ẽ⊤S̃
(

ẼÃx0 − Psw,re f

)
(57)

g4 = 2B̃⊤G̃⊤W̃
(

G̃Ãx0 − Pb,re f

)
(58)

g5 = 0 (59)

3. Hierarchical Whole-Body Control

3.1. Problem Formulation

The generalized coordinates of the floating base bipedal robot are defined as:

q =

[
q f

qj

]
∈ R

nq (60)

where q f ∈ R
n f represents the position and orientation of the robot’s floating base relative

to the inertial coordinate system, and qj ∈ R
nj represents the angle of the actuated joints of

the robot and nq = n f + nj. The dynamic equation of the system is formulated as

M(q)q̈ + h(q, q̇) =

[
0n f ×1

τj

]
+ J⊤c (q)ωc (61)

where q̇ and q̈ are the first and second-order derivative of q, respectively, M(q) ∈ R
nq×nq

is the mass matrix of the robot, h(q, q̇) ∈ R
nq collects the Coriolis force, centrifugal force

and gravity, and τj ∈ R
nj is the joint torque: ωc,h =

[
f⊤c,h τ⊤

c,h

]⊤
∈ R

6×1 is the external

wrench applied to one leg, including three-dimensional external contact force and three-
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dimensional contact torque. For the biped robot, ωc =
[
ω⊤

c,0 ω⊤

c,1

]⊤
∈ R

12×1. Jc(q) ∈

R
12×nq is the contact Jacobian matrix.

In order to enable the robot to complete tasks with different priorities, a quadratic
programming method with priority hierarchy was proposed [26]. The idea is to put
the solution space of the upper priority level as a constraint of the lower level in the
optimization problem. The optimization problem of the ith level task is defined as:

min
χi

∥∥Aiχi − bi

∥∥
Qi

s.t. ldi 6 Ciχi 6 udi

A
aug
i−1χi = A

aug
i−1χ∗

i−1

ld
aug
i−1 6 C

aug
i−1χi 6 ud

aug
i−1

(62)

where Ai and bi represent the task matrix and target vector corresponding to the current
priority. If multiple tasks have the same priority, they could be weighted and combined
by a diagonal matrix Qi. Ci, ldi and udi represent the constraint matrix, lower bound, and

upper bound of all constraints of the current priority. A
aug
i−1 =

[
A
⊤

1 · · · A
⊤

i−1

]⊤
is the

augmented task matrix corresponding to all tasks in the previous priority, and χ∗
i−1 is the

optimal solution of the previous priority. C
aug
i−1, ld

aug
i−1, ud

aug
i−1, with a similar form of A

aug
i−1,

represent the augmented constraint matrix and bounds corresponding to all constraints in
the previous priority. Here, the tasks in level i have higher priorities than tasks in level j
when i < j. χi in level i represents the optimization variables to complete the tasks with
priorities higher than i + 1, which means that the final optimal solution of multi-tasks with
priority level nl is χ∗

nl
.

Here, we select the generalized joint acceleration and the contact wrench as the
optimization variables in each level:

Υ =

[
q̈

ωc

]
(63)

3.2. Tasks

The definition of each level’s tasks and constraints is given in Table 1. The floating
base dynamics task is the basis of all motions of the mobile robot, and all the active forces
come from joint motors, so the floating base dynamics task and joint moment constraints
are set as the first priority. The linear momentum and trunk posture are critical factors for
robot stability, while the ZMP constraint and the plantar friction cone constraint can ensure
that the foot of the biped robot will not flip and slip, so these tasks and constraints are
set as the second priority. The position of the robot’s feet, posture task, and plantar force
screw task are set as the third priority. The detailed definition of each task and constraint is
as follows.

Table 1. Tasks, Constraints, and Priority Setting of Whole-Body Control for Single Leg Balance Standing.

Priority Tasks Tasks Dimension Constraints Constraints Dimension

1 Floating Base Dynamics 6 Joint Torque 10

2
Linear Momentum

6
ZMP

9
Torso Posture Friction Cone

3
Foot Position & Posture

16
Contact Wrench
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3.2.1. Floating Base Dynamics Task

The first six rows of Equation (61) are part of the floating base dynamics, and it can be
extracted by a selection matrix S f :

S f M(q)q̈ + S f h(q, q̇) = S f

[
06×1

τj

]
+ S f J⊤c (q)ωc (64)

where S f =
[

In f ×n f
0n f ×nj

]
. Rearrange Equation (64) into the form of Aiχi = bi:

[
S f M −S f J⊤c

][ q̈

ωc

]
= −S f h (65)

Therefore, A0 =
[
S f M −S f J⊤

]
∈ R

n f ×(nq+12), b0 = −S f h ∈ R
n f .

3.2.2. Centroidal Dynamics Task

Set the desired external force of the centroid task as fG,des ∈ R
3, and design the

following PD controller to track the centroid task:

fG,des = m[Kp,0(pG,tar − pG) + Kd,0(ṗG,tar − ṗG) + p̈G,tar] (66)

A1,CoM =
[
SG AG 03×12

]
∈ R

3×(nq+12) (67)

b1,CoM = fG,des − SG ȦGq̇ ∈ R
3 (68)

where pG,tar ∈ R
3, ṗG,tar ∈ R

3 and p̈G,tar ∈ R
3 represent the desired position, velocity, and

acceleration, respectively; pG ∈ R
3, ṗG ∈ R

3 and p̈G ∈ R
3 represent the actual position,

velocity, and acceleration, respectively; SG =
[
I3×3 03×3

]
represents the selected matrix,

AG ∈ R
6×nq represents the centroidal momentum matrix [27]; Kp,0 ∈ R

3×3 and Kd,0 ∈ R
3×3

represent PD gain matrices.

3.2.3. Torso Orientation Task

Set the desired acceleration of the torso orientation task as θ̈t,des ∈ R
3, and design the

following PD controller to track the torso orientation:

θ̈t,des = Kp1(θt,tar − θt) + Kd1(θ̇t,tar − θ̇t) + θ̈t,tar (69)

where θt,tar ∈ R
3, θ̇t,tar ∈ R

3, and θ̈t,tar ∈ R
3 represent the desired torso orientation angle,

angular velocity, and angular acceleration, respectively; θt ∈ R
3, θ̇t ∈ R

3 and θ̈t ∈ R
3

represent the actual torso orientation angle, angular velocity, and angular acceleration,
respectively; Kp,1 ∈ R

3×3 and Kd,1 ∈ R
3×3 represent PD parameter matrices.

The first six rows in the optimization variable Υ represent the position and orienta-
tion of the torso, and the fourth to sixth rows are the torso orientation, so, for the torso
orientation task:

A1,torso =
[
03×3 I3×3 03×(nj+12)

]
(70)

b1,torso = θ̈t,des (71)

3.2.4. Feet Position and Orientation Task

As above, let r̈ f ,des ∈ R
12 be the desired acceleration of the foot posture, and the PD

controller is designed as follows:

r̈ f ,des = Kp2(r f ,tar − r f ) + Kd2(ṙ f ,tar − ṙ f ) + r̈ f ,tar (72)
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where r f ,tar ∈ R
12, ṙ f ,tar ∈ R

12 and r̈ f ,tar ∈ R
12 represent the desired foot posture, velocity,

and acceleration, respectively; r f ∈ R
12, ṙ f ∈ R

12 and r̈ f ∈ R
12 represent the actual foot

posture, velocity and acceleration, respectively; Kp,2 ∈ R
12×12 and Kd,2 ∈ R

12×12 represent
PD parameter matrices.

The acceleration of the foot of the end can be obtained according to the following equation:

Jcq̈ + J̇cq̇ = r̈ f ,des (73)

Then,
A2, f eet =

[
Jc 012×12

]
∈ R

12×(nq+12) (74)

b2, f eet = r̈ f ,des − J̇cq̇ ∈ R
12 (75)

3.2.5. Contact Wrench Task

The contact wrench task tracks the desired contact wrench. Let ωc,des be the desired
contact wrench. The last 12 dimensions of the optimization variable Υ are the contact
wrench, so for the contact wrench task,

A2,wrench =
[
012×nq I12×12

]
(76)

b2,wrench = ωc,des ∈ R
12 (77)

3.3. Constraints

3.3.1. Joint Torque Constraint

The last ten rows of Equation (61) represent the actuated joints, which should be
limited by torque:

Sj M(q)q̈ + Sjh(q, q̇) = Sj

[
06×1

τj

]
+ Sj J

⊤
c (q)ωc (78)

where Sj =
[
0nj×n f

Inj×nj

]
represents the selection matrix. The joint torque can be

derived as:
τj = Sj Mq̈ + Sjh − Sj J

⊤
c ωc (79)

Therefore, the joint torque constraint is:

− τlimit ≤ τj ≤ τlimit (80)

where τlimit ∈ R
nj is the torque limit of each actuated joint. Then, it can be obtained that:

C0 =
[
Sj M −Sj J

⊤
c

]
∈ R

nj×(nq+12) (81)

ld0 = −τlimit − Sjh ∈ R
nj (82)

ud0 = τlimit − Sjh ∈ R
nj (83)

3.3.2. ZMP Constraint

According to [28,29], the ZMP constraint on x direction can be written as

l−x ≤
−τc,y − fc,xd

fc,z
≤ l+x (84)
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where l−x and l+x are the minimum and maximum values of ZMP, d is the vertical distance
between the foot joint and the ground. τc,y is the moment applied to the foot in the direction
of y, fc,x, and fc,z represent the force applied to the foot in the direction of x and z. For the
y direction, the ZMP constraint can be derived similarly. Rewrite the ZMP constraints in
matrix form, where

Czmp =




−d 0 −l−x 0 −1 0
d 0 l+x 0 1 0
0 −d −l−y −1 0 0

0 d l+y 1 0 0


 (85)

C1,zmp =

[
04×16 Czmp 04×6

04×16 04×6 Czmp

]
(86)

ld1,zmp = 08×1 (87)

ud1,zmp = ∞8×1 (88)

3.3.3. Foot Friction Cone Constraint

The stance leg’s ground reaction force should stay in the friction cone to avoid slipping.
Here, we employ a pyramid approximation of the friction cone and formulate the foot
friction cone constraint as ∣∣ fx,y

∣∣ ≤ µ fz (89)

where µ is the coefficient of friction; fx,y is the resultant force in the direction of x and y,
and fz is the force in the direction of z. Expand and arrange the aforementioned equation
into the matrix form:

C f =




1 0 µ

−1 0 µ

0 1 µ

0 −1 µ

0 0 1




(90)

C1, f riction =

[
05×16 C f 05×3 05×3 05×3

05×16 05×3 05×3 C f 05×3

]
(91)

lb1, f riction = 010×1 (92)

ub1, f riction = ∞10×1 (93)

3.4. Control Framework

Figure 2 shows the overall control framework. Both TP-MPC and WBC run at 1 kHz.
The input of TP-MPC is the desired position of CoM, swing leg, and torso in the future n
steps. WBC then takes the target trajectory of the swing leg calculated by TP-MPC and
the target trajectory of CoM and torso orientation given by the stand planner as input.
Although TP-MPC can also obtain the trajectories of the torso and CoM, we do not use
them in our controller.



Biomimetics 2022, 7, 244 13 of 22

Stand

Planner

State Estimator

 !,"# 
$ !,"# 
% !,"# 

&'

 ! $ ! (" $("

)*+ $)*+

WBC

Level-3

Foot Position & Posture 

Foot Contact Wrench

Level-2

Linear Momentum 

Torso Posture

Friction Cone & ZMP

Level-1

Floating base dynamics

Joint Torque Saturation

Three Particle MPC

QP Solver

Linear Momentum

Torso Position

Foot Position

Swing leg length

 !"#":

Constraints:

$%&'( $%") $%*

%+,-!. /%+,-!. 0%+,-!. 1-,-!. /1-,-!. 01-,-!.

$2&'(,.34
$2"),.34
$2*,.34

Figure 2. Overall control framework.

4. Simulation Results and Discussion

4.1. Simulation Setup

The simulation platform is the open-source robot simulator Webots [30]. The con-
trol algorithms are implemented with C++. We adopt the rigid body dynamics library
(RBDL) [31] to calculate robot kinematics and dynamics and the qpOASES [32] toolkit to
solve quadratic programming problems. The simulation environment and the controller
run on a computer with an i7-11800H 2.30 GHz processor, 32 GB memory, and RTX3070
8 GB RAM GPU.

The bipedal robot in simulation has ten actuated joints and a total weight of 45 kg.
The weights of the torso and a single leg are 22 kg and 11.5 kg, respectively. A single leg
accounts for around one-fourth of the robot’s total weight, which implies a significant
effect of the swing leg’s motion on the entire robot states. The robot’s soles are 0.22 m-by-
0.1 m rectangles.

As shown in Figure 3, the biped robot stands on a single leg, and a rigid hanging ball
swings down to hit the robot. The suspension point of the ball is vertically above the robot.
The ball is released from the same height and angle with zero initial speed. The robot’s
torso is hit 0.8 m above the ground in the frontal or the side direction. The initial height of
the robot’s CoM is 0.604 m. Therefore, the hit will exert a net torque concerning the robot’s
CoM. By increasing the rigid ball’s mass, the impulse received by the robot at the instance
of impact increases, meaning larger external disturbance. We compare our control scheme
with the WBC-only control scheme in each experiment. For both control schemes, the WBC
part is the same. For the WBC-only scheme, the desired torso and leg trajectories remain
equal to their initial values.
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Figure 3. Schematic diagram of collision experiment.

4.2. Results

4.2.1. Frontal Impact

In the frontal impact experiment, the rigid ball swings along the x-axis and hits the
center of the torso’s front surface. When the mass of the rigid ball is 9 kg or 11 kg, the robot’s
CoM trajectories during the impact and recovery stages are shown in Figures 4 and 5,
respectively. In the 9 kg case, both control schemes can resist the external disturbance
and bring the robot’s CoM back to its initial position, but our MPC-WBC scheme achieves
smaller CoM motions and faster recovery than the WBC-only scheme. For both control
schemes, Figures 6 and 7 show the actual trajectories of the swing leg’s foot end and the
correspondent reference trajectories given to WBC. For the WBC-only scheme, the WBC’s
reference trajectories are constant, while the actual trajectories deviate significantly from
the reference. This deviation results from the WBC sacrificing the foot-end tracking task
for the high-priority CoM tracking task. For our MPC-WBC scheme, the reference foot
end trajectories provided by the MPC and the actual trajectories almost coincide with each
other. This suggests that the MPC generates swing foot trajectories that are coherent with
the CoM tracking targets. It is also observed that the MPC-WBC scheme generates larger
swing foot motions than the WBC-only scheme, which confirms the swing leg’s vital role
in balancing the robot.

When the ball’s mass increases to 11 kg, the WBC-only scheme causes the divergence
of the robot’s CoM trajectories and thus the failure of the entire robot. However, our
MPC-WBC scheme can still withstand the impact. Screenshots in Figure 8 depict the robot’s
motions during the impact and recovery process under our MPC-WBC scheme. Significant
forward and upward motions of the swing leg can be observed after the impact, implying
that our method successfully utilizes the swing leg motions to balance the robot.

Figures 9 and 10 show the robot’s centroidal pitch angular momentum. Although
the rotational dynamics are not included in our TP-MPC, the simulation results show that
our method is sufficient to deal with a certain degree of torque perturbation relative to
the CoM.

Figure 11 shows the computation time cost of the TP-MPC algorithm. It can be seen
that most of the computations are within 500 µs.
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Figure 4. CoM position of the robot under the frontal impact of a 9 kg rigid ball.
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Figure 5. CoM position of the robot under the frontal impact of an 11 kg rigid ball.

Figure 6. Swing foot position of the robot under the frontal impact of a 9 kg rigid ball.
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Figure 7. Swing foot position of the robot under the frontal impact of an 11 kg rigid ball.

Figure 8. Screenshots of the motions generated by our method in the frontal impact test.
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Figure 9. Centroidal pitch angular momentum of the robot under the frontal impact of a 9 kg rigid ball.
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Figure 10. Centroidal pitch angular momentum of the robot under the frontal impact of an 11 kg

rigid ball.

(a) (b)

Figure 11. Computation time cost of TP-MPC in the frontal impact test. (a) 9 kg ball; (b) 11 kg ball.

4.2.2. Side Impact

Compared with frontal impact, the robot is more vulnerable to side impact since the
supporting polygon is narrower in the side direction. For side impact, when the ball’s
mass is 2.7 kg or 3.2 kg, the robot’s CoM trajectories during the impact and recovery
stages are shown in Figures 12 and 13, respectively. Figures 14 and 15 show the actual
trajectories of the swing leg’s foot end and the correspondent reference trajectories given
to WBC. Figures 16 and 17 show the robot’s centroidal roll angular momentum. Similar to
the situation of frontal impact in Section 4.2.1, both control schemes can balance the robot
under the 2.7 kg ball’s impact, with our MPC-WBC scheme achieving better performance.
Under the 3.2 kg ball’s impact, the WBC-only scheme fails, while our scheme still balances
the robot. Screenshots in Figure 18 show that the robot can also side-swing its leg under a
side impact. Figure 19 shows the computation time cost of the TP-MPC algorithm when
the robot is subjected to a side impact.
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Figure 12. CoM position of the robot under the side impact of a 2.7 kg rigid ball.

Time (s)

C
o
M

 Y
 P

o
s
 (

m
)

Tar

WBC-only Act

MPC+WBC Act

Time (s)

C
o
M

 Z
 P

o
s
 (

m
)

Tar

WBC-only Act

MPC+WBC Act

Figure 13. CoM position of the robot under the side impact of a 3.2 kg rigid ball.

Figure 14. Swing foot position of the robot under the side impact of a 2.7 kg rigid ball.
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Figure 15. Swing foot position of the robot under the side impact of a 3.2 kg rigid ball.
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Figure 16. Centroidal roll angular momentum of the robot under the side impact of a 2.7 kg rigid ball.
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Figure 17. Centroidal roll angular momentum of the robot under the side impact of a 3.2 kg rigid ball.

Figure 18. Screenshots of the motions generated by our method in the side impact test.
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(a) (b)

Figure 19. Computation time cost of TP-MPC in the side impact test. (a) 2.7 kg ball; (b) 3.2 kg ball.

4.3. Discussion

In the WBC, the centroidal dynamics task is considered the second-priority task. Due
to its existence, the biped robot can mobilize all joints to maintain the position and velocity
of the CoM. Therefore, the WBC-only controller has a certain degree of anti-interference
ability. However, it may fail to deal with a considerable impact. The centroidal dynamics
task is expressed on the acceleration level. When the acceleration required to achieve the
second-priority tasks has been satisfied, the third-priority tasks will be executed as much
as possible. That is to say, the WBC will execute the task of swing foot to some extent, even
if the robot’s CoM has not returned to its initial state. In the WBC-only control scheme, the
desired trajectory of the swing foot only keeps the initial state unchanged, which is almost
unhelpful for maintaining the stability of the CoM. On the contrary, in our control scheme,
the TP-MPC provides the swing foot with the desired motion trajectory that can balance
the position of the CoM. The task of swing foot is almost consistent with the centroidal
dynamics task in WBC. Therefore, the control scheme with TP-MPC shows a better ability
to maintain the stability of the center of mass.

In the above experiments, the maximum computation time of our TP-MPC is 961 µs,
and the average value is about 200 µs. Through proper optimization in coding, our
algorithm can run at the frequency of 1 kHz on the real robot.

5. Conclusions

This paper proposes the three-particle model predictive control scheme to solve the
balance control problem of a bipedal robot standing on one foot. We verified our control
scheme in simulation. Compared with the WBC-only control scheme, our scheme can
resist much larger disturbances and bring the robot back to its initial state much faster.
Although the TP-MPC discards the complicated full dynamics of the robot, it can still
catch the main effects of the swing leg motions on the robot’s CoM. Furthermore, since our
MPC employs only linear dynamics and constraints, it requires little computational cost,
implying real-time execution at the same frequencies as the WBC on a real robot.

Our controller also has some deficiencies. The three-particle model may be over-
simplified in some cases, for example, where the robot’s legs or torso have large angular
velocities. In the future, we plan to improve our simplified model, for example, including
the rigid body’s rotational inertia or adding more particles to the model. We also plan to
verify our method on an actual bipedal robot.
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