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Abstract

We propose Manifold Free-Form Flows (M-FFF), a simple new generative model
for data on manifolds. The existing approaches to learning a distribution on
arbitrary manifolds are expensive at inference time, since sampling requires solving
a differential equation. Our method overcomes this limitation by sampling in a
single function evaluation. The key innovation is to optimize a neural network
via maximum likelihood on the manifold, possible by adapting the free-form
flow framework to Riemannian manifolds. M-FFF is straightforwardly adapted
to any manifold with a known projection. It consistently matches or outperforms
previous single-step methods specialized to specific manifolds. It is typically two
orders of magnitude faster than multi-step methods based on diffusion or flow
matching, achieving better likelihoods in several experiments. We provide our code
at https://github.com/vislearn/FFF.

1 Introduction

Generative models have achieved remarkable success in various domains such as image synthesis
[Rombach et al., 2022], natural language processing [Brown et al., 2020], scientific applications [Noé
et al., 2019] and more. However, the approaches are not directly applicable when dealing with data
inherently structured in non-Euclidean spaces, which is common in fields such as the natural sciences,
computer vision, and robotics. Examples include earth science data on a sphere, the orientation of
real-world objects given as a rotation matrix in SO(3), or data on special geometries modeled by
meshes or signed distance functions. Representing such data naively using internal coordinates, such
as angles, can lead to topological issues, causing discontinuities or artifacts.

Luckily, many generative models can be adapted to handle data on arbitrary manifolds. However, the
predominant methods compatible with arbitrary Riemannian manifolds involve solving differential
equations—stochastic (SDEs) or ordinary (ODEs)—for sampling and density estimation [Rozen et al.,
2021, Mathieu and Nickel, 2020, Huang et al., 2022, De Bortoli et al., 2022, Chen and Lipman, 2024].
These methods are computationally intensive due to the need for numerous function evaluations
during integration, slowing down inference.

To address these challenges, we introduce a novel approach for modeling distributions on arbitrary
Riemannian manifolds that circumvents the computational burden of previous methods. This is
achieved by using a single feed-forward neural network on an embedding space as a generator, with
outputs projected to the manifold (Fig. 1). We learn this network as a normalizing flow, facilitated by
generalizing the free-form flow framework [Draxler et al., 2024, Sorrenson et al., 2024] to Riemannian
manifolds. The core innovation is estimating the gradient of the negative log-likelihood within the
tangent space of the manifold.

In particular, we make the following contributions:
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Figure 1: Manifold Free-Form Flows (M-FFF) learn generative models on a variety of manifolds.
(Left) The learned distributions (colored surface) accurately match the test points (black dots).
(Right) We parameterize M-FFF using a neural network in an embedding space, whose outputs are
projected to the manifold. This enables simulation-free training and inference, and naturally respects
the corresponding geometry, yielding fast sampling and continuous distributions regardless of the
manifold.

• We extend free-form flows to Riemannian manifolds, yielding manifold free-form flows
(M-FFF) in Section 4.

• M-FFF can easily be adapted to arbitrary Riemannian manifolds, requiring only a projection
function from an embedding space.

• It only relies on a single function evaluation during training and sampling, speeding up
inference over multi-step methods typically by two orders of magnitude.

• M-FFF consistently matches or outperforms previous single-step methods on several bench-
marks on spheres, tori, rotation matrices, hyperbolic space and curved surfaces (see Fig. 1
and Section 5). In addition, it is consistently faster than multi-step methods by two orders of
magnitude, while also outperforming them in terms of likelihood in several cases.

Together, manifold free-form flows offer a novel and efficient approach for learning distributions on
manifolds, applicable to any Riemannian manifold with a known embedding and projection.

2 Related work

Table 1: Feature comparison of generative models on manifolds. We give a “✓” if any method in a
category meets this requirement.

Respects topology Single step sampling Arbitrary manifolds

Euclidean ✗ ✓ ✓
Specialized ✓ ✓ ✗
Continuous time ✓ ✗ ✓
M-FFF (ours) ✓ ✓ ✓

Existing work on learning distributions on manifolds can be broadly categorized as follows: (i)
leveraging Euclidean generative models; (ii) building specialized architectures that respect one
particular kind of geometry; and (iii) learning a continuous time process on the manifold. We
compare our method to these approaches in Table 1 and give additional detail below.

Euclidean generative models. One approach maps the n-dimensional manifold to Rn and learns
the resulting distribution [Gemici et al., 2016]. Another approach generalizes the reparameterization
trick to Lie groups by sampling on the Lie algebra which can be parameterized in Euclidean space
[Falorsi et al., 2019]. These approaches come with the downside that a Euclidean representation
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may not respect the geometry of the manifold sufficiently, e.g. mapping the earth to a plane causes
discontinuities at the boundaries. This can be overcome by learning distributions on overlapping
charts that together span the full manifold [Kalatzis et al., 2021]. An orthogonal solution is to embed
the data and add noise to it in the off-manifold directions, so that the distribution can be learnt directly
in an embedding space Rm [Brofos et al., 2021]; this only gives access to an ELBO instead of the
exact density. Our method also works in the embedding space so that it respects the geometry of the
manifold, but directly optimizes the likelihood on the manifold.

Specialized architectures take advantage of the specific geometry of a certain kind of manifold
to come up with special coupling blocks for building normalizing flows such as SO(3) [Liu et al.,
2023], SU(d), U(d) [Boyda et al., 2021, Kanwar et al., 2020]; hyperbolic space [Bose et al., 2020];
tori and spheres [Rezende et al., 2020]. Manifold free-form flows are not restricted to one particular
manifold, but can be easily applied to any manifold for which an embedding and a projection to the
manifold is known. As such, our model is an alternative to all of the above specialized architectures.

Continuous time models build a generative model based on parameterizing an ODE or SDE on any
Riemannian manifold, meaning that they specify the (stochastic) differential equation in the tangent
space [Rozen et al., 2021, Falorsi, 2021, Falorsi and Forré, 2020, Huang et al., 2022, Mathieu and
Nickel, 2020, De Bortoli et al., 2022, Chen and Lipman, 2024, Lou et al., 2020, Ben-Hamu et al.,
2022]. These methods come with the disadvantage that sampling and density evaluation integrates
the ODE or SDE, requiring many function evaluations. Our manifold free-form flows do not require
repeatedly evaluating the model, a single function call followed by a projection is sufficient.

At its core, our method generalizes the recently introduced free-form flow (FFF) framework [Draxler
et al., 2024] based on an estimator for the gradient of the change of variables formula [Sorrenson
et al., 2024]. We give more details in Section 3.1.

3 Background

In this section, we provide the background for our method: We present an introduction to free-form
flows and Riemannian manifolds.

3.1 Free-form flows

Free-form flows are a class of generative models that generalize normalizing flows to work with
arbitrary feed-forward neural network architectures [Draxler et al., 2024].

Euclidean change-of-variables Traditionally, normalizing flows are based on invertible neural
networks (INNs, see Kobyzev et al. [2021] for an overview) that learn an invertible transformation
z = fθ(x) mapping from data x ∈ Rn to latent codes z ∈ Rn. This gives an explicitly parameterized
probability density pθ(x) via the change-of-variables:

log pθ(x) = log pZ(fθ(x)) + log |f ′θ(x)|, (1)

where f ′θ(x) ∈ Rn×n is the Jacobian matrix of fθ(x) with respect to x, evaluated at x; |f ′θ(x)| is its
absolute determinant. The distribution of latent codes pZ(z) is chosen such that the log-density is
easy to evaluate and it is easy to sample from, such as a standard normal. Normalizing flows can be
trained by minimizing the negative log-likelihood over the training data distribution:

min
θ

LNLL = min
θ

Epdata(x)[− log pθ(x)]. (2)

This is equivalent to minimizing the Kullback-Leibler-divergence between the true data distribution
and the parameterized distribution KL(pdata∥pθ). Sampling from the model is achieved by pushing
samples from the latent distribution z ∼ pZ through the inverse of the learned function: x =
f−1
θ (z) ∼ pθ.

Euclidean gradient estimator Naively computing the volume change log |f ′θ(x)| in Eq. (1) is
expensive since it contains the full Jacobian matrix f ′θ(x) ∈ Rn×n, requiring O(n) automatic differ-
entiation steps to compute. Normalizing flow architectures usually avoid this expensive computation
by further restricting the architecture to allow fast computation. Luckily, even if such a shortcut is not
available, its gradient, which is all we need for training, can still be efficiently estimated as follows:
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Theorem 1 (Volume change gradient estimator, Draxler et al. [2024]). Let fθ : Rn → Rn be a
diffeomorphism. Let v ∈ Rn be a random variable with zero mean and unit covariance. Then, the
derivative of the volume change has the following trace expression, where z = fθ(x):

∇θ log |f ′θ(x)| = tr((∇θf
′
θ(x))f

′−1
θ (z)) (3)

= Ev
[
vT (∇θf

′
θ(x))f

−1
θ

′
(z)v

]
. (4)

Replacing the expected value over v by a single sample, and using a stop-grad (SG) operation,
Theorem 1 allows us to compute a term whose gradient is an unbiased estimator for the gradient of
Eq. (2):

∇θLNLL(x) ≈ ∇θ(− log pZ(z)− vT f ′θ(x)SG(f
−1
θ

′
(z)v)). (5)

Comparing Eqs. (1) and (5) reveals that log |f ′θ(x)| is replaced by a single vector-Jacobian vT f ′θ(x)
and a Jacobian-vector product f−1

θ

′
(z)v, each of which require only one automatic differentiation

operation. Note that while the gradient estimate is unbiased, computing the term in the brackets is
not informative about LNLL. Thus, for density estimation at inference, Eq. (1) is explicitly evaluated
using the full Jacobian.

Free-form architectures The central idea of free-form flows is to soften the restriction that the
learned model be invertible. Instead, they learn two separate networks, an encoder fθ and a decoder
gϕ coupled by a reconstruction loss, circumventing the need for an invertible neural network fθ:

LR = Epdata(x)

[
∥gϕ(fθ(x))− x∥2

]
. (6)

Together, this gives the loss of free-form flows with β, the reconstruction weight as a hyperparameter:

LFFF = LNLL + βLR. (7)

This allows replacing constrained invertible architectures with free-form neural networks. Since fθ is
not restricted to efficiently compute the volume change, free-form flows use Eq. (5) to compute the
gradient of LNLL. To compute Eq. (5), free-form flows approximate f−1

θ

′
(z) (which is not tractable)

by g′ϕ(z) during training:

∇θLNLL(x) ≈ ∇θ(− log pZ(z)− vT f ′θ(x)SG(g
′
ϕ(z)v)). (8)

For density estimation at inference, Draxler et al. [2024] recommend using the explicit decoder
Jacobian for the volume change.

3.2 Riemannian manifolds

A manifold is a fundamental concept in mathematics, providing a framework for describing and
analyzing spaces that locally resemble Euclidean space, but may have different global structure. For
example, a small region on a sphere is similar to the Euclidean plane, but walking in a straight line on
the sphere in any direction will return back to the starting point, unlike on a plane.

Mathematically, an n-dimensional manifold, denoted as M, is a space where every point has a
neighborhood that is topologically equivalent to Rn. A Riemannian manifold (M, G) extends the
concept of a manifold by adding a Riemannian metric G which introduces a notion of distances
and angles. At each point x on the manifold, there is an associated tangent space TxM which is an
n-dimensional Euclidean space, characterizing the directions in which you can travel and still stay on
the manifold. The metric G acts in this space, defining an inner product between vectors. From this
inner product, we can compute the length of paths along the manifold, distances between points as
well as volumes (see next section).

In this paper, we consider Riemannian manifolds globally embedded into anm-dimensional Euclidean
space Rm, with n ≤ m. Embedding means that we represent a point on the manifold x ∈ M as
a vector in Rm confined to an n-dimensional subspace; we write x ∈ M ⊆ Rm and denote by
π : Rm → M a projection from the embedding space to the manifold. A global embedding is a
smooth, injective mapping of the entire manifold into Rm, its smoothness preserving the topology.

In most cases, we work with, but are not limited to, isometrically embedded manifolds, meaning that
the metric is inherited from the ambient Euclidean space. Intuitively, this means that the length of a
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Table 2: Manifolds, a global embedding and corresponding projections considered in this paper.

Manifold Dimension n Embedding Projection

Generic rank(π′(π(x))) {x ∈ Rm : π(x) = x} x 7→ π(x)

Rotations SO(d) (d− 1)d/2 {Q ∈ Rd×d : QQT = I, detQ = 1} R 7→ argminQ∈SO(d) ∥Q−R∥F ; see Eq. (102)
Sphere Sn n {x ∈ Rn+1 : ∥x∥ = 1} x 7→ x/∥x∥
Torus Tn = (S1)n n {X ∈ Rn×2 : ∥Xi∥ = 1 for i = 1...n} Xi 7→ Xi/∥Xi∥ for i = 1...n
Hyperbolic Hn n {x ∈ Rn : ∥x∥ < 1} x 7→ xmin{1, (1− ϵ)/∥x∥}

path on the manifold is just the length of the path in the embedding space. We note that due to the Nash
embedding theorem [Nash, 1956], every Riemannian manifold has a smooth isometric embedding
into Euclidean space of some finite dimension, so in this sense using isometric embeddings is not
a limitation. Nevertheless, for some manifolds (especially with negative curvature, e.g. hyperbolic
space) there may not be a sensible isometric embedding.

4 Manifold free-form flows

The free-form flow (FFF) framework allows training any pair of parameterized encoder fθ(x) and
decoder gϕ(z) as a generative model, see Section 3.1. In this section, we demonstrate how to
generalize the steps in Section 3.1 to arbitrary Riemannian manifolds. Note that for simplicity, we
choose the same manifold in data and latent spaces, i.e. MX = MZ = M, but the method readily
applies to MX ̸= MZ or GX ̸= GZ as long as they are topologically compatible, like a sphere and a
closed 3D surface without holes. The detailed derivations in the appendix consider this generalization.

Manifold change of variables The volume change on manifolds generalizes the Euclidean variant
in Eq. (1) by (a) considering the change of volume in the tangent space and (b) accounting for volume
change due to changes in the metric:

Theorem 2 (Manifold change of variables). Let (M, G) be a n-dimensional Riemannian manifold
embedded in Rm, i.e., M ⊆ Rm. Let pX be a probability distribution on M and let f : M → M
be a diffeomorphism. Let pZ be the pushforward of pX under f (i.e., if pX is the probability density
of X , then pZ is the probability density of f(X)).

Let x ∈ M. DefineQ ∈ Rm×n as an orthonormal basis for TxM andR ∈ Rm×n as an orthonormal
basis for Tf(x)M.

Then, the probability densities pX and pZ are related under the change of variables x 7→ f(x) by the
following equation:

log pX(x) = log pZ(f(x)) + log |RT f ′(x)Q|+ 1
2 log

|RTG(f(x))R|
|QTG(x)Q|

. (9)

where Q and R depend on x and f(x), respectively, although this dependency is omitted for brevity.

To give an intuition for this result, Fig. 2 shows how the volume change is computed for an isometri-
cally embedded manifold, that is G = I so that |RTGR| = |QTGQ| = 1. This simplifies Eq. (9)
to:

log pX(x) = log pZ(f(x)) + log |RT f ′(x)Q|. (10)

This is very similar to the familiar change of variables formula in the Euclidean case in Eq. (1), the
only difference being that the determinant is evaluated on the n × n projection of f ′(x) into the
tangent spaces. These projections are necessary as the Jacobian of f is singular in the embedding
space, since its action is restricted to the local tangent spaces. See the full proof in Appendix A.1.

Manifold gradient estimator We now generalize the volume change gradient estimator in The-
orem 1 to an invertible function on the manifold fθ : M → M. We find that taking the gradient
of the manifold change of variables in Eq. (9) results in essentially the same computation as in the
Euclidean case, but the trace in is now evaluated in the local tangent space:

Theorem 3. Under the assumptions of Theorem 2 with f = fθ. Let v ∈ Rm be a random variable
with zero mean and covariance RRT . Then, the derivative of the change of variables term has the
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Embedding space

Figure 2: Computation of the volume change in the tangent space of the manifold: The manifold
change of variables formula in Eq. (10) requires to compute the change of a volume element in the
tangent spaces under f, which in this example is given by the ratio of lengths of dt and dt′. Since f is
a map in the embedding space, f ′(x) defines a linear map between vectors from the embedding space.
To correctly compute the change in volume, we use Q and R to change coordinates to the intrinsic
tangent spaces, resulting in the linear map RT f ′(x)Q : TxM → Tf(x)M, which maps dt to dt′.

following trace expression, where z = fθ(x):

∇θ log |RT f ′θ(x)Q| = tr(RT (∇θf
′
θ(x))f

−1
θ

′
(z)R) (11)

= Ev
[
vT (∇θf

′
θ(x))f

−1
θ

′
(z)v

]
. (12)

This shows that the adaptation of free-form flows for an invertible function f to isometrically
embedded manifolds is remarkably simple (see full proof in Appendix A.2; if the manifold is not
isometrically embedded, add the corresponding term in Eq. (9)):

∇θLM-NLL = ∇θEx,v
[
− log pZ(z)− vT f ′θ(x)SG[f

−1
θ

′
(z)v]

]
. (13)

The only change is that v must have covariance RRT rather than the identity. We achieve this by
sampling standard normal vectors ṽ ∈ Rm and then projecting them into the tangent space using the
Jacobian of the projection function:

v = π′(fθ(x))ṽ. (14)
Constructing v like this fulfills the conditions of Theorem 3 because Ev[v] = 0, and:

Cov [v] = Eṽ
[
π′(fθ(x))ṽṽ

Tπ′(fθ(x))
T
]
= π′(fθ(x))π

′(fθ(x))
T = RRT . (15)

Just like [Sorrenson et al., 2024, Draxler et al., 2024], we further normalize v to reduce the variance
of the trace estimator. Equation (13) now allows training invertible architectures on manifolds even if
the volume change log |RT f ′θ(x)Q| is not tractable.

Despite using a stochastic estimator for the gradient, we argue in Appendix A.5 that the scaling of the
estimator variance with dimension is comparable to the variance due to stochasticity in flow matching
and similar methods.

Free-form manifold-to-manifold neural networks As discussed in Section 2, invertible architec-
tures have to be specially constructed for each manifold. To overcome this limitation, we now soften
the constraint that the learned model be analytically invertible. Instead, we learn a pair of free-form
manifold-to-manifold neural networks, an encoder fθ(x) and a decoder gϕ(z) as arbitrary functions
on the manifold:

fθ(x) : M → M, gϕ(z) : M → M. (16)

We choose to fulfill Eq. (16) using feed-forward neural networks f̃θ, g̃ϕ : Rm → Rm working in
an embedding space Rm of M, but ensure that their outputs lie on the manifold by appending a
projection π : Rm → M, mapping points from the embedding space Rm to the manifold M:

fθ(x) = π(f̃θ(x)), gϕ(z) = π(g̃ϕ(z)). (17)
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Figure 1 illustrates this for an example on a circle M = S1.

Just like in the Euclidean case, we employ a reconstruction loss to make fθ and gϕ approximately
inverse to one another:

LR = Epdata [∥gϕ(fθ(x))− x∥2]. (18)
We measure the distance in the embedding space; one can modify this to use an on-manifold distance
(e.g. great circle distance for the sphere) but we find that ambient Euclidean distance works well in
practice, since it is almost identical for small distances and this is the regime we work in.

This allows us to substitute f−1
θ

′
(z) ≈ g′ϕ(z) in Eq. (13):

∇θLM-NLL ≈ ∇θEx,v
[
− log pZ(z)− vT f ′θ(x)SG[gϕ

′(z)v]
]
. (19)

In Theorem 5 we show that the error of the gradient estimator is bounded by a measure of the
mismatch between the encoder and decoder Jacobian matrices. When the encoder and decoder are
true inverses, the error reaches zero.

Regularization and final loss We find that adding the following two regularizations to the loss
improve the stability and performance of our models. Firstly, the reconstruction loss on points
sampled uniformly from the data manifold:

LU = Ex∼U(M)[∥gϕ(fθ(x))− x∥2], (20)

helps ensure that we have a globally consistent mapping between the data and latent manifolds in
low data regions. Secondly, the squared distance between the output of f̃θ and its projection to the
manifold:

LP = Epdata(x)[∥f̃θ(x)− fθ(x)∥2] (21)

discourages the output of f̃θ from entering unprojectable regions, for example the origin when the
manifold is Sn. The same regularizations can be applied starting from the latent space.

The full loss is:
L = LM−NLL + βRLR + βULU + βPLP (22)

where the gradient of LM−NLL is computed using Eq. (19), and βR, βU and βP are hyperparameters.
We give our choices in Appendix B.

5 Experiments

We now demonstrate the practical performance of manifold free-form flows on various manifolds.
We choose established experiments to ensure comparability with previous methods, and find:

• M-FFF matches or outperforms previous single-step methods. M-FFF uses a simple ResNet
architecture, whereas previous methods were specialized to the given manifolds, hindering
adoption to novel manifolds.

• M-FFF generates samples faster by typically two orders of magnitude than methods sampling
in several steps. Despite this great reduction in compute, it achieves a higher generative
quality in several cases.

In our result tables, we mark as bold (a) the best method overall (both single- and multi-step), and
(b) the best single-step method. We provide reconstruction losses of our method and all details
necessary to reproduce the experiments in Appendix B. Furthermore, our code is available at https:
//github.com/vislearn/FFF. We run each experiment multiple times with different data splits
and report the mean and standard deviation of those runs.

Synthetic distribution over rotation matrices The group of 3D rotations SO(3) can be represented
by rotations matrices with positive determinant, i.e., all Q ∈ R3×3 with QTQ = I and detQ = 1.
We choose R3×3 as our embedding space and project to the manifold by solving the constrained
Procrustes problem via SVD [Lawrence et al., 2019] (see Appendix B.2).

We evaluate M-FFF on synthetic mixture distributions proposed by De Bortoli et al. [2022] with M
mixture components for M = 16, 32 and 64. Samples from one of the distributions and samples
from our model are depicted in Fig. 3.
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Figure 3: Manifold free-form flows on a synthetic SO(3) mixture distribution with M = 64 mixture
components proposed by De Bortoli et al. [2022]. (Left) 10,000 samples each from the ground
truth distribution and (right) our model. This visualization computes three Euler angles, which fully
describe a rotation matrix, and then plot the first two angles on the projection of a sphere and the last
by color [Murphy et al., 2021]. We find that our model nicely samples from the distribution with few
outliers between the modes.

Table 3 shows that M-FFF outperforms the normalizing flow developed for SO(3) by Liu et al.
[2023], as well as the diffusion-based approaches for the mixtures M = 32 and 64.

Table 3: Test negative log-likelihood (NLL, ↓) on SO(3) for multi-step and single-step methods.
M-FFF consistently outperforms the specialized normalizing flow by Liu et al. [2023] on synthetic
distributions of SO(3) matrices, and outperforms multi-step methods in the cases with more mixture
components. Multi-step baseline values are due to De Bortoli et al. [2022].

M = 16 M = 32 M = 64 Fast inference?

Moser flow [Rozen et al., 2021] -0.85 ± 0.03 -0.17 ± 0.03 0.49 ± 0.02 ✗: 1000 steps
Exp-wrapped SGM [De Bortoli et al., 2022] -0.87 ± 0.04 -0.16 ± 0.03 0.58 ± 0.04 ✗: 500 steps
Riemannian SGM [De Bortoli et al., 2022] -0.89 ± 0.03 -0.20 ± 0.03 0.49 ± 0.02 ✗: 100 steps

SO(3)-NF [Liu et al., 2023] -0.81 ± 0.01 -0.12 ± 0.004 0.61 ± 0.01 ✓
M-FFF (ours) -0.87 ± 0.02 -0.21 ± 0.02 0.45 ± 0.02 ✓

Earth data on the sphere We evaluate manifold free-form flows on spheres with datasets from the
domain of earth sciences. We use four established datasets compiled by Mathieu and Nickel [2020]
for density estimation on S2: Volcanic eruptions [NGDC/WDS, 2022b], earthquakes [NGDC/WDS,
2022a], floods [Brakenridge, 2017] and wildfires [EOSDIS, 2020].

Figure 1 shows an example for a model trained on flood data. As the reconstruction error sometimes
does not drop to a satisfactory level we employ the method described in Appendix B.1 to ensure that
the measured likelihoods are accurate. Table 4 shows that M-FFF again outperforms the specialized
single-step model; the performance compared to multi-step methods is mixed. We think that multi-
step models have an advantage on the considered data, as there are large regions of empty space
between highly concentrated data points (see density and sample plots in Appendix B.3).

Table 4: M-FFF significantly outperforms the previous single-step density estimator [Peel et al.,
2001] on the sphere on real-world earth datasets in terms of negative log-likelihood (lower is better).
Baseline values are collected from De Bortoli et al. [2022], Huang et al. [2022], Chen and Lipman
[2024].

Volcano Earthquake Flood Fire Fast inference?

Riemannian CNF [Mathieu and Nickel, 2020] -6.05 ± 0.61 0.14 ± 0.23 1.11 ± 0.19 -0.80 ± 0.54 ✗: ∼100 steps
Moser flow [Rozen et al., 2021] -4.21 ± 0.17 -0.16 ± 0.06 0.57 ± 0.10 -1.28 ± 0.05 ✗: ∼100 steps
Stereographic score-based [De Bortoli et al., 2022] -3.80 ± 0.27 -0.19 ± 0.05 0.59 ± 0.07 -1.28 ± 0.12 ✗: ∼100 steps
Riemannian score-based [De Bortoli et al., 2022] -4.92 ± 0.25 -0.19 ± 0.07 0.45 ± 0.17 -1.33 ± 0.06 ✗: ∼100 steps
Riemannian diffusion [Huang et al., 2022] -6.61 ± 0.97 -0.40 ± 0.05 0.43 ± 0.07 -1.38 ± 0.05 ✗: >100 steps
Riemannian flow matching [Chen and Lipman, 2024] -7.93 ±1.67 -0.28 ± 0.08 0.42 ± 0.05 -1.86 ± 0.11 ✗: 1000 steps

Mixture of Kent [Peel et al., 2001] -0.80 ± 0.47 0.33 ± 0.05 0.73 ± 0.07 -1.18 ± 0.06 ✓
M-FFF (ours) -2.25 ± 0.02 -0.23 ± 0.01 0.51 ± 0.01 -1.19 ± 0.03 ✓

Datset size 827 6120 4875 12809
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Table 5: M-FFF consistently outperforms normalizing flows specialized to tori [Rezende et al., 2020]
on torus datasets, without requiring the development of a specialized architecture. In addition, our
method comes close to the performance of the multi-step methods and even outperforms them on the
Glycine dataset. Baseline values are due to Huang et al. [2022], Chen and Lipman [2024].

General Glycine Proline Pre-Pro RNA Fast inference?

Riemannian diffusion [Huang et al., 2022] 1.04 ± 0.012 1.97 ± 0.012 0.12 ± 0.011 1.24 ± 0.004 -3.70 ± 0.592 ✗: ∼1000 steps
Riemannian flow matching [Chen and Lipman, 2024] 1.01 ± 0.025 1.90 ± 0.055 0.15 ± 0.027 1.18 ± 0.055 -5.20 ± 0.067 ✗: 1000 steps

Mixture of power spherical [Huang et al., 2022] 1.15 ± 0.002 2.08 ± 0.009 0.27 ± 0.008 1.34 ± 0.019 4.08 ± 0.368 ✓
Circular Spline Coupling Flows [Rezende et al., 2020] 1.03 ± 0.01 1.91 ± 0.04 0.21 ± 0.08 1.24 ± 0.04 -4.01 ± 0.24 ✓
M-FFF (ours) 1.03 ± 0.02 1.89 ± 0.05 0.17 ± 0.08 1.23 ± 0.04 -4.27 ± 0.09 ✓

Table 6: Test NLL on Stanford bunny data proposed by [Chen and Lipman, 2024], living on a
manifold with nontrivial curvature (see Fig. 1). M-FFF outperforms the multi-step model for datasets
with more modes.

k = 10 k = 50 k = 100 Fast inference?

Riemannian Flow Matching (w/ diffusion) [Chen and Lipman, 2024] 1.16 ± 0.02 1.48 ± 0.01 1.53 ± 0.01 ✗: 1000 steps
Riemannian Flow Matching (w/ biharmonic) [Chen and Lipman, 2024] 1.06 ± 0.05 1.55 ± 0.01 1.49 ± 0.01 ✗: 1000 steps

M-FFF (ours) 1.21 ± 0.01 1.34 ± 0.01 1.28 ± 0.01 ✓

Torsion angles of molecules on tori To benchmark manifold free-form flows on tori Tn, we follow
[Huang et al., 2022] and evaluate our model on two datasets from structural biology. We consider the
torsion (dihedral) angles of the backbone of protein and RNA substructures respectively.

We represent a tuple of angles (ϕ1, . . . , ϕn) ∈ [0, 2π]n by mapping each angle to a position on a
circle: Xi = (cosϕi, sinϕi) ∈ S1. Then we stack all Xi into a matrix X ∈ Rn×2, compare Table 2.

The first dataset is comprised of 500 proteins assembled by [Lovell et al., 2003] and is located on
T2. The three dimensional arrangement of a protein backbone can be described by the so called
Ramachandran angles [Ramachandran et al., 1963] Φ and Ψ, which represent the torsion of the
protein backbone around the N -Cα and Cα-C bonds. The data is split into four distinct subsets
General, Glycine, Proline and Pre-Proline, depending on the residue of each substructure.

The second dataset is extracted from a subset of RNA structures introduced by Murray et al. [2003].
As the RNA backbone structure can be characterized by seven torsion angles, in this case we are
dealing with data on T7.

We report negative log-likelihoods in Table 5, finding that M-FFF outperforms a circular spline
coupling flow, a normalizing flow particularly developed for data on tori [Rezende et al., 2020] as
well as the multi-step methods on one of the datasets. In addition to the quantitative results, we show
the log densities of the M-FFF models for the four protein datasets inFig. 5 in Appendix B.4 .

Toy distributions on hyperbolic space We apply M-FFF to the Poincaré ball model, which
embeds the 2-dimensional hyperbolic space H2 of constant negative curvature -1 in the 2-dimensional
Euclidean space R2, as specified in Table 2. As this embedding is not isometric, and distances
between points grow when moving away from the origin, we must include the last term of Eq. (9)
when changing variables under a map on this embedded manifold.

We show that M-FFF can be applied to non-isometric embeddings using Eq. (9) and visualize learned
densities in Fig. 1 and in Fig. 6 in Appendix B.5 for several toy datasets defined on the 2-dimensional
Poincaré ball model. Further details can be found in Appendix B.5.

Manifold with non-trivial curvature Finally, we follow Chen and Lipman [2024] and train M-FFF
given by synthetic distributions on the Stanford bunny [Turk and Levoy, 1994] on the data provided
with their paper, see Fig. 1. The natural embedding of this mesh is R3, and we train a separate
neural network to project from the embedding space to the mesh. This ensures that the projection is
continuously differentiable, which we identify to be important for stable gradients.

Table 6 shows that M-FFF performs well on this manifold, outperforming Riemannian flow matching
in two out of three cases. This experiment underlines the flexibility of our model: We only need a
projection function to the manifold in order to train a generative model.
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6 Limitations

Manifold Free-From Flows achieve high generative quality on manifolds despite the approximations
made during training: First, the exact inverse of the encoder Jacobian is approximated by the decoder
Jacobian, which is implicitly regularized via the reconstruction loss (see Eq. (19)). Second, the final
gradient computation in Eq. (8) is estimated with a single v for each item in the batch, adding noise
to the system.

At inference time, the negative log-likelihoods we report in all tables are based on the decoder
Jacobian. We choose this because even if the decoder ends up not to be invertible after training
(that is several latent codes z yield the same generation x = gϕ(z)), the computed densities are a
conservative estimate of the true probability density. The downside is that if the reconstruction loss is
high, the likelihoods become inaccurate, see Appendix B.1 for details. We therefore ensure that the
final reconstruction losses are vanishing in Table 8.

From a high level perspective, we observe that M-FFF performs less favorable compared to multi-step
methods when the density changes sharply or very low density regions are present.

7 Conclusion

In this paper, we present Manifold Free-Form Flows (M-FFF), a generative model designed for
manifold data. To the best of our knowledge, it is the first generative model on manifolds with
single-step sampling and density estimation readily applicable to arbitrary Riemannian manifolds.
This significantly accelerates inference and allows for deployment on edge devices.

M-FFF matches or outperforms single-step architectures specialized to particular manifolds. It also
surpasses multi-step methods in several cases, despite reducing the inference compute by typically
two orders of magnitude.

Adapting M-FFF to new manifolds is straightforward and only requires selecting an embedding space
and a projection to the manifold. In contrast, competing multi-step methods are more challenging to
adapt as they require implementing a diffusion process or computing distances on the manifold.
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A Free-form flows on Riemannian manifolds

In this appendix, we will focus on intuitive definitions of concepts from topology and differential
geometry. For a more rigorous treatment of these concepts, see [Jost, 2008].

An n-dimensional manifold M is a space where every point x has a neighborhood which is homeo-
morphic to an open subset of Rn. Intuitively, this means that there is a small region of M containing
x which can be bent and stretched in a continuous way to map onto a small region in Rn. This is
what is meant when we say that the manifold locally resembles Rn. If all these maps from M to Rn
are also differentiable then the manifold itself is differentiable, as long as there is a way to connect up
the local neighborhoods in a differentiable and consistent way.

The tangent space of the manifold at x, denoted TxM, is an n-dimensional Euclidean space, which is
a linearization of the manifold at x: if we zoom in to a very small region around x the manifold looks
flat, and this flat Euclidean space is aligned with the tangent space. Because the tangent space is a
linearization of the manifold, this is where derivatives on the manifold live, e.g. if f : MX → MZ

is a map between two manifolds, then the Jacobian f ′(x) is a linear map from TxMX to Tf(x)MZ .

A Riemannian manifold (M, G) is a differentiable manifold which is equipped with a Riemannian
metric G : TxM×TxM → R which defines an inner product on the tangent space, which allows us
to calculate lengths and angles in this space. The length of a smooth curve γ : [0, 1] → M is given
by the integral of the length of its velocity vector γ′(t) ∈ Tγ(t)M. This ultimately allows us to define
a notion of distance on the manifold, as the curve of minimal length connecting two points.

In the remainder of the appendix we only consider Riemannian manifolds.

A.1 Manifold change of variables

Embedded manifolds We define an n-dimensional manifold embedded in Rm via a projection
function

π : P → Rm (23)
where P ⊆ Rm is the projectable set. We require the projection to have the following properties (the
first is true of all projections, the others are additional requirements):

1. π ◦ π = π

2. π is smooth on P
3. rank(π′(π(x))) = n for all x ∈ P

Given such a projection, we define a manifold by

M = {x ∈ Rm : π(x) = x} (24)

with the tangent space
TxM = col(π′(x)) (25)

where col denotes the column space. Since the rank of π′(x) with x ∈ M is n, the tangent space is
n-dimensional and M is an n-dimensional manifold. To avoid clutter we denote the Riemannian
metric and its m×m matrix representation with G interchangeably. If M is isometrically embedded
then G(x) is just the identity matrix.

The Jacobian of the projection is a projection matrix, meaning π′(x)π′(x) = π′(x) for x ∈ M. For
any v in the column space of π′(x), there is a u such that v = π′(x)u and due to the projection
property, π′(x)v = π′(x)u = v. Similarly, for any w in the row space of π′(x), wπ′(x) = w. If π is
an orthogonal projection, π′ is symmetric by definition and hence the row and column spaces are
identical.

Integration on embedded manifolds In order to perform integration on the manifold, we cannot
work directly in the m-dimensional coordinates of the embedding space, instead we have to introduce
some local n-dimensional coordinates. This means that the domain of integration has to be diffeo-
morphic to an open set in Rn. Since this might not be the case for the whole region of integration,
we might need to partition it into such regions and perform integration on each individually (each
such region, together with its map to Rn, is known as a chart and a collection of charts is an atlas).
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For example, if we want to integrate a function on the sphere, we could split the sphere into two
hemispheres and integrate each separately. A hemisphere can be continuously stretched and flattened
into a 2-dimensional region, whereas the whole sphere cannot without creating discontinuities.

Given an open set U in Rn, and a diffeomorphic local embedding function ϕ : U → M, the integral
of a scalar function p : M → R on ϕ(U) ⊆ M is∫

ϕ(U)

pdV =

∫
U

(p ◦ ϕ)
√
|ϕ′(u)TG(ϕ(u))ϕ′(u)|du1 · · · dun. (26)

The integral on the right is an ordinary integral in Rn. The quantity inside the determinant is known
as the pullback metric.
Theorem 2 (Manifold change of variables). Let (MX , GX) and (MZ , GZ) be n-dimensional
Riemannian manifolds embedded in Rm, i.e., MX ,MZ ⊆ Rm, and assume they have the same
global topological structure. Let pX be a probability distribution on MX and let f : MX → MZ

be a diffeomorphism. Let pZ be the pushforward of pX under f (i.e., if pX is the probability density
of X , then pZ is the probability density of f(X)).

Let x ∈ MX . Define Q ∈ Rm×n as an orthonormal basis for TxMX and R ∈ Rm×n as an
orthonormal basis for Tf(x)MZ .

Then, the probability densities pX and pZ are related under the change of variables x 7→ f(x) by the
following equation:

log pX(x) = log pZ(f(x)) + log |RT f ′(x)Q|+ 1
2 log

|RTGZ(f(x))R|
|QTGX(x)Q|

. (27)

where Q and R depend on x and f(x), respectively, although this dependency is omitted for brevity.

Below, we provide two versions of the proof, the second being a less rigorous and more geometric
variant of the first.

Proof. Let ϕ : Rn → MX be defined by ϕ(u) = πX(x + Qu). Let U be an open subset of Rn
containing the origin which is small enough so that ϕ is bijective. Let ψ : Rn → MZ be defined by
ψ(w) = πZ(f(x) +Rw). Define φ = ψ−1 ◦ f ◦ ϕ and let W = φ(U).

Note that ϕ′(u) = π′
X(x+Qu) ·Q and hence ϕ′(0) = π′

X(x)Q = Q (since each column of Q is in
TxMX = col(π′

X(x))).

Similarly, ψ′(0) = R. Since ψ is a map from n to m dimensions, there is not a unique function
from Rm to Rn which is ψ−1 on the manifold and there are remaining degrees of freedom in the off-
manifold behavior which can result in different Jacobians. For our purposes, we define the inverse ψ−1

such that ψ ◦ψ−1 is an orthogonal projection onto MZ . This means ψ′(ψ−1(f(x)))(ψ−1)′(f(x)) =
RRT and hence (ψ−1)′(f(x)) = RT .

Since pZ is the pushforward of of pX under f , the amount of probability mass contained in ϕ(U) is
the same as that contained in f(ϕ(U)) = ψ(W ):∫

ϕ(U)

pX(x)dVX =

∫
ψ(W )

pZ(z)dVZ (28)

and therefore:∫
U

pX(ϕ(u))
√
|ϕ′(u)TGX(ϕ(u))ϕ′(u)|du1 · · · dun

=

∫
W

pZ(ψ(w))
√
|ψ′(w)TGZ(ψ(w))ψ′(w)|dw1 · · · dwn. (29)

Changing variables of the RHS with w = φ(u) gives us∫
U

pX(ϕ(u))
√

|ϕ′(u)TGX(ϕ(u))ϕ′(u)|du1 · · · dun

=

∫
U

pZ(f(ϕ(u)))
√
|ψ′(φ(u))TGZ(f(ϕ(u)))ψ′(φ(u))| ·

∣∣∣∣∂w∂u
∣∣∣∣ du1 · · · dun. (30)
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Since U was arbitrary, we can make it arbitrarily small, demonstrating that the integrands must be
equal for u = 0:

pX(x)
√

|QTGX(x)Q| = pZ(f(x))
√
|RTGZ(f(x))R| ·

∣∣∣∣∂w∂u
∣∣∣∣ . (31)

Since w = ψ−1(f(ϕ(u))), the Jacobian has the following form when evaluated at the origin (note
ϕ(0) = x):

∂w

∂u
= (ψ−1)′(f(x)) · f ′(x) · ϕ′(0) (32)

= RT f ′(x)Q. (33)

Substituting this into the equality, rearranging and taking the logarithm gives the result:

log pX(x) = log pZ(f(x)) + log |RT f ′(x)Q|+ 1
2 log

|RTGZ(f(x))R|
|QTGX(x)Q|

. (34)

Alternative proof Here is a less rigorous and more geometric proof, which may be more intuitive
for some readers.

Proof. Let x be a point on MX . Consider a small square region U ⊆ M around x (hypercubic
region in higher dimensions). If the sides of the square are small enough, the square is approximately
tangent to the manifold since the manifold looks very flat if we zoom in. Suppose Q is a basis for
the tangent space at x and q1, . . . , qn are the columns of Q. Suppose that the sides of the square
(or hypercube) are spanned by ui = ϵqi for a small ϵ. The volume spanned by a parallelotope
(higher-dimensional analog of a parallelogram) is the square root of the determinant of the Gram
matrix of inner products:

vol(u1, . . . , un) =
√
|⟨ui, uj⟩|. (35)

The inner product is given by G, namely ⟨u, v⟩ = uTGv. We can therefore write the volume of U as

vol(U) ≈ ϵn
√
|QTGQ|. (36)

Now consider how U is transformed under f . It will be mapped to a region f(U) on Mz with
approximately straight edges, forming an approximate parallelotope in the tangent space at z = f(x).
This region will be spanned by the columns of f ′(x)ϵQ (since f(x + ui) ≈ f(x) + f ′(x)ui) and
hence will have a volume of

vol(f(U)) ≈ ϵn
√

|QT f ′(x)TGZ(z)f ′(x)Q| (37)

= ϵn
√
|QT f ′(x)TRRTGZ(z)RRT f ′(x)Q| (38)

= ϵn|RT f ′(x)Q|
√
|RTGZ(z)R| (39)

where R is a basis for the tangent space at f(x). We can introduce RRT into the expression since it
is a projection in the tangent space at f(x) and is essentially the identity within that space. Since the
RHS of GZ(z) and the LHS of f ′(x) both live in this tangent space, we can introduce RRT between
them without changing the expression. Then in the last step we use that |AB| = |A||B| for square
matrices.

The probability density in U and f(U) should be roughly constant since both regions are very small.
Since the probability mass in both regions should be the same we can write

pX(x) vol(U) ≈ pZ(f(x)) vol(f(U)) (40)

and therefore

pX(x) = pZ(f(x))|RT f ′(x)Q|
√
|RTGZ(f(x))R|√
|QTGX(x)Q|

(41)

where the approximation becomes exact by taking the limit of infinitesimally small ϵ. Taking the
logarithm, we arrive at the result of Theorem 2.
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A.2 Loss function

Theorem 3. Under the assumptions of Theorem 2 with f = fθ. Let v ∈ Rm be a random variable
with zero mean and covariance RRT . Then, the derivative of the change of variables term has the
following trace expression, where z = fθ(x):

∇θ log |RT f ′θ(x)Q| = tr(RT (∇θf
′
θ(x))f

−1
θ

′
(z)R) (42)

= Ev
[
vT (∇θf

′
θ(x))f

−1
θ

′
(z)v

]
. (43)

Proof. For brevity, we drop the index θ and denote g = f−1. First, a reminder that φ′(u) =
RT f ′(x)Q with φ = ψ−1 ◦ f ◦ ϕ. Let χ = φ−1, i.e. χ = ϕ−1 ◦ g ◦ ψ. Jacobi’s formula tells us that

d

dt
log |A(t)| = tr

(
dA(t)

dt
A(t)−1

)
. (44)

Note also that since χ(φ(u)) = u, therefore χ′(φ(u))φ′(u) = I and χ′(φ(u)) = φ′(u)−1. Applying
Jacobi’s formula to φ′(u):

∇θ log |φ′(u)| = tr((∇θφ
′(u))φ′(u)−1) (45)

= tr((∇θφ
′(u))χ′(φ(u))) (46)

and substituting in f and g:

∇θ log |RT f ′(x)Q| = tr(∇θ(R
T f ′(x)Q)QT g′(f(x))R). (47)

Q does not depend on θ, butR depends on f(x) and hence θ, so it must be considered in the derivative.
However,

∇θ tr(RR
T ) = tr((∇θR)R

T +R∇θR
T ) = 2 tr(R∇θR

T ) (48)

and since tr(RRT ) = tr(I) is a constant, tr(R∇θR
T ) = 0. Expanding Eq. (47):

∇θ log |RT f ′(x)Q| = tr(∇θ(R
T )f ′(x)QQT g′(f(x))R) + tr(RT∇θ(f

′(x))QQT g′(f(x))R).
(49)

Since Q is an orthonormal basis for TxMX , QQT is a projection matrix onto TxMX . This is
because (QQT )2 = QQTQQT = QQT , using QTQ = I . As a result, QQTπ′(x) = π′(x). Since
g can also be written inside a projection: g(z) = πZ(g(z)), therefore g′(z) = π′

Z(g̃(z))g̃
′(z), so

QQT g′(z) = g′(z). Note also that f ′(x)g′(f(x)) = I since f ◦ g = id. This simplifies the equation:

∇θ log |RT f ′(x)Q| = tr(∇θ(R
T )R) + tr(RT∇θ(f

′(x))g′(f(x))R) (50)

and finally
∇θ log |RT f ′(x)Q| = tr(RT∇θ(f

′(x))g′(f(x))R). (51)

In the above proof we used the fact that QQT g′(z) = g′(z), where we dropped the index θ and
use g := f−1 for brevity. Can we use RRT f ′(x) = f ′(x) to simplify the equation further? No,
we cannot, since the expression involving f ′ is actually its derivative with respect to parameters,
which may not have the same matrix structure as f ′. Is it instead possible to use g′(z)RRT = g′(z)
for simplification? If g is implemented as πZ(g̃(z)), this is not necessarily true, as g′(z) might not
be a map from the tangent space at z to the tangent space at g(z). For example, if we add a small
deviation v to z, where v is orthogonal to the tangent space at z, then g(z + v) might not equal g(z).
However, this would mean that derivatives in the off-manifold direction can be non-zero, meaning
that g′(z)v ̸= g′(z)RRT v = 0 (since RRT will project v to 0). We can change this by prepending g
by a projection:

g = πX ◦ g̃ ◦ πZ . (52)

If πZ is an orthogonal projection, meaning that π′
Z is symmetric, the column space and row space of

πZ will both be the same as those ofRRT , meaning π′
Z(z)RR

T = π′
Z and hence g′(z)RRT = g′(z).

This leads to the following corollary:

17



Corollary 4. Suppose the assumptions of Theorem 2 hold with f = fθ and the following implemen-
tation:

f−1
θ = πX ◦ f−1

θ ◦ πZ (53)
where πZ is an orthogonal projection. Then the derivative of the change of variables term has the
following trace expression, where z = fθ(x):

∇θ log |RT f ′θ(x)Q| = tr((∇θf
′(x))(f−1

θ )′(z)). (54)

Proof. Again, we drop the index θ and let g = f−1 for brevity. Take the result of Theorem 3 and use
the cyclic property of the trace and the properties of g′ discussed above:

tr(RT∇θ(f
′(x))g′(f(x))R) = tr(∇θ(f

′(x))g′(f(x))RRT ) (55)

= tr(∇θ(f
′(x))g′(f(x))). (56)

We use Hutchinson-style trace estimators to approximate the traces given above. This uses the
property that, for a matrix A ∈ Rn×n and a distribution p(v) in Rn with unit second moment
(meaning E[vvT ] = I),

Ep(v)[vTAv] = tr(Ep(v)[vTAv]) (57)

= tr(Ep(v)[vvT ]A) (58)

= tr(A) (59)

meaning that vTAv ≈ tr(A) is an unbiased estimate of the trace of A.

We have two variants of the trace estimate derived above, one evaluated in Rn, the other in Rm. The
first can be estimated using the following equality (again dropping the index θ and using g = f−1):

tr(RT∇θ(f
′(x))g′(f(x))R)

= Ep(u)[uTRT∇θ(f
′(x))g′(f(x))Ru] (60)

= Ep(v)[vT∇θ(f
′(x))g′(f(x))v] (61)

= ∇θEp(v)[vT∇θ(f
′(x))SG[g′(f(x))]v] (62)

where p(u) has unit second moment in Rn and p(v) is the distribution of Ru, which lies in the
tangent space at x and has unit second moment in that space by which we mean E[vvT ] = RRT . An
example of such a distribution is the standard normal projected to the tangent space, i.e. v = RRT ṽ
where ṽ is standard normal.

In the second case, we can just sample from a distribution with unit second moment in the embedding
space Rm:

tr(∇θ(f
′(x))g′(f(x))) = ∇θEp(v)[vT∇θ(f

′(x))SG[g′(f(x))]v]. (63)

A.3 Error bound

The error bound on the gradient from Draxler et al. [2024, Theorem 4.2] can be readily extended to
Riemannian manifolds:
Theorem 5. Carry over the assumptions of Theorem 2 with f = fθ and let gϕ be a manifold-to-
manifold function. Let Jfθ = f ′θ(x), Jgϕ = g′ϕ(z), and Jf−1

θ
= f−1′

θ (z). Then:∣∣tr(RT (∇θJfθ )JgϕR)−∇θ log |RTJfθQ|
∣∣ ≤ ∥RT (∇θJfθ )Jf−1

θ
R∥F ∥RTJfθJgϕR− In∥F . (64)

Proof. The proof closely follows [Draxler et al., 2024] and utilizes the Cauchy–Schwarz inequality
for the Frobenius inner product, which states that for matrices A and B, we have | tr(ATB)| ≤
∥A∥F ∥B∥F . Applying this to our case:∣∣tr(RT (∇θJfθ )JgϕR)−∇θ log |RTJfθQ|

∣∣ (65)

=
∣∣∣tr(RT (∇θJfθ )JgϕR)− tr(RT (∇θJfθ )Jf−1

θ
R)

∣∣∣ (66)

=
∣∣∣tr(RT (∇θJfθ )(Jgϕ − Jf−1

θ
)R)

∣∣∣ . (67)
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We can re-express this term by introducing the identity matrix in terms of the Jacobians of fθ and its
inverse:

=
∣∣∣tr(RT (∇θJfθ )Jf−1

θ
R ·RT (JfθJgϕ − Im)R)

∣∣∣ . (68)

By applying the Cauchy–Schwarz inequality, we obtain the bound:

≤ ∥RT (∇θJfθ )Jf−1
θ
R∥F · ∥RTJfθJgϕR− In∥F . (69)

To further clarify, we recall the function φ introduced in the proof of Theorem 2. This yields:

In = Jφ−1Jφ = QTJf−1
θ
RRTJfθQ. (70)

Thus, we can represent Jgϕ as:

Jgϕ = QQTJgϕ (71)

= Q(QTJf−1
θ
RRTJfθQ)QTJgϕ (72)

= Jf−1
θ
RRTJfθJgϕ , (73)

where we used Jgϕ = QQTJgϕ and Jf−1
θ

= QQTJf−1
θ

using similar reasoning to the proof of
Theorem 3.

A.4 Variance reduction

When using a Hutchinson trace estimator with standard normal v ∈ Rn, we can reduce the variance
of the estimate by scaling v to have length

√
n (see [Girard, 1989]). The scaled variable will still

have zero mean and unit covariance so the estimate remains unbiased, but the variance is reduced,
with the effect especially pronounced in low dimensions.

While we can take advantage of this effect in both our options for trace estimator, the effect is
more pronounced in lower dimensions, so we reduce the variance more by estimating the trace in
an n-dimensional space rather than an m-dimensional space. Hence the first version of the trace
estimator, where v is sampled from a distribution in TxMX is preferable in this regard.

Let’s provide some intuition with an example. Suppose n = 1, m = 2 and R = (1, 0)T . We want to
estimate the trace of A = diag(1, 0). Using the first estimator, we first sample v = RRT ṽ with ṽ
standard normal which results in v = (u, 0)T where u ∈ R is standard normal. Then we scale v so it
has length

√
n = 1. This results in v = (r, 0)T where r is a Rademacher variable (taking the value

−1 and 1 with equal probability). The trace estimate is therefore r2 = 1, meaning we always get the
correct answer, so the variance is zero. The second estimator samples v directly from a 2d standard
normal, then scales it to have length

√
m =

√
2. Hence v is sampled uniformly from the circle with

radius
√
2. We can write v =

√
2(cos θ, sin θ)T with θ sampled uniformly in [0, 2π]. The estimate

vTAv = 2 cos2 θ. This is a random variable whose mean is indeed 1 as required but has a nonzero
variance, showing that the variance is higher when estimating in the m-dimensional space.

For this reason, we choose the first estimator, sampling v in the tangent space at x. This also simplifies
the definition of g, meaning that we don’t have to prepend it with a projection.

A.5 Scaling behavior

Since generating in high-dimensional spaces can raise concerns about an estimator’s scaling behavior,
we argue theoretically that the free-form flow estimator scales comparably to flow matching as
dimensions increase. Experimental results further support this, showing that non-Riemannian free-
form flows exhibit strong scaling performance in spaces up to 261 dimensions [Draxler et al., 2024].

One metric to assess scaling behavior is to consider the variance of the gradient estimator. With
standard normal noise, the variance of the trace estimator vTAv is 2∥A∥2F [Hutchinson, 1989]. If we
apply this to a simple linear free-form flow model f(x) = Ax and g(z) = Bz, we find that summing
up the variances of the gradient estimates with respect to each element ofA leads to a total variance of
2n tr(BBT ). Note that in a converged model, BBT is equal to the covariance of the data. A similar
calculation for a flow matching loss of the form 1

2∥Ax − y∥2 leads to a total variance ∥x∥2 tr(Σ)
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with Σ the covariance of p(y|x). These results are proven below. We can see that both expressions
scale as n2, assuming that ∥x∥2 and the trace terms scale as n. These assumptions are fulfilled if,
for example, the data is Gaussian, with covariance that doesn’t depend on n. Since the number of
parameters (elements of A) scales as n2, the variance per parameter is constant. We thus expect
similar scaling behavior to flow matching, with no problems due to variance in high dimensions.
Lemma 6. Let A ∈ Rn×n be a matrix with entries Aij , and let B ∈ Rn×n be any matrix. Define

Cij =
∂A

∂Aij
B for each i, j. Let v ∈ Rn be a random vector with entries independently drawn from

the standard normal distribution. Then, the total variance of the Hutchinson estimators vTCijv for
tr(Cij) over all i, j is given by

Total Variance =

n∑
i=1

n∑
j=1

Var
(
vTCijv

)
= 2n∥B∥2F = 2n tr(BBT ), (74)

where ∥ · ∥F denotes the Frobenius norm.

Proof. We know from Hutchinson [1989] that

Var
(
vTCijv

)
= 2∥Cij∥2F (75)

Note the form of ∂A
∂Aij

, using the Kronecker delta:(
∂A

∂Aij

)
kl

= δkiδlj . (76)

This implies

(Cij)kl =
∑
m

(
∂Akm
∂Aij

)
Bml = δkiδmjBml = δkiBjl. (77)

Thus, Cij has non-zero entries only in the i-th row, and that row is equal to the j-th row of B:

(Cij)kl =

{
Bjl if k = i,

0 otherwise.
(78)

Next, calculate the Frobenius norm of Cij :

∥Cij∥2F =
∑
k,l

(Cij)2kl =
∑
l

(Bjl)
2 = ∥Bj:∥22, (79)

where Bj: denotes the j-th row of B.

Finally, sum over all i and j to find the total variance:

Total Variance =

n∑
i=1

n∑
j=1

2∥Bj:∥22 = 2n

n∑
j=1

∥Bj:∥22. (80)

Since
n∑
j=1

∥Bj:∥22 = ∥B∥2F , (81)

the total variance simplifies to
Total Variance = 2n∥B∥2F . (82)

Noting that ∥B∥2F = tr(BBT ) completes the proof.

Lemma 7. Let A ∈ Rn×n be a fixed matrix, x ∈ Rn a fixed vector, and let y ∈ Rn be a random
vector with conditional distribution p(y|x) having covariance matrix Σ. Define the loss function

L(A) =
1

2
∥Ax− y∥2.

Then, the total variance of the gradient estimators
∂L

∂Aij
over all i and j under p(y|x) is given by

Total Variance = ∥x∥2 tr(Σ).
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Proof. The loss function is given by

L(A) =
1

2
∥Ax− y∥2 =

1

2
(Ax− y)T (Ax− y). (83)

The derivative of L(A) with respect to Aij is

∂L

∂Aij
= (Ax− y)

T ∂(Ax)

∂Aij
. (84)

Since Ax is a vector whose k-th component is (Ax)k =
∑n
l=1Aklxl, the derivative of (Ax)k with

respect to Aij is
∂(Ax)k
∂Aij

= δkixj , (85)

where δki is the Kronecker delta.

Therefore, the derivative becomes

∂L

∂Aij
= (Ax− y)i xj . (86)

We are interested in the variance of the estimator
∂L

∂Aij
under p(y|x). Since A and x are fixed, the

only randomness comes from y. Assuming that y is a random vector with mean µ = E[y|x] and
covariance matrix Σ, we have

Var

(
∂L

∂Aij

)
= Var ((Ax− y)i xj) = x2j Var ((Ax− y)i) . (87)

Since (Ax− y)i = (Ax)i − yi, and (Ax)i is deterministic, it follows that

Var ((Ax− y)i) = Var(yi) = Σii. (88)

Therefore,

Var

(
∂L

∂Aij

)
= x2jΣii. (89)

The total variance over all i and j is

Total Variance =

n∑
i=1

n∑
j=1

Var

(
∂L

∂Aij

)
=

n∑
i=1

n∑
j=1

x2jΣii = ∥x∥2 tr(Σ). (90)

Therefore, we have proven that the total variance is ∥x∥2 tr(Σ).

B Experimental details

In accordance with the details provided in Section 4, our approach incorporates multiple regularization
loss components in addition to the negative log-likelihood objective. This results in the final loss
expression:

L = LNLL + β
x/z
R Lx/zR + β

x/z
U Lx/zU + β

x/z
P Lx/zP . (91)

For each of the terms, there is a variant in x- and in z-space, as indicated by the superscript. In detail:

The first loss LR represents the reconstruction loss:

LxR = Ex∼pdata [d(x, gϕ(fθ(x))], (92)
LzR = Ex∼pdata [d(fθ(x), fθ(gϕ(fθ(x)))]. (93)

Here d(x, y) = ∥x− y∥2 is the standard reconstruction loss in the embedding space. This could be
replaced with a distance on the manifold. However, this would be more expensive to compute and
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since we initialize networks close to identity, the distance in the embedding space is almost equal to
shortest path length on the manifold.

In order to have accurate reconstructions outside of training data, we also add reconstruction losses
for data uniformly sampled on the manifold, both for x and z:

LxU = Ex∼U(M)[d(x, gϕ(fθ(x))], (94)

LzU = Ex∼U(M)[d(z, fθ(gϕ(z))]. (95)

Finally, we make sure that the function learned by the neural networks is easy to project by regularizing
the distance between the raw outputs by the neural networks in the embedding space and the
subsequent projection to the manifold (compare Eq. (17)):

LxP = Ex∼pdata [∥gϕ(fθ(x))− g̃ϕ(fθ(x))∥2], (96)

LzP = Ex∼pdata [∥fθ(x)− f̃θ(x)∥2]. (97)

If these superscripts are not specified explicitly in the following summary of experimental details, we
mean βx = βz .

In all cases, we selected hyperparameter using the performance on the validation data.

B.1 Likelihood Evaluation

Sampling from a trained model can be easily achieved by sampling from the latent distribution and
performing a single pass through the decoder g. However, in order to evaluate the likelihood of the
test set under our model, as in [Draxler et al., 2024], we need to calculate the change of variable
formula w.r.t. g−1

log pX(x) = log pZ(g
−1(x)) + log |RT g−1′(x)Q|+ 1

2 log
|RTGZ(g−1(x))R|

|QTGX(x)Q|
(98)

≈ log pZ(f(x)) + log |RT g′(f(x))−1Q|+ 1
2 log

|RTGZ(f(x))R|
|QTGX(x)Q|

. (99)

Here we used the approximation f ≈ g−1. While is expensive to compute for training, it is reasonably
fast to compute during inference time. To show the validity of this approximation, we report the
reconstruction losses computed on the test dataset for all experiments in table 8.

Insufficient reconstruction losses. If the assumption of f ≈ g−1 is not sufficiently fulfilled the
measured likelihoods might be inaccurate. We try to identify such cases by sampling points from M
around the proposed latent point with small noise strength σ

z̃ = π(f(x) +N (0, σ)). (100)

As inverse of the decoder g we use the sample z̃ which results in the lowest reconstruction loss

g−1(x) ≈ argmin
z̃

||g(z̃)− x||22. (101)

We also do this with samples drawn around x̃ = π(x+N (0, σ)) and uniformly from the manifold
z̃ = U(M). We note that in most cases except for the earth datasets the likelihoods computed
in this way agree with f ≈ g−1. In case of the earth datasets, we note that the newly computed
likelihoods now agree with observed model quality. Specifically, whenever reconstruction loss is low
we also see agreement between the likelihoods computed via f and our approximation of g−1 via
sampling. Otherwise, the disagreement between f and g−1 and the resulting drop in model quality
are correctly diagnosed. Therefore, for the all S2 experiments we report the likelihoods computed by
our approximation.

Sampling based evaluation. In order to evaluate our models independently of their reconstruction
capabilities, we propose to also report a sample-based metric. Due to the curse of dimensionality,
sample-based metrics are only tractable in low dimensions. Therefore, we report the Wasserstein-2
distance between model samples and the test dataset, including the standard deviation over multiple
training runs, for all 2-dimensional manifolds in Table 7. As competing method have neither reported
a sampling based evaluation metric nor published their models, we propose to use our baseline results
for future benchmarking.
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Table 7: Wasserstein-2 distances for all 2-dimensional manifolds.

Volcano 0.249 ± 0.5

Earthquakes 0.068 ± 0.022

Flood 0.047 ± 0.010

Fire 0.072 ± 0.027

General 0.21 ± 0.04

Glycine 0.32 ± 0.05

Proline 0.51 ± 0.05

Pre-Pro 0.47 ± 0.04

Bunny (k = 10) 0.09 ± 0.02

Bunny (k = 50) 0.046 ± 0.006

Bunny (k = 100) 0.026 ± 0.007

Table 8: The reconstruction losses LR show that the reconstructed points lie close to the original data.
This justifies evaluating M-FFF via negative log-likelihoods.

SO(3) (K = 16) (2.7± 0.3)× 10−5

SO(3) (K = 32) (1.6± 1.8)× 10−4

SO(3) (K = 64) (7.2± 1.6)× 10−5

Volcano (5.1± 0.8)× 10−6

Earthquakes (1.9± 0.8)× 10−7

Flood (1.9± 0.6)× 10−5

Fire (1.7± 0.4)× 10−6

General (7.2± 0.9)× 10−6

Glycine (1.6± 0.2)× 10−5

Proline (1.3± 0.3)× 10−5

Pre-Pro (1.5± 0.8)× 10−4

RNA (8.9± 0.6)× 10−4

Bunny (k = 10) (2.6± 0.5)× 10−5

Bunny (k = 50) (2.2± 0.5)× 10−5

Bunny (k = 100) (2.3± 0.5)× 10−5

Hyperparameter Value
Layer type ResNet
Residual blocks 2
Inner depth 5
Inner width 512
Activation ReLU
βxR 500
βzR 0
βU 10
βP 10
Latent distribution uniform
Optimizer Adam
Learning rate 5× 10−3

Scheduler Exponential w/ γ = 1− 10−5

Gradient clipping 1.0
Weight decay 3× 10−5

Batch size 1,024
Step count 585,600
#Repetitions 3

Table 9: Hyperparameter choices for the rotation experiments. βU and βP are the same for both the
sample and latent space.
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Dataset Number of instances Noise strength
Volcano 827 0.008
Earthquake 6120 0.0015
Flood 4875 0.0015
Fire 12809 0.0015

Table 10: Dataset overview for the earth data experiments. Each dataset is split into 80% for training,
10% for validation and 10% for testing.

Hyperparameter Value
Layer type ResNet
residual blocks 4
Inner depth 2
Inner width 256
Activation sin
βxR 105

βzR 0
βU 2× 102

βP 0
Latent distribution VMF-Mixture (ncomp = 5)
Optimizer Adam
Learning rate 2× 10−4

Scheduler onecyclelr
Gradient clipping 10.0
Weight decay 5× 10−5

Batch size 32
Step count ∼ 1.2M
#Repetitions 5

Table 11: Hyperparameter choices for the earth data experiments. βU and βP are the same for both
the sample and latent space.

B.2 Special orthogonal group

To apply manifold free-form flows, we project an output matrix R ∈ R3×3 from the encoder/decoder
to the subspace of special orthogonal matrices by finding the matrix Q ∈ SO(3) minimizing the
Frobenius norm ∥Q−R∥F . This is known as the constrained Procrustes problem and the solution Q
can be determined via the SVD R = UΣV T [Lawrence et al., 2019]:

Q = USV T , (102)

where the diagonal entries of Σ were sorted from largest to smallest and S =
Diag(1, . . . , 1,det(UV T )).

The special orthogonal group data set is synthetically generated. We refer to [De Bortoli et al.,
2022] for a description of the data generation process. They use an infinite stream of samples. To
emulate this, we generate a data set of 107 samples from their code, of which we reserve 1,000 for
validation during training and 5,000 for testing. We vectorize the 3× 3 matrices before passing them
into the fully-connected networks. All training details are given in Table 9, one training run takes
approximately 7 hours on a NVIDIA A40.

The data set is synthetically generated; of the N = 100, 000 data points, we use 1% of for validation
and hyperparameter selection and 5% for test NLL. Each run uses a different random initialization of
papers.

B.3 Earth data

We follow previous works and use a dataset split of 80% for training, 10% for validation and 10%
for testing. For the earth datasets we use a mixture of 5 learnable Von-Mises-Fisher distributions
for the target latent distribution. We base our implementation on the hyperspherical_vae library
[Davidson et al., 2018]. In order to stabilize training we apply a small amount of Gaussian noise to
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Figure 4: Density estimates of our model on the earth datasets. Blue points show the training dataset,
red points the test dataset.

Dataset Number of instances Noise strength
General 138208 0
Glycine 13283 0
Proline 7634 0
Pre-Proline 6910 0
RNA 9478 1× 10−2

Table 12: Details on the torus datasets. Each dataset is randomly split into a train dataset (80%),
validation dataset (10%) and test dataset (10%). During training, we add Gaussian noise with mean
zero and standard deviation given by ‘noise strength’ to the data, to counteract overfitting.

every batch (see table 10) and project the resulting data point back onto the sphere. Other training
hyperparameters can be found in table 11. Each model trained around 20h on a compute cluster using
a single NVIDIA A40.

B.4 Tori

The torus datasets are randomly split into a train dataset (80%), validation dataset (10%) and test
dataset (10%). To counteract overfitting, we augment the RNA dataset with random Gaussian noise.
The noise strength and total number of instances is reported in Table 12. We use a uniform latent

Hyperparameter Value (T2) Value (T7)
Layer type ResNet ResNet
residual blocks 6 2
Inner depth 3 2
Inner width 256 256
Activation SiLU SiLU
βxR 100 1000
βzR 100 100
βxU 100 100
βzU 0 1000
βP 0 0
Latent distribution uniform uniform
Optimizer Adam Adam
Learning rate 1× 10−3 1× 10−3

Scheduler oneclyclelr onecyclelr
Gradient clipping - -
Weight decay 1× 10−3 1× 10−3

Batch size 512 512
Step count ∼ 120k ∼ 120k
#Repetitions 5

Table 13: Details on the model architecture, loss weights and optimizer parameters for the torus
datasets. We use the same configuration for all protein datasets on T2.
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Figure 5: Log density of M-FFF models in the (Φ,Ψ)-plane of protein backbone dihedral angles
(known as Ramachandran plot[Ramachandran et al., 1963]). The learned density matches the true
density indicated by the test dataset (black dots) very well. Note also that the learned distribution
obeys the periodic boundary conditions.

distribution. We train for 120k steps with a batch size of 512 which takes 2.5 to 3 hours on a NVIDIA
GeForce RTX 2070 graphics card. Further hyperparameters used in training can be found in Table 13.

B.5 Hyperbolic space

A straightforward way to define distributions on hyperbolic space (but also other Riemannian
manifolds) is, to define a probability density ptangent in the tangent space at the origin and use the
exponential map exp0 to pushforward this distribution onto the manifold using Eq. (9):

log pmanifold(exp0(v)) = log ptangent(v)− log |Jexp0
(v)| − 1

2
log

|Gmanifold(exp0(v))|
|Gtangent(v)|

, (103)

where Gmanifold denotes the metric tensor of the embedded manifold and Gtangent the metric tensor of
the tangent space. This is also known as a ’wrapped’ distribution.

We use the Poincaré ball model, which embeds the n-dimensional hyperbolic space Hn in the n-
dimensional Euclidean space Rn as defined in Table 2. The exponential map at the origin of this
embedding and its Jacobian determinant are simply given by:

exp0(v) = tanh(∥v∥) v

∥v∥
and |Jexp0

(v)| = tanh(∥v∥)
∥v∥ cosh2(∥v∥)

. (104)

The metric tensor at some point p ∈ H is defined by: GijH (p) = λ2pδij with λp = 2/(1− ∥x∥2). The
metric tensor of the tangent space is the usual Euclidean metric tensor: GijR = δij .

With this at hand, we can define latent and toy distributions as wrapped distributions at the origin, as
depicted in Fig. 6.

For training, we sample 100k data points from each distribution. Hyperparameters for each model
can be found in Table 14. Training takes approximately 2.5, 16, 8 and 16 hours on a NVIDIA A40
graphics card for the one Gaussian, five Gaussians, swish and checkerboard dataset respectively. The
resulting model densities are shown in Fig. 6.

B.6 3D mesh

We base our experiment on the manifold and data provided by [Chen and Lipman, 2024] using 80%
for training, 10% for validation and hyperparameter tuning. We report test NLL on the remaining
10% of the data. Each run starts from different parameter initialization. They give the manifold as a
triangular mesh, consisting of vertices vi ∈ R3, i = 1, . . . Nv and triangular faces fj ∈ {1, . . . , Nv}3.

Since the projection to the nearest point on the mesh has zero gradient in parts of R3, we instead
project to the manifold using a separately trained auto encoder with a spherical latent space. This
autoencoder consists of an encoder e : R3 → R3 consisting of five hidden layers with 256 neurons
each, SiLU activations and an overall skip connection. The latent codes are computed by projecting
the encoder outputs e(x) to a sphere as z(x) = e(x)/∥e(x)∥, so that the latent space has the same the
topology as the input mesh. Then, a decoder d(z) with the same structure as the encoder is trained to
reconstruct the original points by minimizing ∥x− d(e(x)/∥e(x)∥∥2. We train it for 218 = 262, 144
steps, with each batch consisting of all Nv = 2, 502 vertices and an additional N = 2, 502 uniformly
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Figure 6: Density estimation on the Poincaré ball model. As latent distribution we use a wrapped
normal distribution with standard deviation 0.5 (Left). As target distributions (top row) we define
several toy distributions in the tangent space at the origin and use Eq. (103) to push forward to the
manifold. We will reference each distribution from left to right as ’one Gaussian’, ’five Gaussians’,
’swish’ and ’checkerboard’. We train M-FFF on these target distributions using the full expression
in Eq. (9) to compute the change in variables and evaluate the densities of the models (bottom
row). M-FFF are capable to adapt to non-isometrically embedded manifolds. The learned densities
on the one Gaussian, five Gaussians and swish dataset closely follow the target densities. On the
checkerboard dataset, M-FFF cannot fully reproduce the sharp edges and density of the dataset.

Hyperparameter Value (one wrapped) Value (five gaussians) Value (swish) Value (checkerboard)
Layer type ResNet ResNet ResNet ResNet
residual blocks 2 6 6 6
Inner depth 2 3 3 3
Inner width 128 256 256 256
Activation SiLU SiLU SiLU SiLU
βxR 1000 1000 1000 1000
βzR 100 100 100 100
βxU 100 100 100 100
βzU 0 0 0 0
βP 1 1 1 1
Latent distribution Wrapped normal Wrapped normal Wrapped normal Wrapped Normal
Optimizer Adam Adam Adam Adam
Learning rate 2× 10−4 1× 10−4 1× 10−4 1× 10−4

Scheduler Exponential w/ γ = 0.9986 onecyclelr onecyclelr onecyclelr
Gradient clipping - - - -
Weight decay 1× 10−3 1× 10−3 1× 10−3 1× 10−3

Batch size 4096 4096 4096 4096
Step count ∼ 84k ∼ 485k ∼ 240k ∼ 495k

Table 14: Details on the model architecture, loss weights and optimizer parameters for the Poincaré
ball experiments.

random points on the original mesh. We find that for successful training, it is helpful to filter out
data with x2 > 0.5 + n/10, 000, where n is the step number. This prevents the long bunny ears from
collapsing as the are slowly grown, allowing the model to adapt.

We then train M-FFF with the hyperparameters given in table Table 15, using the pretrained autoen-
coder as our projection to the manifold. Note that we do not train the distribution on the latent sphere
of the encoder, but directly on the manifold spanned by it. Training takes approximately 14 hours on
a NVIDIA A40.

B.7 Libraries

We base our code on PyTorch [Paszke et al., 2019], PyTorch Lightning [Falcon and The PyTorch
Lightning team, 2019], Lightning Trainable [Kühmichel and Draxler, 2023], Numpy [Harris et al.,
2020], Matplotlib [Hunter, 2007] for plotting and Pandas [McKinney, 2010, The pandas development
team, 2020] for data evaluation. We use the geomstats [Miolane et al., 2020, 2023] package for
embeddings and projections.
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Hyperparameter Value
Layer type ResNet
Residual blocks 2
Inner depth 5
Inner width 512
Activation ReLU
βxR 1000
βzR 0
βU 10
βxP 100
βzP 10
Latent distribution uniform
Optimizer Adam
Learning rate 5× 10−4

Scheduler Exponential w/ γ = 1− 0.0039
Gradient clipping 1.0
Weight decay 3× 10−5

Batch size 1,024
Step count 469.199
#Repetitions 3

Table 15: Hyperparameter choices for the bunny experiments.
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