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ABSTRACT

Generative models, with their success in image and video generation, have re-
cently been explored for synthesizing effective neural network weights. These
approaches take trained neural network checkpoints as training data, and aim to
generate high-performing neural network weights during inference. In this work,
we examine four representative, well-known methods in this emerging area on
their ability to generate novel model weights, i.e., weights that are different from
the checkpoints seen during training. Contrary to claims in prior work, we find
that these methods synthesize weights largely by memorization: they produce ei-
ther replicas, or at best simple interpolations, of the training checkpoints. Current
methods fail to outperform simple baselines, such as adding noise to the weights
or taking a simple weight ensemble, in obtaining different and simultaneously
high-performing models. Our further results suggest that the memorization poten-
tially resulted from limited data, overparameterized models, and the underuse of
structural priors specific to weight data. Our findings highlight the need for more
careful design and evaluation of generative models in new domains.

1 INTRODUCTION

Generative models, particularly diffusion models for image and video synthesis, have advanced sig-
nificantly in recent years. Models such as Stable Diffusion (Rombach et al., 2022; Esser et al.,
2024), Imagen (Ho et al., 2022), and FLUX (Black Forest Labs, 2024) demonstrate exceptional
photorealism, with widespread applications in commercial art and graphics. Beyond static images,
generative video models like Sora (Brooks et al., 2024) and Veo 3 (DeepMind, 2025) have recently
gained attention, achieving impressive consistency and coherence in video synthesis. The success
of these models is enabled by the strong priors for generative modeling from pre-trained represen-
tations (Esser et al., 2021; Radford et al., 2021; Yu et al., 2024) and the algorithmic designs tailored
to the visual modalities (Johnson et al., 2016; Zhu et al., 2017; Peebles & Xie, 2023).

Building on this success, recent studies (Schiirholt et al., 2022; Peebles et al., 2022; Erkog et al.,
2023; Wang et al., 2024) have extended the use of generative models to synthesize weights for
neural networks. These methods collect network checkpoints trained with standard gradient-based
optimization, and apply generative models to learn the weight distributions and produce new check-
points, without direct access to the training data of the original task. The weights generated by these
methods can often perform comparably to conventionally trained weights: they achieve high test
accuracy in image classification models and high-quality 3D shape reconstructions in neural field
models, across diverse datasets and model architectures.

In this study, we seek to answer an important question: have the generative models learned to pro-
duce meaningfully distinct weights that generalize beyond the training set of checkpoints, or do they
merely memorize and reproduce the training data? While prior work has focused on evaluating these
methods based on the performance of the generated models on the downstream tasks, this question
is critical to understanding both the fundamental mechanisms and the practicality of these meth-
ods. To investigate this question of generalization, we analyze four representative weight generation
methods (Schiirholt et al., 2022; Peebles et al., 2022; Erkog et al., 2023; Wang et al., 2024), covering
different generative models and downstream tasks. These methods have been widely-studied (Dravid
et al., 2024; Liang et al., 2024; Soro et al., 2024; Zhou et al., 2024; Cao et al., 2025; Wang et al.,
2025; Zhang et al., 2025a;b), and claim to generate novel weights.
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Figure 1: Building on their success in image generation, generative models have recently been
applied to synthesize weights for neural networks. While they can produce effective neural network
checkpoints (e.g., classification models with high accuracy), it is unclear whether they can generalize
beyond the training set to generate novel weights.

We first find the nearest training checkpoint to each generated checkpoint, to assess the novelty in the
generated checkpoints. Contrary to these methods’ claims, almost all generated checkpoints closely
resemble specific training checkpoints in weight values, showing far less novelty than a new model
trained from scratch. Beyond weight space similarity, we also examine the behaviors of generated
models and their nearest training models. We compare the decision boundaries for classification
models and the reconstructed 3D shapes for neural field models. In both cases, these generated
models, which are very close to training models in weight space, also exhibit highly similar outputs.

Further, we show that current generative modeling methods offer no advantage over simple baselines
for creating new model weights, in terms of producing models that differ from training checkpoints
in behavior while maintaining model performance. These baselines generate new weights by adding
Gaussian noise to training weights or interpolating between them. To quantify how novel a generated
model’s behavior is relative to the behaviors of the training models, we compute a similarity metric
for models based on their overlap in prediction errors on the test set.

We find that limited data, overparameterized models, and the underuse of structural priors in weight
data likely contribute to this memorization. First, we show that scaling up the training dataset can
effectively reduce memorization without degrading the quality of the generated weights. Second, we
demonstrate that the existing, highly over-parameterized weight generation models can memorize
random weights, without learning meaningful patterns. Third, we find that currently used data
augmentations are insufficient for generative models to learn the structural priors of weight data.

In summary, our findings consistently reveal clear patterns of memorization in almost all generated
checkpoints from current methods, both in weight space and model behavior. We find that the
generated weights largely replicate or interpolate the training weight data across all methods. As
generative modeling continues to expand into new domains and modalities (Ravuri et al., 2021;
Zrimec et al., 2022; Chi et al., 2023; Watson et al., 2023; Zeni et al., 2025), our findings highlight
the importance of evaluating memorization in generated outputs, beyond standard quality metrics.
More broadly, we hope this work can encourage researchers to consider both general properties of
generative models and specific characteristics of each data modality in future methods.

2 BACKGROUND

This section provides an overview of the four generative models of weights we study, their differ-
ences from the hypernetwork methods, and the unique symmetries of neural network weight data.

2.1 GENERATIVE MODELING OF WEIGHTS

Generative models have recently been used to synthesize neural network weights, producing mod-
els that require no gradient-based optimization and perform comparably to models from standard
training. In this study, we analyze four representative methods, spanning unconditional and condi-
tional generation with autoencoders and diffusion models, under each method’s primary experimen-
tal setup. We describe the primary setup of each method below, with more detail in Appendix A.
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Hyper-Representations (Schiirholt et al., 2021; 2022) generate neural network weights using an
autoencoder. The autoencoder is trained on 2896 checkpoints of SVHN classification models with
identical architectures but different initializations. After training, kernel density estimation (KDE) is
applied to the latent representations of the top 30% checkpoints with highest accuracy. New weights
are then generated by sampling a latent vector from the KDE-estimated distribution and decoding it.

G.pt (Peebles et al., 2022) is a conditional diffusion model that can generate new weights for a
small predefined MNIST classification model architecture, given input weights and a target loss for
the generated weights. It is trained on a collection of 2.1M model checkpoints from 10728 training
runs, each paired with corresponding test losses. Once trained, G.pt can generate effective models
by conditioning on randomly initialized weights and a minimal and fixed target loss (e.g., 0).

HyperDiffusion (Erkocg et al., 2023) trains an unconditional diffusion model on 2749 neural field
MLPs that represent 2749 unique 3D airplane shapes in ShapeNet (Chang et al., 2015). New shapes
are generated by sampling a new set of MLP weights and reconstructing the mesh represented by it.

P-diff (Wang et al., 2024) trains an unconditional latent diffusion model on 300 neural network
checkpoints. These checkpoints are saved at consecutive steps during an additional training epoch
of the same base CIFAR-100 (Krizhevsky et al., 2009) classification model, after it has converged.

Other methods. Hypernetworks (Ha et al., 2016; Brock et al., 2018; Zhang et al., 2019; Knyazev
et al., 2021; 2023) are neural networks trained to generate the weights of a target network, typically
in a deterministic manner. Unlike the generative modeling methods that we study, hypernetworks are
trained using supervision from downstream tasks rather than a collection of network checkpoints.
As hypernetworks’ generated weights often underperform compared to those obtained via gradient-
based optimization, they are mainly used for weight initialization and neural architecture search.

2.2 NEURAL NETWORK SYMMETRIES

Neurons in a hidden layer have no inherent order, leading to permutation symmetry (Hecht-Nielsen,
1990) in neural networks: swapping neurons and adjusting weight matrices accordingly does not
change a network’s function. Another symmetry is scaling symmetry (Chen et al., 1993), including
sign flips (multiplying all incoming and outgoing weights by -1) in t anh activations. Both G.pt and
Hyper-Representations leverage permutation symmetry to augment weight data during training.

3  EVALUATING MEMORIZATION IN WEIGHT GENERATION

To evaluate the novelty of generated model weights, we compare them to the original weights used
to train the generative models of weight, analyzing both their weight values and model behaviors in
comparison with various baselines.

3.1 MEMORIZATION IN WEIGHT SPACE

A natural first step in evaluating the novelty of generated weights is to find the nearest training
weights to each generated checkpoint under Ly distance, and check for replications in weight values.
However, depending on the method, permutations of weight matrices in training checkpoints or
autoencoder reconstructions of training weights must also be considered.

original
For methods (e.g., G.pt) that apply weight permutation
to augment data during training, we enumerate all possi- reconstiucted
ble permutations of training weights to identify the clos- o o - 6o m

est match for each generated checkpoint. Meanwhile, we SVHN classification accuracy (%)

find that Hyper-Representations’ autoencoder cannot ac-  gigyre 3 Reconstructing ~ classifi-
curately reconstruct training weights, degrading accuracy, cation model weights with Hyper-
as shown in Figure 3. Thus, we compare its generated Representations’ autoencoder —degrades
weights with the reconstructed training weights instead. model performance.

Weight heatmap. For each weight generation method, we visually inspect the three nearest training
checkpoints for each of three randomly selected generated checkpoints using a heatmap of weights,
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(c) HyperDiffusion (Erkoc et al., 2023) (d) P-diff (Wang et al., 2024)
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Figure 2: Generated weights highly resemble training weights. For each method, we display three
heatmaps, showing weight values for 64 randomly selected parameter indices. In each heatmap, the
top row (outlined in red) shows the values of a random generated checkpoint, and the three rows
below (separated by white lines) show its three nearest training checkpoints. We observe that for
every generated checkpoint, at least one training checkpoint is nearly identical to it.

shown in Figure 2 (more examples in Appendices C.1 and C.2). We observe that, for all sampled
generated checkpoints across all methods, there is always at least one training checkpoint that closely
resembles the generated one. Further, all of p-diff’s training and generated checkpoints have nearly
identical weight values, likely because its training checkpoints were saved consecutively from the
same run, differing only by a small number of training updates.

Distance to training weights. In addition to visually inspecting weight values, we identify quan-
titative trends in weight value distributions that differentiate sampling a generated checkpoint from
training a new model using standard gradient-based optimization (further results in Appendix B).

Specifically, we compute the Lo distance from each training and generated checkpoint to its nearest
training checkpoint (excluding self-comparisons for training checkpoints), and show the distance
distributions in Figure 4. For all methods except p-diff, the generated checkpoints are significantly
closer to the training checkpoints than training checkpoints are to one another. For instance, 94.4%
of HyperDiffusion-generated checkpoints have an Ly distance smaller than 10 to some training
checkpoints, whereas any pair of training checkpoints has an Lo distance above 50. This indicates
that these methods produce models with lower novelty than training a new model from scratch. We
note that the training checkpoints used in these methods are saved from distinct training runs.

For p-diff, we observed that the training checkpoints are much closer to each other than the generated
checkpoints are to their nearest training checkpoints. However, the low distances between training
checkpoints may be expected, since they are saved from the same training run at consecutive steps.

@ 60 60 100 100 = generated
B 40 40 B training
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R
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(a) Hyper-Representations (b) G.pt (c) HyperDiffusion (d) P-diff

Figure 4: Generated checkpoints are closer to training checkpoints than training checkpoints
are to one another, except for p-diff. This indicates that generated weights have lower novelty than
a new model trained from scratch. The red and blue histograms represent the distributions of the Lo
distances to the nearest training checkpoints (excluding self-comparisons).
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Figure 5: Generated models produce highly similar outputs to their nearest training models.
Each row shows the decision boundaries or reconstructed 3D shapes of a randomly selected gen-
erated checkpoint (“generated”) and its nearest training checkpoint (“training”). For p-diff models
trained on CIFAR-100, decision boundaries are shown for ten randomly selected classes.

3.2 MEMORIZATION IN MODEL BEHAVIORS

In Section 3.1, we showed that generated weights highly resemble the training weights. However,
similar weights can still yield different behaviors. Here, we compare the behaviors of generated
models to the behaviors of their nearest training models in weight space. We also assess whether
generative modeling methods differ from a simple noise-addition baseline for creating new weights.

Model outputs. To understand the behaviors of generated image classification models, we project
each image dataset onto two principal components, and then visualize the models’ decision bound-
aries. For HyperDiffusion, we reconstruct 3D shapes from the neural field models it generates.

For each method, we randomly select three generated checkpoints (additional examples in Appen-
dices C.3 and C.4) and identify their nearest training checkpoints in weight space under L5 distance,
as in Section 3.1. Figure 5 presents the corresponding decision boundaries or 3D shapes. We find
that generated models and their nearest training models produce highly similar predictions in image
classification, as indicated by the nearly identical decision regions across all class labels. Similarly,
the neural field models generated by HyperDiffusion also reconstruct to nearly identical 3D shapes
as training ones, with visible differences only in minor details (e.g., the edges of the airplane wings).

Metric for novelty. For generated weights to represent generalization, they need to behave suffi-
ciently differently from training weights while maintaining high performance. To quantify the nov-
elty of a generated classification model checkpoint, we adopt the model similarity metric from Wang
et al. (2024), which measures the Intersection over Union (IoU) of incorrect test set predictions be-
tween two model checkpoints. The formal definition of this metric is in Appendix D.1. We explore
an alternative similarity metric based on the percentage of prediction overlaps in Appendix D.3.

To assess a checkpoint’s novelty, we compute its similarity with each training checkpoint and take
the maximum similarity. A lower maximum similarity value indicates greater novelty, as it means
the generated model’s classification prediction error patterns differ more from all training models.

For HyperDiffusion, which generates neural field models rather than classifiers, we use Chamfer
Distance (CD), a standard metric for 3D shapes. A lower minimum CD to the fest shapes indicates
better shape quality, analogous to higher classification accuracy. A higher minimum CD to the
training shapes suggests greater novelty, akin to lower maximum similarity in classification models.

Noise-addition baseline. We compare the accuracy and maximum similarity of the generated
checkpoints against a baseline that simply adds Gaussian noise to training weights. The weight
generation methods are considered superior if, at the same level of novelty relative to training mod-
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Figure 6: Weight generation methods do not outperform noise addition in the accuracy-novelty
trade-off, except for p-diff. Novelty is measured by max error similarity (lower is better) or min
point cloud distance to training checkpoints (higher is better). We show 100 samples per model type.

els, they produce models with better performances than noise addition. Figure 6 shows the accuracy
and maximum similarity distributions for training models, generated models, and noise-added mod-
els. For each weight generation method, the noise amplitudes are chosen so that the maximum
similarity of noise-added models roughly matches the maximum similarity of generated models.

Accuracy-novelty trade-off. As shown in Figure 6, for G.pt and Hyper-Representations, noise-
added models often achieve comparable or even higher accuracy than generated models at the same
maximum similarity to training models. Similarly, for HyperDiffusion, the distributions of the min-
imum CD to training and test shapes show no significant difference between generated and noise-
added MLPs. These results suggest that the weight generation methods may nor offer further benefits
than simply adding noise to the training weights. An exception is p-diff, where generated models
achieve a better trade-off between maximum similarity and accuracy than noise-added models.

3.3 P-DIFF GENERATES BY INTERPOLATION, NOT GENERALIZATION

As observed in Section 3.2, different from the other methods, p-diff achieves a better trade-off
between the novelty and accuracy of generated models compared to the noise-addition baseline.
Interestingly, the generated weights even surpass the training weights in accuracy (Figure 6d).

Weight distributions. To investigate this, we examine the distribution of parameter values in gen-
erated and training models in Figure 7. The generated weight values tend to concentrate around the
average of the training values. Averaging the weights of multiple models fine-tuned from the same
base model is known to lead to improved accuracy (Wortsman et al., 2022). Thus, p-diff may achieve
higher accuracy in its generated models by producing interpolation of its training checkpoints.
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Figure 7: Distributions of five random parameters from the weight matrix of the first layer in the
training and generated checkpoints of p-diff. The generated weights are centered around the mean
of the training weights, suggesting they may be interpolations. More details are in Appendix E.2.
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Figure 8: P-diff generates weights with behaviors (left) and values (right) similar to interpola-
tions of training weights. We compare to two baselines: averaging training weights (“averaged”)
and sampling from a Gaussian fitted to training weights (‘“gaussian”). Model behavior is evaluated
via accuracy and max similarity; t-SNE (Van der Maaten & Hinton, 2008) visualizes weight values.

Interpolation baselines. To explore this hypothesis, we generate new models using two approaches
that approximate the interpolations of the training checkpoints: (1) averaging the weights of 16 ran-
domly selected training checkpoints (“average”) and (2) fitting a Gaussian distribution to the training
weight values in each parameter dimension and sampling from these distributions (“gaussian”).

Behaviors and weights. The left subplot of Figure 8 shows that the accuracy and maximum simi-
larity of the interpolation models closely match those of p-diff. The right subplot visualizes weight
distributions using t-SNE (Van der Maaten & Hinton, 2008). The weights generated by p-diff are
close to weights from the above baselines, further suggesting that p-diff may primarily interpolate
between training checkpoints. This interpolation occurs within a very narrow range (Appendix E).

Summary of Section 3. The generative models of weights produce checkpoints that closely resemble
training checkpoints in both weight space and model behavior, suggesting memorization and limited
novelty. Moreover, they fail to outperform simple baselines in producing new models with lower
similarity to training models in model behaviors while maintaining model performance.

4 UNDERSTANDING MEMORIZATION IN WEIGHT GENERATION

In Section 3, we have demonstrated that conventional weight generation methods primarily memo-
rize the training weights. In this section, we examine how modeling factors influence memorization
and analyze how effectively current methods leverage weight space symmetries as structural priors.

4.1 LIMITED DATA AND OVERPARAMETERIZED MODELS

In image diffusion models, larger models trained on smaller datasets are more prone to memo-
rization (Somepalli et al., 2023a; Kadkhodaie et al., 2024; Gu et al., 2025). Here, we show that
memorization in weight generation can be mitigated by scaling training data, and that the overpa-
rameterized nature of these models facilitates their memorization.

Scaling data. We showcase on G.pt that scaling up data is a potential solution for reducing mem-
orization in weight generation. The original G.pt model is trained on 2.1M checkpoints collected
from 10228 runs. We expand the dataset to 20.4M checkpoints from 101979 runs, train a new
G.pt model, and sample from it. To evaluate novelty, we measure the distances from training and
generated checkpoints to their nearest training checkpoints, and show the distributions in Figure 9.

The increase in training data effectively reduces memorization without degrading the performance of
the generated weights. In the original setting, the mean L, distance between generated and nearest
training checkpoints (2.25) was much smaller than the mean distance between training and nearest
training checkpoints (3.64). After scaling, they become nearly equal (2.78 vs. 2.70). Meanwhile, the
mean accuracy of generated checkpoints remains unchanged (94.0% to 94.1%). However, scaling
data may not be a universal solution, as Hyper-Representations does not benefit (Appendix F.1).

Model capacity. Generative models of weights are overparameterized; e.g., despite its small train-
ing set size of 2749, HyperDiffusion has 1.4B parameters. Larger models have greater expressive
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power (Lu et al., 2017; Raghu et al., 2017), and can even fit arbitrary data without learning mean-
ingful patterns (Zhang et al., 2017). This high capacity may be a reason why memorization occurs.

To test this, we reinitialize one or all layers of the MLP checkpoints used to train HyperDiffusion
with Kaiming Uniform Initialization (He et al., 2015), and retrain HyperDiffusion. As shown in
Figure 10 and Table 1, memorization is clear and consistent across all cases: generated checkpoints
remain much closer to training checkpoints than training checkpoints are to one another. This indi-
cates HyperDiffusion may not have learned the semantics of the MLPs it is trained on, but instead
memorizes weight values even when those weights are random (further results in Appendix F.2).

layers reinitialized in trained MLPs none Ist 2nd 3rd 4th all
mean dist b/w train & nearest train 109.5 114.0 90.3 106.0 126.4 16.0
mean dist b/w gen & nearest train 7.0 9.0 1.5 2.6 3.6 0.8

Table 1: HyperDiffusion replicates training weights regardless of their semantics: even when
one or all layers of the training MLPs are reinitialized with random weights.

While high model capacity is likely a contributing factor, merely reducing model size or altering
other training configurations (e.g., training length or regularization) does not lead to generalization
and often only degrades the performance of generated models (detailed results are in Appendix F.3).

4.2 UNDERUSED STRUCTURAL PRIORS IN WEIGHT DATA

Computer vision researchers develop algorithms and architectures to exploit spatial, color, and tex-
ture properties of images (LeCun et al., 1989; Chen et al., 2020; Cubuk et al., 2020). Likewise, for
weight data, weight space symmetries, such as permutation and scaling symmetries (introduced in
Section 2.2), are promising structural priors for discriminative (Kalogeropoulos et al., 2024; Kofinas
etal., 2024; Lim et al., 2024) and generative (Peebles et al., 2022; Schiirholt et al., 2022) tasks.

Among the four methods we study, only G.pt and Hyper-Representations incorporate permuta-
tion symmetry. G.pt applies permutation solely as a data augmentation technique, while Hyper-
Representations uses it to construct positive pairs for contrastive learning. Here, we evaluate whether
these symmetry-based augmentations provide meaningful benefits for generative modeling.

Transformation invariance. We assess
whether Hyper-Representations, trained with  , B 08l 0.81
permutation augmentation, effectively capture § Z
weight space symmetries. Concretely, we apply 5 o -(—é 0.6[ 0.54
function-preserving transformations to trained § D
. o 6 20.4f 0.38
networks by (1) permuting neurons in hidden g 3
layers or (2) flipping weight matrix signs be- & I
.o S ~ 02}
fore and after tanh activations. We then re- &
construct the original and transformed weights 0 00
using Hyper-Representations’ autoencoder, and I original  HEEM permuted [ scaled

measure the behavior similarity and accuracy
difference between their reconstructions. If
the autoencoder were transformation-invariant,
each pair of reconstructed models would have
identical accuracy and a similarity of 1.

Figure 11: Function-preserving transformations ap-
plied to inputs of Hyper-Representations’ weight au-
toencoder. These transformations yield reconstructed
checkpoints with varied accuracy and low similarity to
the reconstructions of the original inputs.
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Figure 12: HyperDiffusion fails to generate meaningful shapes when any permutation is ap-
plied. This shows that symmetry-based augmentation is insufficient for HyperDiffusion to correctly
learn the weight distributions and symmetries. Each subplot shows four random samples from a Hy-
perDiffusion model trained with different numbers of permutations applied to the training weights.

However, as shown in the left subplot of Figure 11, reconstructions of permuted models differ in
accuracy by 6.01%, and reconstructions of sign-flipped models differ by 5.82%, compared to re-
constructions of their original models. For reference, the average accuracy difference between the
original models is 12.72%. Similarly, the right subplot shows that the error similarity between re-
constructions of original and permuted models is 0.62, and for sign-flipped models, the similarity is
only 0.19. These results indicate that the autoencoder fails to fully capture weight space symmetries,
despite being trained with a contrastive loss that enforces permutation invariance.

Permutation augmentation. We investigate whether applying data augmentation based on weight
symmetries can reduce the memorization in HyperDiffusion. Specifically, we add 1, 3, and 7 random
weight permutations during training, effectively enlarging the dataset by factors of x2, x4, and x8,
respectively. To ensure convergence, we double the training epochs.

Figure 12 shows the shapes generated by the resulting models. Even when we only add a single per-
mutation, HyperDiffusion fails to produce meaningful shapes. As the number of added permutations
increases (e.g., to three), HyperDiffusion fails to converge during training (see Appendix G).

Discussion. These findings suggest that applying weight space symmetries merely as data augmen-
tations is insufficient for encoding such symmetries into generative models and may even make the
training distribution harder to model. Future generative modeling methods may benefit from archi-
tectures that are invariant to weight symmetries by design. For example, prior work on classifying or
editing network weights has shown that neural networks can be represented as graphs and processed
by graph neural networks explicitly designed to respect weight symmetries (Kalogeropoulos et al.,
2024; Kofinas et al., 2024; Lim et al., 2024).

Summary of Section 4. Limited data and overparameterized models are two potential causes for
memorization in weight generation. Further, existing data augmentation methods based on weight
symmetries are insufficient for models to learn the weight distributions and symmetries. Thus,
explicitly integrating the structural priors of weight data into the model design may be beneficial.

5 CONCLUSION

We provide evidence that current generative modeling methods for weights primarily memorize
training data rather than generating truly novel network weights. Our analysis shows that generated
checkpoints are close replicas or interpolations of training checkpoints, with similar weight values
and model behaviors. We find that the generation methods offer no clear advantage over simple
baselines to create novel, high-performing models. Factors such as limited data, overparameterized
models, and the underuse of structural priors in weight data likely contribute to this memorization.

Our findings emphasize the need for careful model design and evaluation of memorization in gener-
ative modeling, particularly as these models expand to new modalities and tasks. We hope this work
can inspire future research to address the memorization issues, and further explore the practical
applications of generative models for weight data and beyond.
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REPRODUCIBILITY STATEMENT

Our analysis and visualization code, along with detailed instructions, can be accessed through this
anonymous link. All of our results are reproducible on a single NVIDIA A100 GPU.
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A EXPERIMENTAL SETUP FOR EACH METHOD

In this paper, we analyze four representative generative modeling methods for neural network
weights, under their primary experimental setups. Here, we expand on Section 2.1 to provide more
details about the training, inference, and analysis of the four methods.

Hyper-Representations provides, for each of MNIST, SVHN, CIFAR-10, and STL-10, a dataset
of thousands of classification model checkpoints, together with a pre-trained generative model
trained on that checkpoint dataset. We evaluate the pre-trained Hyper-Representations autoencoder
checkpoint for SVHN classification model weights. Unless explicitly stated otherwise, the training
weights referenced throughout the paper refer to the reconstructions of the original training weights
produced by the Hyper-Representations autoencoder.

Hyper-Representations save one checkpoint at each of epochs 21 to 25 in every classification model
training run when creating its datasets of checkpoints. However, when calculating the L, distance
from training and generated checkpoints to their nearest training checkpoints, we only use training
checkpoints from the 25th epoch. This is to ensure that the distances between training checkpoints
correctly represent distances between models independently trained from scratch.

G.pt provides datasets of 2.1M to 11.3M checkpoints and pre-trained generative models of weights
for MNIST and CIFAR-10 classification models, as well as Cartpole reinforcement learning models.
We evaluate the pre-trained generative model for MNIST classification model weights.

Although G.pt’s training procedure uses 200 checkpoints from each MNIST training run, to reduce
computational cost, we use only the final checkpoint from each run as the training weights through-
out our paper. This would not underestimate memorization, because the one-step generation of G.pt
explicitly prompts the generative model to produce MNIST classification model weights with zero
test loss, making the generated weights more similar to final checkpoints than to earlier ones.

HyperDiffusion trains an unconditional diffusion model on MLPs that each represent a neural oc-
cupancy field of a unique 3D shape. These MLPs are trained to map 3D coordinates to occupancy
values. Meshes can be extracted from the MLPs using Marching Cubes (Lorensen & Cline, 1987).

HyperDiffusion is applied to MLPs trained on the car, chair, and airplane categories of the ShapeNet
dataset (Chang et al., 2015), as well as to MLPs representing 4D animation sequences. However,
the dataset of MLP checkpoints and the corresponding generative model of MLP weights were only
released for airplane shapes. Thus, our analysis is focused only on this experimental setting.

P-diff is applied to multiple image classification datasets and model architectures. However, the
analysis in the original paper focuses on the setting of generating the last two batch normalization
layers for a CIFAR-100 classification model of ResNet-18 architecture. Accordingly, we evaluate
p-diff under this setting. Since no weight datasets or pre-trained generative models are released, we
follow the official codebase to collect the training weights and train the generative model ourselves.
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B RESULTS ON NON-PARAMETRIC TEST FOR DATA-COPYING DETECTION

Meehan et al. (2020) proposed a non-parametric test for detecting memorization in generative mod-
els. The test requires the training set, a holdout set P,, of size n, and a set of generated samples ).,
of size m. The n + m samples in P,, U )., are sorted by their distance to the nearest training data
point, with rank 1 assigned to the closest sample and rank n 4 m to the farthest. Let Rg,, denote
the sum of the ranks of all generated samples @,,,. The U statistic (Mann & Whitney, 1947) is

m(m+ 1)

Uq,. = Rq,, — 5 ¢))
which is then normalized to obtain the z-scored statistic Z:
U, —
Zy = =221, 2)

ou

where py = % and oy = % Intuitively, Zy < 0 indicates memorization (data-

copying), while Zy; > 0 suggests that the generative model underfits the training data.

We apply the Zy; metric to the original generative models of weights from the four studied methods,
as well as to the models trained in our ablation experiments. This provides additional quantitative
evidence regarding whether the models memorize or generalize. Since each method provides a
different number of holdout samples, the Z;; values are not directly comparable across methods.

B.1 DATA COPYING TEST FOR ORIGINAL MODELS

In Section 3.1, our visualization showed that, except for p-diff, whose training checkpoints are saved
consecutively in the same run and are of very low diversity, the generated checkpoints of all other
methods are much closer to the training checkpoints than the training checkpoints are to one another.

Here, we measure the Z;; score based on the same L, distance metric between checkpoints for
Hyper-Representations, G.pt, and HyperDiffusion, and find that the Zy (-13.6, -8.5, and -30.8,
respectively) scores are significantly smaller than 0, indicating severe memorization. This confirms
the results in Section 3.1.

B.2 DATA COPYING TEST FOR MODELS FROM ABLATION EXPERIMENTS

In Section 4.1, we identified limited dataset size and model overparameterization as potential rea-
sons why memorization occurs. Specifically, we showed that scaling up the training data reduces
memorization in G.pt, while HyperDiffusion is capable of memorizing random weights. Here, we
further confirm these trends using the Z;; score.

Scaling data for G.pt. We measure the Z; score before and after increasing the training dataset size
of G.pt from 2.1M to 20.4M samples. The Z;; score rises from -8.5 to 3.5, indicating that scaling
data effectively mitigates memorization in G.pt.

training dataset size 2.1M 20.4M
mean dist b/w train & nearest train 3.64 2.70
mean dist b/w gen & nearest train 2.25 2.78
Zy score (Meehan et al., 2020) -8.5 3.5

Table 2: Scaling up training data can reduce memorization in G.pt. The increase to positive Z;
score after scaling up data confirms the reduced memorization observed in Figure 9.

Training HyperDiffusion on random weights. In Section 4.1, we trained HyperDiffusion on the
original dataset of checkpoints with one or all layers randomly reinitialized. We report the Zy; score
of the original and newly-trained HyperDiffusion models in Table 3.

We find that all models have a Z;; score of -30.8, the lowest possible score when n = 606 and m =
666. This is because, in every case, each generated checkpoint is closer to a training checkpoint than
any training checkpoint is to another training checkpoint. This further confirms that HyperDiffusion
closely memorizes the training checkpoints regardless of the semantics of the weights.
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layers reinitialized in trained MLPs none st 2nd 3rd 4th all
mean dist b/w train & nearest train 109.5 114.0 90.3 106.0 126.4 16.0
mean dist b/w gen & nearest train 7.0 9.0 1.5 2.6 3.6 0.8
Zy score (Meehan et al., 2020) -30.8 -30.8 -30.8 -30.8 -30.8 -30.8

Table 3: HyperDiffusion memorizes weights regardless of their semantics. The consistently low
Z; score confirms that severe memorization occurs in all cases, as observed in Table 1.
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C ADDITIONAL VISUALIZATION OF MODEL WEIGHTS AND BEHAVIORS

C.1 ADDITIONAL RANDOM EXAMPLES OF WEIGHT HEATMAPS

In Section 3.1, we showed the values of random parameters in generated checkpoints and their
nearest training checkpoints for all four methods, to demonstrate the memorization in weight space.
Due to space constraints, we presented only three random examples per method. In Figure 13, we
provide heatmap visualizations of eight additional random generated checkpoints and their nearest
training checkpoints for each method. Consistently, we observe that for almost every generated
checkpoint, there exists at least one training checkpoint with highly similar weights.
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Figure 13: Additional random examples of weight heatmap for generated models and their near-
est training models.
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C.2 HEATMAPS BY PERCENTILE OF DISTANCE TO NEAREST TRAINING CHECKPOINT

In Section 3.1 and Appendix C.1, we showed weight heatmaps of random generated checkpoints
and their nearest training checkpoints. Here, we further rank the generated checkpoints by their Lo
distance to the nearest training checkpoint and present weight heatmaps at different percentiles in
Figure 14. A lower percentile corresponds to a smaller distance to the nearest training checkpoint.

Consistent with our earlier findings, the generated weights from Hyper-Representations are nearly
identical to their nearest training weights across all percentiles. Similarly, for G.pt and HyperDiffu-
sion, all generated checkpoints are highly similar to their nearest training checkpoints, except at the
100th percentile, which show moderate differences. For p-diff, across all percentiles, all training and
generated checkpoints are nearly identical. As noted in Section 3, this is likely because its training
checkpoints are saved from consecutive steps within the same training run, resulting in low diversity.
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Figure 14: Heatmaps of generated checkpoints at different percentiles of distance to the nearest
training checkpoint. Results are consistent with those observed for random generated weights: all
generated checkpoints closely resemble their nearest training checkpoints, except for those at the
100th percentile in G.pt and HyperDiffusion, which show moderate differences.
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C.3 ADDITIONAL RANDOM EXAMPLES OF MODEL OUTPUTS

In Section 3.2, we visualized the decision boundaries or reconstructed 3D shapes of generated mod-
els and their nearest training models, to demonstrate their high similarity in model behaviors. Due to
space constraints, we presented only three random examples per method. In Figure 15, we provide
visualizations of model outputs for nine additional random generated checkpoints per method and
the nearest training checkpoint to each of them. These results further confirm that the generated
checkpoints closely resemble their nearest training checkpoints not only in weight space but also in
model behavior.

generated  training generated  training generated  training generated  training
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(a) Hyper-Representations (b)G.pt (c) HyperDiffusion (d) P-diff

Figure 15: Addition random examples of decision boundaries and reconstructed meshes of
generated models and their nearest training models.
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C.4 MODEL OUTPUTS BY PERCENTILE OF DISTANCE TO NEAREST TRAINING CHECKPOINT

In Section 3.2 and Appendix C.3, we showed model outputs from random generated checkpoints
and their nearest training checkpoints. Here, we further rank the generated checkpoints by their
L, distance to the nearest training checkpoint and present model outputs at different percentiles in
Figure 16. A lower percentile corresponds to a smaller distance to the nearest training checkpoint.

Consistent with our earlier findings, the behaviors of generated models from Hyper-Representations
are nearly identical to their nearest training weights across all percentiles. Similarly, for G.pt and
HyperDiffusion, all generated checkpoints produce outputs highly similar to their nearest training
checkpoints, except those at the 100th percentile, which show moderate differences. We note that
the HyperDiffusion-generated checkpoint at the 100th percentile is of low quality (as seen in the
degraded shape it reconstructs to) and thus cannot be matched to any training checkpoint. For p-diff,
across all percentiles, all training and generated checkpoints’ outputs are highly similar.
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Figure 16: Decision boundaries and reconstructed meshes of generated checkpoints at different
percentiles of distance to the nearest training checkpoint. Results are consistent with those
observed for random generated weights: all generated checkpoints closely resemble their nearest
training checkpoints in model outputs, except at the 100th percentile in G.pt and HyperDiffusion,
where the lower quality of the generated checkpoints may account for the observed differences.
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D ADDITIONAL INFORMATION ON MEMORIZATION IN MODEL BEHAVIORS

D.1 METRIC FOR CHECKPOINT SIMILARITY BASED ON INCORRECT PREDICTIONS

In Section 3.2, we used the metric from Wang et al. (2024) to quantify the similarity between two
classification model checkpoints. The metric measures similarity based on the Intersection over
Union (IoU) of the sets of incorrect predictions made by the two model checkpoints. Formally, it is
defined as follows:

Il:{iE{L"'vN}|M1(Xi)7éyi}a
IQZ{ie{la"'7N}|M2(Xi)7éyi}a 3)
I NI
IOU(Ml’MQ)_M’

where {(X;,v:)}; represents the test set on which the model checkpoints are evaluated. The
sets /1 and I contain the indices of test samples for which model checkpoints M; and M5 make
incorrect predictions, respectively.

D.2 ADDITIONAL INFORMATION ON THE NOISE-ADDITION BASELINE

In Section 3.2, we introduced a noise-addition baseline to compare with the generated models in
terms of performance and novelty. For Hyper-Representations, whose KDE sampling method is
based on the top 30% highest-accuracy training checkpoints, we apply noise to reconstructions of
a random subset of these highest-accuracy checkpoints to ensure a fair comparison. For all other
methods, we apply noise to checkpoints uniformly sampled from all training checkpoints.

D.3 ALTERNATIVE SIMILARITY METRIC: OVERLAP IN CLASSIFICATION PREDICTIONS

For classification models, the percentage of test set predictions they agree on provides an intu-
itive measure of their similarity in behavior. Table 4 shows the prediction overlap between clas-
sification model weights generated by Hyper-Representations, G.pt, and P-diff and their nearest
training checkpoints under Lo distance, along with prediction overlap between training models and
their nearest neighbors (excluding self-comparisons) for comparison. As in Section 3, for Hyper-
Representations, we use reconstructed training weights rather than the original ones.

method Hyper-Representations G.pt P-diff
mean accuracy of training models 51.3 94.5 76.9
pred overlap b/w training & nearest training 75.6 97.9 91.4
pred overlap b/w generated & nearest training 98.5 98.2 93.5

Table 4: Classification predictions highly overlap between generated and training models. This
shows that the generated models highly resemble the behaviors of training models.

Across all methods, generated models show higher prediction overlap with their nearest training
models than training models do. This high overlap suggests that the generated models closely re-
semble the training models in behavior. However, we note that prediction overlap can be strongly in-
fluenced by accuracy: two models with accuracy 2 will have a minimum overlap of max(2z —1, 0).
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E ADDITIONAL INFORMATION ON THE NOVELTY OF P-DIFF’S GENERATED
MODELS

All training and generated checkpoints of p-diff exhibit highly similar weight values (Figures 2
and 13) and decision boundaries (Figures 5 and 15). Yet, unlike other methods, p-diff achieves a
better accuracy-novelty trade-off than noise addition (Figure 6), and its generated models are often
farther from the nearest training model than training models are from one another (Figure 4).

This may be explained by p-diff’s training checkpoints being saved from consecutive steps in the
same training run, which results in significantly lower diversity in training models, compared to other
methods that sample checkpoints across different runs. Consequently, p-diff may be interpolating
within a narrow region of the weight space, which still appears novel relative to its low-diversity
training distribution.

To investigate this, we analyze the weight distribution of p-diff’s training and generated checkpoints,
in comparison with models trained from scratch using different random seeds.

E.1 COMPARISON WITH MODELS TRAINED FROM SCRATCH

We train 20 models from scratch using different random seeds, with the same architecture (ResNet-
18) and downstream task (CIFAR-100) as p-diff. The training recipe, shown in Table 5, is tuned
so that the final accuracies of these models (75.4% =+ 0.3%) approximately match those of p-diff’s
training checkpoints (76.8% + 0.2%).

config value

optimizer AdamW (Loshchilov & Hutter, 2019)

learning rate Se-4

weight decay Se-4

optimizer momentum b1, 52=0.9,0.999

batch size 128

learning rate schedule cosine decay

training epochs 300

augmentation RandomResizedCrop (Szegedy et al., 2015) & RandAug (9, 0.5) (Cubuk et al., 2020)

Table 5: Training recipe for CIFAR-100 classification models trained from scratch.

in parameter values.

training checkpoints generated checkpoints models trained from scratch
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Figure 17: P-diff’s training and generated checkpoints show limited diversity compared to
models trained from scratch.. Each row (separated by white lines) is a model checkpoint; each
column is a randomly selected parameter index. The same indices are used across all three subplots.

We further quantify the weight space diversity of p-diff’s training and generated checkpoints, com-
pared to models trained from scratch. As shown in Table 6, both training and generated checkpoints
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of p-diff occupy a narrow region of the weight space, with low pairwise and nearest-neighbor dis-
tances. In contrast, models trained independently from scratch exhibit much higher weight variation.

case mean Lo distance
b/w all pairs of training checkpoints 6.9
b/w all pairs of training and generated checkpoints 6.3
b/w all pairs of from-scratch models 46.1
from training checkpoints to nearest training checkpoints 0.3
from generated checkpoints to nearest training checkpoints 54
from from-scratch models to nearest from-scratch models 441

Table 6: Distances among p-diff’s training and generated checkpoints are much smaller than
the distances among from-scratch models. This shows that p-diff’s training and generated check-
points occupy a narrow range in weight space compared to models trained from scratch.

These results confirm that p-diff’s training and generated checkpoints occupy a highly constrained
region in weight space, substantially narrower than the region spanned by independently trained
models. Thus, although p-diff appears to interpolate between training checkpoints (Figures 7 and 8),
the training checkpoints themselves lack diversity. As a result, the interpolation occurs within a
narrow subspace and does not reflect meaningful generalization beyond the training data.

E.2 ADDITIONAL INFORMATION ON P-DIFF WEIGHT VALUE DISTRIBUTION

In Section 3.2, we showed that the parameter values in checkpoints generated by p-diff tend to center
around the average of the parameter values in training checkpoints, using smoothed weight distri-
bution curves. Figure 18 presents the same plot without smoothing, confirming that the moderate
smoothing does not affect the observed trends.
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Figure 18: Distributions of 5 randomly selected parameters from the weight matrix of the first
layer in the training and generated checkpoints of p-diff. This figure corresponds to Figure 7 but
without smoothing applied to the distribution curves.

We further extend this analysis by visualizing the parameter value distributions of 50 randomly
selected entries from the first-layer weight matrix in both training and generated checkpoints. As
shown in Figure 19, the concentration of generated weights around the mean of training weights
persists across this larger set of parameters.

24



Under review as a conference paper at ICLR 2026

:Z [ N A —— training —— generated
. [\ a\ [\ I\
T | / \ BN
7. = e AN
075 090 105 120 1.35 1.50 22 24 26 09 12 15 225 240 255
167
N A
12
2 h \ / A
A \ | \ \
325 350 375 400 050 075 1.00 0.30 0.45 0.60 0.75 195 210 14 16 1.8 20
16
12
8 — —~ A\ /\
N N po o\ 7\
[/ N\ \ AN
135 150 165 1.80 12 1.4 16 18 075 090 1.05 06 07 08 09 1.95 210 2.25
16
12
8 I\ N\ AN A
. \ / 7\ /A /
A Thn— AN N\ ~ L
20 22 24 12 14 16 08 09 1.0 060 075 090 1.8 21 24 27
16
12 i
. N N A\ 7\ [\
. /| \ / \ = |\
/. -7 —7
2 08 10 12 20 22 24 26 1.05 1.20 1.35 0.45 0.60 0.75 14 16 18 20
2 16
[0} 12 ~
R / A \
oL I\ Py Ja \
AN XN AN N\ —7
285 3.00 3.5 180 195 210 10 12 14 1.0 12 1.4 210 225 240
16
12
: A\ N A A
. J\ [\ / [\ J\
7
030 045 0.60 16 18 20 22 180 195 0.8 1J.o 1.2 050 0.75 1.00 1.25
16
12 N
. / | /\ \ A
. /\ | [\ N\ /
— e - \ o
06 08 1.0 20 25 30 20 22 24 16 1.7 18 12 15 18 2.1
16
12
8 AN /\ /\ 1 M\
e AO ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, AN I [\ J\
A A
135 150 165 08 10 12 14195 210 225 240 075 1.00 1.25 105 120 1.35
16
12
e N\ N / \
o) AW [\ \
C AN /j/;\

18 20 22 0.60 0.75 090 0.75 0.90 1.05 06 O 1.0 1.75 2.00 225 250

parameter value

Figure 19: Distributions of 50 randomly selected parameters from the weight matrix of the first
layer in the training and generated checkpoints of p-diff. This figure extends the analysis of Figure 7
to a broader set of parameters, further confirming the observed trend of generated weight values
concentrating around the average of the training values.
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F ADDITIONAL INFORMATION ON THE IMPACT OF TRAINING
CONFIGURATIONS ON MEMORIZATION

In Section 4.1, we demonstrated that limited data and overparameterized models likely contribute
to memorization. Here, we extend this analysis by testing additional settings and modeling factors
beyond data and model size. The Zi; score used in this section is introduced in Appendix B.

F.1 DATA SCALING

In Section 4.1, we showed that scaling up training data for G.pt can effectively mitigate memoriza-
tion. Here, we further explore scaling data for Hyper-Representations.

training dataset size 2896 24136
mean dist b/w train & nearest train 49.97 48.17
mean dist b/w gen & nearest train 8.11 9.24

Zy score (Meehan et al., 2020) -13.6 -13.6

Table 7: Scaling up training data does not reduce memorization in Hyper-Representations.
After scaling up, the distances between training and generated checkpoints remain much smaller
than the distances among training checkpoints, and Zy remains unchanged.

Concretely, we increased the number of training checkpoints from 2896 to 24136. However, as
shown in Table 7, generated checkpoints remain far closer to training checkpoints than training
checkpoints are to each other. The unchanged Zi; score after scaling further confirms that scaling
data does not mitigate memorization in Hyper-Representations.

While this result does not rule out the possibility that scaling to much larger datasets might even-
tually reduce memorization, it suggests that there may be more fundamental modeling issues at
play (e.g., the lack of designs explicitly integrating the properties of weight data, as discussed in
Section 4.2), beyond insufficient data.

F.2 MODEL CAPACITY

In Section 4.1, we showed that HyperDiffusion can fully memorize its training checkpoints, even
when one or all layers are reinitialized with random weights, suggesting that it simply memorizes
weights without capturing meaningful patterns. Here, we further demonstrate this by training Hy-
perDiffusion on MLPs trained with different training lengths.

By default, HyperDiffusion trains the first MLP model from random initialization, and subsequent
MLP models are initialized from the trained weights of the first model. To enable a fairer comparison
across training lengths, we instead train all MLP models from scratch.

training length 0 epoch 200 epochs 400 epochs full
mean dist b/w train & nearest train 16.0 115.7 129.4 126.8
mean dist b/w gen & nearest train 0.8 2.8 3.7 5.7
Zu score (Meehan et al., 2020) -30.8 -30.8 -30.8 -30.8

Table 8: HyperDiffusion memorizes MLP weights regardless of their training length. This
suggests that memorization occurs independent of the semantics of the weights.

Following HyperDiffusion’s codebase, a full MLP training run ends when the training loss fails
to improve for 50 consecutive epochs. Across 500 independent runs, the average training length
is 667.7 epochs. We collect new datasets of checkpoints by training all MLPs for 200 and for 400
epochs, and then train a HyperDiffusion on each dataset. The evaluation results are shown in Table 8.

F.3 OTHER MODELING FACTORS

Modeling choices such as training duration, model architecture, and regularization strategy have
been shown to significantly impact memorization in image diffusion models (Somepalli et al.,
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Hyper-Representations G.pt HyperDiffusion
#params acc.f Lo T #params acc.t Lo T #params MMD| Lo 1

baseline

training - 65.2  50.0 - 944 3.64 - 0.026  109.5

default gen 223M 575  8.11 3718M 940 225 1.4B 0.036  7.03
training epochs

33.3% 223M 338 7.86 378M 940 240 1.4B 0.035 740

50.0% 223M 47.1 797 378M  94.0 2.25 1.4B 0.034 474
model size

+dim & head 35OM  50.1 8.06 57T9M 936 2.12 2.1B 0.034  2.69

+layer 362M 559 8.09 605M 939 2.08 2.0B 0.036  3.32

—dim & head 118M 441 7093 220M 936 251 0.8B 0.039 2247

—layer 154M 422 793 208M 86.6 3.70 1.0B 0.033  3.17

regularization
+10% dropout 223M 539 776  318M 937 227 1.4B 0.035 5.10
+20% dropout 223M 447 726 3I8M 925 3.3 1.4B 0.034  6.08
+Gaussian noise ~ 223M  57.8 8.14 378M 929 237 1.4B 0.033 324

Table 9: Modeling changes do not effectively mitigate memorization: modifications known to re-
duce memorization in image diffusion fail to meaningfully improve the novelty of generated weights
(measured via Lo to nearest training model) without degrading performance. The resulting changes
in Lo for generated weights are often much smaller than the gap in Ly between the two baselines.

2023b; Yoon et al., 2023; Kadkhodaie et al., 2024; Gu et al., 2025). In Section 4.1, we also showed
that the large size of the generative models of weights likely contributes to memorization. Here,
we investigate whether adjusting these factors suffices to mitigate the memorization in generative
models of weights.

Quantitative metrics. In Section 3, we apply various metrics and baselines to demonstrate the
memorization in weight space and model behaviors. Here, we measure the mean Lo distance be-
tween generated models and their nearest training models, as a simple proxy to quantify the novelty
of generated weights. However, a high L, distance to training weights may also arise from low-
quality weight generations. Thus, we also evaluate model performance: accuracy for classification
models and Minimum Matching Distance (under Chamfer Distance) for neural field models. These
quantitative evaluations of generative models under varying modeling factors are shown in Table 9.
We report the metrics for training weights and generated weights under default settings as baselines.

Training epochs. Reducing training epochs tends to lessen memorization in generative mod-
els (Somepalli et al., 2023b; Yoon et al., 2023; Gu et al., 2025). We shorten training to 1/2 and
1/3 of the original length. Nonetheless, this has minimal impact on the Lo distances and the quality
of generated weights for G.pt and HyperDiffusion, while significantly degrading the accuracy of
models produced from Hyper-Representations.

Model size. The size of a generative model can influence its sample quality and generaliza-
tion (Dhariwal & Nichol, 2021; Nichol & Dhariwal, 2021). We vary the model size by increasing
or decreasing its depth (i.e., number of layers) and width (i.e., model dimensions). However, across
the three methods, changing the model size does not meaningfully increase the L, distances without
compromising the generated models’ performance.

Regularization. Regularization techniques have long been leveraged to prevent models from over-
fitting to the training set (Srivastava et al., 2014; Szegedy et al., 2016; Pereyra et al., 2017). Here, we
apply dropout (Srivastava et al., 2014) and inject random Gaussian noise into the training weights.
Yet, these only result in minor changes to sample quality and L, distances.

Discussion. Modeling factor adjustments common in image diffusion cannot alleviate the memo-
rization issue: none substantially improved the novelty of the generated weights without degrading
performance. Notably, the changes in L, distance resulting from these variations were much smaller
than the original gap between Lo measured on training weights and on generated weights.
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G ADDITIONAL INFORMATION ON PERMUTATION AUGMENTATION FOR
HYPERDIFFUSION

In Section 4.2, we investigated whether adding permutation augmentations to the training data of
HyperDiffusion reduces memorization. Specifically, we added 1, 3, and 7 random weight permuta-
tions during training, effectively enlarging the dataset by factors of x2, x4, and x 8§, respectively.
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Figure 20: HyperDiffusion fails to converge when three or more permutations are added.

Figure 20 shows the corresponding training loss curves. We observe that when three or more per-
mutations are applied, the model completely fails to converge. This aligns with the 3D shape visu-
alizations in Figure 12, where the generated shapes do not represent any meaningful object.
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H SYSTEM-LEVEL COMPARISON BETWEEN IMAGE AND WEIGHT
GENERATION MODELS

In our study, we show that current generative models for weights primarily memorize training data,
drawing a system-level comparison with the generalization of image generation models. Here, we
provide a example to illustrate the generalization behaviors of a common image generation model
trained on the same amount of data as weight generation models. Concretely, we compare HyperDif-
fusion, an unconditional diffusion model for weight generation, with a standard Denoising Diffusion
Probabilistic Model (DDPM) (Ho et al., 2020) trained on Flowers (Nilsback & Zisserman, 2008).

We randomly select 2749 images from the 20 largest classes in Flowers, to match the dataset size
used for HyperDiffusion. We then train an unconditional DDPM on this dataset, as well as on
two smaller subsets of 100 and 500 images, applying horizontal flipping as data augmentation. All
models are trained at a resolution of 64 x64 with a consistent training setup: 43K iterations, batch
size 64, 500 warm-up steps, and a learning rate of le-4.

# training imgs type randomly sampled images
100 generated
training
500 generated
training
2749 generated

o [ lll@lﬂ

Table 10: Image diffusion models improve generalization and reduce memorization with more
training data. Each pair of consecutive rows shows randomly selected generated images alongside
their most similar training images. When trained on 100 or 500 images, the model often replicates
training samples or their horizontal flips—a data augmentation used during training. However, with
2749 training samples, the model generates novel images, demonstrating improved generalization.

After training the image diffusion models, we use the image copy detection method SSCD (Pizzi
et al., 2022) to compute the similarity scores between generated and training images. Table 10
visualizes ten randomly selected generated images alongside their most similar training images.
When trained on only 100 samples, the diffusion model primarily memorizes the training images,
but with a larger dataset of 2749 images, it generalizes to produce novel outputs.

100 training samples 500 training samples 2749 training samples

I generated
I training

30 20

w
o

20
10

% of images
S

10

-
o

o

0.4 0.6 0.8 70 9702 0.4 0.8 70 002 0.4 0.6 0.8 1.0
SSCD S|m|Iar|ty

o
¥

Figure 21: Image diffusion models transition from memorization to generalization with more
data. The red histograms and blue curves show the distributions of SSCD similarity between each
generated image and its most similar training image (red) and between each training image and its
most similar training image (blue, excluding self-comparisons). As the training dataset grows, the
red histograms shift left, indicating that the model generates increasingly distinct images rather than
memorizing training samples.
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Figure 21 presents the quantitative trend of similarity between generated images and their most sim-
ilar training images as a function of dataset size. As a reference, we also show the similarity distribu-
tion between each training image and its most similar training image (excluding self-comparisons).
We observe that with more data, the model generates images with a similarity level comparable to
that between training images themselves. This contrasts with the trend observed for HyperDiffusion
in Section 3.1, where the model fails to generate novel weights even when trained on 2749 samples.

Discussion. Here, we provide an example illustrating that, on a system-level, a common image
generation models can generalize well on the same amount of data used to train weight generation
models. However, this difference can be attributed to various factors, including but not limited to
the generative model size and architecture, diversity of dataset, data modality, and training recipe.
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I IMPACT OF DOWNSTREAM DATASET DIVERSITY ON WEIGHT
MEMORIZATION

For the four methods studied in this paper, their primary experimental setups use SVHN, MNIST,
ShapeNet, and CIFAR-100, respectively. One may wonder whether the limited diversity of these
downstream datasets leads to limited diversity in the dataset of checkpoints, and thereby indirectly
contributes to the memorization in the generative models of weights. To test this, we train p-diff on
a more diverse image dataset, ImageNet (Deng et al., 2009), following its official codebase.
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Figure 22: P-diff’s generated weights closely resem- Figure 23: P-diff does not outperform
ble training weights when trained on ImageNet clas- interpolation baselines when trained on
sification model checkpoints. The trend is consistent ImageNet classification model checkpoints,
with the results on CIFAR-100 checkpoints (Figure 2).  similar to the CIFAR-100 results (Figure 6).

Similar to the results on CIFAR-100 checkpoints (Figures 2 and 6), the generated weight values
remain highly similar to training weights, and fail to outperform the interpolation baselines in the
accuracy-novelty trade-off, as shown in Figures 22 and 23. In addition, 84.4% of generated weight
values fall within one standard deviation around the mean of the training values, compared to 68.7%
for training weights themselves. This suggests that the generated ImageNet classification model
weights also tend to concentrate around the mean of the training weights.

Discussion. While the diversity of the downstream image dataset may indirectly influence the gen-
eralization of generative models of weights, our results show that increasing image diversity alone
does not reduce memorization. Instead, modeling choices and the diversity of checkpoint datasets
(e.g., training a generative model on only 300 checkpoints saved from a single run) may be more
fundamental issues.
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J INTRINSIC DIMENSION OF IMAGE AND WEIGHT DATA

J.1 MAIN ANALYSIS

Unlike images, which are natural signals with high spatial redundancy, model weights have intricate
dependencies between parameter groups. Weight data may exhibit higher complexity than images,
potentially making it more challenging for generative models to capture their distribution, and lim-
iting their ability to produce novel samples. To assess this complexity, we measure the intrinsic
dimensions of weight and image data, which quantify the number of variables required to summa-
rize high-dimensional data distributions.

Estimation method. We estimate the intrinsic dimensions using the Maximum Likelihood Estima-
tor (MLE) (Levina & Bickel, 2004; MacKay & Ghahramani, 2005). It can characterize data beyond
simple linear structure as identified in alternative methods such as the Principal Component Analy-
sis (Pearson, 1901). In essence, it estimates intrinsic dimension by modeling neighbor distributions
with a Poisson process and computing the maximum likelihood intrinsic dimension from observed
distances to neighbors. Formally, the estimator is formulated as
-1
1 n k—1 Tk (1’1)
T 2 B Ty | @

where {x;}7_; are the data points, T} (x;) is the Lo distance of z; to its j-th nearest neighbor, and k
is a hyperparameter that determines the number of nearest neighbors to consider.

MLE is shown to effectively capture the intrinsic dimensions of modern image datasets (Pope et al.,
2021), but can be sensitive to the hyperparameter k (the number of nearest neighbors considered in
the estimation). Thus, we report estimations for k£ = 3, 5, 10, 20, following Pope et al. (2021).

Data. To compare the intrinsic dimensions of image and weight data, we use image datasets paired
with the classification model weights trained on these datasets in Hyper-Representations.

Since the Maximum Likelihood Estimator requires the data to be independent and identically dis-
tributed (i.i.d.), we use only the weight checkpoint from the last epoch of each run to ensure that
samples are i.i.d.. To align the image datasets we use with the datasets used to train the classification
model checkpoints from Hyper-Representations, we resize all images to 28 x28.

dataset k=3 k=5 k=10 k=20 dataset k=3 k=5 k=10 k=20
MNIST (image) 7 10 11 12 MNIST (image) 10 14 17 18
MNIST (weight) 56 79 86 85 MNIST (weight) 38 55 60 61
SVHN (image) 8 13 16 17 SVHN (image) 14 23 29 31
SVHN (weight) 58 81 84 43 SVHN (weight) 45 55 49 37
CIFAR-10 (image) 12 19 23 24 CIFAR-10 (image) 19 33 42 44
CIFAR-10 (weight) 62 89 99 100 CIFAR-10 (weight) 49 71 80 80
STL-10 (image) 11 17 19 19 STL-10 (image) 21 33 37 36
STL-10 (weight) 139 201 206 222 STL-10 (weight) 58 81 89 88
(a) raw data (b) neural representations of data

Table 11: MLE estimates weights to have higher intrinsic dimensions than images, across dif-
ferent values of the hyperparameter k. We compute estimations for both raw data and their neural
representations from an autoencoder. The estimations are rounded to integers.

Images and weights. Table 1 1a shows the intrinsic dimensions of image and weight datasets, mea-
sured with different values of hyperparameter k. We observe that, for all datasets and values of k,
MLE consistently estimates much higher intrinsic dimensions for model weights than for images.

Neural representations. Aside from raw data, intrinsic dimension measures have also been used
to inspect the neural representations of data (Ansuini et al., 2019; Yin et al., 2024). Here, we use
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the estimators to quantify the intrinsic dimensions required for neural networks to capture the image
and weight distributions. Concretely, we extract latent representations from autoencoders trained
on model weights and images. For weight data, we use the pre-trained autoencoder from Hyper-
Representations (Schiirholt et al., 2021; 2022). For image data, we train a separate autoencoder with
the same architecture, latent dimensions, and objectives.

Table 11b presents the MLE estimates for these latents. Consistent with our observation on raw
data, the neural representations of weights have higher intrinsic dimensions than those of images.
Interestingly, the neural representations of images have higher dimension estimates than raw images.
This aligns with the “hunchback” pattern reported in prior work (Ansuini et al., 2019; Yin et al.,
2024), where intrinsic dimension is low at the input layer due to dominant yet redundant features in
images, but peaks in middle layers.

Discussion. Our results suggest that weight data have higher intrinsic dimensions than images, both
in raw forms and neural representations. Although prior theoretical work has identified a negative
relationship between the intrinsic dimensionality of data and the generalization of diffusion mod-
els (Chen et al., 2023; Oko et al., 2023), it is unclear whether the memorization in generative models
of weights we observed is directly linked to the higher intrinsic dimensions of weight data.

J.2  VALIDATING THE CONVERGENCE AND PERFORMANCE OF THE IMAGE AUTOENCODERS

In Appendix J.1, we trained autoencoders on image datasets to compare the intrinsic dimensions
of the neural representations of image and weight data. Here, we verify the training of the image
autoencoder by assessing its reconstruction quality in Table 12 and examining the reconstruction loss
curves for test images in Figure 24. The results show that the autoencoder accurately reconstructs
random test images, with the test loss stabilizing by the end of training.

dataset type randomly sampled images
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Table 12: Reconstructions from the image autoencoders in Appendix J.1.
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Figure 24: Test loss curves for image autoencoder training in Appendix J.1.
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K CAN GENERATIVE MODELS BE USED TO STORE THE WEIGHT
DATASETS?

Hegde et al. (2023) showed that diffusion models can be used to compress and store the weights of
an archive of policy networks trained via Quality Diversity Reinforcement Learning (QD-RL), and
enable flexible selection of specific behaviors from the policy archive. Since the generative models
of weights we studied are primarily memorizing their training datasets, one might speculate whether
this property could be used to compress and store the weight dataset in an alternative way.

To explore this possibility, we generate 20K checkpoints from HyperDiffusion and match each to
its nearest training checkpoint. We note that only 129 (4.69%) out of 2749 training checkpoints are
not replicated in generated checkpoints. Similarly, for G.pt, 4872 (47.63%) out of 10228 training
checkpoints are not replicated in 50K generated checkpoints. These results suggest that generative
models can indeed recover a substantial portion of the training weights.

However, the number of parameters in these generative models (223M for Hyper-Representations,
378M for G.pt, 1.4B for HyperDiffuion, and 9.6M for p-diff) far exceeds the total number of values
in their respective training datasets (7.1M, 81M, 101M, and 0.6M). Therefore, storing the weight
datasets implicitly within the generative models we studied would not be a space-efficient method.
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L USAGE OF LARGE LANGUAGE MODELS IN PAPER WRITING

Large Language Models are used lightly during the final stage of paper writing to help shrink the
main text to fit within 9 pages.
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