
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GENERATIVE MODELING OF WEIGHTS:
GENERALIZATION OR MEMORIZATION?

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative models, with their success in image and video generation, have re-
cently been explored for synthesizing effective neural network weights. These
approaches take trained neural network checkpoints as training data, and aim to
generate high-performing neural network weights during inference. In this work,
we examine four representative, well-known methods in this emerging area on
their ability to generate novel model weights, i.e., weights that are different from
the checkpoints seen during training. Contrary to claims in prior work, we find
that these methods synthesize weights largely by memorization: they produce ei-
ther replicas, or at best simple interpolations, of the training checkpoints. Current
methods fail to outperform simple baselines, such as adding noise to the weights
or taking a simple weight ensemble, in obtaining different and simultaneously
high-performing models. Our further results suggest that the memorization poten-
tially resulted from limited data, overparameterized models, and the underuse of
structural priors specific to weight data. Our findings highlight the need for more
careful design and evaluation of generative models in new domains.

1 INTRODUCTION

Generative models, particularly diffusion models for image and video synthesis, have advanced sig-
nificantly in recent years. Models such as Stable Diffusion (Rombach et al., 2022; Esser et al.,
2024), Imagen (Ho et al., 2022), and FLUX (Black Forest Labs, 2024) demonstrate exceptional
photorealism, with widespread applications in commercial art and graphics. Beyond static images,
generative video models like Sora (Brooks et al., 2024) and Veo 3 (DeepMind, 2025) have recently
gained attention, achieving impressive consistency and coherence in video synthesis. The success
of these models is enabled by the strong priors for generative modeling from pre-trained represen-
tations (Esser et al., 2021; Radford et al., 2021; Yu et al., 2024) and the algorithmic designs tailored
to the visual modalities (Johnson et al., 2016; Zhu et al., 2017; Peebles & Xie, 2023).

Building on this success, recent studies (Schürholt et al., 2022; Peebles et al., 2022; Erkoç et al.,
2023; Wang et al., 2024) have extended the use of generative models to synthesize weights for
neural networks. These methods collect network checkpoints trained with standard gradient-based
optimization, and apply generative models to learn the weight distributions and produce new check-
points, without direct access to the training data of the original task. The weights generated by these
methods can often perform comparably to conventionally trained weights: they achieve high test
accuracy in image classification models and high-quality 3D shape reconstructions in neural field
models, across diverse datasets and model architectures.

In this study, we seek to answer an important question: have the generative models learned to pro-
duce meaningfully distinct weights that generalize beyond the training set of checkpoints, or do they
merely memorize and reproduce the training data? While prior work has focused on evaluating these
methods based on the performance of the generated models on the downstream tasks, this question
is critical to understanding both the fundamental mechanisms and the practicality of these meth-
ods. To investigate this question of generalization, we analyze four representative weight generation
methods (Schürholt et al., 2022; Peebles et al., 2022; Erkoç et al., 2023; Wang et al., 2024), covering
different generative models and downstream tasks. These methods have been widely-studied (Dravid
et al., 2024; Liang et al., 2024; Soro et al., 2024; Zhou et al., 2024; Cao et al., 2025; Wang et al.,
2025; Zhang et al., 2025a;b), and claim to generate novel weights.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Generative Models of WeightsGenerative Models of Images

Image Fidelity Generalization Model Accuracy
Generalization or

Memorization

training

generated

Figure 1: Building on their success in image generation, generative models have recently been
applied to synthesize weights for neural networks. While they can produce effective neural network
checkpoints (e.g., classification models with high accuracy), it is unclear whether they can generalize
beyond the training set to generate novel weights.

We first find the nearest training checkpoint to each generated checkpoint, to assess the novelty in the
generated checkpoints. Contrary to these methods’ claims, almost all generated checkpoints closely
resemble specific training checkpoints in weight values, showing far less novelty than a new model
trained from scratch. Beyond weight space similarity, we also examine the behaviors of generated
models and their nearest training models. We compare the decision boundaries for classification
models and the reconstructed 3D shapes for neural field models. In both cases, these generated
models, which are very close to training models in weight space, also exhibit highly similar outputs.

Further, we show that current generative modeling methods offer no advantage over simple baselines
for creating new model weights, in terms of producing models that differ from training checkpoints
in behavior while maintaining model performance. These baselines generate new weights by adding
Gaussian noise to training weights or interpolating between them. To quantify how novel a generated
model’s behavior is relative to the behaviors of the training models, we compute a similarity metric
for models based on their overlap in prediction errors on the test set.

We find that limited data, overparameterized models, and the underuse of structural priors in weight
data likely contribute to this memorization. First, we show that scaling up the training dataset can
effectively reduce memorization without degrading the quality of the generated weights. Second, we
demonstrate that the existing, highly over-parameterized weight generation models can memorize
random weights, without learning meaningful patterns. Third, we find that currently used data
augmentations are insufficient for generative models to learn the structural priors of weight data.

In summary, our findings consistently reveal clear patterns of memorization in almost all generated
checkpoints from current methods, both in weight space and model behavior. We find that the
generated weights largely replicate or interpolate the training weight data across all methods. As
generative modeling continues to expand into new domains and modalities (Ravuri et al., 2021;
Zrimec et al., 2022; Chi et al., 2023; Watson et al., 2023; Zeni et al., 2025), our findings highlight
the importance of evaluating memorization in generated outputs, beyond standard quality metrics.
More broadly, we hope this work can encourage researchers to consider both general properties of
generative models and specific characteristics of each data modality in future methods.

2 BACKGROUND

This section provides an overview of the four generative models of weights we study, their differ-
ences from the hypernetwork methods, and the unique symmetries of neural network weight data.

2.1 GENERATIVE MODELING OF WEIGHTS

Generative models have recently been used to synthesize neural network weights, producing mod-
els that require no gradient-based optimization and perform comparably to models from standard
training. In this study, we analyze four representative methods, spanning unconditional and condi-
tional generation with autoencoders and diffusion models, under each method’s primary experimen-
tal setup. We describe the primary setup of each method below, with more detail in Appendix A.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Hyper-Representations (Schürholt et al., 2021; 2022) generate neural network weights using an
autoencoder. The autoencoder is trained on 2896 checkpoints of SVHN classification models with
identical architectures but different initializations. After training, kernel density estimation (KDE) is
applied to the latent representations of the top 30% checkpoints with highest accuracy. New weights
are then generated by sampling a latent vector from the KDE-estimated distribution and decoding it.

G.pt (Peebles et al., 2022) is a conditional diffusion model that can generate new weights for a
small predefined MNIST classification model architecture, given input weights and a target loss for
the generated weights. It is trained on a collection of 2.1M model checkpoints from 10728 training
runs, each paired with corresponding test losses. Once trained, G.pt can generate effective models
by conditioning on randomly initialized weights and a minimal and fixed target loss (e.g., 0).

HyperDiffusion (Erkoç et al., 2023) trains an unconditional diffusion model on 2749 neural field
MLPs that represent 2749 unique 3D airplane shapes in ShapeNet (Chang et al., 2015). New shapes
are generated by sampling a new set of MLP weights and reconstructing the mesh represented by it.

P-diff (Wang et al., 2024) trains an unconditional latent diffusion model on 300 neural network
checkpoints. These checkpoints are saved at consecutive steps during an additional training epoch
of the same base CIFAR-100 (Krizhevsky et al., 2009) classification model, after it has converged.

Other methods. Hypernetworks (Ha et al., 2016; Brock et al., 2018; Zhang et al., 2019; Knyazev
et al., 2021; 2023) are neural networks trained to generate the weights of a target network, typically
in a deterministic manner. Unlike the generative modeling methods that we study, hypernetworks are
trained using supervision from downstream tasks rather than a collection of network checkpoints.
As hypernetworks’ generated weights often underperform compared to those obtained via gradient-
based optimization, they are mainly used for weight initialization and neural architecture search.

2.2 NEURAL NETWORK SYMMETRIES

Neurons in a hidden layer have no inherent order, leading to permutation symmetry (Hecht-Nielsen,
1990) in neural networks: swapping neurons and adjusting weight matrices accordingly does not
change a network’s function. Another symmetry is scaling symmetry (Chen et al., 1993), including
sign flips (multiplying all incoming and outgoing weights by -1) in tanh activations. Both G.pt and
Hyper-Representations leverage permutation symmetry to augment weight data during training.

3 EVALUATING MEMORIZATION IN WEIGHT GENERATION

To evaluate the novelty of generated model weights, we compare them to the original weights used
to train the generative models of weight, analyzing both their weight values and model behaviors in
comparison with various baselines.

3.1 MEMORIZATION IN WEIGHT SPACE

A natural first step in evaluating the novelty of generated weights is to find the nearest training
weights to each generated checkpoint under L2 distance, and check for replications in weight values.
However, depending on the method, permutations of weight matrices in training checkpoints or
autoencoder reconstructions of training weights must also be considered.

30 40 50 60 70
SVHN classification accuracy (%)

reconstructed

original

Figure 3: Reconstructing classifi-
cation model weights with Hyper-
Representations’ autoencoder degrades
model performance.

For methods (e.g., G.pt) that apply weight permutation
to augment data during training, we enumerate all possi-
ble permutations of training weights to identify the clos-
est match for each generated checkpoint. Meanwhile, we
find that Hyper-Representations’ autoencoder cannot ac-
curately reconstruct training weights, degrading accuracy,
as shown in Figure 3. Thus, we compare its generated
weights with the reconstructed training weights instead.

Weight heatmap. For each weight generation method, we visually inspect the three nearest training
checkpoints for each of three randomly selected generated checkpoints using a heatmap of weights,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

-2.5

0.0

-2.5
0.0

0.0

2.0pa
ra

m
et

er
 va

lue -0.2
0.0
0.2

-0.2
0.0
0.2

-0.2
0.0pa

ra
m

et
er

 va
lue

(a) Hyper-Representations (Schürholt et al., 2021; 2022) (b) G.pt (Peebles et al., 2022)

-2.5

0.0

-2.0

0.0

-2.5

0.0pa
ra

m
et

er
 va

lue

-5.0
0.0

-5.0
0.0

-5.0
0.0pa

ra
m

et
er

 va
lue

(c) HyperDiffusion (Erkoç et al., 2023) (d) P-diff (Wang et al., 2024)

Figure 2: Generated weights highly resemble training weights. For each method, we display three
heatmaps, showing weight values for 64 randomly selected parameter indices. In each heatmap, the
top row (outlined in red) shows the values of a random generated checkpoint, and the three rows
below (separated by white lines) show its three nearest training checkpoints. We observe that for
every generated checkpoint, at least one training checkpoint is nearly identical to it.

shown in Figure 2 (more examples in Appendices C.1 and C.2). We observe that, for all sampled
generated checkpoints across all methods, there is always at least one training checkpoint that closely
resembles the generated one. Further, all of p-diff’s training and generated checkpoints have nearly
identical weight values, likely because its training checkpoints were saved consecutively from the
same run, differing only by a small number of training updates.

Distance to training weights. In addition to visually inspecting weight values, we identify quan-
titative trends in weight value distributions that differentiate sampling a generated checkpoint from
training a new model using standard gradient-based optimization (further results in Appendix B).

Specifically, we compute the L2 distance from each training and generated checkpoint to its nearest
training checkpoint (excluding self-comparisons for training checkpoints), and show the distance
distributions in Figure 4. For all methods except p-diff, the generated checkpoints are significantly
closer to the training checkpoints than training checkpoints are to one another. For instance, 94.4%
of HyperDiffusion-generated checkpoints have an L2 distance smaller than 10 to some training
checkpoints, whereas any pair of training checkpoints has an L2 distance above 50. This indicates
that these methods produce models with lower novelty than training a new model from scratch. We
note that the training checkpoints used in these methods are saved from distinct training runs.

For p-diff, we observed that the training checkpoints are much closer to each other than the generated
checkpoints are to their nearest training checkpoints. However, the low distances between training
checkpoints may be expected, since they are saved from the same training run at consecutive steps.

0 20 40 600

20

40

60

%
 o

f m
od

els

1 3 5 7 90

20

40

60

0 50 100 150 2000

50

100

0 2 4 60

50

100 generated
training

min L2 to training weights
(a) Hyper-Representations (b) G.pt (c) HyperDiffusion (d) P-diff

Figure 4: Generated checkpoints are closer to training checkpoints than training checkpoints
are to one another, except for p-diff. This indicates that generated weights have lower novelty than
a new model trained from scratch. The red and blue histograms represent the distributions of the L2

distances to the nearest training checkpoints (excluding self-comparisons).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

generated training

PCA dimension 1

PC
A

dim
en

sio
n

2

generated training

PCA dimension 1

PC
A

dim
en

sio
n

2

generated training

PCA dimension 1

PC
A

dim
en

sio
n

2

generated training

PCA dimension 1

PC
A

dim
en

sio
n

2

classes
(a) Hyper-Representations (b) G.pt (c) HyperDiffusion (d) P-diff

Figure 5: Generated models produce highly similar outputs to their nearest training models.
Each row shows the decision boundaries or reconstructed 3D shapes of a randomly selected gen-
erated checkpoint (“generated”) and its nearest training checkpoint (“training”). For p-diff models
trained on CIFAR-100, decision boundaries are shown for ten randomly selected classes.

3.2 MEMORIZATION IN MODEL BEHAVIORS

In Section 3.1, we showed that generated weights highly resemble the training weights. However,
similar weights can still yield different behaviors. Here, we compare the behaviors of generated
models to the behaviors of their nearest training models in weight space. We also assess whether
generative modeling methods differ from a simple noise-addition baseline for creating new weights.

Model outputs. To understand the behaviors of generated image classification models, we project
each image dataset onto two principal components, and then visualize the models’ decision bound-
aries. For HyperDiffusion, we reconstruct 3D shapes from the neural field models it generates.

For each method, we randomly select three generated checkpoints (additional examples in Appen-
dices C.3 and C.4) and identify their nearest training checkpoints in weight space under L2 distance,
as in Section 3.1. Figure 5 presents the corresponding decision boundaries or 3D shapes. We find
that generated models and their nearest training models produce highly similar predictions in image
classification, as indicated by the nearly identical decision regions across all class labels. Similarly,
the neural field models generated by HyperDiffusion also reconstruct to nearly identical 3D shapes
as training ones, with visible differences only in minor details (e.g., the edges of the airplane wings).

Metric for novelty. For generated weights to represent generalization, they need to behave suffi-
ciently differently from training weights while maintaining high performance. To quantify the nov-
elty of a generated classification model checkpoint, we adopt the model similarity metric from Wang
et al. (2024), which measures the Intersection over Union (IoU) of incorrect test set predictions be-
tween two model checkpoints. The formal definition of this metric is in Appendix D.1. We explore
an alternative similarity metric based on the percentage of prediction overlaps in Appendix D.3.

To assess a checkpoint’s novelty, we compute its similarity with each training checkpoint and take
the maximum similarity. A lower maximum similarity value indicates greater novelty, as it means
the generated model’s classification prediction error patterns differ more from all training models.

For HyperDiffusion, which generates neural field models rather than classifiers, we use Chamfer
Distance (CD), a standard metric for 3D shapes. A lower minimum CD to the test shapes indicates
better shape quality, analogous to higher classification accuracy. A higher minimum CD to the
training shapes suggests greater novelty, akin to lower maximum similarity in classification models.

Noise-addition baseline. We compare the accuracy and maximum similarity of the generated
checkpoints against a baseline that simply adds Gaussian noise to training weights. The weight
generation methods are considered superior if, at the same level of novelty relative to training mod-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0.6 0.8 1.0
maximum similarity

15.0

45.0

75.0

ac
cu

ra
cy

 (%
)

training generated noise=0.02 noise=0.04

0.4 0.6 0.8 1.0
maximum similarity

91.0

93.5

96.0

ac
cu

ra
cy

 (%
)

training generated noise=0.05 noise=0.1

(a) Hyper-Representations (b) G.pt

0 0.03 0.05 0.08 0.10
min dist. to training set

0

0.05

0.10

0.15

m
in

dis
t.

to
 te

st
se

t

training generated noise=0.02 noise=0.04

0.81 0.87 0.93 0.99
maximum similarity

75.0

76.0

77.0

78.0

ac
cu

ra
cy

 (%
)

training generated noise=0.06 noise=0.12

(c) HyperDiffusion (d) P-diff

Figure 6: Weight generation methods do not outperform noise addition in the accuracy-novelty
trade-off, except for p-diff. Novelty is measured by max error similarity (lower is better) or min
point cloud distance to training checkpoints (higher is better). We show 100 samples per model type.

els, they produce models with better performances than noise addition. Figure 6 shows the accuracy
and maximum similarity distributions for training models, generated models, and noise-added mod-
els. For each weight generation method, the noise amplitudes are chosen so that the maximum
similarity of noise-added models roughly matches the maximum similarity of generated models.

Accuracy-novelty trade-off. As shown in Figure 6, for G.pt and Hyper-Representations, noise-
added models often achieve comparable or even higher accuracy than generated models at the same
maximum similarity to training models. Similarly, for HyperDiffusion, the distributions of the min-
imum CD to training and test shapes show no significant difference between generated and noise-
added MLPs. These results suggest that the weight generation methods may not offer further benefits
than simply adding noise to the training weights. An exception is p-diff, where generated models
achieve a better trade-off between maximum similarity and accuracy than noise-added models.

3.3 P-DIFF GENERATES BY INTERPOLATION, NOT GENERALIZATION

As observed in Section 3.2, different from the other methods, p-diff achieves a better trade-off
between the novelty and accuracy of generated models compared to the noise-addition baseline.
Interestingly, the generated weights even surpass the training weights in accuracy (Figure 6d).

Weight distributions. To investigate this, we examine the distribution of parameter values in gen-
erated and training models in Figure 7. The generated weight values tend to concentrate around the
average of the training values. Averaging the weights of multiple models fine-tuned from the same
base model is known to lead to improved accuracy (Wortsman et al., 2022). Thus, p-diff may achieve
higher accuracy in its generated models by producing interpolation of its training checkpoints.

0.4 0.5 0.6 0.7 0.80
4
8

12

1.4 1.7 2.0 2.3 1.8 1.9 2.0 2.1 2.2 1.4 1.5 1.6 1.7 1.8 1.6 2.0 2.4 2.8
parameter value

de
ns

ity

training generated

Figure 7: Distributions of five random parameters from the weight matrix of the first layer in the
training and generated checkpoints of p-diff. The generated weights are centered around the mean
of the training weights, suggesting they may be interpolations. More details are in Appendix E.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.82 0.88 0.94 1.00
maximum similarity

76.4

77.1

77.8

ac
cu

ra
cy

 (%
)

training generated averaged gaussian

10 0 10
t-SNE dim 1

10

0

10

t-S
NE

 d
im

 2

training generated averaged gaussian

Figure 8: P-diff generates weights with behaviors (left) and values (right) similar to interpola-
tions of training weights. We compare to two baselines: averaging training weights (“averaged”)
and sampling from a Gaussian fitted to training weights (“gaussian”). Model behavior is evaluated
via accuracy and max similarity; t-SNE (Van der Maaten & Hinton, 2008) visualizes weight values.

Interpolation baselines. To explore this hypothesis, we generate new models using two approaches
that approximate the interpolations of the training checkpoints: (1) averaging the weights of 16 ran-
domly selected training checkpoints (“average”) and (2) fitting a Gaussian distribution to the training
weight values in each parameter dimension and sampling from these distributions (“gaussian”).

Behaviors and weights. The left subplot of Figure 8 shows that the accuracy and maximum simi-
larity of the interpolation models closely match those of p-diff. The right subplot visualizes weight
distributions using t-SNE (Van der Maaten & Hinton, 2008). The weights generated by p-diff are
close to weights from the above baselines, further suggesting that p-diff may primarily interpolate
between training checkpoints. This interpolation occurs within a very narrow range (Appendix E).

Summary of Section 3. The generative models of weights produce checkpoints that closely resemble
training checkpoints in both weight space and model behavior, suggesting memorization and limited
novelty. Moreover, they fail to outperform simple baselines in producing new models with lower
similarity to training models in model behaviors while maintaining model performance.

4 UNDERSTANDING MEMORIZATION IN WEIGHT GENERATION

In Section 3, we have demonstrated that conventional weight generation methods primarily memo-
rize the training weights. In this section, we examine how modeling factors influence memorization
and analyze how effectively current methods leverage weight space symmetries as structural priors.

4.1 LIMITED DATA AND OVERPARAMETERIZED MODELS

In image diffusion models, larger models trained on smaller datasets are more prone to memo-
rization (Somepalli et al., 2023a; Kadkhodaie et al., 2024; Gu et al., 2025). Here, we show that
memorization in weight generation can be mitigated by scaling training data, and that the overpa-
rameterized nature of these models facilitates their memorization.

Scaling data. We showcase on G.pt that scaling up data is a potential solution for reducing mem-
orization in weight generation. The original G.pt model is trained on 2.1M checkpoints collected
from 10228 runs. We expand the dataset to 20.4M checkpoints from 101979 runs, train a new
G.pt model, and sample from it. To evaluate novelty, we measure the distances from training and
generated checkpoints to their nearest training checkpoints, and show the distributions in Figure 9.

The increase in training data effectively reduces memorization without degrading the performance of
the generated weights. In the original setting, the mean L2 distance between generated and nearest
training checkpoints (2.25) was much smaller than the mean distance between training and nearest
training checkpoints (3.64). After scaling, they become nearly equal (2.78 vs. 2.70). Meanwhile, the
mean accuracy of generated checkpoints remains unchanged (94.0% to 94.1%). However, scaling
data may not be a universal solution, as Hyper-Representations does not benefit (Appendix F.1).

Model capacity. Generative models of weights are overparameterized; e.g., despite its small train-
ing set size of 2749, HyperDiffusion has 1.4B parameters. Larger models have greater expressive

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1 3 5 7 90

20

40

60

%
 o

f m
od

els
1 3 5 7 9

generated
training

min L2 to training weights
(a) original (b) 10× data

Figure 9: Scaling data reduces memorization.
When trained on a dataset 10× the original size,
G.pt produces weights with similar novelty and
accuracy as an independently trained checkpoint.

0 50 100 150 2000

50

100

%
 o

f m
od

els

0 4 8 12 16

generated
training

min L2 to training weights
(a) original (b) random init

Figure 10: High model capacity enables mem-
orization. Even when the training weights are
random initializations, HyperDiffusion produces
near-identical replication of training weights.

power (Lu et al., 2017; Raghu et al., 2017), and can even fit arbitrary data without learning mean-
ingful patterns (Zhang et al., 2017). This high capacity may be a reason why memorization occurs.

To test this, we reinitialize one or all layers of the MLP checkpoints used to train HyperDiffusion
with Kaiming Uniform Initialization (He et al., 2015), and retrain HyperDiffusion. As shown in
Figure 10 and Table 1, memorization is clear and consistent across all cases: generated checkpoints
remain much closer to training checkpoints than training checkpoints are to one another. This indi-
cates HyperDiffusion may not have learned the semantics of the MLPs it is trained on, but instead
memorizes weight values even when those weights are random (further results in Appendix F.2).

layers reinitialized in trained MLPs none 1st 2nd 3rd 4th all
mean dist b/w train & nearest train 109.5 114.0 90.3 106.0 126.4 16.0
mean dist b/w gen & nearest train 7.0 9.0 1.5 2.6 3.6 0.8

Table 1: HyperDiffusion replicates training weights regardless of their semantics: even when
one or all layers of the training MLPs are reinitialized with random weights.

While high model capacity is likely a contributing factor, merely reducing model size or altering
other training configurations (e.g., training length or regularization) does not lead to generalization
and often only degrades the performance of generated models (detailed results are in Appendix F.3).

4.2 UNDERUSED STRUCTURAL PRIORS IN WEIGHT DATA

Computer vision researchers develop algorithms and architectures to exploit spatial, color, and tex-
ture properties of images (LeCun et al., 1989; Chen et al., 2020; Cubuk et al., 2020). Likewise, for
weight data, weight space symmetries, such as permutation and scaling symmetries (introduced in
Section 2.2), are promising structural priors for discriminative (Kalogeropoulos et al., 2024; Kofinas
et al., 2024; Lim et al., 2024) and generative (Peebles et al., 2022; Schürholt et al., 2022) tasks.

Among the four methods we study, only G.pt and Hyper-Representations incorporate permuta-
tion symmetry. G.pt applies permutation solely as a data augmentation technique, while Hyper-
Representations uses it to construct positive pairs for contrastive learning. Here, we evaluate whether
these symmetry-based augmentations provide meaningful benefits for generative modeling.

0

3

6

9

12

av
g

ab
s a

cc
 d

iff
(%

) 12.72

6.01 5.82

0.0

0.2

0.4

0.6

0.8

1
−

 a
vg

 si
m

ila
rit

y

0.54

0.38

0.81

original permuted scaled
Figure 11: Function-preserving transformations ap-
plied to inputs of Hyper-Representations’ weight au-
toencoder. These transformations yield reconstructed
checkpoints with varied accuracy and low similarity to
the reconstructions of the original inputs.

Transformation invariance. We assess
whether Hyper-Representations, trained with
permutation augmentation, effectively capture
weight space symmetries. Concretely, we apply
function-preserving transformations to trained
networks by (1) permuting neurons in hidden
layers or (2) flipping weight matrix signs be-
fore and after tanh activations. We then re-
construct the original and transformed weights
using Hyper-Representations’ autoencoder, and
measure the behavior similarity and accuracy
difference between their reconstructions. If
the autoencoder were transformation-invariant,
each pair of reconstructed models would have
identical accuracy and a similarity of 1.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Default (b) Add 1 permutation (c) Add 3 permutations (d) Add 7 permutations

Figure 12: HyperDiffusion fails to generate meaningful shapes when any permutation is ap-
plied. This shows that symmetry-based augmentation is insufficient for HyperDiffusion to correctly
learn the weight distributions and symmetries. Each subplot shows four random samples from a Hy-
perDiffusion model trained with different numbers of permutations applied to the training weights.

However, as shown in the left subplot of Figure 11, reconstructions of permuted models differ in
accuracy by 6.01%, and reconstructions of sign-flipped models differ by 5.82%, compared to re-
constructions of their original models. For reference, the average accuracy difference between the
original models is 12.72%. Similarly, the right subplot shows that the error similarity between re-
constructions of original and permuted models is 0.62, and for sign-flipped models, the similarity is
only 0.19. These results indicate that the autoencoder fails to fully capture weight space symmetries,
despite being trained with a contrastive loss that enforces permutation invariance.

Permutation augmentation. We investigate whether applying data augmentation based on weight
symmetries can reduce the memorization in HyperDiffusion. Specifically, we add 1, 3, and 7 random
weight permutations during training, effectively enlarging the dataset by factors of ×2, ×4, and ×8,
respectively. To ensure convergence, we double the training epochs.

Figure 12 shows the shapes generated by the resulting models. Even when we only add a single per-
mutation, HyperDiffusion fails to produce meaningful shapes. As the number of added permutations
increases (e.g., to three), HyperDiffusion fails to converge during training (see Appendix G).

Discussion. These findings suggest that applying weight space symmetries merely as data augmen-
tations is insufficient for encoding such symmetries into generative models and may even make the
training distribution harder to model. Future generative modeling methods may benefit from archi-
tectures that are invariant to weight symmetries by design. For example, prior work on classifying or
editing network weights has shown that neural networks can be represented as graphs and processed
by graph neural networks explicitly designed to respect weight symmetries (Kalogeropoulos et al.,
2024; Kofinas et al., 2024; Lim et al., 2024).

Summary of Section 4. Limited data and overparameterized models are two potential causes for
memorization in weight generation. Further, existing data augmentation methods based on weight
symmetries are insufficient for models to learn the weight distributions and symmetries. Thus,
explicitly integrating the structural priors of weight data into the model design may be beneficial.

5 CONCLUSION

We provide evidence that current generative modeling methods for weights primarily memorize
training data rather than generating truly novel network weights. Our analysis shows that generated
checkpoints are close replicas or interpolations of training checkpoints, with similar weight values
and model behaviors. We find that the generation methods offer no clear advantage over simple
baselines to create novel, high-performing models. Factors such as limited data, overparameterized
models, and the underuse of structural priors in weight data likely contribute to this memorization.

Our findings emphasize the need for careful model design and evaluation of memorization in gener-
ative modeling, particularly as these models expand to new modalities and tasks. We hope this work
can inspire future research to address the memorization issues, and further explore the practical
applications of generative models for weight data and beyond.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Our analysis and visualization code, along with detailed instructions, can be accessed through this
anonymous link. All of our results are reproducible on a single NVIDIA A100 GPU.

REFERENCES

Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan. Intrinsic dimension of
data representations in deep neural networks. In NeurIPS, 2019.

Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.

Andrew Brock, Theo Lim, J.M. Ritchie, and Nick Weston. SMASH: One-shot model architecture
search through hypernetworks. In ICLR, 2018.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, et al. Video generation models as world simulators, 2024.

Dongliang Cao, Guoxing Sun, Marc Habermann, and Florian Bernard. Hyper diffusion avatars:
Dynamic human avatar generation using network weight space diffusion. arXiv preprint
arXiv:2509.04145, 2025.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

An Mei Chen, Haw-minn Lu, and Robert Hecht-Nielsen. On the geometry of feedforward neural
network error surfaces. Neural computation, 1993.

Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estimation
and distribution recovery of diffusion models on low-dimensional data. In ICML, 2023.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In ICML, 2020.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. IJRR, 2023.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In CVPR Workshops, 2020.

Google DeepMind. Veo 3. https://deepmind.google/models/veo/, 2025.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In
NeurIPS, 2021.

Amil Dravid, Yossi Gandelsman, Kuan-Chieh Wang, Rameen Abdal, Gordon Wetzstein, Alexei
Efros, and Kfir Aberman. Interpreting the weight space of customized diffusion models. In
NeurIPS, 2024.

Ziya Erkoç, Fangchang Ma, Qi Shan, Matthias Nießner, and Angela Dai. Hyperdiffusion: Generat-
ing implicit neural fields with weight-space diffusion. In ICCV, 2023.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In CVPR, 2021.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In ICML, 2024.

Xiangming Gu, Chao Du, Tianyu Pang, Chongxuan Li, Min Lin, and Ye Wang. On memorization
in diffusion models. TMLR, 2025.

10

https://anonymous.4open.science/r/weight_memorization
https://github.com/black-forest-labs/flux
https://deepmind.google/models/veo/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In ICCV, 2015.

Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces. In Ad-
vanced Neural Computers. 1990.

Shashank Hegde, Sumeet Batra, KR Zentner, and Gaurav Sukhatme. Generating behaviorally di-
verse policies with latent diffusion models. In NeurIPS, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS,
2020.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In ECCV, 2016.

Zahra Kadkhodaie, Florentin Guth, Eero P Simoncelli, and Stéphane Mallat. Generalization in
diffusion models arises from geometry-adaptive harmonic representations. In ICLR, 2024.

Ioannis Kalogeropoulos, Giorgos Bouritsas, and Yannis Panagakis. Scale equivariant graph metanet-
works. In NeurIPS, 2024.

Boris Knyazev, Michal Drozdzal, Graham W Taylor, and Adriana Romero Soriano. Parameter
prediction for unseen deep architectures. In NeurIPS, 2021.

Boris Knyazev, Doha Hwang, and Simon Lacoste-Julien. Can we scale transformers to predict
parameters of diverse imagenet models? In ICML, 2023.

Miltiadis Kofinas, Boris Knyazev, Yan Zhang, Yunlu Chen, Gertjan J. Burghouts, Efstratios Gavves,
Cees G. M. Snoek, and David W. Zhang. Graph neural networks for learning equivariant repre-
sentations of neural networks. In ICLR, 2024.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard Howard, Wayne Hub-
bard, and Lawrence Jackel. Handwritten digit recognition with a back-propagation network. In
NeurIPS, 1989.

Elizaveta Levina and Peter Bickel. Maximum likelihood estimation of intrinsic dimension. In
NeurIPS, 2004.

Yongyuan Liang, Tingqiang Xu, Kaizhe Hu, Guangqi Jiang, Furong Huang, and Huazhe Xu.
Make-an-agent: A generalizable policy network generator with behavior-prompted diffusion. In
NeurIPS, 2024.

Derek Lim, Haggai Maron, Marc T Law, Jonathan Lorraine, and James Lucas. Graph metanetworks
for processing diverse neural architectures. In ICLR, 2024.

William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface construction
algorithm. ACM SIGGRAPH Computer Graphics, 1987.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of
neural networks: A view from the width. In NeurIPS, 2017.

David J.C. MacKay and Zoubin Ghahramani. Comments on ‘maximum likelihood estimation of
intrinsic dimension’ by e. levina and p. bickel (2004), 2005. URL http://www.inference.
org.uk/mackay/dimension/.

11

http://www.inference.org.uk/mackay/dimension/
http://www.inference.org.uk/mackay/dimension/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Henry B Mann and Donald R Whitney. On a test of whether one of two random variables is stochas-
tically larger than the other. The annals of mathematical statistics, 1947.

Casey Meehan, Kamalika Chaudhuri, and Sanjoy Dasgupta. A non-parametric test to detect data-
copying in generative models. In AISTATS, 2020.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In ICML, 2021.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In Indian conference on computer vision, graphics & image processing, 2008.

Kazusato Oko, Shunta Akiyama, and Taiji Suzuki. Diffusion models are minimax optimal distribu-
tion estimators. In ICML, 2023.

Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin philosophical magazine and journal of science, 1901.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In ICCV, 2023.

William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A Efros, and Jitendra Malik. Learning to
learn with generative models of neural network checkpoints. arXiv preprint arXiv:2209.12892,
2022.

Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton. Regularizing
neural networks by penalizing confident output distributions. arXiv preprint arXiv:1701.06548,
2017.

Ed Pizzi, Sreya Dutta Roy, Sugosh Nagavara Ravindra, Priya Goyal, and Matthijs Douze. A self-
supervised descriptor for image copy detection. In CVPR, 2022.

Phil Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic
dimension of images and its impact on learning. In ICLR, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the ex-
pressive power of deep neural networks. In ICML, 2017.

Suman Ravuri, Karel Lenc, Matthew Willson, Dmitry Kangin, Remi Lam, Piotr Mirowski, Megan
Fitzsimons, Maria Athanassiadou, Sheleem Kashem, Sam Madge, et al. Skilful precipitation
nowcasting using deep generative models of radar. Nature, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2022.

Konstantin Schürholt, Dimche Kostadinov, and Damian Borth. Self-supervised representation learn-
ing on neural network weights for model characteristic prediction. In NeurIPS, 2021.

Konstantin Schürholt, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth. Hyper-
representations as generative models: Sampling unseen neural network weights. In NeurIPS,
2022.

Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Diffusion
art or digital forgery? investigating data replication in diffusion models. In CVPR, 2023a.

Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Under-
standing and mitigating copying in diffusion models. In NeurIPS, 2023b.

Bedionita Soro, Bruno Andreis, Hayeon Lee, Wonyong Jeong, Song Chong, Frank Hutter,
and Sung Ju Hwang. Diffusion-based neural network weights generation. arXiv preprint
arXiv:2402.18153, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. JMLR, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
CVPR, 2015.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In CVPR, 2016.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. JMLR, 2008.

Kai Wang, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor Darrell, Zhuang Liu, and Yang You.
Neural network diffusion. arXiv preprint arXiv:2402.13144, 2024.

Kai Wang, Dongwen Tang, Wangbo Zhao, Konstantin Schürholt, Zhangyang Wang, and Yang You.
Recurrent diffusion for large-scale parameter generation. arXiv preprint arXiv:2501.11587, 2025.

Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eise-
nach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of
protein structure and function with rfdiffusion. Nature, 2023.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In ICML, 2022.

Fan Yin, Jayanth Srinivasa, and Kai-Wei Chang. Characterizing truthfulness in large language model
generations with local intrinsic dimension. In ICML, 2024.

TaeHo Yoon, Joo Young Choi, Sehyun Kwon, and Ernest K Ryu. Diffusion probabilistic models
generalize when they fail to memorize. In ICML workshop on structured probabilistic inference
& generative modeling, 2023.

Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and
Saining Xie. Representation alignment for generation: Training diffusion transformers is easier
than you think. arXiv preprint arXiv:2410.06940, 2024.

Claudio Zeni, Robert Pinsler, Daniel Zügner, Andrew Fowler, Matthew Horton, Xiang Fu, Zilong
Wang, Aliaksandra Shysheya, Jonathan Crabbé, Shoko Ueda, et al. A generative model for inor-
ganic materials design. Nature, 2025.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In ICLR, 2017.

Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hypernetworks for neural architecture
search. In ICLR, 2019.

Lijun Zhang, Xiao Liu, and Hui Guan. Reimagining parameter space exploration with diffusion
models. arXiv preprint arXiv:2506.17807, 2025a.

Xinyi Zhang, Naiqi Li, and Angela Dai. Dnf: Unconditional 4d generation with dictionary-based
neural fields. In CVPR, 2025b.

Chenliang Zhou, Zheyuan Hu, Alejandro Sztrajman, Yancheng Cai, Yaru Liu, and Cengiz Oztireli.
Neumadiff: Neural material synthesis via hyperdiffusion. arXiv preprint arXiv:2411.12015, 2024.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In ICCV, 2017.

Jan Zrimec, Xiaozhi Fu, Azam Sheikh Muhammad, Christos Skrekas, Vykintas Jauniskis, Nora K
Speicher, Christoph S Börlin, Vilhelm Verendel, Morteza Haghir Chehreghani, Devdatt Dub-
hashi, et al. Controlling gene expression with deep generative design of regulatory dna. Nature
communications, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A Experimental Setup for Each Method 15

B Results on Non-Parametric Test for Data-Copying Detection 16

B.1 Data Copying Test for Original Models . 16

B.2 Data Copying Test for Models from Ablation Experiments 16

C Additional Visualization of Model Weights and Behaviors 18

C.1 Additional Random Examples of Weight Heatmaps 18

C.2 Heatmaps by Percentile of Distance to Nearest Training Checkpoint 19

C.3 Additional Random Examples of Model Outputs 20

C.4 Model Outputs by Percentile of Distance to Nearest Training Checkpoint 21

D Additional Information on Memorization in Model Behaviors 22

D.1 Metric for Checkpoint Similarity Based on Incorrect Predictions 22

D.2 Additional Information on the Noise-Addition Baseline 22

D.3 Alternative Similarity Metric: Overlap in Classification Predictions 22

E Additional Information on the Novelty of P-diff’s Generated Models 23

E.1 Comparison with Models Trained from Scratch 23

E.2 Additional Information on P-diff Weight Value Distribution 24

F Additional Information on the Impact of Training Configurations on Memorization 26

F.1 Data Scaling . 26

F.2 Model Capacity . 26

F.3 Other Modeling Factors . 26

G Additional Information on Permutation Augmentation for HyperDiffusion 28

H System-Level Comparison between Image and Weight Generation Models 29

I Impact of Downstream Dataset Diversity on Weight Memorization 31

J Intrinsic Dimension of Image and Weight Data 32

J.1 Main Analysis . 32

J.2 Validating the Convergence and Performance of the Image Autoencoders 33

K Can Generative Models Be Used to Store the Weight Datasets? 34

L Usage of Large Language Models in Paper Writing 35

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A EXPERIMENTAL SETUP FOR EACH METHOD

In this paper, we analyze four representative generative modeling methods for neural network
weights, under their primary experimental setups. Here, we expand on Section 2.1 to provide more
details about the training, inference, and analysis of the four methods.

Hyper-Representations provides, for each of MNIST, SVHN, CIFAR-10, and STL-10, a dataset
of thousands of classification model checkpoints, together with a pre-trained generative model
trained on that checkpoint dataset. We evaluate the pre-trained Hyper-Representations autoencoder
checkpoint for SVHN classification model weights. Unless explicitly stated otherwise, the training
weights referenced throughout the paper refer to the reconstructions of the original training weights
produced by the Hyper-Representations autoencoder.

Hyper-Representations save one checkpoint at each of epochs 21 to 25 in every classification model
training run when creating its datasets of checkpoints. However, when calculating the L2 distance
from training and generated checkpoints to their nearest training checkpoints, we only use training
checkpoints from the 25th epoch. This is to ensure that the distances between training checkpoints
correctly represent distances between models independently trained from scratch.

G.pt provides datasets of 2.1M to 11.3M checkpoints and pre-trained generative models of weights
for MNIST and CIFAR-10 classification models, as well as Cartpole reinforcement learning models.
We evaluate the pre-trained generative model for MNIST classification model weights.

Although G.pt’s training procedure uses 200 checkpoints from each MNIST training run, to reduce
computational cost, we use only the final checkpoint from each run as the training weights through-
out our paper. This would not underestimate memorization, because the one-step generation of G.pt
explicitly prompts the generative model to produce MNIST classification model weights with zero
test loss, making the generated weights more similar to final checkpoints than to earlier ones.

HyperDiffusion trains an unconditional diffusion model on MLPs that each represent a neural oc-
cupancy field of a unique 3D shape. These MLPs are trained to map 3D coordinates to occupancy
values. Meshes can be extracted from the MLPs using Marching Cubes (Lorensen & Cline, 1987).

HyperDiffusion is applied to MLPs trained on the car, chair, and airplane categories of the ShapeNet
dataset (Chang et al., 2015), as well as to MLPs representing 4D animation sequences. However,
the dataset of MLP checkpoints and the corresponding generative model of MLP weights were only
released for airplane shapes. Thus, our analysis is focused only on this experimental setting.

P-diff is applied to multiple image classification datasets and model architectures. However, the
analysis in the original paper focuses on the setting of generating the last two batch normalization
layers for a CIFAR-100 classification model of ResNet-18 architecture. Accordingly, we evaluate
p-diff under this setting. Since no weight datasets or pre-trained generative models are released, we
follow the official codebase to collect the training weights and train the generative model ourselves.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B RESULTS ON NON-PARAMETRIC TEST FOR DATA-COPYING DETECTION

Meehan et al. (2020) proposed a non-parametric test for detecting memorization in generative mod-
els. The test requires the training set, a holdout set Pn of size n, and a set of generated samples Qm

of size m. The n +m samples in Pn ∪Qm are sorted by their distance to the nearest training data
point, with rank 1 assigned to the closest sample and rank n + m to the farthest. Let RQm

denote
the sum of the ranks of all generated samples Qm. The U statistic (Mann & Whitney, 1947) is

UQm = RQm − m(m+ 1)

2
, (1)

which is then normalized to obtain the z-scored statistic ZU :

ZU =
UQm

− µU

σU
, (2)

where µU = mn
2 and σU =

√
mn(m+n+1)

12 . Intuitively, ZU ≪ 0 indicates memorization (data-
copying), while ZU ≫ 0 suggests that the generative model underfits the training data.

We apply the ZU metric to the original generative models of weights from the four studied methods,
as well as to the models trained in our ablation experiments. This provides additional quantitative
evidence regarding whether the models memorize or generalize. Since each method provides a
different number of holdout samples, the ZU values are not directly comparable across methods.

B.1 DATA COPYING TEST FOR ORIGINAL MODELS

In Section 3.1, our visualization showed that, except for p-diff, whose training checkpoints are saved
consecutively in the same run and are of very low diversity, the generated checkpoints of all other
methods are much closer to the training checkpoints than the training checkpoints are to one another.

Here, we measure the ZU score based on the same L2 distance metric between checkpoints for
Hyper-Representations, G.pt, and HyperDiffusion, and find that the ZU (-13.6, -8.5, and -30.8,
respectively) scores are significantly smaller than 0, indicating severe memorization. This confirms
the results in Section 3.1.

B.2 DATA COPYING TEST FOR MODELS FROM ABLATION EXPERIMENTS

In Section 4.1, we identified limited dataset size and model overparameterization as potential rea-
sons why memorization occurs. Specifically, we showed that scaling up the training data reduces
memorization in G.pt, while HyperDiffusion is capable of memorizing random weights. Here, we
further confirm these trends using the ZU score.

Scaling data for G.pt. We measure the ZU score before and after increasing the training dataset size
of G.pt from 2.1M to 20.4M samples. The ZU score rises from -8.5 to 3.5, indicating that scaling
data effectively mitigates memorization in G.pt.

training dataset size 2.1M 20.4M
mean dist b/w train & nearest train 3.64 2.70
mean dist b/w gen & nearest train 2.25 2.78
ZU score (Meehan et al., 2020) -8.5 3.5

Table 2: Scaling up training data can reduce memorization in G.pt. The increase to positive ZU

score after scaling up data confirms the reduced memorization observed in Figure 9.

Training HyperDiffusion on random weights. In Section 4.1, we trained HyperDiffusion on the
original dataset of checkpoints with one or all layers randomly reinitialized. We report the ZU score
of the original and newly-trained HyperDiffusion models in Table 3.

We find that all models have a ZU score of -30.8, the lowest possible score when n = 606 and m =
666. This is because, in every case, each generated checkpoint is closer to a training checkpoint than
any training checkpoint is to another training checkpoint. This further confirms that HyperDiffusion
closely memorizes the training checkpoints regardless of the semantics of the weights.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

layers reinitialized in trained MLPs none 1st 2nd 3rd 4th all
mean dist b/w train & nearest train 109.5 114.0 90.3 106.0 126.4 16.0
mean dist b/w gen & nearest train 7.0 9.0 1.5 2.6 3.6 0.8
ZU score (Meehan et al., 2020) -30.8 -30.8 -30.8 -30.8 -30.8 -30.8

Table 3: HyperDiffusion memorizes weights regardless of their semantics. The consistently low
ZU score confirms that severe memorization occurs in all cases, as observed in Table 1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C ADDITIONAL VISUALIZATION OF MODEL WEIGHTS AND BEHAVIORS

C.1 ADDITIONAL RANDOM EXAMPLES OF WEIGHT HEATMAPS

In Section 3.1, we showed the values of random parameters in generated checkpoints and their
nearest training checkpoints for all four methods, to demonstrate the memorization in weight space.
Due to space constraints, we presented only three random examples per method. In Figure 13, we
provide heatmap visualizations of eight additional random generated checkpoints and their nearest
training checkpoints for each method. Consistently, we observe that for almost every generated
checkpoint, there exists at least one training checkpoint with highly similar weights.

-2.5

0.0

0.0

2.5

-2.5
0.0
2.5

-2.5

0.0

0.0

2.5

-2.0
0.0
2.0

-2.0
0.0
2.0

-2.0
0.0
2.0

pa
ra

m
et

er
 va

lue

(a) Hyper-Representations

-0.2
0.0
0.2

-0.2
0.0
0.2

-0.2
0.0
0.2

-0.2
0.0

-0.2
0.0

-0.5

0.0

-0.2
0.0
0.2

-1.0

0.0

pa
ra

m
et

er
 va

lue

(b) G.pt

-1.0
0.0
1.0

-2.5
0.0

-1.0
0.0
1.0

-1.0
0.0
1.0

-2.5

0.0

-2.0

0.0

0.0

2.0

-2.0

0.0

pa
ra

m
et

er
 va

lue

(c) HyperDiffusion

-5.0
0.0

-5.0
0.0

-5.0
0.0

-5.0
0.0

-5.0
0.0

-5.0
0.0

-5.0
0.0

-5.0
0.0

pa
ra

m
et

er
 va

lue

(d) P-diff

Figure 13: Additional random examples of weight heatmap for generated models and their near-
est training models.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.2 HEATMAPS BY PERCENTILE OF DISTANCE TO NEAREST TRAINING CHECKPOINT

In Section 3.1 and Appendix C.1, we showed weight heatmaps of random generated checkpoints
and their nearest training checkpoints. Here, we further rank the generated checkpoints by their L2

distance to the nearest training checkpoint and present weight heatmaps at different percentiles in
Figure 14. A lower percentile corresponds to a smaller distance to the nearest training checkpoint.

Consistent with our earlier findings, the generated weights from Hyper-Representations are nearly
identical to their nearest training weights across all percentiles. Similarly, for G.pt and HyperDiffu-
sion, all generated checkpoints are highly similar to their nearest training checkpoints, except at the
100th percentile, which show moderate differences. For p-diff, across all percentiles, all training and
generated checkpoints are nearly identical. As noted in Section 3, this is likely because its training
checkpoints are saved from consecutive steps within the same training run, resulting in low diversity.

0th percentile

20th percentile

40th percentile

60th percentile

80th percentile

100th percentile

-2.5

0.0

2.5

0.0

2.5

-2.5

0.0

-2.5

0.0

2.5

-2.5

0.0

0.0

2.0

pa
ra

m
et

er
 va

lue

(a) Hyper-Representations

0th percentile

20th percentile

40th percentile

60th percentile

80th percentile

100th percentile

-0.5

0.0

-0.2

0.0

0.2

-0.2

0.0

-0.2
0.0
0.2

0.0

0.5

-0.5

0.0

pa
ra

m
et

er
 va

lue

(b) G.pt

0th percentile

20th percentile

40th percentile

60th percentile

80th percentile

100th percentile

-2.0

0.0

2.0

-1.0
0.0
1.0

-2.5

0.0

-2.0

0.0

-1.0
0.0
1.0

-2.5

0.0

pa
ra

m
et

er
 va

lue

(c) HyperDiffusion

0th percentile

20th percentile

40th percentile

60th percentile

80th percentile

100th percentile

-5.0
0.0

-5.0
0.0

-5.0
0.0

-5.0
0.0

-5.0
0.0

-5.0
0.0

pa
ra

m
et

er
 va

lue

(d) P-diff

Figure 14: Heatmaps of generated checkpoints at different percentiles of distance to the nearest
training checkpoint. Results are consistent with those observed for random generated weights: all
generated checkpoints closely resemble their nearest training checkpoints, except for those at the
100th percentile in G.pt and HyperDiffusion, which show moderate differences.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C.3 ADDITIONAL RANDOM EXAMPLES OF MODEL OUTPUTS

In Section 3.2, we visualized the decision boundaries or reconstructed 3D shapes of generated mod-
els and their nearest training models, to demonstrate their high similarity in model behaviors. Due to
space constraints, we presented only three random examples per method. In Figure 15, we provide
visualizations of model outputs for nine additional random generated checkpoints per method and
the nearest training checkpoint to each of them. These results further confirm that the generated
checkpoints closely resemble their nearest training checkpoints not only in weight space but also in
model behavior.

generated training

PCA dimension 1

PC
A

dim
en

sio
n

2

generated training

PCA dimension 1

PC
A

dim
en

sio
n

2

generated training

PCA dimension 1

PC
A

dim
en

sio
n

2

generated training

PCA dimension 1

PC
A

dim
en

sio
n

2

classes
(a) Hyper-Representations (b) G.pt (c) HyperDiffusion (d) P-diff

Figure 15: Addition random examples of decision boundaries and reconstructed meshes of
generated models and their nearest training models.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.4 MODEL OUTPUTS BY PERCENTILE OF DISTANCE TO NEAREST TRAINING CHECKPOINT

In Section 3.2 and Appendix C.3, we showed model outputs from random generated checkpoints
and their nearest training checkpoints. Here, we further rank the generated checkpoints by their
L2 distance to the nearest training checkpoint and present model outputs at different percentiles in
Figure 16. A lower percentile corresponds to a smaller distance to the nearest training checkpoint.

Consistent with our earlier findings, the behaviors of generated models from Hyper-Representations
are nearly identical to their nearest training weights across all percentiles. Similarly, for G.pt and
HyperDiffusion, all generated checkpoints produce outputs highly similar to their nearest training
checkpoints, except those at the 100th percentile, which show moderate differences. We note that
the HyperDiffusion-generated checkpoint at the 100th percentile is of low quality (as seen in the
degraded shape it reconstructs to) and thus cannot be matched to any training checkpoint. For p-diff,
across all percentiles, all training and generated checkpoints’ outputs are highly similar.

generated training

PCA dimension 1

PC
A

dim
en

sio
n

2

0th percentile

20th percentile

40th percentile

60th percentile

80th percentile

100th percentile

generated training

PCA dimension 1

PC
A

dim
en

sio
n

2

0th percentile

20th percentile

40th percentile

60th percentile

80th percentile

100th percentile

generated training

PCA dimension 1

PC
A

dim
en

sio
n

2

0th percentile

20th percentile

40th percentile

60th percentile

80th percentile

100th percentile

generated training

PCA dimension 1

PC
A

dim
en

sio
n

2

0th percentile

20th percentile

40th percentile

60th percentile

80th percentile

100th percentile

classes
(a) Hyper-Representations (b) G.pt (c) HyperDiffusion (d) P-diff

Figure 16: Decision boundaries and reconstructed meshes of generated checkpoints at different
percentiles of distance to the nearest training checkpoint. Results are consistent with those
observed for random generated weights: all generated checkpoints closely resemble their nearest
training checkpoints in model outputs, except at the 100th percentile in G.pt and HyperDiffusion,
where the lower quality of the generated checkpoints may account for the observed differences.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D ADDITIONAL INFORMATION ON MEMORIZATION IN MODEL BEHAVIORS

D.1 METRIC FOR CHECKPOINT SIMILARITY BASED ON INCORRECT PREDICTIONS

In Section 3.2, we used the metric from Wang et al. (2024) to quantify the similarity between two
classification model checkpoints. The metric measures similarity based on the Intersection over
Union (IoU) of the sets of incorrect predictions made by the two model checkpoints. Formally, it is
defined as follows:

I1 = { i ∈ {1, . . . , N} | M1(Xi) ̸= yi},
I2 = { i ∈ {1, . . . , N} | M2(Xi) ̸= yi},

IoU(M1,M2) =
|I1 ∩ I2|
|I1 ∪ I2|

,

(3)

where {(Xi, yi)}Ni=1 represents the test set on which the model checkpoints are evaluated. The
sets I1 and I2 contain the indices of test samples for which model checkpoints M1 and M2 make
incorrect predictions, respectively.

D.2 ADDITIONAL INFORMATION ON THE NOISE-ADDITION BASELINE

In Section 3.2, we introduced a noise-addition baseline to compare with the generated models in
terms of performance and novelty. For Hyper-Representations, whose KDE sampling method is
based on the top 30% highest-accuracy training checkpoints, we apply noise to reconstructions of
a random subset of these highest-accuracy checkpoints to ensure a fair comparison. For all other
methods, we apply noise to checkpoints uniformly sampled from all training checkpoints.

D.3 ALTERNATIVE SIMILARITY METRIC: OVERLAP IN CLASSIFICATION PREDICTIONS

For classification models, the percentage of test set predictions they agree on provides an intu-
itive measure of their similarity in behavior. Table 4 shows the prediction overlap between clas-
sification model weights generated by Hyper-Representations, G.pt, and P-diff and their nearest
training checkpoints under L2 distance, along with prediction overlap between training models and
their nearest neighbors (excluding self-comparisons) for comparison. As in Section 3, for Hyper-
Representations, we use reconstructed training weights rather than the original ones.

method Hyper-Representations G.pt P-diff
mean accuracy of training models 51.3 94.5 76.9
pred overlap b/w training & nearest training 75.6 97.9 91.4
pred overlap b/w generated & nearest training 98.5 98.2 93.5

Table 4: Classification predictions highly overlap between generated and training models. This
shows that the generated models highly resemble the behaviors of training models.

Across all methods, generated models show higher prediction overlap with their nearest training
models than training models do. This high overlap suggests that the generated models closely re-
semble the training models in behavior. However, we note that prediction overlap can be strongly in-
fluenced by accuracy: two models with accuracy x will have a minimum overlap of max(2x−1, 0).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E ADDITIONAL INFORMATION ON THE NOVELTY OF P-DIFF’S GENERATED
MODELS

All training and generated checkpoints of p-diff exhibit highly similar weight values (Figures 2
and 13) and decision boundaries (Figures 5 and 15). Yet, unlike other methods, p-diff achieves a
better accuracy-novelty trade-off than noise addition (Figure 6), and its generated models are often
farther from the nearest training model than training models are from one another (Figure 4).

This may be explained by p-diff’s training checkpoints being saved from consecutive steps in the
same training run, which results in significantly lower diversity in training models, compared to other
methods that sample checkpoints across different runs. Consequently, p-diff may be interpolating
within a narrow region of the weight space, which still appears novel relative to its low-diversity
training distribution.

To investigate this, we analyze the weight distribution of p-diff’s training and generated checkpoints,
in comparison with models trained from scratch using different random seeds.

E.1 COMPARISON WITH MODELS TRAINED FROM SCRATCH

We train 20 models from scratch using different random seeds, with the same architecture (ResNet-
18) and downstream task (CIFAR-100) as p-diff. The training recipe, shown in Table 5, is tuned
so that the final accuracies of these models (75.4% ± 0.3%) approximately match those of p-diff’s
training checkpoints (76.8% ± 0.2%).

config value
optimizer AdamW (Loshchilov & Hutter, 2019)
learning rate 5e-4
weight decay 5e-4
optimizer momentum β1, β2=0.9, 0.999

batch size 128
learning rate schedule cosine decay
training epochs 300
augmentation RandomResizedCrop (Szegedy et al., 2015) & RandAug (9, 0.5) (Cubuk et al., 2020)

Table 5: Training recipe for CIFAR-100 classification models trained from scratch.

In Figure 17, we visualize the weights of 20 randomly selected checkpoints from each group: p-diff
training checkpoints, p-diff generated checkpoints, and models trained from scratch. We sample the
same 64 parameter indices across all models. Both the training and generated checkpoints from p-
diff exhibit minimal variation, while the from-scratch models display substantially greater diversity
in parameter values.

training checkpoints generated checkpoints models trained from scratch

-4.0

-2.0

0.0

2.0

-4.0

-2.0

0.0

2.0

-1.0

0.0

1.0

pa
ra

m
et

er
 va

lue

Figure 17: P-diff’s training and generated checkpoints show limited diversity compared to
models trained from scratch.. Each row (separated by white lines) is a model checkpoint; each
column is a randomly selected parameter index. The same indices are used across all three subplots.

We further quantify the weight space diversity of p-diff’s training and generated checkpoints, com-
pared to models trained from scratch. As shown in Table 6, both training and generated checkpoints

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

of p-diff occupy a narrow region of the weight space, with low pairwise and nearest-neighbor dis-
tances. In contrast, models trained independently from scratch exhibit much higher weight variation.

case mean L2 distance
b/w all pairs of training checkpoints 6.9
b/w all pairs of training and generated checkpoints 6.3
b/w all pairs of from-scratch models 46.1
from training checkpoints to nearest training checkpoints 0.3
from generated checkpoints to nearest training checkpoints 5.4
from from-scratch models to nearest from-scratch models 44.1

Table 6: Distances among p-diff’s training and generated checkpoints are much smaller than
the distances among from-scratch models. This shows that p-diff’s training and generated check-
points occupy a narrow range in weight space compared to models trained from scratch.

These results confirm that p-diff’s training and generated checkpoints occupy a highly constrained
region in weight space, substantially narrower than the region spanned by independently trained
models. Thus, although p-diff appears to interpolate between training checkpoints (Figures 7 and 8),
the training checkpoints themselves lack diversity. As a result, the interpolation occurs within a
narrow subspace and does not reflect meaningful generalization beyond the training data.

E.2 ADDITIONAL INFORMATION ON P-DIFF WEIGHT VALUE DISTRIBUTION

In Section 3.2, we showed that the parameter values in checkpoints generated by p-diff tend to center
around the average of the parameter values in training checkpoints, using smoothed weight distri-
bution curves. Figure 18 presents the same plot without smoothing, confirming that the moderate
smoothing does not affect the observed trends.

0.4 0.5 0.6 0.7 0.80

10

20

1.4 1.7 2.0 2.30

20

40

1.8 1.9 2.0 2.1 2.20
5

10
15

1.4 1.5 1.6 1.7 1.80
5

10
15

1.6 2.0 2.4 2.80
20
40
60

parameter value

%
 o

f m
od

els training generated

Figure 18: Distributions of 5 randomly selected parameters from the weight matrix of the first
layer in the training and generated checkpoints of p-diff. This figure corresponds to Figure 7 but
without smoothing applied to the distribution curves.

We further extend this analysis by visualizing the parameter value distributions of 50 randomly
selected entries from the first-layer weight matrix in both training and generated checkpoints. As
shown in Figure 19, the concentration of generated weights around the mean of training weights
persists across this larger set of parameters.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0.75 0.90 1.05

4
8

12
16

1.20 1.35 1.50 2.2 2.4 2.6 0.9 1.2 1.5 2.25 2.40 2.55

3.25 3.50 3.75 4.00

4
8

12
16

0.50 0.75 1.00 0.30 0.45 0.60 0.75 1.95 2.10 1.4 1.6 1.8 2.0

1.35 1.50 1.65 1.80

4
8

12
16

1.2 1.4 1.6 1.8 0.75 0.90 1.05 0.6 0.7 0.8 0.9 1.95 2.10 2.25

2.0 2.2 2.4

4
8

12
16

1.2 1.4 1.6 0.8 0.9 1.0 0.60 0.75 0.90 1.8 2.1 2.4 2.7

0.8 1.0 1.2

4
8

12
16

2.0 2.2 2.4 2.6 1.05 1.20 1.35 0.45 0.60 0.75 1.4 1.6 1.8 2.0

2.85 3.00 3.15

4
8

12
16

1.80 1.95 2.10 1.0 1.2 1.4 1.0 1.2 1.4 2.10 2.25 2.40

0.30 0.45 0.60

4
8

12
16

1.6 1.8 2.0 2.2 1.80 1.95 0.8 1.0 1.2 0.50 0.75 1.00 1.25

0.6 0.8 1.0

4
8

12
16

2.0 2.5 3.0 2.0 2.2 2.4 1.6 1.7 1.8 1.2 1.5 1.8 2.1

1.35 1.50 1.65

4
8

12
16

0.8 1.0 1.2 1.4 1.95 2.10 2.25 2.40 0.75 1.00 1.25 1.05 1.20 1.35

1.8 2.0 2.2

4
8

12
16

0.60 0.75 0.90 0.75 0.90 1.05 0.6 0.8 1.0 1.75 2.00 2.25 2.50
parameter value

de
ns

ity

training generated

Figure 19: Distributions of 50 randomly selected parameters from the weight matrix of the first
layer in the training and generated checkpoints of p-diff. This figure extends the analysis of Figure 7
to a broader set of parameters, further confirming the observed trend of generated weight values
concentrating around the average of the training values.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

F ADDITIONAL INFORMATION ON THE IMPACT OF TRAINING
CONFIGURATIONS ON MEMORIZATION

In Section 4.1, we demonstrated that limited data and overparameterized models likely contribute
to memorization. Here, we extend this analysis by testing additional settings and modeling factors
beyond data and model size. The ZU score used in this section is introduced in Appendix B.

F.1 DATA SCALING

In Section 4.1, we showed that scaling up training data for G.pt can effectively mitigate memoriza-
tion. Here, we further explore scaling data for Hyper-Representations.

training dataset size 2896 24136
mean dist b/w train & nearest train 49.97 48.17
mean dist b/w gen & nearest train 8.11 9.24
ZU score (Meehan et al., 2020) -13.6 -13.6

Table 7: Scaling up training data does not reduce memorization in Hyper-Representations.
After scaling up, the distances between training and generated checkpoints remain much smaller
than the distances among training checkpoints, and ZU remains unchanged.

Concretely, we increased the number of training checkpoints from 2896 to 24136. However, as
shown in Table 7, generated checkpoints remain far closer to training checkpoints than training
checkpoints are to each other. The unchanged ZU score after scaling further confirms that scaling
data does not mitigate memorization in Hyper-Representations.

While this result does not rule out the possibility that scaling to much larger datasets might even-
tually reduce memorization, it suggests that there may be more fundamental modeling issues at
play (e.g., the lack of designs explicitly integrating the properties of weight data, as discussed in
Section 4.2), beyond insufficient data.

F.2 MODEL CAPACITY

In Section 4.1, we showed that HyperDiffusion can fully memorize its training checkpoints, even
when one or all layers are reinitialized with random weights, suggesting that it simply memorizes
weights without capturing meaningful patterns. Here, we further demonstrate this by training Hy-
perDiffusion on MLPs trained with different training lengths.

By default, HyperDiffusion trains the first MLP model from random initialization, and subsequent
MLP models are initialized from the trained weights of the first model. To enable a fairer comparison
across training lengths, we instead train all MLP models from scratch.

training length 0 epoch 200 epochs 400 epochs full
mean dist b/w train & nearest train 16.0 115.7 129.4 126.8
mean dist b/w gen & nearest train 0.8 2.8 3.7 5.7
ZU score (Meehan et al., 2020) -30.8 -30.8 -30.8 -30.8

Table 8: HyperDiffusion memorizes MLP weights regardless of their training length. This
suggests that memorization occurs independent of the semantics of the weights.

Following HyperDiffusion’s codebase, a full MLP training run ends when the training loss fails
to improve for 50 consecutive epochs. Across 500 independent runs, the average training length
is 667.7 epochs. We collect new datasets of checkpoints by training all MLPs for 200 and for 400
epochs, and then train a HyperDiffusion on each dataset. The evaluation results are shown in Table 8.

F.3 OTHER MODELING FACTORS

Modeling choices such as training duration, model architecture, and regularization strategy have
been shown to significantly impact memorization in image diffusion models (Somepalli et al.,

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Hyper-Representations G.pt HyperDiffusion

#params acc.↑ L2 ↑ #params acc.↑ L2 ↑ #params MMD↓ L2 ↑
baseline

training – 65.2 50.0 – 94.4 3.64 – 0.026 109.5
default gen 223M 57.5 8.11 378M 94.0 2.25 1.4B 0.036 7.03

training epochs
33.3% 223M 33.8 7.86 378M 94.0 2.40 1.4B 0.035 7.40
50.0% 223M 47.1 7.97 378M 94.0 2.25 1.4B 0.034 4.74

model size
+dim & head 359M 50.1 8.06 579M 93.6 2.12 2.1B 0.034 2.69
+layer 362M 55.9 8.09 605M 93.9 2.08 2.0B 0.036 3.32
–dim & head 118M 44.1 7.93 220M 93.6 2.51 0.8B 0.039 22.47
–layer 154M 42.2 7.93 208M 86.6 3.70 1.0B 0.033 3.17

regularization
+10% dropout 223M 53.9 7.76 378M 93.7 2.27 1.4B 0.035 5.10
+20% dropout 223M 44.7 7.26 378M 92.5 3.13 1.4B 0.034 6.08
+Gaussian noise 223M 57.8 8.14 378M 92.9 2.37 1.4B 0.033 3.24

Table 9: Modeling changes do not effectively mitigate memorization: modifications known to re-
duce memorization in image diffusion fail to meaningfully improve the novelty of generated weights
(measured via L2 to nearest training model) without degrading performance. The resulting changes
in L2 for generated weights are often much smaller than the gap in L2 between the two baselines.

2023b; Yoon et al., 2023; Kadkhodaie et al., 2024; Gu et al., 2025). In Section 4.1, we also showed
that the large size of the generative models of weights likely contributes to memorization. Here,
we investigate whether adjusting these factors suffices to mitigate the memorization in generative
models of weights.

Quantitative metrics. In Section 3, we apply various metrics and baselines to demonstrate the
memorization in weight space and model behaviors. Here, we measure the mean L2 distance be-
tween generated models and their nearest training models, as a simple proxy to quantify the novelty
of generated weights. However, a high L2 distance to training weights may also arise from low-
quality weight generations. Thus, we also evaluate model performance: accuracy for classification
models and Minimum Matching Distance (under Chamfer Distance) for neural field models. These
quantitative evaluations of generative models under varying modeling factors are shown in Table 9.
We report the metrics for training weights and generated weights under default settings as baselines.

Training epochs. Reducing training epochs tends to lessen memorization in generative mod-
els (Somepalli et al., 2023b; Yoon et al., 2023; Gu et al., 2025). We shorten training to 1/2 and
1/3 of the original length. Nonetheless, this has minimal impact on the L2 distances and the quality
of generated weights for G.pt and HyperDiffusion, while significantly degrading the accuracy of
models produced from Hyper-Representations.

Model size. The size of a generative model can influence its sample quality and generaliza-
tion (Dhariwal & Nichol, 2021; Nichol & Dhariwal, 2021). We vary the model size by increasing
or decreasing its depth (i.e., number of layers) and width (i.e., model dimensions). However, across
the three methods, changing the model size does not meaningfully increase the L2 distances without
compromising the generated models’ performance.

Regularization. Regularization techniques have long been leveraged to prevent models from over-
fitting to the training set (Srivastava et al., 2014; Szegedy et al., 2016; Pereyra et al., 2017). Here, we
apply dropout (Srivastava et al., 2014) and inject random Gaussian noise into the training weights.
Yet, these only result in minor changes to sample quality and L2 distances.

Discussion. Modeling factor adjustments common in image diffusion cannot alleviate the memo-
rization issue: none substantially improved the novelty of the generated weights without degrading
performance. Notably, the changes in L2 distance resulting from these variations were much smaller
than the original gap between L2 measured on training weights and on generated weights.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

G ADDITIONAL INFORMATION ON PERMUTATION AUGMENTATION FOR
HYPERDIFFUSION

In Section 4.2, we investigated whether adding permutation augmentations to the training data of
HyperDiffusion reduces memorization. Specifically, we added 1, 3, and 7 random weight permuta-
tions during training, effectively enlarging the dataset by factors of ×2, ×4, and ×8, respectively.

0 3000 6000 9000 12000
epoch

0.0

0.1

0.2

0.3

tra
ini

ng
 lo

ss
default
+3 perm

+1 perm
+7 perm

Figure 20: HyperDiffusion fails to converge when three or more permutations are added.

Figure 20 shows the corresponding training loss curves. We observe that when three or more per-
mutations are applied, the model completely fails to converge. This aligns with the 3D shape visu-
alizations in Figure 12, where the generated shapes do not represent any meaningful object.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

H SYSTEM-LEVEL COMPARISON BETWEEN IMAGE AND WEIGHT
GENERATION MODELS

In our study, we show that current generative models for weights primarily memorize training data,
drawing a system-level comparison with the generalization of image generation models. Here, we
provide a example to illustrate the generalization behaviors of a common image generation model
trained on the same amount of data as weight generation models. Concretely, we compare HyperDif-
fusion, an unconditional diffusion model for weight generation, with a standard Denoising Diffusion
Probabilistic Model (DDPM) (Ho et al., 2020) trained on Flowers (Nilsback & Zisserman, 2008).

We randomly select 2749 images from the 20 largest classes in Flowers, to match the dataset size
used for HyperDiffusion. We then train an unconditional DDPM on this dataset, as well as on
two smaller subsets of 100 and 500 images, applying horizontal flipping as data augmentation. All
models are trained at a resolution of 64×64 with a consistent training setup: 43K iterations, batch
size 64, 500 warm-up steps, and a learning rate of 1e-4.

training imgs type randomly sampled images

100
generated

training

500
generated

training

2749
generated

training

Table 10: Image diffusion models improve generalization and reduce memorization with more
training data. Each pair of consecutive rows shows randomly selected generated images alongside
their most similar training images. When trained on 100 or 500 images, the model often replicates
training samples or their horizontal flips—a data augmentation used during training. However, with
2749 training samples, the model generates novel images, demonstrating improved generalization.

After training the image diffusion models, we use the image copy detection method SSCD (Pizzi
et al., 2022) to compute the similarity scores between generated and training images. Table 10
visualizes ten randomly selected generated images alongside their most similar training images.
When trained on only 100 samples, the diffusion model primarily memorizes the training images,
but with a larger dataset of 2749 images, it generalizes to produce novel outputs.

0.2 0.4 0.6 0.8 1.00

10

20

30

100 training samples

0.2 0.4 0.6 0.8 1.00

10

20

30

500 training samples

0.2 0.4 0.6 0.8 1.00

10

20

2749 training samples
generated
training

SSCD similarity

%
 o

f im
ag

es

Figure 21: Image diffusion models transition from memorization to generalization with more
data. The red histograms and blue curves show the distributions of SSCD similarity between each
generated image and its most similar training image (red) and between each training image and its
most similar training image (blue, excluding self-comparisons). As the training dataset grows, the
red histograms shift left, indicating that the model generates increasingly distinct images rather than
memorizing training samples.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 21 presents the quantitative trend of similarity between generated images and their most sim-
ilar training images as a function of dataset size. As a reference, we also show the similarity distribu-
tion between each training image and its most similar training image (excluding self-comparisons).
We observe that with more data, the model generates images with a similarity level comparable to
that between training images themselves. This contrasts with the trend observed for HyperDiffusion
in Section 3.1, where the model fails to generate novel weights even when trained on 2749 samples.

Discussion. Here, we provide an example illustrating that, on a system-level, a common image
generation models can generalize well on the same amount of data used to train weight generation
models. However, this difference can be attributed to various factors, including but not limited to
the generative model size and architecture, diversity of dataset, data modality, and training recipe.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

I IMPACT OF DOWNSTREAM DATASET DIVERSITY ON WEIGHT
MEMORIZATION

For the four methods studied in this paper, their primary experimental setups use SVHN, MNIST,
ShapeNet, and CIFAR-100, respectively. One may wonder whether the limited diversity of these
downstream datasets leads to limited diversity in the dataset of checkpoints, and thereby indirectly
contributes to the memorization in the generative models of weights. To test this, we train p-diff on
a more diverse image dataset, ImageNet (Deng et al., 2009), following its official codebase.

-2.5
0.0
2.5

-2.5
0.0
2.5

-2.5
0.0
2.5

pa
ra

m
et

er
 v

al
ue

Figure 22: P-diff’s generated weights closely resem-
ble training weights when trained on ImageNet clas-
sification model checkpoints. The trend is consistent
with the results on CIFAR-100 checkpoints (Figure 2).

0.76 0.79 0.82 0.85
maximum similarity

67.0

69.0

71.0

ac
cu

ra
cy

 (%
)

training generated averaged gaussian

Figure 23: P-diff does not outperform
interpolation baselines when trained on
ImageNet classification model checkpoints,
similar to the CIFAR-100 results (Figure 6).

Similar to the results on CIFAR-100 checkpoints (Figures 2 and 6), the generated weight values
remain highly similar to training weights, and fail to outperform the interpolation baselines in the
accuracy-novelty trade-off, as shown in Figures 22 and 23. In addition, 84.4% of generated weight
values fall within one standard deviation around the mean of the training values, compared to 68.7%
for training weights themselves. This suggests that the generated ImageNet classification model
weights also tend to concentrate around the mean of the training weights.

Discussion. While the diversity of the downstream image dataset may indirectly influence the gen-
eralization of generative models of weights, our results show that increasing image diversity alone
does not reduce memorization. Instead, modeling choices and the diversity of checkpoint datasets
(e.g., training a generative model on only 300 checkpoints saved from a single run) may be more
fundamental issues.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

J INTRINSIC DIMENSION OF IMAGE AND WEIGHT DATA

J.1 MAIN ANALYSIS

Unlike images, which are natural signals with high spatial redundancy, model weights have intricate
dependencies between parameter groups. Weight data may exhibit higher complexity than images,
potentially making it more challenging for generative models to capture their distribution, and lim-
iting their ability to produce novel samples. To assess this complexity, we measure the intrinsic
dimensions of weight and image data, which quantify the number of variables required to summa-
rize high-dimensional data distributions.

Estimation method. We estimate the intrinsic dimensions using the Maximum Likelihood Estima-
tor (MLE) (Levina & Bickel, 2004; MacKay & Ghahramani, 2005). It can characterize data beyond
simple linear structure as identified in alternative methods such as the Principal Component Analy-
sis (Pearson, 1901). In essence, it estimates intrinsic dimension by modeling neighbor distributions
with a Poisson process and computing the maximum likelihood intrinsic dimension from observed
distances to neighbors. Formally, the estimator is formulated as

m̄k =

 1

n(k − 1)

n∑
i=1

k−1∑
j=1

log
Tk(xi)

Tj(xi)

−1

, (4)

where {xi}ni=1 are the data points, Tj(xi) is the L2 distance of xi to its j-th nearest neighbor, and k
is a hyperparameter that determines the number of nearest neighbors to consider.

MLE is shown to effectively capture the intrinsic dimensions of modern image datasets (Pope et al.,
2021), but can be sensitive to the hyperparameter k (the number of nearest neighbors considered in
the estimation). Thus, we report estimations for k = 3, 5, 10, 20, following Pope et al. (2021).

Data. To compare the intrinsic dimensions of image and weight data, we use image datasets paired
with the classification model weights trained on these datasets in Hyper-Representations.

Since the Maximum Likelihood Estimator requires the data to be independent and identically dis-
tributed (i.i.d.), we use only the weight checkpoint from the last epoch of each run to ensure that
samples are i.i.d.. To align the image datasets we use with the datasets used to train the classification
model checkpoints from Hyper-Representations, we resize all images to 28×28.

dataset k = 3 k = 5 k = 10 k = 20

MNIST (image) 7 10 11 12
MNIST (weight) 56 79 86 85
SVHN (image) 8 13 16 17
SVHN (weight) 58 81 84 43
CIFAR-10 (image) 12 19 23 24
CIFAR-10 (weight) 62 89 99 100
STL-10 (image) 11 17 19 19
STL-10 (weight) 139 201 206 222

(a) raw data

dataset k = 3 k = 5 k = 10 k = 20

MNIST (image) 10 14 17 18
MNIST (weight) 38 55 60 61
SVHN (image) 14 23 29 31
SVHN (weight) 45 55 49 37
CIFAR-10 (image) 19 33 42 44
CIFAR-10 (weight) 49 71 80 80
STL-10 (image) 21 33 37 36
STL-10 (weight) 58 81 89 88

(b) neural representations of data

Table 11: MLE estimates weights to have higher intrinsic dimensions than images, across dif-
ferent values of the hyperparameter k. We compute estimations for both raw data and their neural
representations from an autoencoder. The estimations are rounded to integers.

Images and weights. Table 11a shows the intrinsic dimensions of image and weight datasets, mea-
sured with different values of hyperparameter k. We observe that, for all datasets and values of k,
MLE consistently estimates much higher intrinsic dimensions for model weights than for images.

Neural representations. Aside from raw data, intrinsic dimension measures have also been used
to inspect the neural representations of data (Ansuini et al., 2019; Yin et al., 2024). Here, we use

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

the estimators to quantify the intrinsic dimensions required for neural networks to capture the image
and weight distributions. Concretely, we extract latent representations from autoencoders trained
on model weights and images. For weight data, we use the pre-trained autoencoder from Hyper-
Representations (Schürholt et al., 2021; 2022). For image data, we train a separate autoencoder with
the same architecture, latent dimensions, and objectives.

Table 11b presents the MLE estimates for these latents. Consistent with our observation on raw
data, the neural representations of weights have higher intrinsic dimensions than those of images.
Interestingly, the neural representations of images have higher dimension estimates than raw images.
This aligns with the “hunchback” pattern reported in prior work (Ansuini et al., 2019; Yin et al.,
2024), where intrinsic dimension is low at the input layer due to dominant yet redundant features in
images, but peaks in middle layers.

Discussion. Our results suggest that weight data have higher intrinsic dimensions than images, both
in raw forms and neural representations. Although prior theoretical work has identified a negative
relationship between the intrinsic dimensionality of data and the generalization of diffusion mod-
els (Chen et al., 2023; Oko et al., 2023), it is unclear whether the memorization in generative models
of weights we observed is directly linked to the higher intrinsic dimensions of weight data.

J.2 VALIDATING THE CONVERGENCE AND PERFORMANCE OF THE IMAGE AUTOENCODERS

In Appendix J.1, we trained autoencoders on image datasets to compare the intrinsic dimensions
of the neural representations of image and weight data. Here, we verify the training of the image
autoencoder by assessing its reconstruction quality in Table 12 and examining the reconstruction loss
curves for test images in Figure 24. The results show that the autoencoder accurately reconstructs
random test images, with the test loss stabilizing by the end of training.

dataset type randomly sampled images

MNIST
original

reconstructed

SVHN
original

reconstructed

CIFAR-10
original

reconstructed

STL-10
original

reconstructed

Table 12: Reconstructions from the image autoencoders in Appendix J.1.

0 20 40 60 80 100
101
102
103
104

MNIST

0 20 40 60 80 10010-1

101

103

SVHN

0 20 40 60 80 100
101
102
103

CIFAR-10

0 200 400 600 800
101

102
STL-10

epoch

re
co

n.
 lo

ss

Figure 24: Test loss curves for image autoencoder training in Appendix J.1.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

K CAN GENERATIVE MODELS BE USED TO STORE THE WEIGHT
DATASETS?

Hegde et al. (2023) showed that diffusion models can be used to compress and store the weights of
an archive of policy networks trained via Quality Diversity Reinforcement Learning (QD-RL), and
enable flexible selection of specific behaviors from the policy archive. Since the generative models
of weights we studied are primarily memorizing their training datasets, one might speculate whether
this property could be used to compress and store the weight dataset in an alternative way.

To explore this possibility, we generate 20K checkpoints from HyperDiffusion and match each to
its nearest training checkpoint. We note that only 129 (4.69%) out of 2749 training checkpoints are
not replicated in generated checkpoints. Similarly, for G.pt, 4872 (47.63%) out of 10228 training
checkpoints are not replicated in 50K generated checkpoints. These results suggest that generative
models can indeed recover a substantial portion of the training weights.

However, the number of parameters in these generative models (223M for Hyper-Representations,
378M for G.pt, 1.4B for HyperDiffuion, and 9.6M for p-diff) far exceeds the total number of values
in their respective training datasets (7.1M, 81M, 101M, and 0.6M). Therefore, storing the weight
datasets implicitly within the generative models we studied would not be a space-efficient method.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

L USAGE OF LARGE LANGUAGE MODELS IN PAPER WRITING

Large Language Models are used lightly during the final stage of paper writing to help shrink the
main text to fit within 9 pages.

35

