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Abstract

Among the many ways of quantifying uncertainty in a regression setting, specifying
the full quantile function is attractive, as quantiles are amenable to interpretation
and evaluation. A model that predicts the true conditional quantiles for each input,
at all quantile levels, presents a correct and efficient representation of the underly-
ing uncertainty. To achieve this, many current quantile-based methods focus on
optimizing the pinball loss. However, this loss restricts the scope of applicable
regression models, limits the ability to target many desirable properties (e.g. cali-
bration, sharpness, centered intervals), and may produce poor conditional quantiles.
In this work, we develop new quantile methods that address these shortcomings.
In particular, we propose methods that can apply to any class of regression model,
select an explicit balance between calibration and sharpness, optimize for calibra-
tion of centered intervals, and produce more accurate conditional quantiles. We
provide a thorough experimental evaluation of our methods, which includes a high
dimensional uncertainty quantification task in nuclear fusion.

1 Introduction

Uncertainty quantification (UQ) in machine learning typically refers to the task of quantifying the
confidence of a given prediction. This measure of certainty can be crucial in a variety of downstream
applications, including Bayesian optimization [36, 45, 54], model-based reinforcement learning
[64, 42, 10, 18], and in high-stakes predictions where mistakes incur large costs [52, 61].

While the common goal of UQ is to describe predictive distributions over outputs for given inputs,
the representation of the distributional prediction varies across methods. For example, some methods
assume a parametric distribution and return parameter estimates [65, 14, 37], while others return
density function estimates, as is common in Bayesian methods [41, 38, 24, 3, 33, 50]. Alternatively,
many methods represent predictive uncertainty with quantile estimates [15, 53, 58, 49, 27].

Quantiles provide an attractive representation for uncertainty because they can be used to model
complex distributions without parametric assumptions, are interpretable with units in the target output
space, allow for easy construction of prediction intervals, and can be used to efficiently sample from
the predictive distribution via inverse transform sampling [22, 32]. Learning the quantile for a single
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quantile level is a well studied problem in quantile regression (QR) [30, 32], which typically involves
optimizing the so-called pinball loss, a tilted transformation of the absolute value function. Given a
target y, a prediction ŷ, and quantile level τ ∈ (0, 1), the pinball loss ρτ is defined as

ρτ (y, ŷ) = (ŷ − y)(I{y ≤ ŷ} − τ). (1)

By training for all quantiles simultaneously, recent works have made concrete steps in incorporating
QR methods to form competitive UQ methods which output the full predictive distribution [51, 58].

In this work, we highlight some limitations of the pinball loss and propose several methods to address
these shortcomings. Specifically, we explore the following:

• Model agnostic QR. Optimizing the pinball loss often restricts the choice of model family for
which we can provide UQ. We propose an algorithm to learn all quantiles simultaneously by
utilizing methods from conditional density estimation. This algorithm is agnostic to model class
and can be applied to any regression model.

• Explicitly balancing calibration and sharpness. While the pinball loss, as a proper scoring
rule, targets both calibration and sharpness, the balance between these two quantities is made
implicitly, which may result in a poor optimization objective. We propose a tunable loss function
that targets calibration and sharpness separately, and allows the end-user to set an explicit balance.

• Centered intervals. In practice, we often desire uncertainty predictions made with centered
intervals, which are not targeted via the pinball loss. We propose an alternative loss function that
is better suited for this goal.

• Encouraging individual calibration. Perfect quantile forecasts will satisfy individual calibration
(Eq. 2), which is a much stricter condition than the more-commonly used notion of average
calibration (Eq. 3). We introduce a training procedure that aims to improve quantile predictions
beyond average calibration, and demonstrate its efficacy via adversarial group calibration (Eq. 4).

We proceed by first describing methods of assessing the quality of predictive UQ and the pitfalls of
optimizing the pinball loss in Section 2. Drawing motivation from this, we then present our proposed
methods in Section 3. In Section 4, we demonstrate our methods experimentally, where we model
predictive uncertainty on benchmark datasets, and on a high-dimensional, real-world uncertainty
estimation task in the area of nuclear fusion.

2 Preliminaries and Background
We first lay out the notation, terminology, and class of models considered in this paper. Then we
provide an overview of evaluation metrics in UQ and demonstrate how the pinball loss may be
inadequate both as an evaluation metric and as an optimization objective.

2.1 Notation
Bold upper case letters X, Y denote random variables, lower case letters x, y, denote their values,
and calligraphic upper case letters X ,Y denote sets of possible values. We use x ∈ X to denote the
input feature vector and y ∈ Y to denote the corresponding target. Additionally, we consider the
regression setting where Y ⊂ R and X ⊂ Rn. We use FX,FY|x,FY to denote the true cumulative
distribution of the subscript random variable. For any x ∈ X , we assume there exists a true conditional
distribution FY|x over Y , and we assume Qp(x) denotes the true pth quantile of this distribution,
i.e. FY|x(Qp(x)) = p. Any estimates of the true functions F,Qp will be denoted with a hat, F̂, Q̂p.
We will specifically refer to any family of estimates for Qp, with p ∈ (0, 1), as a “quantile model”,
denoted Q̂ : X × (0, 1) → Y . Unless otherwise noted, we will always consider the conditional
problem of estimating quantities in the target space Y , conditioned on a value x ∈ X .

2.2 Assessing the Quality of Predictive UQ
While various metrics have been proposed to assess the quality of UQ, there has been a great deal of
recent focus on the notions of calibration and sharpness [15, 13, 65, 60, 55, 35, 21, 20]. We introduce
calibration here, but for a more thorough treatment, see Zhao et al. [65]. Broadly speaking, calibration
in the regression setting requires that the probability of observing the target random variable below a
predicted pth quantile is equal to the expected probability p, for all p ∈ (0, 1). We refer to the former
quantity as the observed probability and denote it pobs(p), for an expected probability p, which we
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Figure 1: (a) Test loss continues to decrease until the validated epoch. (b-c) At the validated epoch,
SQR (optimizes pinball loss) is highly miscalibrated while sharper than the true sharpness level. Cali
(optimizes proposed calibration loss) is better calibrated while less sharp than the true sharpness.

will write as pobs when it is clear from context. Calibration requires pobs(p) = p, ∀p ∈ (0, 1). From
this generic statement, we can describe different notions of calibration based on how pobs is defined.

A model is individually calibrated if it outputs the true conditional quantiles, i.e. Q̂p(x) = Qp(x).
In this case, we define the observed probability to be

pobs
indv(p, x) := FY|x(Q̂p(x)), ∀x ∈ X , ∀p ∈ (0, 1). (2)

In words, this requires that the probability of observing y below the quantile prediction is equal to p,
at each point x ∈ X , individually. If we can verify this property for all x ∈ X , then by definition,
we will know the quantile output is correct and precisely the true conditional quantile. However,
individual calibration is typically unverifiable with finite datasets in the assumption-less case [65].

A relaxed condition is average calibration. In this case, we define the observed probability to be

pobs
avg(p) := Ex∼FX [FY|x(Q̂p(x))], ∀p ∈ (0, 1), (3)

i.e. the probability of observing the target below the quantile prediction, averaged over FX, is equal
to p. Average calibration is often referred to simply as “calibration” [13, 35]. Given a dataset
D = {(xi, yi)}Ni=1, we can estimate pobs

avg(p) with p̂obs
avg(D, p) = 1

N

∑N
i=1 I{yi ≤ Q̂p(xi)}. Note

that if our quantile estimate achieves average calibration then p̂obs
avg → p as N → ∞, ∀p ∈ (0, 1).

The degree of error in average calibration is commonly measured by expected calibration error
[60, 13, 21], ECE(D, Q̂) = 1

m

∑m
j=1

∣∣p̂obs
avg (D, pj)− pj

∣∣, where pj ∼ Unif(0, 1).

It may be possible to have an uninformative, yet average calibrated model. For example, quantile
predictions that match the true marginal quantiles of FY will be average calibrated, but will hardly be
useful since they do not depend on the input x. Therefore, the notion of sharpness is also considered,
which quantifies the concentration of distributional predictions [20]. For example, for non-parametric
predictions, the width of a centered 95% prediction interval is often used as a measure of sharpness.
There generally exists a tradeoff between average calibration and sharpness [20, 46].

Recent works have suggested a notion of calibration stronger than average calibration, called ad-
versarial group calibration [65]. This stems from the notion of group calibration [23, 29], which
prescribes measurable subsets Si ⊂ X s.t. Px∼FX(x ∈ Si) > 0, i = 1, . . . , k, and requires the
predictions to be average calibrated within each subset. Adversarial group calibration then requires
average calibration for any subset of X with non-zero measure. Denote XS as a random variable that
is conditioned on being in the set S . For adversarial group calibration, the observed probability is

pobs
adv(p) := Ex∼FXS

[FY|x(Q̂p(x))], ∀p ∈ (0, 1), ∀S ⊂ X s.t. Px∼FX(x ∈ S) > 0. (4)

With a finite dataset, we can measure a proxy of adversarial group calibration by measuring the
average calibration within all subsets of the dataset with sufficiently many points.

Intuitively, individual calibration inspects the discrepancy between pobs and p for individual inputs
x ∈ X , adversarial group calibration relaxes this by inspecting any subset of X with non-zero
measure, and average calibration relaxes this further by considering the full distribution of X.

One alternative family of evaluation metrics is proper scoring rules [19]. Proper scoring rules are
summary statistics of overall performance of a distributional prediction and consider both calibration
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and sharpness jointly [20]. For example, negative log-likelihood (NLL) is a proper scoring rule that
is commonly used with density predictions [14, 48, 37]. For quantile predictions, one proper score
is the check score, which is identical to the pinball loss. Since proper scoring rules consider both
calibration and sharpness together in a single value, they can serve as optimization objectives for UQ.
For example, optimizing the pinball loss is the traditional method in quantile regression [31], and
many recent quantile-based UQ methods focus on optimizing this objective [51, 58, 8, 63].

In this work, however, we note that the balance between calibration and sharpness implied by
the pinball loss is arbitrary and depends on the expressivity of the model class—and with highly
expressive models, this balance can be heavily skewed towards sharpness. In their seminal work on
probabilistic forecasts, Gneiting and Raftery [19] contend that the goal of probabilistic forecasting
is to “maximize the sharpness of the predictive distribution subject to calibration”, i.e. calibration
should be first achieved and then sharpness optimized. We show that common machine learning
methods that use the pinball loss objective may in fact lead to an arbitrary and miscalibrated UQ.

Proposition 1. Consider a finite dataset D, the pinball loss ρτ (Eq. 1) and a quantile model
f : X × (0, 1)→ Y that is average calibrated on D, i.e. ECE(D, f) = 0. Then there always exists
another quantile model g : X × (0, 1) → Y , such that, for any quantile level τ ∈ (0, 1), g has
lower pinball loss than f on D, i.e.

∑N
i=1 ρτ (yi, gτ (xi)) <

∑N
i=1 ρτ (yi, fτ (xi)), but worse average

calibration than f , i.e. ECE(D, g) > ECE(D, f).

Proof: The proof is given in Appendix A.1.

This proposition essentially states how the pinball loss can become detached from calibration,
and we show its practical ramifications via a synthetic example in Figure 1 (experiment details in
Appendix E.1). We first note in Figure 1 (a) and (b) that even while the pinball loss decreases on the
test set, test calibration worsens (while sharpness improves). Further, at the best validation epoch,
optimizing the pinball loss converges to a solution that is sharper than the true noise level. Note
that a UQ that is sharper than the true noise level will never be calibrated (meanwhile, a less sharp
prediction can still be calibrated, e.g. the marginal distribution FY). While this may seem like an
issue that can simply be addressed with regularization, we demonstrate in Appendix E.2 how that is
not the case. These pitfalls motivate our methods in Section 3.

3 Methods

We propose four methods that aim to produce an improved quantile model. The first is a model-
agnostic procedure that relies on conditional density estimation (Section 3.1). To address settings
where density estimation may be difficult, we then propose two loss functions to optimize with
differentiable models: the combined calibration loss (Section 3.2), which directly optimizes calibra-
tion and sharpness, and the interval score (Section 3.3), which is a proper scoring rule for centered
intervals. Finally, we propose a group batching method (Section 3.4) that can be applied to the batch
optimization procedure for any loss function (e.g. combined calibration loss, interval score, and even
pinball loss) to induce better convergence towards adversarial group calibration.

3.1 Utilizing Conditional Density Estimation for Model Agnostic QR

One drawback of many existing quantile-based UQ methods is that their training procedure requires
differentiable models. In fact, most UQ methods require a specific class of models because of their
modeling structure or their loss objective (e.g. Gaussian processes [50], dropout [17], latent variable
models [33], simultaneous pinball loss [58], and NLL-based losses [37]). This model restriction can
be especially unfavorable in practical settings. A domain expert with an established point prediction
model and compute infrastructure may want to add UQ without much additional overhead.

To address these issues, we can consider the following model-agnostic procedure. Instead of optimiz-
ing a designated loss function, we can consider splitting the given problem into two parts: estimate
conditional quantiles directly from data, then regress onto these estimates. The benefit of this method
is that, granted we can estimate the conditional quantiles accurately, we can use any regression model
to regress onto these quantile estimates. Further, this regression task directly targets the goal of
producing the true conditional quantiles (i.e. individual calibration). This procedure, which we refer
to as Model Agnostic QR (MAQR), is outlined in Algorithm 1.
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Algorithm 1 MAQR
1: Input: Train data {xi, yi}Ni=1, trained re-

gression model f̂(x)

2: Calculate residuals εi = yi − f̂(xi), i ∈
[N ], and denote the residual dataset R =
{xi, εi}Ni=1

3: Initialize D ← ∅
4: for i = 1 to N do
5: Di ← CONDQUANTILESESTIMA-

TORS(R, i) (Algorithm 2)
6: D ← D ∪Di

7: end for
8: Use D to fit a regression model ĝ

ĝ : (x, p) 7→ ε

9: Output: f̂ + ĝ

Algorithm 2 CONDQUANTILESESTIMATORS

1: Input: Dataset {xi, εi}Ni=1, point index k ∈
[N ]

2: Ek,dN ← {εi : dist(xk, xi) ≤ dN , i ∈
[N ]}

3: Construct an empirical CDF with Ek,dN to
produce F̂E|xk : ε 7→ p ∈ [0, 1]

4: Initialize D ← ∅
5: for each εj in Ek,dN do
6: p̂k,j ← F̂E|xk(εj)
7: D ← D ∪ {xk, p̂k,j , εj}
8: end for
9: Output: D

MAQR is based on the key assumption that nearby points in X will have similar conditional dis-
tributions, i.e. if xj ≈ xk then FY|xj ≈ FY|xk . Given this smoothness assumption, we can group
neighboring points to estimate the conditional density at each locality over X , with locality deter-
mined by the hyperparameter dN (Algorithm 2, line 2). We then construct an empirical CDF with the
group of neighboring points, and conditional quantile estimates are produced with this empirical CDF.
These estimates are collected into D (Algorithm 1, line 6), which is ultimately used as the training
set for the quantile model ĝ.

In practice, we perform these steps with residuals, by first estimating a mean function f̂ (Algorithm 1,
line 1). This practical choice stems from existing works in conditional density estimation, which
suggests that having 0 conditional mean in the data provides benefits in terms of lower asymptotic
mean squared error in the conditional density predictions [26]. Further, this demonstrates how MAQR
can be readily applied in the application setting where an accurate point prediction model often
already exist.

Algorithm 1 is a specific implementation of a more general model-agnostic algorithm, in which we
directly estimate conditional quantiles from the data with tools from conditional density estimation.
We note that using KDEs for conditional density estimation is a well studied problem with theoretical
guarantees [25, 26, 57]. In the case the distance in X is measured using a uniform kernel with mild
assumptions on the bandwidth, Algorithm 1 falls under the guarantees stated by Stute et al. [57].

Theorem 1 [57]. Assume Y ⊂ R, X ⊂ Rn, dist(xi, xj) := |xi − xj |∞, and that F̂E|x is constructed
using the procedure given in line 5 of Algorithm 1 (i.e. xi = x). Further assume that, as N →∞,
dN → 0 and that

∑
N≥1 exp(−ρNdnN ) < ∞, ∀ρ > 0. Then, as N → ∞, for almost all x ∈ X ,

supε[F̂E|x(ε)− FE|x(ε)]→ 0 with probability 1.

This theorem states that in the limit of data, for almost all x ∈ X , the CDF estimate F̂E|x will converge
uniformly to the true CDF FE|x with probability 1. The dataset, D, will therefore be populated with
good estimates of the conditional quantile and quantile level pair for x. In Appendix B, we state the
general form of Algorithm 1 and also demonstrate how the algorithm is model agnostic. Through our
experiments in Section 4, we will show empirically that utilizing these density estimates sidesteps the
issues inherent to the pinball loss and produces much higher quality quantile predictions.

3.2 Explicitly balancing calibration and sharpness with the combined calibration loss

While MAQR can produce strong results, its performance can suffer in high-dimensional settings,
where nonparametric conditional density estimation methods falter. Neural networks (NNs) have
shown good performance in high dimensional settings, given their high capacity to approximate
complex functions and recent advances in fast gradient-based optimization. We therefore propose a
loss-based approach to estimating conditional quantiles for NNs and other differentiable models.
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Drawing motivation from the arbitrary balance between calibration and sharpness that pinball loss
implicitly provides, we propose objectives separately for calibration and sharpness, Then, we combine
the two objectives into a single loss function that provides an explicit balance between calibration
and sharpness that can be chosen by the end user.

We first consider calibration of a quantile prediction, Q̂p ∈ Y for quantile level p ∈ (0, 1). Here, we
omit conditioning on x for clarity. For this prediction to be average calibrated, exactly a p proportion
of the true density should lie below Q̂p, i.e. pobs

avg = P (Y ≤ Q̂p) = p. While calibration (e.g.
|pobs

avg − p|) is a non-differentiable objective, by inducing a truncated distribution based on the current
level of calibration, we can construct the following calibration objective, which is minimized if and
only if the prediction is average calibrated:

C(Q̂p, p) = I{p̂p < p} ∗ E[Y − Q̂p|Y > Q̂p] ∗ P (Y > Q̂p) (5)

+ I{p̂p > p} ∗ E[Q̂p − Y |Q̂p > Y ] ∗ P (Q̂p > Y ),where p̂p = P (Y ≤ Q̂p).
The empirical calibration objective, C(D, Q̂p, p), is then defined as follows:

C(D, Q̂, p) = I{p̂obs
avg < p} ∗ 1

N

N∑
i=1

[
(yi − Q̂p(xi))I{yi > Q̂p(xi)}

]
+ I{p̂obs

avg > p} ∗ 1

N

N∑
i=1

[
(Q̂p(xi)− yi)I{Q̂p(xi) > yi}

]
.

(6)

Note 1: Intuition of the calibration objective. For any given p, consider the case when the quantile
estimate Q̂p is below the true pth quantile Qp. Since Q̂p < Qp =⇒ p̂p < p, this implies that too
much data density lies above Q̂p. In this case, C(Q̂p, p) reduces to E[Y − Q̂p|Y > Q̂p]∗P (Y > Q̂p).
Q̂p is pulled higher with the expectation of the truncated distribution that places Q̂p at the lower
bound of the support. In the opposite case, when Q̂p > Qp, Q̂p is pulled lower by the same logic.

Note 2: Is the proposed calibration objective a proper scoring rule? Strictly speaking, the calibration
objective is a non-decomposable function, hence deviates from the standard convention of proper
scoring rules [19], which can be “decomposed” into scores for individual examples (xi, yi). This
simply arises from the fact that measuring average calibration (i.e. p̂obs

avg) is non-decomposable. Proper
scoring rules are defined such that an optimum of the expected score (or risk, if we consider the score
as a loss function) occurs at the true distribution quantity. While an example level loss or score does
not exist due to non-decomposability, we can still show the (expectation-level) score (i.e. C(Q̂p, p))
is minimized by the true distribution and hence enjoys the optimum property of proper scoring rules.

Proposition 2. For any quantile level p ∈ (0, 1), the true quantile function Qp minimizes the
calibration objective, C(Q̂p, p). Further, on a finite dataset D, the empirical calibration objective,
C(D, Q̂p, p), is minimized by an average calibrated solution on D, i.e. when p̂obs

avg(D, p) = p.

Proof: The proof is given in Appendix A.2.

Note 3: Non-zero gradients for miscalibrated predictions Q̂p. We can further show that for a miscali-
brated quantile prediction, the gradients of C are always non-zero. When p̂p < p, ∂C(Q̂p, p)/∂Q̂p
= −P (Y > Q̂p) < 0. Thus increasing Q̂p decreases the objective C. Similarly, when p̂p > p,
∂C(Q̂p, p)/∂Q̂p = P (Y < Q̂p) > 0, and an analogous argument follows (proof in Appendix A.3).

As discussed in Section 2.2, average calibration by itself is not a sufficient condition for meaningful
UQ, hence we also desire sharp quantile models, with more-concentrated (less dispersed) distributions.
We can induce this property in quantile predictions by predicting the (1 − p)th quantile Q̂1−p(xi)

alongside each prediction Q̂p(xi) and penalizing the width between the quantile predictions:

P(Q̂p, p) = E
[∣∣∣Q̂p − Q̂1−p

∣∣∣] . (7)

The empirical sharpness objective, P(D, Q̂p, p), is then defined as follows:

P(D, Q̂, p) =
1

N

N∑
i=1

{
Q̂1−p(xi)− Q̂p(xi) (p ≤ 0.5)

Q̂p(xi)− Q̂1−p(xi) (p > 0.5).
(8)
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It is important to note that the true underlying distribution will not have 0 sharpness if there
is significant noise, and sharpness should be optimized subject to calibration. Therefore, we
should only penalize sharpness when the data suggests our quantiles are too dispersed, i.e. when∣∣pobs
avg(p)− pobs

avg(1− p)
∣∣, the observed coverage between the pair of quantiles Q̂p(xi) and Q̂1−p(xi),

is greater than |2p− 1|, the expected coverage.

Combining the calibration and sharpness terms, we have the combined calibration loss

L(D, Q̂p, p) = (1− λ)C(D, Q̂p, p) + λP(D, Q̂p, p). (9)

The hyperparameter λ ∈ [0, 1] sets the explicit balance between calibration and sharpness. Note that
setting λ = 0 may not always be desirable, since optimizing C(D, Q̂p, p) alone may converge to
quantiles of the marginal distribution, FY. Further, in certain downstream applications that utilize
UQ, a sharper prediction, even at the cost of worse calibration, may result in higher utility, and λ
can be tuned according to the utility function of the application. In our experiments, we tune λ by
cross-validating with adversarial group calibration as it is the strictest notion of calibration that can be
estimated with a finite dataset. Since we learn a quantile model that outputs the conditional quantile
estimates for all probabilities, our training objective is Ep∼Unif(0,1)L(D, Q̂p, p).

3.3 Encouraging calibration of centered intervals with the interval score
The combined calibration loss (Eq. 9) optimizes average calibration, which targets observed probabili-
ties below a quantile. In many applications, however, we may desire a centered prediction interval (PI)
which requires a pair of quantile predictions. A centered 95% PI, for example, is a pair of quantile
predictions at quantile levels 0.025 and 0.975. Hence, for the average calibration of the pth centered
interval, we want

[
p̂obs

avg(0.5 + p
2 )− p̂obs

avg(0.5− p
2 )
]

(the PI’s observed probability, a.k.a. prediction
interval coverage probability (PICP) [58, 28, 49]) to be equal to the expected probability p. While
we can modify the objective in Eq. 9 to adhere to this altered goal, here we propose simultaneously
optimizing the interval score (or Winkler score) [19, 62] for all expected probabilities p ∈ (0, 1), and
bring to light a proper scoring rule that has largely been neglected for the purpose of learning quan-
tiles. While some previous works utilize the interval score to evaluate interval predictions [7, 4, 1, 40],
to the best of our knowledge, no previous work has focused on simultaneously optimizing it and
shown a thorough experimental evaluation as we provide in Section 4.

For a point (x, y), if we denote a (1− α) centered PI as l̂, û, i.e. l̂ = Q̂α
2

(x) and û = Q̂1−α2 (x), the
interval score is defined as Sα(l̂, û; y) = (û − l̂) + 2

α (l̂ − y)I{y < l̂} + 2
α (y − û)I{y > û}. We

show in Appendix A.4 that the minimum of the expectation of the interval score is attained at the
true conditional quantiles, l̂ = Qα

2
(·), û = Q1−α2 (·). We train our quantile model for all centered

intervals (and hence all quantile levels) simultaneously by setting our loss as Eα∼Unif(0,1)Sα.

3.4 Inducing adversarial group calibration with group batching
The calibration loss (Section 3.2) and the interval score (Section 3.3) optimize for the average
calibration of quantiles and centered intervals, respectively. To get closer to individual calibration,
one condition we can additionally require is adversarial group calibration. Since adversarial group
calibration requires average calibration over any subset of non-zero measure over the domain, this is
not fully observable with finite datasets D for all subset sizes. However, for any subset in D with
enough datapoints, we can still estimate average calibration over the subset. Hence, we can apply our
optimization objectives onto appropriately large subsets to induce adversarial group calibration.

In practice, this involves constructing subsets within the domain and taking gradient steps based on
the loss over each subset. In naive implementations of stochastic gradient descent, a random batch is
drawn uniformly from the training dataset D, and a gradient step is taken according to the loss over
this batch. This is also the case in SQR [58]. The uniform draw of the batch will tend to preserve
FX (the marginal distribution of X), hence optimizing average calibration over this batch will only
induce average calibration of the model.

Instead, deliberately grouping the datapoints based on input features, and then batching and taking
gradient steps based on these batches, induces better adversarial group calibration. We find in our
experiments that adversarial group calibration improves significantly with simple implementations
of group batching, and in Section 4.2, we show through an ablation study that group batching can
improve average calibration and adversarial group calibration of SQR as well.
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SQR mPAIC Interval Cali MAQR

U
C

I

Concrete 9.3 ± 1.5(7.0 ± 1.0) 6.2 ± 0.5(14.2 ± 0.8) 3.7 ± 0.6(18.1 ± 0.6) 5.6 ± 0.8(17.3 ± 1.5) 5.3 ± 0.4(16.0 ± 0.4)
Power 2.6 ± 0.4(13.4 ± 0.2) 5.2 ± 0.4(13.5 ± 0.3) 2.2 ± 0.4(21.0 ± 1.0) 2.0 ± 0.1(13.1 ± 0.1) 1.6 ± 0.3(19.9 ± 0.2)
Wine 4.2 ± 0.2(29.5 ± 0.4) 10.3 ± 0.3(37.7 ± 0.5) 5.0 ± 0.8(41.4 ± 2.5) 4.2 ± 0.4(26.0 ± 0.8) 2.7 ± 0.2(39.3 ± 0.5)
Yacht 9.4 ± 0.9(1.0 ± 0.1) 10.8 ± 2.3(2.6 ± 0.4) 7.5 ± 0.9(4.5 ± 1.0) 8.3 ± 0.6(2.0 ± 0.4) 6.8 ± 2.1(2.4 ± 0.3)
Naval 9.7 ± 1.6(3.5 ± 0.4) 3.1 ± 0.5(63.0 ± 1.8) 4.7 ± 1.4(28.4 ± 3.6) 5.9 ± 0.7(3.0 ± 0.2) 2.3 ± 0.2(1.7 ± 0.1)
Energy 9.8 ± 0.8(2.0 ± 0.1) 10.4 ± 0.5(4.3 ± 0.2) 4.3 ± 0.6(5.1 ± 0.9) 5.8 ± 0.4(3.6 ± 0.3) 3.5 ± 1.0(3.2 ± 0.1)
Boston 9.0 ± 0.8(9.3 ± 0.7) 8.7 ± 1.3(12.3 ± 0.7) 6.9 ± 1.1(20.3 ± 0.5) 8.5 ± 1.5(10.9 ± 0.6) 6.2 ± 1.8(10.9 ± 0.8)
Kin8nm 4.4 ± 0.1(11.4 ± 0.2) 6.6 ± 0.4(17.0 ± 0.5) 2.9 ± 0.4(16.9 ± 0.5) 3.5 ± 0.3(13.7 ± 0.7) 1.8 ± 0.4(17.1 ± 0.1)

F
u
si

o
n

aminor 5.8 ± 0.9(1.6 ± 0.0) 13.5 ± 0.0(5.3 ± 0.0) 3.6 ± 0.7(3.7 ± 0.1) 2.9 ± 0.2(2.2 ± 0.0) NA
betan 3.1 ± 0.4(2.8 ± 0.1) 9.2 ± 0.4(5.5 ± 0.1) 5.1 ± 0.4(5.7 ± 0.3) 3.4 ± 0.5(3.3 ± 0.2) NA

dssdenest 4.4 ± 0.5(7.2 ± 0.2) 8.4 ± 0.1(13.7 ± 0.1) 2.9 ± 0.3(13.3 ± 0.4) 4.1 ± 0.5(8.9 ± 0.3) NA
ip 3.2 ± 0.3(2.4 ± 0.1) 13.5 ± 0.2(9.0 ± 0.2) 4.4 ± 0.3(5.4 ± 0.1) 2.3 ± 0.2(3.8 ± 0.1) NA

Figure 2: UCI Check Score. Full check score results of Section 4.1, Figure 3, Left Table.
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Figure 2: UCI Experiments. (Top Table): Average calibration (measured by ECE) and sharpness
in parentheses. The best mean ECE for each dataset has been bolded and the best mean sharpness
has been underlined (all values multiplied by 100 for readability). (Bottom Figure): Adversarial
group calibration for the first 5 UCI datasets (full set of results in Appendix D.1). Group size refers
to proportion of test dataset size.

SQR mPAIC Interval Cali

F
u
si

o
n

aminor 5.8 ± 0.9(1.6 ± 0.0) 13.5 ± 0.0(5.3 ± 0.0) 3.6 ± 0.7(3.7 ± 0.1) 2.9 ± 0.2(2.2 ± 0.0)
betan 3.1 ± 0.4(2.8 ± 0.1) 9.2 ± 0.4(5.5 ± 0.1) 5.1 ± 0.4(5.7 ± 0.3) 3.4 ± 0.5(3.3 ± 0.2)

dssdenest 4.4 ± 0.5(7.2 ± 0.2) 8.4 ± 0.1(13.7 ± 0.1) 2.9 ± 0.3(13.3 ± 0.4) 4.1 ± 0.5(8.9 ± 0.3)
ip 3.2 ± 0.3(2.4 ± 0.1) 13.5 ± 0.2(9.0 ± 0.2) 4.4 ± 0.3(5.4 ± 0.1) 2.3 ± 0.2(3.8 ± 0.1)

kappa 4.4 ± 0.6(2.5 ± 0.1) 14.8 ± 0.5(9.0 ± 0.4) 4.2 ± 0.4(6.1 ± 0.2) 3.6 ± 0.2(3.4 ± 0.1)
li 4.4 ± 0.6(1.0 ± 0.1) 12.6 ± 0.6(2.7 ± 0.1) 3.7 ± 0.6(2.2 ± 0.1) 2.9 ± 0.4(1.3 ± 0.1)

R0 5.3 ± 0.8(3.3 ± 0.1) 8.7 ± 0.4(7.2 ± 0.3) 3.4 ± 0.2(6.2 ± 0.1) 3.6 ± 0.2(4.0 ± 0.3)
tribot 4.6 ± 0.4(2.4 ± 0.1) 15.1 ± 0.7(8.8 ± 0.7) 3.9 ± 0.5(6.0 ± 0.2) 4.6 ± 0.5(3.0 ± 0.2)
tritop 5.6 ± 0.7(2.7 ± 0.1) 12.9 ± 0.7(7.2 ± 0.7) 3.7 ± 0.8(6.5 ± 0.4) 2.5 ± 0.3(4.4 ± 0.1)
volume 5.8 ± 1.2(0.9 ± 0.0) 16.9 ± 1.1(3.9 ± 0.4) 3.6 ± 0.3(2.0 ± 0.1) 2.8 ± 0.1(1.2 ± 0.0)

Figure 2: UCI Check Score. Full check score results of Section 4.1, Figure 3, Left Table.
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Figure 3: Fusion Experiments. (Top Table): Average calibration (measured by ECE) and sharpness
in parentheses. The best mean ECE for each dataset has been bolded and the best mean sharpness has
been underlined (all values multiplied by 100 for readability). (Bottom Figure): Adversarial group
calibration for the first 5 fusion datasets (full set of results in Appendix D.2). Group size refers to
proportion of test dataset size.

To summarize, the main idea we introduce here with group batching is that, only taking uniform
batches from the training set (thus only drawing batches which preserve FX) can be detrimental when
optimizing for calibration. Thus, additionally drawing batches based on deliberate groupings within
the training set (thus, batches which do not preserve FX) can help to induce a stronger notion of
calibration (i.e. adversarial group calibration) in the model than average calibration. This concept
is quite general and allows for variations in implementations when constructing the groups. In
Appendix C.3 we provide details on how we implemented group batching for our experiments and
ablation study.

4 Experiments
We demonstrate the performances of our proposed methods on the standard 8 UCI datasets [2], and on
a real-world problem in nuclear fusion. To assess the predictions, we use all metrics from Section 2.2
that can be estimated with a finite test dataset: 1) average calibration vs sharpness, 2) adversarial
group calibration, 3) centered interval calibration, 4) check score, and 5) interval score. The results
for the first two of these metrics are displayed in the main body of the paper, and the results for the
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Cali SQR
Random Batch Group Batch Random Batch Group Batch

Boston 9.7± 1.3(10.2± 0.7) 8.5± 1.5(10.9± 0.6) 10.9± 1.0(8.8± 1.1) 9.8± 1.2(9.5± 0.9)
Concrete 6.6± 0.9(17.6± 2.3) 5.6± 0.8(17.3± 1.5) 9.8± 1.3(7.0± 0.6) 7.1± 0.9(8.5± 0.6)
Energy 9.2± 0.3(2.8± 0.1) 5.8± 0.4(3.6± 0.3) 10.2± 0.8(1.8± 0.1) 6.9± 1.1(2.4± 0.2)
Kin8nm 3.4± 0.3(13.7± 0.4) 3.5± 0.3(13.7± 0.7) 4.7± 0.3(11.1± 0.1) 3.9± 0.4(11.3± 0.2)
Wine 4.4± 0.5(25.6± 0.8) 4.2± 0.4(26.0± 0.8) 4.5± 0.4(29.7± 0.5) 4.0± 0.4(28.5± 0.8)
Yacht 11.1± 1.8(1.8± 0.1) 8.3± 0.6(2.0± 0.4) 9.0± 0.9(0.9± 0.1) 8.9± 0.9(2.3± 0.2)
Power 1.7± 0.2(14.2± 0.3) 2.0± 0.1(13.1± 0.1) 2.5± 0.3(14.0± 0.5) 2.9± 0.5(13.6± 0.8)
Naval 2.8± 0.2(12.1± 3.1) 2.4± 0.3(50.6± 8.6) 8.6± 1.6(3.6± 0.1) 5.3± 0.8(6.0± 0.5)

6

Figure 4: Group Batching Ablation: Average Calibration and Sharpness. The table shows mean
ECE and sharpness (in parentheses) and their standard error with and without group batching. The
best mean ECE for each dataset has been bolded and the best mean sharpness has been underlined for
Cali and SQR separately. All values have been multiplied by 100 for readability.

other three metrics are shown in Appendix D due to space restrictions. We describe how each of
these evaluation metrics are calculated in Appendix C.4.

We provide comparisons against current state-of-the-art UQ methods for which computing the above
metrics is tractable. SQR [58] is an NN model that optimizes the pinball loss for a batch of random
quantile levels p ∼ Unif(0, 1). mPAIC [65] is an extension of probabilistic neural networks [37, 47]
that optimizes a combination of the standard Gaussian NLL and a loss that induces individual
calibration. While additional quantile and PI based UQ methods exist, they are mostly designed to
output a single quantile level or interval coverage level, which makes measuring calibration extremely
expensive (training up to 100 models separately). For these methods, we provide a comparison
on a simplified task of predicting the 95% PI in Appendix E.3. Lastly, we could also consider the
recalibration algorithm of Kuleshov et al. [35], which is not a standalone UQ method, but a post-hoc
refinement step that can be applied on top of other methods. We discuss recalibration results in
Appendix E.4. All results report the mean and error across 5 trials. Error bars and shaded bands in
plots indicate ±1 standard error.

4.1 UCI and Fusion Experiments

UCI datasets: We evaluate 5 methods on the 8 UCI benchmark datasets: three proposed algorithms—
MAQR, Cali (combined calibration loss), and Interval (interval score)—and 2 alternative algorithms—
SQR and mPAIC. Appendix C.1 includes more details on the experiment setup and hyperparameters.

Fusion datasets: We further evaluate the methods on a high-dimensional task from nuclear fusion:
quantifying uncertainty in plasma dynamics. Recently, there has been increasing interest in applying
machine learning to prediction and control tasks in the area of nuclear fusion [11, 9, 43]. The plasma
data in this paper was recorded from the DIII-D tokamak, a nuclear fusion device operated by General
Atomics [39]. Plasma dynamics during fusion reactions are highly stochastic and running live
fusion experiments is costly. Hence, practitioners use this dataset to learn a dynamics model of the
system for various purposes, such as controller learning to optimize reaction efficiency and stability
[16, 5, 6]. There are 10 scalar target signals to model in this dataset (full list in Appendix C.2),
each describing a particular aspect of the current state of plasma. For each signal, the input features
are 468 dimensional. We do not apply MAQR on this dataset because of the high computational
costs and statistical challenge associated with nonparametric density estimation in high dimensions.
Appendix C.2 provides more details on the dataset, experiment setup, and hyperparameters.

Analysis of Results: Figure 2 displays average calibration-sharpness for all 8 UCI datasets and
adversarial group calibration for the first 5 UCI datasets (alphabetical order). MAQR produces the
best average calibrated models on 7 of the 8 UCI datasets, and adversarial group calibration also
indicates that MAQR tends to achieve the lowest calibration error across any random subgroup
of any size with more than one point (6 out of 8 datasets). Excluding MAQR, Interval and Cali
achieve competitive average calibration and adversarial group calibration on 7 out of 8 UCI datasets.
Notably, SQR tends to produce the sharpest predictions across all datasets (often at the cost of worse
calibration), which is not surprising following the discussion in Section 2.2. Lastly, we also note that
Interval and Cali tend to be less brittle compared to SQR and mPAIC, which incur major failures in
some cases (e.g. mPAIC in Kin8nm, SQR in Naval).
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The fusion experiment results display a similar pattern (Figure 3). Interval and Cali achieve competi-
tive average calibration and adversarial group calibration on 9 out of 10 fusion datasets, and SQR
produces the sharpest UQ at the cost worse average and adversarial group calibration (except on
betan). We also observe that mPAIC performs the poorest on the fusion datasets, with least calibrated
and least sharp predictions. It is generally known that plasma dynamics display complex stochasticity
[16, 34], and hence we suspect mPAIC’s performance degrades significantly because it assumes a
Gaussian output and is trained according to the Gaussian likelihood.

Only a subset of the plots and metrics are shown in the main paper due to space restrictions. Readers
are encouraged to see the full set of results in Appendix D, but we summarize the main findings here.
The check score, interval score, and centered interval calibration in the tables in Appendix D.1 also
rank MAQR’s prediction as best on the UCI datasets. This is surprising since SQR and Interval train
NNs of the same capacity to explicitly minimize the check and interval scores, respectively. This
indicates the distribution predicted by MAQR is fundamentally different as it utilizes direct estimates
of the conditional distribution, while the other methods all optimize a specific loss function. The
centered interval calibration metric on the fusion datasets (Appendix D.2) indicates that Cali and
Interval both produce competitive centered PI’s (9 out of 10 fusion datasets), suggesting that both
methods have generally estimated the conditional quantiles better than the alternative algorithms.

4.2 Ablation Study: Effect of Group Batching
We provide an ablation study on the effect of group batching (experiment details in Appendix F.1).
Figure 4 displays how group batching affects average calibration-sharpness of Cali and SQR on all 8
UCI datasets. Average calibration improved on 6 out of 8 datasets for Cali, and on 7 out of 8 datasets
on SQR. While sharpness tends to worsen with group batching, it’s important to note that less sharp
(i.e. more dispersed) predictions are desirable if there is high noise in the true data distribution. In
Appendix F.2, we show that group batching also improves adversarial group calibration, suggesting
that the underlying data distribution truly does have high noise. This study indicates that deliberately
taking batches during training that do not follow FX can improve UQ performance.

5 Discussion

In this paper, we have proposed four methods to improve quantile estimates for calibrated uncertainty
quantification in regression. We assert that the pinball loss may not be an adequate objective to
optimize in order to achieve calibration, and that our proposed methods provide better means of
learning calibrated conditional quantiles. We have also extended the scope of regression models
on which quantile-based UQ can be applied by developing a model-agnostic method. This can
be of practical interest to users that have specific training infrastructure or preexisting regression
procedures, since these procedures can be leveraged to quantify uncertainty without much additional
overhead.

By providing an extensive evaluation with a suite of metrics, we also aim to show that there is not
one single metric that captures full information about the performance of a UQ procedure. Rather, a
holistic review of multiple types of metrics sheds light on different aspects of performance. This point
has motivated us to additionally develop and make publicly available Uncertainty Toolbox [12], a
Python library for evaluation, visualization and recalibration of predictive uncertainty, which includes
the full suite of metrics discussed in this work.

In certain applications, users may also be concerned with modeling epistemic uncertainty. This
is somewhat orthogonal to the goals of this paper; nevertheless, we provide a discussion on how
bootstrapped ensembles of our methods can incorporate epistemic uncertainty in Appendix G.
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