
Hazards from Increasingly Accessible Fine-Tuning of
Downloadable Foundation Models

Alan Chan∗+

Mila - Quebec AI Institute
Université de Montréal

Ben Bucknall∗◦
Independent

Herbie Bradley
UK AI Safety Institute

University of Cambridge

David Krueger
University of Cambridge

Abstract

Public release of the weights of pretrained foundation models, otherwise known as
downloadable access [Solaiman, 2023], enables fine-tuning without the prohibitive
expense of pretraining. Our work argues that increasingly accessible fine-tuning
of downloadable models may increase hazards. First, we highlight research to
improve the accessibility of fine-tuning. We split our discussion into research that
A) reduces the computational cost of fine-tuning and B) improves the ability to share
that cost across more actors. Second, we argue that increasingly accessible fine-
tuning methods may increase hazard through facilitating malicious use and making
oversight of models with potentially dangerous capabilities more difficult. Third,
we discuss potential mitigatory measures, as well as benefits of more accessible
fine-tuning. Given substantial remaining uncertainty about hazards, we conclude
by emphasizing the urgent need for the development of mitigations.

1 Introduction

A strong consensus exists in software engineering and cryptography that openness is the best guarantee
of security [Anderson, 2007, Swire, 2004, Diffie and Landau, 2007]. Some have argued that openness
best addresses the risks of foundation models [Kapoor and Narayanan, 2023b,a, Howard, 2023,
Mostaque, 2023], while others argue to the contrary that open release strategies can facilitate misuse
[Anderljung and Hazell, 2023, Hazell, 2023, Brundage et al., 2020].

We focus on the risks of increasingly accessible fine-tuning of downloadable models, where by
downloadable model, we mean a model whose pretrained weights are publicly available for download
[Solaiman, 2023]. We also refer to this practice as downloadable release or providing downloadable
access. Through fine-tuning, downloadable release facilitates the addition of capabilities to a model
without the prohibitive expense of pretraining. Moreover, fine-tuning of downloadable models
bypasses potential restrictions and filters which may be present on APIs that facilitate the fine-tuning
of non-downloadable models, although such filters may be easy to circumvent [Qi et al., 2023]. We
focus on downloadable access because inference and fine-tuning code is usually available in tandem
with the weights or otherwise straightforward to implement—though many of our arguments also
apply to potential hazard from the fine-tuning of non-downloadable models (see Appendix E).

We argue that increasingly accessible fine-tuning of downloadable models will likely increase hazard.
Risk is given by the product of hazard, exposure, and vulnerability [Hendrycks and Mazeika, 2022],
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where hazard is the severity and prevalence of sources of harm, exposure is how exposed we are to
hazards, and vulnerability is our susceptibility to their damaging effects. We concentrate on hazard
in this work given length limitations, but plan to extend our analysis in future work.

Our specific contributions are as follows. First, we highlight ongoing research areas that improve
the accessibility of model fine-tuning. We split our discussion into research developments that A)
reduce the costs of fine-tuning a model and B) facilitate the sharing of such costs across more actors.
Second, we analyze the impact of these changes to the cost of fine-tuning on hazard, focusing on
non-state, malicious actors and difficulties of imposing oversight. We conclude with a discussion of
potential mitigation strategies and benefits of accessible fine-tuning.

2 Changes to the Accessibility of Fine-Tuning

Here, we discuss research areas that increase the accessibility of fine-tuning for downloadable models.
We split our discussion into A) reductions in the cost to obtain a given capability level and B)
improvements in the ability to distribute said cost across more people, referred to as cost reduction
and improved cost sharing, respectively. In Appendix B, we discuss the impact of A) and B) relative
to frontier development.

2.1 Cost Reduction

We first consider research to reduce the computational costs of attaining a given capability level.

2.1.1 Improved Algorithms

Cost reductions may be gained from the use of more efficient algorithms that directly reduce the
number of floating-point operations (FLOP) or amount of on-chip memory required to attain a given
performance level, while keeping the training data and model architecture constant.

Classical SGD, since it avoids storing the optimizer state variables used by Adam and other higher-
order methods, can significantly reduce the required memory for fine-tuning. However, it is more
brittle and requires significant time and compute spent tuning the learning rate. Zeroth-order optimiz-
ers, which avoid the large memory requirements of backpropogation, may be promising [Malladi
et al., 2023].

Parameter offloading [Pudipeddi et al., 2020, Ren et al., 2021] methods do not change total memory
requirements but rather the GPU memory required, which is more costly than RAM or CPU memory.
Such methods work by storing the model outside of the GPU memory (such as in RAM or CPU
memory), and retrieving only individual layers’ parameters from this external memory during training.

Finally, we also include novel training objectives. For example, Tay et al. [2022] introduce a novel
mixture of training objectives that purport to provide a 2x compute saving over standard pretraining
objectives.

2.1.2 Better Synthetic Data

Secondly, we consider the use of synthetic data as a method of reducing the cost of constructing
specialized fine-tuning datasets. There is currently uncertainty surrounding the utility and potential
adverse side-effects of training on synthetic data. Some authors claim that it harms model performance
[Alemohammad et al., 2023, Shumailov et al., 2023, Martínez et al., 2023a,b], while others claim
that it can boost performance [Huang et al., 2022, Li et al., 2023, Azizi et al., 2023].

Instruction-tuning [Taori et al., 2023] may also be considered as a synthetic data method. Many have
argued that instruction tuning is a cheap way of drastically improving the output quality of smaller
base models by fine-tuning them on example outputs from a larger and more capable model [Taori
et al., 2023, Mukherjee et al., 2023, Chiang et al., 2023, Dubois et al., 2023]. However, others have
argued that such methods only improve the appearance of model outputs whilst having little effect on
the models’ underlying quality and factuality [Gudibande et al., 2023, Wang et al., 2023b].

While there may not currently be consensus on the effectiveness of synthetic fine-tuning data, it is
plausible that the effectiveness of synthetic data will increase over time. If so, the costs of producing
high-quality, specialized fine-tuning datasets for specific model capabilities could be greatly reduced.
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2.1.3 Parameter-Efficient Fine-Tuning

Parameter-efficient fine-tuning methods aim to reduce the number of parameters that are fine-tuned
while retaining model performance, thereby reducing the total FLOP required. These methods include
prompt- and prefix-tuning [Liu et al., 2022b, 2021b, Lester et al., 2021, Qin and Eisner, 2021, Li
and Liang, 2021], adapters [Rebuffi et al., 2017, Houlsby et al., 2019, Liu et al., 2022a], and sparse
fine-tuning [Guo et al., 2021, Ben-Zaken et al., 2022, Xu et al., 2021]. For example, Hu et al. [2021]
proposed Low-Rank Adaptation (LoRA), a method that applied low-rank matrix decomposition to
reduce the number of fine-tuning parameters by four orders of magnitude when applied to GPT-3
175B, while appearing to perform on-par with fine-tuning all model parameters.

2.1.4 Quantization

Quantization reduces the floating-point precision of a model’s weights while retaining performance,
thus reducing the compute and memory footprint during inference and/or training. Dettmers et al.
[2022] introduce a mixed-precision quantization method that allows models with 2-3x more param-
eters to be run on given hardware, when compared to a standard 16-bit precision baseline, for a
negligible increase in inference time. Dettmers et al. [2023] further extend this work, combining
quantization with LoRA [Hu et al., 2021] to reduce the memory requirements of fine-tuning 15-fold.

2.2 Improved Cost Sharing

Cost-sharing methods allow one to distribute the cost of fine-tuning over a number of actors. Such
methods enable collectives of actors to collaborate on fine-tuning, where each individual only has
to pay a small percentage of the total cost involved. While both approaches considered below may
increase the total cost of fine-tuning, sharing this increased cost amongst enough individuals would
mean a net cost reduction for each participating individual.

2.2.1 Decentralized Training

Decentralized training methods aim to allow efficient training on multiple devices, where these
devices are assumed to be connected only through slow or low-bandwidth communication channels
[Together, 2022a,b]. Methods that are feasible under such an assumption would permit the training of
AI systems on geographically distributed networks owned by multiple individuals, thus alleviating the
need for large, centrally-owned datacenters. A related area of research is federated learning, although
it is usually motivated by data privacy concerns [Khan et al., 2021, Liu et al., 2021a].

Two predominant methods currently are efficient task scheduling and allocation [Yuan et al., 2023,
Ryabinin et al., 2023, Borzunov et al., 2023], and compression of gradients [Dettmers, 2016] or
activations [Wang et al., 2023a] to reduce the information transferred between devices. As an example
of the former, Yuan et al. [2023] propose an algorithm for scheduling and allocation of training tasks
among distributed devices that leaves the convergence dynamics unchanged. While their method
results in a 1.7-3.5× greater absolute time cost when compared to that of training in state-of-the-art
centralized datacenters, the training took place on a distributed network that was 100× slower.

2.2.2 Composing Trained Models

Cost sharing may also be achieved through the post-hoc composition of independent fine-tuned
models, developed on top of a shared base model, resulting in a composite model that is more capable
than any of its constituents [Li et al., 2022, Gururangan et al., 2023, Jang et al., 2023]. For example,
Ponti et al. [2020] and Ansell et al. [2022] combine two fine-tuned models, trained on language L
and task T respectively, to create a model that can perform task T in language L. It might be cheaper
for each individual to fine-tune for one component ability rather than for one individual to fine-tune
for the composed ability, especially if fine-tuning data for the composed ability are not available.

3 Impacts on Hazard

We argue that both A) cost reduction and B) improved cost sharing may increase hazard. In
Appendix C, we address the implications of algorithmic progress on our arguments. In Section 3.3,
we discuss potential mitigations.
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Let X denote some capability. In the following, we use the phrase fine-tuning a model to achieve X
to refer to the act of fine-tuning a model to obtain the capability X or some threshold thereof. Let A
denote the actor that wishes to fine-tune a model to achieve X .

3.1 Malicious Use Cost Reduction

We claim that cost reduction may increase hazard through facilitating malicious use. As
an illustrative example, we will consider X = execute chemical weapons attacks and A =
(small, non-state groups who wish to do X). Our arguments will also apply to small, nonstate groups
who want to carry out other kinds of attacks, as long as data are available to fine-tune a model to
help with lowering the barrier to such attacks, or with coaching actors attempting to carry them
out. Note that our argument is more applicable to fine-tuning of next-generation models, given that
current-generation models do not seem to be helpful for our example of X [Gopal et al., 2023].

We need to show that more accessible fine-tuning shifts the cost-benefit considerations for A in favour
of malicious use. A subtlety here is that A represents a class of actors, all with potentially different
motivations and background costs. We are not arguing that every actor represented in A will engage
in malicious use; we argue that on net we should expect more actors to engage in malicious use.
Figure 1 provides an illustrative diagram for our claimed effect of cost reduction.

Figure 1: We illustrate our argument for the impact of cost reduction (reducing the computational cost
of fine-tuning to a particular capability level). Each curve represents a distribution of actors according
to their net benefit of engaging in malicious use, which in our illustrative example is carrying out
a chemical attack. The red curve is shifted to the right of the blue curve because of the net effect
of cost reduction. Determining the net effect involves assessing the benefits of cost reduction to
defenders who wish to deter the actors, as well as the benefits of cost reduction for the attackers.
We explain this argument in Section 3.1.

At a high level, the argument is as follows; we provide a more complete argument in Appendix D
due to space limitations. Actors in A are assumed to have the motivation to engage in malicious
use (in our example, chemical weapon attacks). We suppose that the benefits of carrying out such
attacks do not depend upon the accessibility of fine-tuning; rather, they depend upon background
motivations. We are left to analyze the effect of accessible fine-tuning on the costs of carrying out
an attack. On the one hand, more accessible fine-tuning reduces A’s cost because ‘coaching’ from
fine-tuned models may lower the barrier for A to engage in malicious use. On the other hand, more
accessible fine-tuning could increase A’s cost because it may enable other actors, such as states, to
retaliate against A, monitor A, or otherwise prevent A from carrying out such attacks. We argue in
Appendix D that the net effect is to reduce A’s cost of engaging in malicious use, as we illustrate in
Figure 1.

A final point concerns the severity of harm. Cost reduction could enable other actors to improve
defenses such that even if more attacks occur, the total impact may be reduced. For example, cost
reduction could enable more effective research on automated vulnerability finding in cybersecurity,
helping defend against future AI assisted attacks. There remains substantial uncertainty about how the
offence-defence balance scales with capabilities [Garfinkel and Dafoe, 2019], especially in specific
domains such as cybersecurity.
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3.2 Improved Cost Sharing

We will argue that improved cost sharing may lead to an increase in the number of models with
potentially dangerous capabilities or misalignment issues. While this increase itself may not cause
problems given sufficient oversight, we will argue that in the absence of additional measures, current
oversight practices will be insufficient. Harm may result from either misuse or misalignment.

First, decentralized or distributed training methods may facilitate the construction of more capable
models. Greatly improved decentralized training procedures could pull together a massive amount of
disparate compute resources, exceeding those owned by even the largest AI labs. If decentralized
training occurs at a comparable or greater scale to the most expensive centralized training runs, scaling
laws suggest that the resulting models may have abilities that are at least comparable to the frontier,
all other things equal. Moreover, composition of models trained to expert level on specific domains,
such as code or biology, could lead to a single model that is generally capable across the constituent
domains—although we note that model composition on this scale is still highly speculative.

The key point is not that cost sharing will result in models that significantly push the frontier, but that
some of the resulting models, by virtue of criteria such as generality or the amount of compute used
to train them (from decentralized training), will need to be evaluated for dangerous capabilities or
misalignment problems [Shevlane et al., 2023]. There are likely to be actors who wish to build such
capable models for legitimate reasons, such as the wish to customize a model for their own purposes,
or simply the desire to create a downloadable model and make it available for others.

If we are able to robustly evaluate the resulting models for dangerous capabilities and misalignment as
part of a potential pre-deployment evaluation regime, there would be no increase in hazard. However,
model risk evaluation is an ongoing and imperfect science—robust evaluation methods are still
lacking. Even if there were a mandatory evaluation scheme [Anderljung et al., 2023] applied to all
models, such a scheme does not guarantee coverage of all significant risks. Moreover, evaluation
methods for dangerous capabilities and misalignment tend to be expensive in terms of both time and
money. For instance, expert red-teamers across a wide variety of domains may need to be hired to
test the model for an extended period of time [OpenAI, 2023]. It seems difficult to impose these costs
on decentralized developers, who may even be anonymous. A dedicated organization may perform
evaluations of such models, but it may be difficult to keep up with a potential profusion of models to
test—although this depends on the level of an evaluation threshold in terms of capabilities or compute.
Advances in automatic evaluation could help, but such work is still preliminary [Perez et al., 2022].

3.3 Potential Mitigation Strategies

A number of active research directions aim to mitigate the hazards we have identified. Although
such work is still early, it would ideally minimize the hazards from fine-tuning while maintaining the
benefits that we discuss later in Section 4.

First, one could try to make it more difficult to fine-tune a pretrained model for a particular task. For
example, Henderson et al. [2023] provide a proof-of-concept to make fine-tuning a pretrained model
for a designated harmful task as difficult as training a randomly initialized model from scratch. Such
methods may make it more difficult to build models with dangerous capabilities and therefore help to
address the hazards from cost reduction and cost sharing.

Second, machine unlearning [Bourtoule et al., 2020] could remove memorized information in
potentially harmful domains, which could be exploited by malicious actors. For instance, removing
information about chemical synthesis from training datasets may be desirable.

Further research and development of safety approaches that are robust to downstream model mod-
ification, including fine-tuning, is much needed given the fragility and ease-of-removal of current,
largely RLHF-based, approaches [Qi et al., 2023].

4 Benefits of Accessible Fine-Tuning

We now assess some potential benefits to an increase in the accessibility of fine-tuning. Firstly, the
ability to fine-tune downloadable models is crucial for academic and independent research aimed at
better understanding contemporary AI systems and improving their safety. A reduction in the cost of
performing fine-tuning would enable lesser-resourced academic labs and independent researchers to
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conduct such research. For example, Berglund et al. [2023] relied on the ability to fine-tune for their
investigation of the ‘reversal curse’, that is, the inability of language models to infer statements of the
form ‘A is B’ despite ‘B is A’ appearing in the model’s fine-tuning data.

Secondly, accessible fine-tuning facilitates the downstream adaption of AI models to novel use-cases,
for which upstream model developers would not have the capacity to provide. For example, accessible
fine-tuning has enabled the adaptation of language models to underrepresented or minority languages.
While it may be unrealistic for a centralized AI developer to provide a different version of a language
model for potentially hundreds of languages, cost reduction and improved cost sharing may allow
open-source collectives to fine-tune a downloadable model to function in their local language.

Broader access to capable models, facilitated in part by accessible fine-tuning, may allow society to
avoid unsustainable power differentials between those that do and do not have direct access to the
most capable AI models [Howard, 2023]. By default, wealthy entities like large corporations and
states will be able to adapt foundation models for their own agendae, as well as exert disproportionate
influence over the continued development of AI and its integration in society. Such entities might use
these models to influence information flows, shaping what the public believes for their own benefit.
Broad public access to building similarly powerful models could resist this tendency. This access
could enable civil society to fine-tune its own models to, for example, fact-check media or generally
serve as public advocates.

5 Related Work

Many recent works have investigated downloadable release [Sastry, 2021, Liang et al., 2022, Solaiman
et al., 2019, Ovadya and Whittlestone, 2019, Whittlestone and Ovadya, 2020]. Seger et al. [2023a]
evaluate the misuse and proliferation risks of downloadable release and propose methods to obtain
the benefits of downloadable release while avoiding the pitfalls. Some works have highlighted that
openness is a spectrum [Shevlane, 2022, Solaiman, 2023]. Other works have analyzed conditions
under which downloadable release is positive. Kapoor and Narayanan [2023a,b] argue that the safety
of AI systems is best served through open study of their failures. Shevlane and Dafoe [2020] study the
impact of public AI research on misuse. Anderljung and Hazell [2023] argue that certain restrictions
on AI capabilities may be warranted to reduce misuse. Other research connects open release to power.
Seger et al. [2023b] outline different ways to think about the democratization of AI; downloadable
release most closely aids democratization of development and use. Widder et al. [2023] argue that
current practices of openness fail to enable oversight of and democratic access to AI systems.

While we focus on access to capabilities, Davidson et al. argue that post-training enhancements
can push the frontier. They show that enhancements such as scaffolding and tool integration can
significantly enhance capabilities, at a low computational cost relative to pretraining.

6 Conclusion

We have argued that increasingly accessible fine-tuning of downloadable models may increase hazard.
We highlighted several ongoing areas of research that either reduce the cost of fine-tuning or allow
the cost to be better shared among a group of actors. We then argued that A) cost reduction may
make it easier for small non-state actors to cause harm, using the production of chemical weaponry
as an illustrative example; and B) cost sharing may make it more difficult to impose oversight on
models with potentially dangerous capabilities. We highlighted some initial directions to mitigate
these hazards, in addition to potential benefits of more accessible fine-tuning.

There are many remaining uncertainties to be addressed in future work. Firstly, other potential
concerns of downloadable models, such as difficulties with attributing liability, should be investigated.
Secondly, the availability of fine-tuning data remains a significant uncertainty in our analysis. Thirdly,
offense-defense balances remain uncertain. Even if there are more instances of harm, those harms
may have a smaller total impact because of improvements in defense.

An ideal scenario would involve minimizing the hazards while maintaining most of the potential
benefits. Since the hazards have not yet materialized, we should allocate more research effort to i)
studying when the hazards might materialize and ii) developing mitigations, such as those that make
fine-tuning difficult on certain tasks or for certain capabilities.
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A Background on Fine-Tuning

The ability to flexibly adapt and modify a model through fine-tuning is one of the more prominent
advantages of downloadable release. Lesser-resourced actors can develop a customized model without
needing to pretrain their own model from scratch – a process that can be incredibly expensive due to
the compute and data requirements Patel [2023] – by amplifying or appending specific capabilities not
exhibited by the base model. While fine-tuning naturally also requires compute, data, and expertise,
the quantities of each are orders of magnitude lower than for pretraining.

While fine-tuning is available through some labs’ APIs,1 such services offer limited transparency
and customization with regards to the specific algorithms employed. For example, OpenAI does
not disclose whether its API fine-tuning trains all parameters, or implements one of the parameter-
efficient fine-tuning methods discussed above in order to save on hosting costs. In contrast to this,
downloadable access allows for unrestricted fine-tuning on top of the openly-released base model
weights, provided the user has sufficient compute and data.

There are multiple forms of fine-tuning, including supervised fine-tuning (SFT), reinforcement
learning from human feedback (RLHF) Christiano et al. [2017], and reinforcement learning from AI
feedback (RLAIF) Bai et al. [2022]. While SFT is easily-implementable, both RLHF and RLAIF are
significantly more complex, require expensive datasets, and involve multiple stages of preparation
and tuning. Due to these differences in complexity between different fine-tuning approaches, SFT is
most likely to be used by lower-resourced actors on downloadable models.

B The Importance of Fine-Tuning Relative to Frontier Development

One may contest that the benefits of cost reduction and improved cost sharing will also accrue
to resource-rich actors such as large tech firms, thus providing little or no comparative benefit to
resource-poor actors.

However, well-resourced developers are themselves constrained in other areas. One example is the
limited human resources of even the largest AI developers when compared to the collective resources
of the open-source community taken as a whole.2 Such constraints mean that, even if cost reduction
and improved cost sharing increase the scope of projects that well-resourced labs are technically able
to pursue, they may not have the time or attention to pursue more than a handful in parallel.

C The Impact of Algorithmic Progress

One could object to our discussion in Section 3 by contending that any capability X will eventually
become widely available anyway because of algorithmic progress. Erdil and Besiroglu [2023]
show that in computer vision, every nine months half the amount of compute is required to achieve
some fixed level of performance. If the amount of pretraining compute needed to achieve a certain
capability level drops precipitously at a regular pace, the marginal impact of more effective fine-tuning
of downloadable models seems minimal. Individual actors could just pretrain their models from
scratch rather than having to rely on downloadable models.

While the computational cost of pretraining is likely to continue to fall, pretraining will likely remain
expensive for a while. If GPT-4 cost $100 million USD to train3 and the cost halved every 9 months,
it would still take about 12 years for the cost to decrease to $1000 USD.4 This amount of time could
be extremely useful for preparatory work like building up societal defences (e.g., broad spectrum
antivirals to defend against biological attacks) or strengthening liability regimes.

1See e.g., https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates
2For example, OpenAI employs a total of 375 people according to CEO Sam Altman. Anthropic was reported

by the New York Times to have just 160 employees in July 2023. DeepMind had approximately 1,000 employees,
though this may have changed considerably since the merger with Google Brain.

3As was reported in [Knight, 2023].
4Solve for t in months in the equation 0.5

t
9 · 108 = 103.
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D Full Argument for the Impact of Cost Reduction

Let us recap the high-level argument. Actors in A are assumed to have the motivation to engage in
malicious use (in our illustrative example, biological or chemical attacks). The benefits of carrying out
such attacks do not depend upon the accessibility of fine-tuning; rather, they depend upon background
motivations. We are now left to analyze the effect of accessible fine-tuning on costs for A.

We claim that more actors have the capability to fine-tune a model to achieve X . Building models
that can do X is possible since tool-augmented foundation models are already somewhat capable of
biological and chemical synthesis Sandbrink [2023], Boiko et al. [2023], Bran et al. [2023], Soice
et al. [2023]; it seems likely that capabilities will improve with the next-generation models. Even
models that fill in minor knowledge gaps can be helpful since biological or chemical attacks can
fail due to minor methodological omissions, such Aum Shinrikyo’s failed attacks [Clinehens, 2000].
Foundation models may become more useful for X; see, however, the argument in Montague [2023]
that the bottleneck in biological risks is testing for biological agents that can spread, which seems to
be orders of magnitude more difficult than synthesis.

Regarding actors in A for whom computational cost is a bottleneck, cost reduction results in the claim
straightforwardly. Yet, expertise rather than computational cost might be the bottleneck for other
actors. Foremost among expertise barriers are gathering fine-tuning data and writing fine-tuning code.
Given the profusion of tutorials and open-source fine-tuning frameworks, the latter barrier will likely
be relatively insignificant. On the other hand, the availability of fine-tuning data seems to depend
heavily upon the domain.

Since model developers will likely attempt to remove or suppress the biological and chemical
synthesis capabilities of downloadable models, A would have to remove safeguards or re-add (or add)
those capabilities. Based on current techniques, removing safeguards seems likely to be extremely
cheap and not require hard-to-source data [Qi et al., 2023, Gade et al., 2023]. It is more uncertain how
straightforward it is for A to access relevant fine-tuning data to add capabilities. Some knowledge
about the synthesis of biological and chemical weapons is already public.5 For instance, knowledge
of how Aum Shinrikyo’s attacks failed could inform future attacks. Relevant academic research may
be inaccessible to a layperson, but can be explained with a language model. Even if a language model
is at best just as knowledgeable as a human expert, attempting to find such human experts may expose
A to risks like discovery by law enforcement. At the same time, there may still be tacit knowledge
that is not accessible on the Internet, which may limit the usefulness of language models in this
situation. Overall, it seems that current publicly available data may facilitate A to fine-tune models
for X , although there remains substantial uncertainty about the ability of A to add new capabilities.

We now argue that the benefit of cheaper fine-tuning to actors seeking to deter A, which we call
defenders, likely does not compensate for the reduction in A’s costs discussed above. The most
plausible defenders are states, given their massive quantities of resources to respond to threats and
the fact that their legitimacy at least partially depends upon fulfilling security obligations to their
populace; we will therefore focus on states. To impose (expected) costs on A, states must be able both
to attribute harm to a perpetrator and retaliate or penalize. We observe that attribution for AI-assisted
harms is likely difficult; for example, note the challenges of identifying the origins of viral outbreaks
or the source of mis/disinformation, despite the resources that states have at their disposal. A major
source of attribution problems seems to be a lack of sensors in relevant locations, rather than an
inability to process information. Even if processing information is a bottleneck, states can marshal
massive financial resources to build models to perform such tasks. It seems unlikely that fine-tuning
improvements will significantly help in this regard.

Furthermore, cost reduction does not seem to help with retaliation or penalizing identified perpe-
trators. In situations where harms cross national borders, jurisdictional issues are the bottleneck. If
perpetrators have been captured, states generally do not subject perpetrators to the same attacks that
they executed.

5For example, see https://en.wikipedia.org/wiki/Sarin and the sources therein.
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E Fine-Tuning of Non-Downloadable Models

It is worth noting that the challenges and risks discussed in this paper may not necessarily be solely
associated with downloadable release, with multiple AI companies increasing the accessibility of
fine-tuning via API access to their non-downloadable models.6 There are notable differences between
the available fine-tuning in these two cases.

Firstly, API fine-tuning is in many ways more ‘beginner-friendly’ due to compute and training code
being provided by default, with the user only needing to learn a few basic commands in order to
fine-tune on their dataset. API fine-tuning is also currently cheap, with OpenAI charging only $0.80
per 100,000 tokens of training data for fine-tuning gpt-3.5-turbo. 7 However, this accessibility
and ease of use comes at the cost of flexibility, with the user often unaware of the specific fine-tuning
methodology being implemented, and unable to modify it in any way. Furthermore, users of an API
fine-tuning service may face limited version stability if model providers do not continue to support
legacy models after the release of newer models. Finally, API fine-tuning allows providers the option
of oversight and installing safeguards, such as data filters, thereby ensuring that fine-tuning is not
being carried out for malicious ends.

We focus on the fine-tuning of downloadable models in this piece due to the combination of flexibility
and inability to enact fine-tuning restrictions. These factors mean that fine-tuning of downloadable
models is generally more powerful than current API-based options, bringing both greater potential
benefit and harm.

6For example, see OpenAI’s current fine-tuning documentation here.
7See https://openai.com/pricing
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