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ABSTRACT

Enhancing OOD generalization on graph data is a recent hot research topic.
Among this, node-level OOD generalization remains an underexplored and chal-
lenging subject. The difficulty of node-level OOD tasks lies in the fact that repre-
sentations between nodes are coupled through edges, making it difficult to charac-
terize distribution shifts and capture invariant features. Furthermore, in practice,
environment labels for nodes are typically expensive to obtain, rendering invariant
learning strategies based on environment partitioning infeasible. By establishing
a theoretical model, we highlight that even with ground-truth environment par-
titioning, classical invariant learning methods like IRM and VREx designed for
independently distributed training data will still capture spurious features when
the depth of the GNN exceeds the width of a node’s causal pattern (i.e., the invari-
ant and predictive neighboring subgraph). Intriguingly, however, we theoretically
and empirically find that by enforcing the Cross-environment Intra-class Align-
ment (CIA) of node representations, we can remove the reliance on these spurious
features. To harness the advantages of CIA and adapt it on graphs, we further
propose Localized Reweighting CIA (LoRe-CIA), which does not require envi-
ronment labels or intricate environment partitioning processes. Leveraging the
neighboring structural information of graphs, LoRe-CIA adaptively selects node
pairs that exhibit large differences in spurious features but minimal differences
in causal features for alignment, enabling better elimination of spurious features.
The experiments on the GOOD benchmark show that LoRe-CIA achieves optimal
OOD generalization performance on average.

1 INTRODUCTION

Generalizing to unseen testing distributions that differ from the training distributions, also known
as achieving Out-Of-Distribution (OOD) generalization, is one of the key challenges in machine
learning. In OOD scenarios, the performance of models often deteriorates due to the distribution
discrepancy between training and testing data. Among various OOD tasks, enhancing OOD gener-
alization on graph data is an emerging research direction that is garnering increasing attention (Chen
et al., 2022; Zhu et al., 2021; Wu et al., 2022; Li et al., 2023; Wu et al., 2021; Liu et al., 2023; Li
et al., 2022a;b; Yang et al., 2022; Chen et al., 2023; Buffelli et al., 2022; Tang & Liu, 2023). These
works can be broadly categorized into graph-level and node-level OOD generalization. This paper
focuses on the latter task, which has yet to be fully explored.

For addressing OOD generalization, invariant learning is one of the crucial strategies. The idea of
invariant learning is to capture causal features that remain consistent across different environments
and have predictive power, thereby maintaining performance in the presence of distributional shifts.
Numerous invariant learning methods have been proposed to tackle OOD problems in CV and NLP
tasks (Arjovsky et al., 2020; Krueger et al., 2021; Bui et al., 2021; Rame et al., 2022; Shi et al., 2021;
Mahajan et al., 2021; Wang et al., 2022; Yi et al., 2022). Nevertheless, transferring these methods
to node classification tasks on graphs is not straightforward. This is because graph data is distinct
from Euclidean data like images and text. Beyond node features, it incorporates topological structure
information, making the task of characterizing the specific nature of distribution shifts and capturing
invariant features more challenging. Compared to graph classification, the node classification task
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is more complex due to the existence of edges between samples, causing the samples not to be
independently distributed. Additionally, environment labels in node-level tasks are difficult to obtain
(Wu et al., 2021), further preventing the application of previous invariant learning methods based on
environment partitioning.

To investigate the performance of invariant learning objectives when using message-passing Graph
Neural Networks (GNNs), along with the presence of shifts in both the graph’s topological structure
and node features, we establish a theoretical model (Section 3.1). We discover that IRM (Arjovsky
et al., 2020) and VREx (Krueger et al., 2021), two classic OOD methods originally designed for
non-graph data (where samples are independently distributed), tend to learn spurious features in
node-level OOD tasks. The latter, which aims to minimize the variance across training environ-
ments, is the loss function adopted by many graph OOD methods (Wu et al., 2021; Yu et al., 2023;
Wu et al., 2022; Li et al., 2023; 2022b). This highlights the need to seek better objectives for
invariant learning on graphs. Surprisingly, we theoretically find that enforcing Cross-environment
Intra-class Alignment (CIA) of node representations, which was proposed for domain generalization
(Mahajan et al., 2021), can remove spurious features in node-level OOD scenarios. However, we
also identified the issue of causal feature collapse resulting from excessive alignment. To mitigate
the above problems and harness the benefits of the CIA, we propose LoRe-CIA, designed to adapt
CIA to graph tasks and achieve improved node-level OOD generalization.

Our contribution is as follows:

1. We construct a theoretical toy model to analyze the performance of different invariant learn-
ing methods on node-level OOD tasks and reveal that IRM and VREx, which have been
proven to be effective when training on independently distributed samples, rely on spurious
features on the graph data, where training samples (nodes) are correlated (Section 3.2).

2. Based on our theoretical model, we find that Cross-environment Intra-class representa-
tion Alignment (CIA) can learn invariant representations even on graph data (Section 3.3).
We empirically validate the effectiveness of CIA (Section 5.2). However, we identify the
representation collapse caused by too strong CIA regularization, which will lead to the
degradation of OOD accuracy (Section 4.1).

3. We propose a new method that requires no environment labels and avoids complex envi-
ronmental partitioning processes, utilizing localized patterns to find node pairs with large
spurious feature differences and small causal feature differences for alignment, achieving
better spurious feature elimination and better OOD generalization (Section 4.2).

4. We evaluate the proposed method on a popular graph OOD benchmark GOOD (Gui et al.,
2022) and demonstrate that it achieves state-of-the-art performance and even outperforms
many methods that use ground-truth environment labels (Section 5.2).

2 PROBLEM FORMULATION

In the node-level graph OOD task, we are given a single training graph G = (A,X, Y ) containing N

nodes V = {vi}Ni=1 from multiple training environments e ∈ Etr. A ∈ {0, 1}N×N is the adjacency
matrix, Ai,j = 1 iff there is an edge between vi and vj . X ∈ RN×D are node features. The i-th
row Xi ∈ RD represents the feature of vi. Y ∈ {0, 1, ..., C − 1}N are the labels, C is the number
of the classes. E ∈ RN are environment labels that are usually unattainable. Denote the subgraph
containing nodes of environment e as Ge = (Ae, Xe, Y e). Ge follows the distribution pe. Suppose
the unseen test environments are e′ ∈ Ete. Denote the test graphs as Ge′ = (Ae′ , Xe′ , Y e′) which
follow the test distribution pe′ . The test distributions are different from the training distributions,
i.e., pe′ ̸= pe,∀e′ ∈ Ete,∀e ∈ Etr.

Denote the GNN model parameterized by Θ as fΘ : (A,X ) → Y that maps a graph from input
space to label space. The goal of OOD generalization is to minimize the risk over test distributions:

min
Θ

max
e′

Ee′ [L (fΘ(G(Ae, Xe)), Y e)] , (1)

where L is a loss function.
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3 A THEORETICAL MOTIVATION

In this section, we will construct a toy theoretical model to analyze the performance of several OOD
methods in node-level OOD classification problems.

3.1 THEORETICAL MODEL SETUP

Let’s consider a simple case that each node v in environment e has a 2-dim feature [x1
v, x

2
v
e
]⊤,

Ne is the number of samples in e. The node features of all samples in e are denoted as X1 ∈
RNe×1 and Xe

2 ∈ RNe×1 corresponding to x1
v and x2

v
e. Y e ∈ RNe×1 are the labels1. Let Ae ∈

{0, 1}N
e×Ne

and De be the adjacency matrix and the diagonal degree matrix respectively, where
De

ii =
∑

j=1 A
e
ij . Denote the normalized adjacency matrix as Ãe = (De+INe)−

1
2 (Ae+INe)(De+

INe)−
1
2 , INe is the identity matrix. The data generation process for environment e is

Y e = Ãe
k
X1 + n1, Xe

2 = Ãe
m
Y e + n2 + ϵe = Ãe

s
X1 + Ãe

m
n1 + n2 + ϵe, (2)

where n1 ∈ RNe×1 and n2 ∈ RNe×1 are vectors representing noise with each dimension indepen-
dently following the standard normal distribution. ϵe ∈ RNe×1 is an environment spurious variable.
ϵei (each dimension of ϵe) is a random variable that are independent for i = 1, ..., Ne. We assume the
intra-environment expectation of the environment spurious variable is Eϵi∼pe

[ϵi] = µe ∈ R since
spurious features are consistent in a certain environment. We further assume the cross-environment
expectation Ee[ϵ

e] = 0 and cross-environment variance Ee[ϵ
e
i ] = σ2, i = 1, ..., Ne for simplicity.

Note that X1 and Xe
2 denote invariant features (causing Y e) and spurious features (effects of Y )

that vary with environments. k and l are the depth of the generation process of invariant and spuri-
ous features respectively. We also have the following assumption about the stability of the causal
feature across environment in our motivation example:
Assumption 3.1. (Local stability of the causal patterns) The causal feature is stable across en-
vironments for every class c: ∀e, (Ãe

k
X1)[c][iec] ∈ R1×1, iec = 1, ..., Ne

c are the same, where

(Ãe
k
X1)[c][iec] are the elements of (Ãe

k
X1)[c] ∈ RNe

c×1, which corresponds to the causal features
of class c in environment e, Ne

c is the number of such samples.

Remark.

1. In this toy model, the distribution shift is caused by both the changes of topological struc-
tures (Ae) and node features (Xe

2 ). This is the general case of real-world OOD graphs.
Note that although the global structures vary across environments, we assume the causal
feature of each class is locally stable (Assumption 3.1).

2. We extend the theoretical model to a more general case than the toy model in EERM (Wu
et al., 2021): we consider multi-layer data generation processes and GNNs. Nevertheless,
the data-generating process considered in EERM is a simple ego-graph of a centered node
with its 1-hop neighbors, and they use a 1-layer GNN.

Now we introduce the toy GNN used in the following analysis. Consider a L-layer GNN f parame-
terized by Θ =

{
θ1, θ2, θ

1
1
(l)
, θ21

(l)
, θ12

(l)
, θ22

(l)
}

, l = 1, 2, ..., L− 1:

fΘ(A,X) = H
(L)
1 θ1 +H

(L)
2 θ2,

H
(l)
1 = θ11

(l−1)
ĀH

(l−1)
1 + θ21

(l−1)
ĪNeH

(l−1)
1 , l = 2, 3, ..L

H
(l)
2 = θ12

(l−1)
ĀH

(l−1)
2 + θ22

(l−1)
ĪNeH

(l−1)
2 , l = 2, 3, ..L

H
(1)
1 = X1,

H
(1)
2 = X2

, (3)

where Ā = (D + INe)−
1
2A(D + INe)−

1
2 and ĪNe = (D + INe)−

1
2 INe(D + INe)−

1
2 . In this

simple L-layer GNN, we omit the activation function and simplify the weight matrix to four scalar
1Different from the definition in Section 2, we denote a vector V ∈ RD in the matrix form of V ∈ RD×1.
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parameters θ11
(l), θ12

(l), θ21
(l), θ22

(l) in each layer. Suppose L ≥ k. θ11
(l), θ12

(l) are weights for
aggregating features from neighboring nodes and θ21

(l), θ22
(l) are weights for features of a centered

node. This toy GNN can be seen as a simplified GAT (Graph Attention Network, (Veličković et al.,
2018)). In this GNN, we simplify the classifier to an identity mapping so the featurizer ϕ is f .

Remark. We assume L ≥ k to ensure the model has the capacity to learn causal features of nodes.
To verify this assumption, we train GCNs with different numbers of layers to predict the ground-
truth labels. We find that on real-world large scale datasets, the depth of the generation is no more
than 4 in most cases (reults are in Appendix C.3). Note that this scenario was not considered in the
theoretical motivation model of EERM (Wu et al., 2021) (where they considered a 1-layer model).
Later we will show that this basic setup will lead to unexpected failure of IRMv1 and VREx.

Consider a regression problem that we aim to minimize the MSE loss over all environments
Ee[R(e)] = Ee

[
En1,n2

[
∥fΘ(Ae, Xe)− Y e∥22

]]
. The optimal parameter set Θ∗ is

θ1 = 1

θ2 = 0 or ∃l ∈ {1, ..., L− 1} s.t. θ12
(l)

= θ22
(l)

= 0

θ11
(l)

= 1, θ21
(l)

= 1, l = L− 1, ..., L− k + 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− k, L− k − 1, ..., 1

, (4)

which only uses the invariant features X1 for prediction.

3.2 FAILURE CASES OF SOME PREVIOUS OOD ALGORITHMS

In this section, we present two failure cases on the node-level OOD task: optimizing VREx (Krueger
et al., 2021) and IRMv1 (Arjovsky et al., 2020) induces a model that relies on spurious features Xe

2
to predict, which will lead to poor OOD generalization performance. Subsequently, we will analyze
the reasons for the failure and attempt to find solutions.

3.2.1 FAILURE CASE OF VREX

First, we will show minimizing the risk variance (VREx) is an ill-posed problem and may lead to a
solution that relies on spurious features. The proof is in Appendix E.1.1.

Proposition 3.2. (VREx will use spurious features) The objective minΘ LVREx = Ve[R(e)] has
non-unique solutions, and when part of the model parameters {θ11

(l)
, θ21

(l)
, θ12

(l)
, θ22

(l)} take the
values

Θ0 =


θ11

(l)
= 1, θ21

(l)
= 1, l = L− 1, ..., L− s+ 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− s, L− s− 1, ..., 1

θ12
(l)

= 0, θ22
(l)

= 1, l = L− 1, ..., 1

, (5)

for some 0 < s < L, θ1 and θ2 have four sets of solutions of the cubic equation:{
(3c1θ1θ2 + c1(θ2)

2 − 2c6θ2)σ
2 − Ee[N

e(2c1(θ1 + θ2)− c6)]σ
2θ2 + c7 = 0

(Ee[N
e(2c1(θ1 + θ2)− c6)]σ

2θ2 − c7)(c3θ2 − c4)− [c2(θ1 + θ2)− c5](θ2)
2 = 0

. (6)

where c1, c2, ..., c7 are some constants.

According to Proposition 3.2, since θ2 = 0 is not a solution to the above equation set, VREx will
inevitably use spurious features Xe

2
2.

3.2.2 FAILURE CASE OF IRMV1

Next, we give another proposition showing that optimizing IRMv1 could also fail on the graph OOD
task. The proof is in Appendix E.1.2.

2Note that Wu et al. (2021) proves minΘ Ve[R(e)] will min I(y, e|z), where q(z|x) is the induced dis-
tribution by encoder ϕ. This seems to conflict with Proposition 3.2. This may be because the upper bound
I(y, e|z) ≤ DKL(q(y|z)∥Ee[q(y|z)]) ≤ Ve[R(e)] is not tight.

4



Under review as a conference paper at ICLR 2024

Proposition 3.3. (IRMv1 will use spurious features) The objective minΘ LIRMv1 =
Ee[∥∇w|w=1.0R(e)∥2] has a solution that uses spurious features: θ1 =

Ee

{
(Ães

X1)
⊤(Ãek

1)
[
1⊤Ães

X1+(Ãek
X1)

⊤(Ãek
1)

]
+(1+σ2)(Ães

X1)
⊤1(Ãek

X1)
⊤1

}
(2+σ2)(Ee[Ães

]X1)⊤1

θ2 =
Ee

{
(Ães

X1)
⊤(Ães

X1)[1
⊤(Ãek

1)]+(Ães
X1)

⊤(Ãek
1)(1⊤Ães

X1)
}

(2+σ2)(Ee[Ães
]X1)⊤1

. (7)

when {θ11
(l)
, θ21

(l)
, θ12

(l)
, θ22

(l)} take the special values Θ0 (defined in Equation (5)).

Let’s intuitively explain the failure cases in detail. When L ≥ k, and when the lower-layer parame-
ters of the GNN θ11

(l), θ12
(l), θ21

(l), θ22
(l) take the specific values Θ0, we have

H
(L)
1 =

∂H
(L)
1

∂θi1
(l)

= Ãe
s
X1, i = 1, 2, l = 1, ..., L− 1, (8)

and

H2
1 (L) =

∂H
(L)
2

∂θi2
(l)

= Ãe
k+m

X1, i = 1, 2, l = 1, ..., L− 1, (9)

holds for every environment e. Thus, we get

∂L
∂θ1

=
∂L

∂(H
(L)
1 θ1)

∂(H
(L)
1 θ1)

∂θ1
=

∂L
∂(H

(L)
1 θ1)

H
(L)
1

(∗)
=

∂L
∂(H

(L)
1 θ1)

∂(H
(L)
1 )

∂θi1
(l)

=
∂L

∂θi1
(l)

1

θ1
, i = 1, 2, l = 1, ..., L− 1

(10)

(∗) is because of Equation (9). Therefore, ∂L
∂θ1

= 0 ⇒ ∂L
∂θi

1
(l) = 0. The same is true for ∂L

∂θ2

and ∂L
∂θi

2
(l) . This means the solution of the top-level parameters θ1 and θ2 of the GNN will only

be constrained by two equations, ∂L
∂θ1

= 0 and ∂L
∂θ2

= 0, rather than be constrained by all gradient
functions ∂L

∂θj
i

= 0, i = 1, 2. By analyzing the specific loss of VREx and IRMv1, we conclude that
they will induce a non-zero θ2.

From the above analysis, we know that the key to avoid relying on spurious features is appropriately
regularizing the gradients for top-level parameters, so that the spurious components are discarded.
Therefore, we consider explicitly introducing the elimination of spurious features into the loss. In
the next section, we will point out our finding: aligning cross-environment intra-class features is an
effective strategy for graph node-level OOD tasks.

3.3 CROSS-ENVIRONMENT INTRA-CLASS ALIGNMENT CAN GET RID OF SPURIOUS
FEATURES

With a slight abuse of the notation, denote ϕΘ(A
e, Xe)[c][i] as the representation of a node vi which

has class c and environment label e. Now we will give a proposition demonstrating that aligning
the representations of nodes of the same class from different environments e and e′ can learn the
parameters without relying on spurious features. This is similar to a popular objective for domain
generalization (Mahajan et al., 2021) where they used a contrastive loss to match the representations
of samples with the same causal features. Since the objective we consider here does not push rep-
resentations of different classes apart while Mahajan et al. (2021) did, we rename this method CIA
(Cross-environment Intra-class Alignment).

The CIA’s objective is:
min
Θ

Ee [L(f(Ae, Xe))]

s.t. min
Θ

LCIA = E e,e′

e ̸=e′
EcE i,j

(i,j)∈Ωe,e′
c

[
D(ϕΘ(A

e, Xe)[c][i], ϕΘ(A
e, Xe′)[c][j])

] (11)

where Ωe,e′

c = {(i, j)|i ̸= j ∧ Yi = Yj = c ∧ Ei = e, Ej = e′}.
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Proposition 3.4. Optimizing the CIA objective will lead to the optimal solution Θ∗:
θ1 = 1

θ2 = 0 or ∃l ∈ {1, ..., L− 1} s.t. θ12
(l)

= θ22
(l)

= 0

θ11
(l)

= 1, θ21
(l)

= 1, l = L− 1, ..., L− k + 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− k, L− k − 1, ..., 1

. (12)

The proof is in Appendix E.1.3. The failure cases in Proposition 3.2 and 3.3 do not work for CIA
since solving ∂LCIA

∂θ1
= 0 and ∂LCIA

∂θ2
= 0 alone leads to the conclusion that the spurious parameters

must be 0. When CIA objective is well optimized, further minimize Ee [L(f(Ae, Xe))] will induce
the parameters informative of the labels.

4 LOCALIZED REWEIGHTING CIA: AN ENVIRONMENT-LABEL FREE
ADAPTATION TO NODE-LEVEL OOD TASKS

(a) ERM (b) CIA λ = 0.001

(c) CIA λ = 0.01 (d) CIA λ = 0.1

Figure 1: Visualization of the representations learned by ERM and CIA on Cora (concept). Classes
and environments are distinguished by shape and color, respectively. Larger λ means stronger CIA
regularization. CIA can better separate different classes. The representation distribution of each
class collapses into a compact region when CIA regularization is strong.

4.1 FEATURE COLLAPSE DUE TO EXCESSIVE ALIGNMENT

We have shown that CIA is a more effective proposal for OOD node classification than VREx and
IRMv1, however, it still has several limitations in practical applications. The first problem is CIA
requires knowledge of the ground-truth environmental labels (like many previous classic OOD algo-
rithms), which is challenging to obtain in most node classification tasks (Wu et al., 2021; Liu et al.,
2023). Another issue is the collapse of causal features. In the motivation model, we assume the
causal feature for a class takes one specific value. However, in practical situations, causal features
also exhibit diversity. If the causal features of the samples aligned by CIA vary greatly, the model
might optimize the CIA loss by reducing the distance between the causal representations of the two
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samples, rather than solely eliminating the discrepancies between the spurious features, leading to
causal representation collapse. As shown in Figure 1, when we add the CIA loss as a regularizer
to the ERM objective with weight λ, the learned representations become increasingly compact for
each class as λ increases. However, as indicated in Table 1, the test performance declines when λ is
large. This suggests that CIA may lose the diverse information that is useful for predictions.

Table 1: OOD test accuracy (%) of ERM and CIA on CBAS. Larger λ means stronger alignment.
Message 1: For regular CIA, too strong alignment regularization will lead to the collapse of the
causal feature, resulting in sub-optimal performance. Message 2: LoRe-CIA will alleviate the
feature collapse problem. We choose the neighboring hops to be 3 for LoRe-CIA. The values in
parentheses are standard deviations, best results of each line are shown in bold.

Dataset Algorithm λ = 0.0005 λ = 0.005 λ = 0.05 λ = 0.1 ERM

CBAS (covariate) CIA 78.57(1.43) 77.62(0.83) 73.34(0.67) 70.00 (1.43) 78.57(2.02)
LoRe-CIA 79.52(0.67) 81.43(0.00) 79.52(1.35) 80.00(1.17)

CBAS (concept) CIA 84.29(0.72) 85.00(2.14) 83.81(2.30) 80.48 (1.48) 82.14(1.17)
LoRe-CIA 81.90(0.89) 82.14(1.75) 85.47(0.33) 85.72(1.54)

4.2 PROPOSED LOCALIZED REWEIGHTING CIA

To address the above issues, we aim to identify node pairs for CIA with significant differences in
spurious features and small differences in causal features. In this way, during alignment, the model
would be more inclined to eliminate spurious features rather than causal ones. To this end, we
propose an environment-label free reweighting CIA strategy to utilize node neighborhood features
to screen for such pairs. Now we describe our method.

The first assumption we rely on is that the rate of change of a node’s spurious features w.r.t. spatial
location on the graph is faster than that of the invariant features within a certain range of hops.
We verify this intuition on real-world datasets Arxiv and Cora in Appendix C.4. Therefore, we
choose to align nodes of the same class within a certain number of hops, as two same-class nodes
that are too far apart on the graph might also have substantial differences in their causal features.
The second intuition is that the label distribution of a node v’s different-class neighbors can reflect
the distribution of spurious features of v. This is empirically verified and discussed in Appendix
C.5. We resort to this observation to find node pairs with large differences in spurious features.
We estimate the difference in spurious distribution by computing the difference in the number of
heterophilous neighbors. Similarly, the difference in the causal feature can be estimated as the
number of neighboring nodes with the same label as v. Now we are ready to present the formal
objective of the proposed method: LoRe-CIA (Localized Reweighting CIA):

min
Θ

Ee[L(f(Ae, Xe))]

s.t. min
Θ

EcE i,j
(i,j)∈Ωc(t)

[
wi,jD(ϕΘ(A,X)[c][i], ϕΘ(A,X)[c][j])

]
,

wi,j = softmax

(
Qdiff

i,j

d(i, j)Qsame
i,j

)
,

(13)

where Ωc(t) = {(i, j)|i ̸= j ∧Yi = Yj = c∧d(vi, vj) ≤ t}. d(i, j) is the number of the hops of the

shortest path from node vi to vj , Qdiff
i,j =

∑
c′

c′ ̸=c

∣∣∣|N c′

vi | − |N c′

vj |
∣∣∣ , Qsame

i,j =
∣∣∣|N c

vi | − |N c
vj |
∣∣∣, |N c

v | is

the number of the neighbors of v with class c. t ∈ N+ is a hyperparameter. Note that LoRe-CIA
does not require ground-truth environment labels or environmental inference. More importantly, it
does not divide the whole graph into multiple subgraphs as EERM does, which blocks the message
passing from one environment to another. This is harmful for tasks like CBAS (Gui et al., 2022) that
require global information to make predictions. LoRe-CIA is better equipped to handle such tasks
(see Table 2 and 3).

In practice, we use LoRe-CIA as a regularization term added to the cross entropy loss with a weight
λ as a hyperparameter. The detailed training process is in Appendix D.
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5 EXPERIMENT

5.1 EXPERIMENT SETUP

We run experiments on GOOD (Gui et al., 2022), a graph OOD benchmark. We reported the results
on two types of OOD shifts: covariate shift and concept shift, which correspond to the cases that
p(X) and p(Y |X) are shifted, respectively. The detailed experimental setup and hyperparameter
settings are in Appendix B. Since GOOD provides environment labels, we can evaluate methods
using environment labels like IRM, VREx, and CIA. But in practical scenarios, the environment
partition is hard to obtain.

5.2 OOD GENERALIZATION RESULTS

Table 2: OOD test accuracy (%) on covariate shift. The best and second-best results are shown in
bold and underlined, respectively. ’*’ marks the results adopted from Gui et al. (2022) since we got
out of memory at runtime.

Dataset Arxiv Cora CBAS WebKB average
Domain degree time degree word color university

ERM (Vapnik, 1999) 58.92(0.14) 70.98(0.20) 55.78(0.52) 64.76(0.30) 78.57(2.02) 16.14(1.35) 57.52

IRM (Arjovsky et al., 2020) 58.93(0.17) 70.86(0.12) 55.77(0.66) 64.81(0.33) 78.57(1.17) 13.75(4.91) 57.12

VREx (Krueger et al., 2021) 58.75(0.16) 69.80(0.21) 55.97(0.53) 64.43(0.38) 79.05(1.78) 17.72(11.27) 57.62

GroupDRO (Sagawa et al., 2019) 58.87(0.00) 70.93(0.09) 55.64(0.50) 64.62(0.30) 79.52(0.67) 14.29(2.59) 57.31

DANN (Ganin et al., 2016) 59.03(0.15) 71.09(0.03) 55.84(0.58) 64.74(0.32) 80.95(1.78) 16.67(1.29) 58.05

Deep Coral (Sun & Saenko, 2016) 59.04(0.16) 71.04(0.07) 56.03(0.37) 64.75(0.26) 78.09(0.67) 11.90(1.72) 56.81

EERM (Wu et al., 2021) OOM OOM 56.88(0.32)* 61.98(0.10)* 40.48(9.78) 16.21(5.67) -

SRGNN (Zhu et al., 2021) 58.47(0.00) 70.83(0.10) 57.13(0.25) 64.50(0.35) 73.81(4.71) 16.40(1.63) 56.86

Mixup (Wang et al., 2021) 57.80(0.19) 71.62(0.11) 57.89(0.27) 65.07(0.22) 70.00(5.34) 16.67(1.12) 56.51

CIA (Mahajan et al., 2021) 59.03(0.39) 71.10(0.15) 56.34(0.35) 65.07(0.52) 78.57(1.17) 18.25(2.33) 58.06

LoRe-CIA (ours) 59.12(0.18) 71.16(0.11) 57.06(0.27) 65.16(0.09) 81.43(0.00) 18.52(2.28) 58.74

Table 3: OOD test accuracy (%) on concept shift.

Dataset Arxiv Cora CBAS WebKB average
Domain degree time degree word color university

ERM (Vapnik, 1999) 62.92(0.21) 67.36(0.07) 60.24(0.40) 64.32(0.15) 82.14(1.17) 27.52(0.75) 60.75

IRM (Arjovsky et al., 2020) 62.79(0.11) 67.42(0.08) 61.23(0.08) 64.42(0.18) 81.67(0.89) 27.52(0.75) 60.84

VREx (Krueger et al., 2021) 63.06(0.43) 67.42(0.07) 60.69(0.42) 64.32(0.22) 82.86(1.17) 27.52(1.50) 60.98

GroupDRO (Sagawa et al., 2019) 62.98(0.53) 67.41(0.27) 60.59(0.36) 64.34(0.25) 82.38(0.67) 28.44(0.00) 61.02

DANN (Ganin et al., 2016) 63.04(0.20) 67.46(0.23) 60.32(0.26) 64.34(0.12) 82.86(0.58) 26.61(1.50) 60.77

Deep Coral (Sun & Saenko, 2016) 63.09(0.28) 67.43(0.24) 60.41(0.27) 64.34(0.17) 82.86(0.58) 26.61(0.75) 60.79

EERM (Wu et al., 2021) OOM OOM 58.38(0.04)* 63.09(0.36)* 61.43(1.17) 28.04(11.67) -

SRGNN (Zhu et al., 2021) 62.80(0.25) 67.17(0.23) 61.21(0.29) 64.53(0.27) 80.95(0.67) 27.52(0.75) 60.70

Mixup (Wang et al., 2021) 62.33(0.34) 65.28(0.43) 63.65(0.37) 64.45(0.12) 65.48(0.67) 30.28(1.50) 58.58

CIA (Mahajan et al., 2021) 63.87(0.26) 67.62(0.04) 61.59(0.18) 64.61(0.11) 85.71(0.72) 27.83(1.89) 61.84

LoRe-CIA (ours) 63.89(0.31) 67.52(0.10) 62.09(0.33) 64.62(0.17) 85.72(1.54) 28.75(0.43) 62.10

The results on covariate shift and concept shift datasets are in Table 2 and 3, respectively. Although
the LoRe-CIA was not optimal on some datasets, it achieves average optimality and did not show
results far below average on any dataset, which demonstrates its stability. The failure of EERM on
CBAS stems from its subgraph partitioning process, which causes the node representations to lose
global information, thereby unable to predict the node’s position on the graph, which is precisely the
task of CBAS. LoRe-CIA effectively addresses this issue by avoiding dividing multiple subgraphs.

CIA outperforms IRM and VREx on all datasets except that it fails to beat VREx on CBAS (co-
variate), which validates our findings in Section 3. LoRe-CIA outperforms CIA on all datasets,
indicating our reweighting strategy can further benefit generalization.
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Due to space limitation, we have placed the analysis of the impact of hyperparameters λ and t and
the visualization of the LoRe-CIA representations in Appendix C.

6 RELATED WORK

6.1 INVARIANT LEARNING FOR OUT-OF-DISTRIBUTION GENERALIZATION

Invariant learning seeks to find stable features across multiple training environments to achieve
OOD generalization. The goal of IRM (Arjovsky et al., 2020) is to learn a representation that elicits
a classifier achieving optimality in all training environments. To solve the bi-leveled optimization
problem, Arjovsky et al. (2020) proposed IRMv1 that minimizes the norm of the gradients w.r.t.
the classifier in all training environments. REx (Krueger et al., 2021) reduces the risks across train-
ing environments to improve robustness against distribution shifts. They proposed two practical
algorithms MMREx and VREx for risk extrapolation. In this paper, we consider the more widely
used VREx. Mahajan et al. (2021) proposed MatchDG to match the representations of the same
causal features across domains. To the best of our knowledge, unlike VREx which has been evalu-
ated widely on graph OOD benchmarks, no previous work has investigated the effect of MatchDG
(which we rename CIA in this paper) on graph OOD generalization (neither empirically nor theoret-
ically, while we both do), and we are the first work to theoretically analysis the limitations of IRMv1
and VREx in OOD node classification problems.

6.2 NODE-LEVEL OUT-OF-DISTRIBUTION GENERALIZATION ON GRAPHS

There has been a substantial amount of work focusing on the OOD generalization problem on
graphs. However, the vast majority have centered on graph classification tasks(Chen et al., 2022;
Zhu et al., 2021; Wu et al., 2022; Li et al., 2022b; 2023; Yang et al., 2022; Yu et al., 2023; Chen
et al., 2023; Buffelli et al., 2022) and only a small amount of work has focused on the node-level
OOD task (Wu et al., 2021; Liu et al., 2023; Li et al., 2022a; Zhu et al., 2021). (Wu et al., 2021)
proposed EERM, which first generates multiple training environments that maximize the variance
of the risks and then applies VREx on the generated environments. However, it adopts an adversar-
ial training manner for the environment generator, which is unstable and could induce suboptimal
performances (Figure 2 and 3). SRGNN (Zhu et al., 2021) aims at aligning the representation of the
biased training samples and the unlabeled i.i.d data. There may be some problems with this. First, it
only aligns the marginal distribution p(X), which has been proved to have failure cases (Johansson
et al., 2019). Second, it does not restrict the aligned samples to have small distribution differences in
causal features (like Mahajan et al. (2021) suggested). This may lead to a loss of diversity in causal
features during alignment. Our proposed method fixes these issues: (1) LoRe-CIA avoids complex
environment inference but can still create differences in spurious features; (2) LoRe-CIA considers
the failure case caused by varying causal features by adding adaptive weights to the alignment terms.

7 CONCLUSION

In this work, we find the failure of IRMv1 and VREx at node-level graph OOD tasks and suggest
that CIA is a more appropriate optimization target. To solve the problem of lack of environment
labels and feature collapse, we propose LoRe-CIA, which further improves graph OOD general-
ization performance. However, how to make better use of graph structure to identify the pattern
of spurious features and specific characteristics of distribution shifts on graphs is a problem to be
further explored.
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A ADDITIONAL THEORETICAL RESULTS AND PROOFS OF THE COVARIATE
SHIFT CASE

A.1 THEORETICAL MODEL SETUP OF THE COVARIATE SHIFT CASE

In this section, we will extend our theoretical model in the main text to the covariate shift setting.
For the covariate shift setting, spurious features are independent of Y . Thus we can model the data
generation process for environment e as

Y e = Ãe
k
X1 + n1, Xe

2 = n2 + ϵe, (14)

where the definition of n1 and n2 are the same as Section 3, ϵe represents environmental spurious
features. ϵei (each dimension of ϵe) is a random variable that are independent for i = 1, ..., Ne.
We assume the intra-environment expectation of the environment spurious variable is Eϵi∼pe

[ϵi] =
µe ∈ R since spurious features are consistent in a certain environment. We further assume the cross-
environment expectation Ee[ϵ

e] = 0 and cross-environment variance Ee[ϵ
e
i ] = σ2, i = 1, ..., Ne for

simplicity. This is consistent with the covariate shift case that p(X) can arbitrarily change across
different domains, and the support set of X may vary. Note that different from the concept shift
setting, we only require L ≥ k to ensure the predictiveness of the network.

A.2 THEORETICAL RESULTS OF THE COVARIATE SHIFT CASE

In this subsection, we will present the failure case of VREx and IRMv1, and the success case of
CIA under covariate shift (which is a different setting from the results of the concept shift case in
the main text). The proofs are in Appendix E.2.

A.2.1 THE FAILURE CASE OF VREX UNDER COVARIATE SHIFT

Proposition A.1. (VREx will use spurious features) The objective minΘ Ve[R(e)] has non-unique
solutions, and when part of the model parameters {θ11

(l)
, θ21

(l)
, θ12

(l)
, θ22

(l)} take the values

Θ0 =


θ11

(l)
= 1, θ21

(l)
= 1, l = L− 1, ..., L− s+ 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− s, L− s− 1, ..., 1

θ12
(l)

= 0, θ22
(l)

= 1, l = L− 1, ..., 1

, (15)

0 < s < L is some positive integer, θ1 and θ2 have four sets of solutions of the quadratic equation:{
c1σ

2(2θ1θ2 + (θ2)
2 − 2c2σ

2θ2) + c3 − Ee[N
e]c1σ

2θ1θ2 + Ee[N
e]c2σ

2θ2 = 0[
c3 − Ee[N

e]c1σ
2θ1θ2 + Ee[N

e]c2σ
2θ2
]
c4 − c5(θ2)

2 = 0
. (16)

where c1 = E[(Ãe
s
X1)

⊤(Ãe
s
X1)], c2 = E[(Ãe

s
X1)

⊤(Ãe
k
X1)],

c3 = Ee[ϵ
e⊤ϵeϵe⊤(Ãe

s
X1)]σ

2,c4 = Ee

[
(Ãe

k
X1)

⊤1Ne

]
σ2, c5 =

Ee

[
Ne
(

tr((Ãe
k
)⊤Ãe

k
) +Ne(1 + σ2)

)]
.

Remark. For the covariate shift setting, θ2 = 0 is still not a solution to the VREx objective in
node-level OOD tasks. Therefore it will also rely on spurious features.

A.2.2 THE FAILURE CASE OF IRMV1 UNDER COVARIATE SHIFT

Proposition A.2. (IRMv1 will use spurious features) The objective minΘ Ee[∥∇w|w=1.0R(e)∥2]
has a solution that the invariant parameter θ1 will produce inaccurate predictions,

θ1 =
Ee[(Ãe

k
X1)

⊤(Ãe
2k
X1)]

Ee[(Ãe
2k
X1)⊤(Ãe

2k
X1)]

(17)
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and there will be no constraints on the spurious parameter θ2, when {θ11
(l)
, θ21

(l)
, θ12

(l)
, θ22

(l)} take
the special values for some 0 < s < L:

Θ0 =


θ11

(l)
= 1, θ21

(l)
= 1, l = L− 1, ..., L− s+ 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− s, L− s− 1, ..., 1

θ12
(l)

= 0, θ22
(l)

= 1, l = L− 1, ..., 1

. (18)

A.2.3 THE SUCCESSFUL CASE OF CIA UNDER COVARIATE SHIFT

Proposition A.3. Optimizing the CIA objective will lead to the optimal solution Θ∗:
θ1 = 1
θ2 = 0

θ11
(l)

= 1, θ21
(l)

= 1, l = L− 1, ..., L− k + 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− k, L− k − 1, ..., 1

. (19)

B DETAILED EXPERIMENTAL SETUP

B.1 BASIC SETTINGS

All experimental results were averaged over three random runs. Following (Gui et al., 2022), we
use an OOD validation set for model selection and use a 3-layer GCN (Kipf & Welling, 2016) as the
backbone GNN, except that Mixup uses a modified GCN. The settings for learning rate, batch size,
and training epochs also follow (Gui et al., 2022).

B.2 HYPERPARAMETER SETTINGS

Most hyperparameter settings are adopted from (Gui et al., 2022), except that for EERM we reduce
the number of generated environments from 10 to 7 and reduce the number of adversarial steps from
5 to 1 for memory and computing complexity concerns. For each parameter of the methods, we
conduct a grid search for about 3∼4 values.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 PARAMETER ANALYSIS

In this section, we analyze the effect of λ and the number of adjacent hops of LoRe-CIA. From
Figure 2, we can see clearly that adding LoRe-CIA regularization is beneficial for generalization
since the test accuracy increases with λ. Note that most of the parameter combinations outperform
the baseline methods (ERM: 55.78/60.24, IRM: 55.77/61.23, VREx: 55.97/60.69), indicating that
our method leads to consistently superior performance.

On Cora degree covariate shift, we can observe the positive effect of localized alignment: with the
decrease of t, the accuracy rate increases gradually. However, the trend is not clear in the covariate
shift. On covariate shift, the accuracy rate varies differently with t for different λ, indicating that
there is a synergistic effect on the accuracy rate. How to better balance these two parameters is a
direction worth exploring in the future.

C.2 REPRESENTATION VISUALIZATION

We visualize the representation of CIA and LoRe-CIA in Figure 3 to show that LoRe-CIA can
alleviate feature collapse caused by overalignment.
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Table 4: Hyperparameter setting of the experiments.

Algorithm Search Space

IRM 0.1, 1, 10, 100

VREx 1, 10, 100, 1000

GroupDRO 0.001, 0.01, 0.1

DANN 0.001, 0.01, 0.1

Deep Coral 0.01, 0.1, 1

Mixup 0.4, 1.0, 2.0

EERM

β=0.5, 1, 3
number of generated environments k=7
adversarial training steps t=1
numbers of nodes for each node should be modified the link with s=5
subgraph generator learning rate r=0.0001, 0.001, 0.005, 0.01

SRGNN 0.000001, 0.00001, 0.0001

CIA λ=0.0001, 0.001, 0.005, 0.01, 0.05, 0.1

LoRe-CIA λ= 0.001, 0.005, 0.01, 0.05, 0.1
hops t=2, 3, 4, 5

(a) Cora degree concept (b) Cora degree covariate

Figure 2: Effect of λ and the number of hops on OOD test accuracy (%).
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(a) CIA λ = 0.001 (b) LoRe-CIA λ = 0.001

(c) CIA λ = 0.01 (d) LoRe-CIA λ = 0.01

(e) CIA λ = 0.1 (f) LoRe-CIA λ = 0.1

Figure 3: Visualization of the learned representations of nodes. LoRe-CIA can prevent the features
of each class from being too concentrated.
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C.3 VALIDATION OF THE TRUE FEATURE GENERATION DEPTH

For the theoretical model in section 3, we assume L ≥ k. To empirically find out how large k really
is, we use GCN with different layer to predict the ground-truth label Y on Cora and Arxiv dataset
respectively (results are in Table 5 and 6). As mentioned above, since a GCN with layer l will
aggregate features from l-hop neighbors for prediction, if the depth of the GCN is equal to the true
generation depth, then the performance should be close to optimal. Suppose the empirical optimal
layer number is L∗ for prediction, we have: L∗ = k We find that the L∗

s ≤ 4 in most cases (even
on large-scale graphs in Arxiv). This indicates that our assumptions holds easily.

Table 5: OOD accuracy (%) of GCN with different numbers of layers on Cora.

Dataset Shift L = 1 l = 2 L = 3 L = 4

Cora (degree) covariate 59.04(0.15) 58.44(0.44) 55.78(0.52) 55.15(0.24)

concept 62.88(0.34) 61.53(0.48) 60.24(0.40) 60.51(0.17)

Cora (word) covariate 64.05(0.18) 65.81(0.12) 65.07(0.52) 64.58(0.10)

concept 64.76(0.91) 64.85(0.10) 64.61(0.11) 64.16(0.23)

Table 6: OOD accuracy on causal prediction (%) of GCN with different numbers of layers on Arxiv.

Dataset Shift l = 2 L = 3 L = 4 L=5

Arxiv (degree) covariate 57.28(0.09) 58.92(0.14) 60.18(0.41) 60.17(0.12)

concept 63.32(0.19) 62.92(0.21) 65.41(0.13) 63.93(0.58)

Arxiv (time) covariate 71.17(0.21) 70.98(0.20) 71.71(0.21) 70.84(0.11)

concept 65.14(0.12) 67.36(0.07) 65.20(0.26) 67.49(0.05)

C.4 DISCUSSION AND VALIDATION OF THE ASSUMPTION ON THE RATE OF CHANGE OF
CAUSAL AND SPURIOUS FEATURES W.R.T SPATIAL POSITION

To verify the intuition used in Section 4.2 that the change rate of node’s spurious features w.r.t
spatial location is faster than that of the causal/invariant features within a certain range of hops, we
conduct experiments on GOOD-Arxiv and GOOD-Cora, both are real-world citation networks. To
extract invariant features, we use a pretrained VREx model and take the output of the last layer as
invariant features3. To obtain spurious features, we train a ERM model to predict the environment
label and also take the output of the last layer as spurious features. For each class, we randomly
sample 10 nodes and generate corresponding 10 paths using Breadth-First Search (BFS). We extract
invariant and spurious features of the nodes on each paths, and plot the distances between the node
representations on the paths and the starting node. The results of Cora are in Figure 4 and 5, and
the results of Arxiv are in Figure 6 and 7. (we choose some of the classes to avoid excessive paper
length, the results for the other classes are similar).

We can see that within about 5∼10 hops, the changes of spurious features grow more rapidly than
invariant ones. Hence we propose to align the representations of adjacent nodes to better elimi-
nate spurious features and avoid the collapse of the invariant features. And this explains we add a
weighting term d(i, j) in our loss function to assign smaller weight node pairs farther apart.

This assumption is similar to the ones adopted by a series of previous works on causality and in-
variant learning (Chen et al., 2022; Burshtein et al., 1992; Schölkopf, 2022; Schölkopf et al., 2021).

3though we reveal in our theory that VREx could rely on spurious features, we still use VREx here to
approximately extract invariant features as many previous graph OOD works did since VREx already gains
some advantages.
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They assume causal features are more well-clustered than spurious features. In node-level graph
OOD scenario, we observe this phenomenon only within local parts of a graph. In some cases, when
two nodes are too far away from each other, their causal features can also vary more than the spuri-
ous features, as can been seen in Figure 7 (a) path 1,2,4,6,9 and 10. Therefore, choosing to match
the representations in a local region can help to alleviate the feature collapse problem.

(a) class 16 of Cora

(b) class 17 of Cora

Figure 4: Visualization of the rate of change of invariant features and spurious features on Cora (part
1).
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(a) class 39 of Cora

(b) class 41 of Cora

Figure 5: Visualization of the rate of change of invariant features and spurious features on Cora (part
2).
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(a) class 25 of Arxiv

(b) class 29 of Arxiv

Figure 6: Visualization of the rate of change of invariant features and spurious features on Arxiv
(part 1).
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(a) class 13 of Arxiv

(b) class 17 of Arxiv

Figure 7: Visualization of the rate of change of invariant features and spurious features on Arxiv
(part 2).
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C.5 DISCUSSION AND VALIDATION OF THE ASSUMPTION ON THE FEATURE DISTANCE AND
NEIGHBORING LABEL DISTRIBUTION DISCREPANCY

C.5.1 CLASS-DIFFERENT NEIGHBORING LABELS REFLECT SPURIOUS FEATURE
DISTRIBUTION

In this section, we will empirically validate the key intuition of LoRe-CIA: the label distribution of
the neighbors from different classes (which we call Heterophilous Neighboring Label Distribution
(HNLD) in the following contents) reflects the spurious feature of the centered node. This idea is
similar to the observation in Song & Wang (2022): heterophily is a main source of node distribution
shift. Moreover, as recommended by Ye et al. (2022), we will further investigate the impact of
HNLD on spurious feature distribution under two types of OOD shift: concept shift (or correlation
shift in (Ye et al., 2022)), where p(Y |X) varies across environments, and covariate shift (or diversity
shift in (Ye et al., 2022)), where p(X) changes with environments, respectively. We will show that
HNLD affect the spurious features of the centered node in different manners under concept shift and
covariate shift.

Spurious features represent features that have no predictive power for labels, and spurious features
of a node come from two sources: (1) the environmental spurious feature, i.e. features determined
by environments that contain no invariant and predictive information about labels, (2) class-different
(heterophilous) neighboring features. The first source of spurious features is mentioned all the time
in OOD and Domain Generalization (DG) topics, and many recent works have revealed that het-
erophilous neighbors harm node classification performance (Ma et al., 2021; Huang et al., 2023). In
the follow part, we will first point out how to approximately measure spurious features for covariate
and concept shift, and empirically validate our intuition.

Covariate shift. For covariate shifts on graphs, since spurious features are not necessarily correlated
with labels, the environmental spurious features cannot be reflected by HNLD. However, we can still
measure the distribution of the spurious features caused by heterophilous neighbors. To extract spu-
rious features induced by class-different labels, we train a 1-layer GCN that aggregates neighboring
features and discards the features of the centered node. The reason why we use features from all
neighbors rather than only heterophilous neighbors is we want to simulate message-passing as au-
thentically as possible, that is, we hope to observe whether the gap of HNLD accurately reflects the
distance of heterophilous neighboring feature in the presence of both homophilous and heterophilous
neighbors. To ensure that the discrepancy in the aggregated neighboring feature is caused solely by
heterophilous neighbors, we only use point pairs with the same number of homophilous neighbors.
Specifically, we compute the L2 distance between the neighbor representations of two nodes with
the same number of class-same neighbors, and plot its trend w.r.t. the distance of HNLD (according
to the definition of Qdiff

i,j in Equation 13). We run experiments on Cora to verify this. We evaluate
on both word shifts (node feature shifts) and degree (graph structure shifts) for a comprehensive un-
derstanding. We show the results of first 30 classes of Cora. The results in Figure 8 and 9 show a
clear positive correlation between the spurious feature distance and HNLD discrepancy under
covariate shifts.

Concept shift. As for concept shift, spurious features are correlated with labels, thus the label of a
node contains information about spurious features correlated with this class. Moreover, due to the
massage-passing mechanism of GNNs, the spurious features of a centered node are also affected
by neighboring nodes. Assuming that most adjacent nodes are from the same environment, the
spurious features of same-class neighbors will not change that of the centered node since the spurious
distribution is fixed given the class and the environment (Yi et al., 2022). Hence, by observing
HNLD, we can measure the distribution of the spurious feature. For concept shift, we train a GNN
to predict environment labels to obatin spurious representations. Table 10 and 11 also show a clear
positive correlation between spurious featured distance and HNLD discrepancy on concept
shift.

C.5.2 CLASS-SAME NEIGHBORING LABELS REFLECT INVARIANT FEATURE DISTRIBUTION

Now will validate that the label distribution of the neighbors from the same class as the centered node
reflects the invariant feature of the centered node. We use VREx to approximate invariant features,
and compute the their distance w.r.t. the discrepancies of the neighboring label distribution of the
same class. We evaluate on 4 splits of Cora: word+covariate, word+concept, degree+covariate
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Figure 8: The relationship between the distance of spurious features induced by class-different
neighbors and distance of HNLD on Cora word domain, covariate shift. Each sub-figure is a class,
and each dot in the figure represents a node pair in the graph. The red line is obtained by linear
regression. The positive correlation is clear.

Figure 9: The relationship between the distance of spurious features induced by class-different
neighbors and distance of HNLD on Cora degree domain, covariate shift. The positive correlation
is clear.
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Figure 10: The relationship between the distance of environmental spurious features and distance of
HNLD on Cora word, concept shift. The positive correlation is clear.

Figure 11: The relationship between the distance of environmental spurious features and distance of
HNLD on Cora degree, concept shift. The positive correlation is clear.
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Figure 12: The relationship between the distance of invariant features and discrepancy of class-same
neighboring labels on Cora degree, concept shift. Line 1 to 4 are results of Cora word+covariate,
word+concept, degree+covariate and degree+concept, respectively. There is a positive correlation
between the invariant feature distance and difference in neighboring labels of the same class as the
centered node.

and degree+concept. For each data split, we randomly choose 5 classes that have node pairs with
difference of larger than 5 in class-same neighboring labels. The results in Table 12 also show a
positive correlation trend.

D DETAILED TRAINING PROCESS

Table 1 show the detailed training process of LoRe-CIA.

E PROOFS

E.1 PROOFS OF THE CONCEPT SHIFT CASE PRESENTED IN THE MAIN TEXT

In this section, we give proof of the propositions of the concept shift model presented in the main
text.

E.1.1 PROOF OF THE FAILURE CASE OF VREX UNDER CONCEPT SHIFT

Proposition E.1. (VREx will use spurious features) The objective minΘ Ve[R(e)] has non-unique
solutions, and when part of the model parameters {θ11

(l)
, θ21

(l)
, θ12

(l)
, θ22

(l)} take the values

Θ0 =


θ11

(l)
= 1, θ21

(l)
= 1, l = L− 1, ..., L− s+ 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− s, L− s− 1, ..., 1

θ12
(l)

= 0, θ22
(l)

= 1, l = L− 1, ..., 1

, (20)

for some 0 < s < L, θ1 and θ2 have four sets of solutions of the cubic equation:{
(3c1θ1θ2 + c1(θ2)

2 − 2c6θ2)σ
2 − Ee[N

e(2c1(θ1 + θ2)− c6)]σ
2θ2 + c7 = 0

(Ee[N
e(2c1(θ1 + θ2)− c6)]σ

2θ2 − c7)(c3θ2 − c4)− [c2(θ1 + θ2)− c5](θ2)
2 = 0

. (21)
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Algorithm 1 Detailed Training Procedure of LoRe-CIA

Require:
A labeled training graph G = (A,X, Y ).
The number of hops t, LoRe-CIA weight λ, the number of classes C, total iterations T , model
learning rate r.

Ensure:
Updated model fΘ with parameter Θ.

1: for iterations in 1, 2, ..., T do
2: Initialize LLoRe = 0
3: for c in 1, 2, ..., C do
4: Calculate the node representations ϕ(A,X)
5: Calculate At

c, where the (i, j)-th element of At
c equals the length of the shortest path from

node i to j if the length is less than t else infinity.
6: Use At

c to screen for pairs of nodes not exceeding a distance of t hops Ωc(t).
7: Compute LoRe-CIA loss of class c: Lc

LoRe according to Equation (13) using Ωc(t), At
c and

ϕ(A,X).
8: LLoRe = LLoRe + Lc

LoRe
9: end for

10: Compute final loss L = Lce(fΘ(A,X), Y ) + λLLoRe, Lce is the cross entropy loss.
11: Update model parameters Θ = Θ− r∇ΘL
12: end for

where c1 = Ee[(Ãe
s
X1)

⊤(Ãe
s
X1)], c2 = Ee[Ne(Ãe

s
X1)

⊤Ãe
s
X1], c3 = Ee[(Ãe

s
X1)

⊤1],

c4 = Ee[((Ãe
k
X1)

⊤1], c5 = Ee[Ne((Ãe
k
X1)

⊤Ãe
s
X1 + tr((Ãe

k
)⊤Ãe

k
) + Ne(1 + σ2))],

c6 = Ee[(Ãe
s
X1)

⊤(Ãe
k
X1)], c7 = Ee[ϵ

e⊤ϵeϵe⊤(Ãe
s
X1)].

Proof. We will use some symbols to simplify the expression of the toy GNN. Denote Ãmn1+n2+ϵe

as η. Use the following notations to represent the components of the L-layer GNN model:

fΘ(A,X) = H
(L)
1 θ1 +H

(L)
2 θ2

=
[
θ11

(L−1)
Ā
(
...θ11

(3)
(
θ11

(2)
Ā(θ11

(1)
Ā+ θ21

(1)
Ī)X1 + θ21

(2)
(θ11

(1)
Ā+ θ21

(1)
Ī)X1

)
+ ...

)]
︸ ︷︷ ︸

C1

θ1

+
[
θ12

(L−1)
Ā
(
...θ12

(3)
(
θ12

(2)
Ā(θ12

(1)
Ā+ θ22

(1)
Ī)ÃsX1 + θ22

(2)
(θ12

(1)
Ā+ θ22

(1)
Ī)ÃsX1

)
+ ...

)]
︸ ︷︷ ︸

C2

θ2

+
[
θ12

(L−1)
Ā
(
...θ12

(3)
(
θ12

(2)
Ā(θ12

(1)
Ā+ θ22

(1)
Ī)η + θ22

(2)
(θ12

(1)
Ā+ θ22

(1)
Ī)η
)
+ ...

)]
︸ ︷︷ ︸

Z

θ2

= C1θ1 + (C2 + Z)θ2.
(22)

C1, C2, Z ∈ RN×1. We use Ce
1 , Ce

2 , and Ze to denote the variables from the corresponding envi-
ronment e. We further denote Ce

2 = Ce
2
′Ãe

s
X1, Ze = Ce

2
′η.

Using these notations, the loss of environment e is

R(e) = En1,n2

[
∥fΘ(Ae, Xe)− Y e∥22

]
= En1,n2

[∥∥∥Ce
1θ1 + (Ce

2 + Ze)θ2 − Ãe
k
X1 − n1

∥∥∥2
2

]
.

(23)

Denote the inner term Ce
1θ1 + (Ce

2 + Ze)θ2 − Ãe
k
X1 − n1 as le.
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The variance of loss across environments is:

Ve[R(e)] = Ee[R
2(e)]− E2

e[R(e)]

= Ee

[(
En1,n2

∥∥∥Ce
1θ1 + (Ce

2 + Ze)θ2 − Ãe
k
X1 − n1

∥∥∥2
2

)2
]

− E2
e

[
En1,n2

∥∥∥Ce
1θ1 + (Ce

2 + Ze)θ2 − Ãe
k
X1 − n1

∥∥∥2
2

]
.

= Ee

[
En1,n2

[
(l⊤e le)

2
]]

− E2
e

[
En1,n2

[
l⊤e le

]]
.

(24)

Take the derivative of Ve[R(e)] with respect to θ1:

∂Ve[R(e)]

∂θ1
= Ee

[
2En1,n2

[
l⊤e le

]
En1,n2

[
2l⊤e C

e
1

]]
− 2Ee

[
En1,n2

[
l⊤e le

]]
Ee

[
En1,n2

[
2l⊤e C

e
1

]] (25)

Calculate the derivative by terms:

En1,n2 [l
⊤
e le] = En1,n2 [C

e
1
⊤Ce

1(θ1)
2 + Ce

1
⊤Ce

2θ1θ2 + Ce
1
⊤Zeθ1θ2 − Ce

1
⊤Ãe

k
X1θ1 − Ce

1
⊤n1θ1

+ Ce
2
⊤Ce

1θ1θ2 + Ce
2
⊤Ce

2(θ2)
2 + Ce

2
⊤Zeθ1θ2 − Ce

2
⊤Ãe

k
X1θ2 − Ce

2
⊤n1θ2

+ Ze⊤Ce
1θ1θ2 + Ze⊤Ce

2(θ2)
2 + Ze⊤Ze(θ2)

2 − Ze⊤Ãe
k
X1θ2 − Ze⊤n1θ2

− (Ãe
k
X1)

⊤(Ce
1θ1 + Ce

2θ2)− (Ãe
k
X1)

⊤Zeθ2 + (Ãe
k
X1)

⊤Ãe
k
X1

+ (Ãe
k
X1)

⊤n1 − n⊤
1 (C

e
1θ1 + Ce

2θ2)− n⊤
1 Z

eθ2 + n⊤
1 Ã

e
k
X1 + n⊤

1 n1]
(26)

Since n1 and n2 are independent standard Gaussian noise, we have En1,n2 [n1] = En1,n2 [n2] = 0,
En1,n2 [n

⊤
1 n2] = En1,n2 [n

⊤
2 n1] = 0 and En1,n2 [n

⊤
1 n1] = En1,n2 [n

⊤
2 n2] = Ne if it is the noise

from e. Also, since ϵe and n1, n2 are independent, we have En1,n2 [n
⊤
1 ϵ

e] = En1,n2 [n
⊤
2 ϵ

e] = 0.

When 
θ11

(l)
= 1, θ21

(l)
= 1, l = L− 1, ..., L− s+ 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− s, L− s− 1, ..., 1

θ12
(l)

= 0, θ22
(l)

= 1, l = L− 1, ..., 1

, (27)

we have Ce
2
′ = INe ∈ RNe×Ne

and Ce
1 = Ãe

s
X1. Consequently, we get En1,n2

[Ze⊤n1] =

tr(Ce
2
′Ãe

k
) = tr(Ãe

k
), En1,n2

[Ze⊤Ze] = tr
(
(Ãe

k
)⊤(Ãe

k
)
)
+Ne + ϵe⊤ϵe.

Use the above conclusions and rewrite Equation (26) as (here we only plug in the value of Ce
2
′):

En1,n2 [l
⊤
e le] =

Ce
1
⊤Ce

1(θ1)
2 + Ce

1
⊤Ce

2θ1θ2 − Ce
1
⊤Ãe

k
X1θ1 + Ce

2
⊤Ce

1θ1θ2 + Ce
2
⊤Ce

2(θ2)
2 − Ce

2
⊤Ãe

k
X1θ2

+tr
(
(Ãe

k
)⊤(Ãe

k
)
)
(θ2)

2 − (Ãe
k
X1)

⊤(Ce
1θ1 + Ce

2θ2) + (Ãe
k
X1)

⊤Ãe
k
X1 +Ne

(
1 + (θ2)

2
)

−2tr(Ãe
k
)

 (∗)

+[Ce
1
⊤ϵe + Ce

2
⊤ϵe + ϵe⊤Ce

1 ]θ1θ2 + ϵe⊤ϵe(θ2)
2 − 2(Ãe

k
X1)

⊤ϵeθ2

}
(∗∗),

(28)

(∗) and (∗∗) represent terms that are independent and associated with ϵe, respectively. Additionally,

En1,n2
[2l⊤e C

e
1 ] = 2

[
Ce

1
⊤Ce

1θ1 + Ce
2
⊤Ce

1θ2 + (Ce
2
′ϵe)⊤Ce

1θ2 − (Ãe
k
X1)

⊤Ce
1

]
= 2

[
Ce

1
⊤Ce

1θ1 + Ce
2
⊤Ce

1θ2 + ϵe⊤Ce
1θ2 − (Ãe

k
X1)

⊤Ce
1

]
.

(29)
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Multiplying Equation (28) and (29) and take the expectation on e, using the assumption that
Ee[(ϵ

e
i)

2] = σ2 (ϵei is the i-th element of ϵe):

Ee

[
2En1,n2

[l⊤e le]En1,n2

[
2l⊤e C1

]]
= 4Ee

[
(∗)
(
Ce

1
⊤Ce

1θ1 + Ce
2
⊤Ce

2
′θ2 − (Ãe

k
X1)

⊤Ce
1

)]
+ 4Ee

[
(Ãe

s
X1)

⊤Ãe
s
X1(3θ1θ2 + (θ2)

2)− 2(Ãe
s
X1)

⊤(Ãe
k
X1)θ2

]
θ2σ

2

+ 4Ee[N
eϵe⊤ϵeϵe⊤(Ãe

s
X1)]θ2.

(30)

Next target is to compute 2Ee[En1,n2
[l⊤e le]] and Ee[En1,n2

[2l⊤e C1]] Since ϵe has zero mean, we
have:

2Ee[En1,n2
[l⊤e le]] = Ee[(∗)] + 2Ee[N

e](θ2)
2σ2 (31)

and

Ee[En1,n2 [2l
⊤
e C

e
1 ]] = 2Ee

[
Ce

1
⊤Ce

1θ1 + Ce
2
⊤Ce

1θ2 − (Ãe
k
X1)

⊤Ce
1

]
. (32)

Use Equation (30) (31) and (32) and let ∂Ve[R(e)]
∂θ1

= 0, we have:

Ee

[
3(Ãe

s
X1)

⊤(Ãe
s
X1)(θ1θ2 +

1

3
(θ2)

2)− 2(Ãe
s
X1)

⊤(Ãe
k
X1)θ2

]
σ2 + Ee[ϵ

e⊤ϵeϵe⊤(Ãe
s
X1)]

−Ee[N
e]Ee

[
2(Ãe

s
X1)

⊤(Ãe
s
X1)(θ1 + θ2)− (Ãe

k
X1)

⊤Ce
1

]
θ2σ

2 = 0.

(33)

Now we start calculating the expression of ∂Ve[R(e)]
∂θ2

:

∂Ve[R(e)]

∂θ2
= Ee

[
2En1,n2

[
l⊤e le

]
En1,n2

[
2l⊤e (C2 + Ze)

]]
− 2Ee

[
En1,n2

[
l⊤e le

]]
Ee

[
En1,n2

[
2l⊤e (C

e
2 + Ze)

]]
.

(34)

Let ∂Ve[R(e)]
∂θ2

= 0:

Ee

[
(Ce

1
⊤Ce

2
′ + Ce

2
⊤Ce

2
′ + Ce

2
′⊤Ce

1
⊤)θ1θ2 + (Ce

2
′)⊤Ce

2
′(θ2)

2 − 2(Ãe
k
X1)

⊤Ce
2
′θ2

]
Ee

[
(Ce

2
′⊤Ce

2θ2 − (Ãe
k
X1)

⊤Ce
2
′)
]
σ2

− Ee

[
Neσ2

(
Ce

1
⊤Ce

2θ1 + Ce
2
⊤Ce

2θ2 − (Ãe
k
X1)

⊤Ce
2 + tr((Ãe

k
)⊤Ãe

k
) +Ne + Ce

2
′⊤Ce

2
′σ2
)
(θ2)

2
]

= 0.
(35)

Plug Equation (33) in (35), we reach:[
Ee

[
Ne(Ãe

s
X1)

⊤(Ãe
s
X1)(θ1 + θ2)− (Ãe

k
X1)

⊤Ce
1

]
θ2σ

2 − Ee[ϵ
e⊤ϵeϵe⊤(Ãe

s
X1)]

]
Ee

(
(Ãe

s
X1)

⊤1Neθ2 − (Ãe
k
X1)

⊤1Ne

)
− Ee

[
Ne
(
(Ãe

s
X1)

⊤Ãe
s
X1(θ1 + θ2)− (Ãe

k
X1)

⊤Ãe
s
X1 + tr((Ãe

k
)⊤Ãe

k
) +Ne(1 + σ2)

)]
(θ2)

2

= 0.
(36)

Let c1 = Ee[(Ãe
s
X1)

⊤(Ãe
s
X1)], c2 = Ee[Ne(Ãe

s
X1)

⊤Ãe
s
X1], c3 = Ee[(Ãe

s
X1)

⊤1],

c4 = Ee[((Ãe
k
X1)

⊤1], c5 = Ee[Ne((Ãe
k
X1)

⊤Ãe
s
X1 + tr((Ãe

k
)⊤Ãe

k
) + Ne(1 + σ2))],

c6 = Ee[(Ãe
s
X1)

⊤(Ãe
k
X1)], c7 = Ee[ϵ

e⊤ϵeϵe⊤(Ãe
s
X1)],
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we conclude that

{
(3c1θ1θ2 + c1(θ2)

2 − 2c6θ2)σ
2 − Ee[N

e(2c1(θ1 + θ2)− c6)]σ
2θ2 + c7 = 0

(Ee[N
e(2c1(θ1 + θ2)− c6)]σ

2θ2 − c7)(c3θ2 − c4)− [c2(θ1 + θ2)− c5](θ2)
2 = 0

. (37)

As for the derivative respect to θ11
(l), θ21

(l), θ12
(l),θ22

(l), when they take the special value in (27), we
have ∂Ve[R(e)]

∂θ1
⇒ θ11

(l)
= θ21

(l)
= 0 and ∂Ve[R(e)]

∂θ2
⇒ θ12

(l)
= θ22

(l)
= 0, l = 1, ..., L So we conclude

the solution induced by 37 is the solution of the objective.

E.1.2 PROOF OF THE FAILURE CASE OF IRMV1 UNDER CONCEPT SHIFT

Proposition E.2. (IRMv1 will use spurious features) The objective minΘ Ee[∥∇w|w=1.0R(e)∥2]
has a solution that uses spurious features: θ1 =

Ee

{
(Ães

X1)
⊤(Ãek

1)
[
1⊤Ães

X1+(Ãek
X1)

⊤(Ãek
1)

]
+(1+σ2)(Ães

X1)
⊤1(Ãek

X1)
⊤1

}
(2+σ2)(Ee[Ães

]X1)⊤1

θ2 =
Ee

{
(Ães

X1)
⊤(Ães

X1)[1
⊤(Ãek

1)]+(Ães
X1)

⊤(Ãek
1)(1⊤Ães

X1)
}

(2+σ2)(Ee[Ães
]X1)⊤1

. (38)

when {θ11
(l)
, θ21

(l)
, θ12

(l)
, θ22

(l)} take the special values for some 0 < s < L:

Θ0 =


θ11

(l)
= 1, θ21

(l)
= 1, l = L− 1, ..., L− s+ 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− s, L− s− 1, ..., 1

θ12
(l)

= 0, θ22
(l)

= 1, l = L− 1, ..., 1

. (39)

Proof.
LIRMv1 = Ee

[
∥∇w|w=1.0En1,n2 [L(fΘ(Ae, Xe), Y e)]∥22

]
= Ee

[
2En1,n2

[(Ŷ e − Y e)⊤ϕ(Ae, Xe)]
]

= Ee

[
2En1,n2

[(
Ce

1θ1 + (Ce
2 + Ze)θ2 − Ãe

k
X1 − n1

)⊤
(Ce

1θ1 + (Ce
2 + Ze)θ2)

]]
= Ee

[
2En1,n2

[
Ce

1
⊤Ce

1(θ1)
2 + 2Ce

1
⊤(Ce

2 + Ze)θ1θ2 + Ce
2
⊤Ce

2(θ2)
2
]]

− Ee

[
2En1,n2

[
(Ãe

k
X1 + n1)

⊤Ce
1θ1 − ((Ãe

k
X1) + n1)

⊤(Ce
2 + Ze)θ2

]]
.

(40)
Take the derivative of LIRMv1 w.r.t. θ1 and θ2:{

∂LIRMv1
∂θ1

= Ee[2En1,n2
[Ce

1
⊤Ce

1θ1 + 2Ce
1
⊤(Ce

2 + Ze)θ2 − ((Ãe
k
X1) + n1)

⊤Ce
1 ]]

∂LIRMv1
∂θ2

= Ee[2En1,n2
[Ce

2
⊤Ce

2θ2 + 2Ce
1
⊤(Ce

2 + Ze)θ1 − ((Ãe
k
X1) + n1)

⊤(Ce
2 + Ze)e]]

.

(41)
For brevity, let a = Ce

1
⊤Ce

1θ1, b = Ce
1
⊤(Ce

2 + Ze), c = ((Ãe
k
X1) + n1)

⊤Ce
1 , d = Ce

2
⊤Ce

2 ,

e = ((Ãe
k
X1) + n1)

⊤(Ce
2 + Ze)e. By letting {θ11

(l)
, θ21

(l)
, θ12

(l)
, θ22

(l)} take the values of Θ0, let
the derivative w.r.t. θ1 and θ2 to be zero, we have{

∂LIRMv1
∂θ1

= ac−be
2(a2−b2)

∂LIRMv1
∂θ2

= ae−bc
2(a2−b2)

. (42)

Also, when {θ11
(l)
, θ21

(l)
, θ12

(l)
, θ22

(l)} take the values of Θ0, we have
∂LIRMv1

∂θ1
=

∂LIRMv1

∂θ11
(l)

=
∂LIRMv1

∂θ21
(l)

= 0

∂LIRMv1

∂θ2
=

∂LIRMv1

∂θ12
(l)

=
∂LIRMv1

∂θ22
(l)

= 0

(43)
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E.1.3 PROOF OF THE SUCCESSFUL CASE OF CIA UNDER CONCEPT SHIFT

Proposition E.3. Optimizing the CIA objective will lead to the optimal solution Θ∗:
θ1 = 1

θ2 = 0 or ∃l ∈ {1, ..., L− 1} s.t. θ12
(l)

= θ22
(l)

= 0

θ11
(l)

= 1, θ21
(l)

= 1, l = L− 1, ..., L− k + 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− k, L− k − 1, ..., 1

. (44)

Proof. For brevity, denote a node representation of Ce
1c as Ci

1 and the one of Ce′

1 c as Cj
1 . The same

is true for Ci
2 and Cj

2 . In this toy model, we need to consider the expectation of the noise, while
in real cases such noise is included in the node features so taking expectation on e will handle this.
Therefore, we add En1,n2 in this proof, and this expectation is excluded in the formal description of
the objective in the main paper.

LCIA = E e,e′

e ̸=e′
En1,n2EcE i,j

(i,j)∈Ωe,e′

[
D(ϕΘ(A

e, Xe)[c][vi], ϕΘ(A
e, Xe′)[c][vj ])

]
= E e,e′

e ̸=e′
En1,n2

EcE i,j

(i,j)∈Ωe,e′
∥Ci

1θ1 + (Ci
2 + Ze)θ2 − Cj

1θ1 − (Cj
2 + Ze′)θ2∥22

(45)

∂LCIA

∂θ1
= E e,e′

e ̸=e′
En1,n2EcE i,j

(i,j)∈Ωe,e′

[
Ci

1θ1 + (Ci
2 + Ze)θ2 − Cj

1θ1 − (Cj
2 + Ze′)θ2

]⊤
(Ci

1−Cj
1)

(46)
Let ∂LCIA

∂θ1
= 0, we have:

E e,e′

e ̸=e′
EcE i,j

(i,j)∈Ωe,e′

[
(Ci

1 − Cj
1)

⊤(Ci
1 − Cj

1)θ1 + (Ci
2 − Ck

2 )
⊤(Ci

1 − Cj
1)θ2

]
= 0 (47)

Also, we have:

∂LCIA

∂θ2
= E e,e′

e ̸=e′
EcE i,j

(i,j)∈Ωe,e′

[
(Ci

1 − Cj
1)

⊤(Ci
2 − Cj

2)θ1 +
[
(Ci

2 − Ck
2 )

⊤(Ci
2 − Cj

2) + (Ze − Ze′)⊤(Ze − Ze′)
]
θ2

]
(48)

Further let ∂LCIA
∂θ2

= 0, combining Equation (47), we get{
θ1 = 0 or ∃l ∈ {1, ..., L− 1} s.t. θ11

(l)
= θ21

(l)
= 0

θ2 = 0
. (49)

or, if θ1 ̸= 0 and ∀l ∈ {1, ..., L − 1}, the parameters of that layer l of the invariant branch of the
GNN are not all zero: θ11

(l) ̸= 0 or θ21
(l) ̸= 0 , then we get

θ2 E e,e′

e ̸=e′
EcE i,j

(i,j)∈Ωe,e′

[
− [(Ci

1 − Cj
1)

⊤(Ci
2 − Cj

2)]
2

(Ci
1 − Cj

1)
⊤(Ci

1 − Cj
1)

+ (Ci
2 − Cj

2)
⊤(Ci

2 − Cj
2) + (Ze − Ze′)⊤(Ze − Ze′)

]
︸ ︷︷ ︸

F

= 0

(50)
Due to the property of the inner product, F > 0 unless ∃l ∈ {1, ..., L− 1} s.t. θ12

(l)
= θ22

(l)
= 0. To

ensure ∂LCIA
∂θ2

, we conclude that θ2 = 0 or ∃l ∈ {1, ..., L− 1} s.t. θ12
(l)

= θ22
(l)

= 0.

In conclusion, to satisfy the constraint of CIA, no matter whether the invariant branch has zero
output, the spurious branch must have zero parameters, i.e.,

θ2 = 0 or ∃l ∈ {1, ..., L− 1} s.t. θ12
(l)

= θ22
(l)

= 0 (51)

Thus, CIA will remove spurious features.
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Now we show that when CIA objective has been reached (the spurious branch has zero outputs), the
objective of minΘ Ee[L(fΘ(Ae, Xe), Y e)] will help to learn predictive paramters of the invariant
branch θ1, θ11

(
l) and θ21

(
l). When Equation (51) holds,

∂Ee[L(fΘ(Ae, Xe), Y e)]

∂θ1
= 2EeEn1,n2

[(
Ce

1θ1 − Ãe
k
X1 − n1

)⊤
Ce

1

]
= 2Ee

[(
Ce

1θ1 − Ãe
k
X1

)⊤
Ce

1

] (52)

Let ∂Ee[L(fΘ(Ae,Xe),Y e)]
∂θ1

= 0, we get the predictive parameters
θ1 = 1

θ11
(l)

= 1, θ21
(l)

= 1, l = L− 1, ..., L− k + 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− k, L− k − 1, ..., 1

. (53)

Plug the final solution back in ∂LCIA

∂θ1
1
(l) , ∂LCIA

∂θ2
1
(l) , ∂LCIA

∂θ1
2
(l) , ∂LCIA

∂θ2
2
(l) , ∂Ee[L(fΘ(Ae,Xe),Y e)]

∂θ1
1
(l) ,

∂Ee[L(fΘ(Ae,Xe),Y e)]

∂θ2
1
(l) , ∂Ee[L(fΘ(Ae,Xe),Y e)]

∂θ1
2
(l) , ∂Ee[L(fΘ(Ae,Xe),Y e)]

∂θ2
2
(l) , we can verify that these

terms are all 0.

E.2 PROOF OF THE COVARIATE SHIFT CASE

E.2.1 PROOF OF THE FAILURE CASE OF VREX UNDER COVARIATE SHIFT

Proof. We will use some symbols to simplify the expression of the toy GNN. Denote n2 + ϵe as η.
Use the following notations to represent the components of the L-layer GNN model:

fΘ(A,X) = H
(L)
1 θ1 +H

(L)
2 θ2

=
[
θ11

(L−1)
Ā
(
...θ11

(3)
(
θ11

(2)
Ā(θ11

(1)
Ā+ θ21

(1)
Ī)X1 + θ21

(2)
(θ11

(1)
Ā+ θ21

(1)
Ī)X1

)
+ ...

)]
︸ ︷︷ ︸

C1

θ1

+
[
θ12

(L−1)
Ā
(
...θ12

(3)
(
θ12

(2)
Ā(θ12

(1)
Ā+ θ22

(1)
Ī)η + θ22

(2)
(θ12

(1)
Ā+ θ22

(1)
Ī)η
)
+ ...

)]
︸ ︷︷ ︸

Z

θ2

= C1θ1 + Zθ2.
(54)

C1, Z ∈ RN×1. We use Ce
1 and Ze to denote the variables from the corresponding environment e.

We further denote Ze = Ce
2
′η.

Using these notations, the loss of environment e is

R(e) = En1,n2

[
∥fΘ(Ae, Xe)− Y e∥22

]
= En1,n2

[∥∥∥Ce
1θ1 + Zeθ2 − Ãe

k
X1 − n1

∥∥∥2
2

]
.

(55)

Denote the inner term Ce
1θ1 + Zeθ2 − Ãe

k
X1 − n1 as le.

The variance of loss across environments is:

Ve[R(e)] = Ee[R
2(e)]− E2

e[R(e)]

= Ee

[(
En1,n2

∥∥∥Ce
1θ1 + Zeθ2 − Ãe

k
X1 − n1

∥∥∥2
2

)2
]

− E2
e

[
En1,n2

∥∥∥Ce
1θ1 + Zeθ2 − Ãe

k
X1 − n1

∥∥∥2
2

]
.

= Ee

[
En1,n2

[
(l⊤e le)

2
]]

− E2
e

[
En1,n2

[
l⊤e le

]]
.

(56)
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Take the derivative of Ve[R(e)] with respect to θ1:

∂Ve[R(e)]

∂θ1
= Ee

[
2En1,n2

[
l⊤e le

]
En1,n2

[
2l⊤e C

e
1

]]
− 2Ee

[
En1,n2

[
l⊤e le

]]
Ee

[
En1,n2

[
2l⊤e C

e
1

]] (57)

Calculate the derivative by terms:

En1,n2
[l⊤e le] = En1,n2

[Ce
1
⊤Ce

1(θ1)
2 + Ce

1
⊤Zeθ1θ2 − Ce

1
⊤Ãe

k
X1θ1 − Ce

1
⊤n1θ1

+ Ze⊤Ce
1θ1θ2 + Ze⊤Ze(θ2)

2 − Ze⊤Ãe
k
X1θ2 − Ze⊤n1θ2

− (Ãe
k
X1)

⊤Ce
1θ1 − (Ãe

k
X1)

⊤Zeθ2 + (Ãe
k
X1)

⊤Ãe
k
X1

+ (Ãe
k
X1)

⊤n1 − n⊤
1 C

e
1θ1 − n⊤

1 Z
eθ2 + n⊤

1 Ã
e
k
X1 + n⊤

1 n1]

(58)

Since n1 and n2 are independent standard Gaussian noise, we have En1,n2
[n1] = En1,n2

[n2] = 0,
En1,n2

[n⊤
1 n2] = En1,n2

[n⊤
2 n1] = 0 and En1,n2

[n⊤
1 n1] = En1,n2

[n⊤
2 n2] = Ne if it is the noise

from e. Also, since ϵe and n1, n2 are independent, we have En1,n2
[n⊤

1 ϵ
e] = En1,n2

[n⊤
2 ϵ

e] = 0.

When 
θ11

(l)
= 1, θ21

(l)
= 1, l = L− 1, ..., L− s+ 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− s, L− s− 1, ..., 1

θ12
(l)

= 0, θ22
(l)

= 1, l = L− 1, ..., 1

, (59)

we have Ce
2
′ = INe ∈ RNe×Ne

and Ce
1 = Ãe

s
X1. Consequently, we get En1,n2

[Ze⊤n1] = 0,
En1,n2 [Z

e⊤Ze] = Ne + ϵe⊤ϵe.

Use the above conclusions and rewrite Equation (58) as (here we only plug in the value of Ce
2
′):

En1,n2
[l⊤e le] =

Ce
1
⊤Ce

1(θ1)
2 − Ce

1
⊤Ãe

k
X1θ1

−(Ãe
k
X1)

⊤Ce
1θ1 + (Ãe

k
X1)

⊤Ãe
k
X1 +Ne

(
1 + (θ2)

2
)} (∗)

+[Ce
1
⊤ϵe + ϵe⊤Ce

1 ]θ1θ2 + ϵe⊤ϵe(θ2)
2 − 2(Ãe

k
X1)

⊤ϵeθ2

}
(∗∗),

(60)

(∗) and (∗∗) represent terms that are independent and associated with ϵe, respectively.

Additionally,
En1,n2 [2l

⊤
e C

e
1 ] = 2

[
Ce

1
⊤Ce

1θ1 + ϵe⊤Ce
1θ2 − (Ãe

k
X1)

⊤Ce
1

]
.

(61)

Multiplying Equation (60) and (61) and take the expectation on e, using the assumption that
Ee[(ϵ

e
i)

2] = σ2 (ϵei is the i-th element of ϵe):

Ee

[
2En1,n2 [l

⊤
e le]En1,n2

[
2l⊤e C1

]]
= 4Ee

[
(∗)
(
Ce

1
⊤Ce

1θ1 − (Ãe
k
X1)

⊤Ce
1

)]
+ 4Ee

[
(Ãe

s
X1)

⊤Ãe
s
X1(2θ1θ2 + (θ2)

2)− 2(Ãe
s
X1)

⊤(Ãe
k
X1)θ2

]
θ2σ

2

+ 4Ee[N
eϵe⊤ϵeϵe⊤(Ãe

s
X1)]θ2.

(62)

Next target is to compute 2Ee[En1,n2
[l⊤e le]] and Ee[En1,n2

[2l⊤e C1]] Since ϵe has zero mean, we
have:

2Ee[En1,n2 [l
⊤
e le]] = E[(∗)] + E[2Ne]σ2(θ2)

2 (63)
and

Ee[En1,n2
[2l⊤e C

e
1 ]] = 2Ee

[
Ce

1
⊤Ce

1θ1 − (Ãe
k
X1)

⊤Ce
1

]
. (64)
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Use Equation (62) (63) and (64) and let ∂Ve[R(e)]
∂θ1

= 0, we have:

Ee

[
2(Ãe

s
X1)

⊤(Ãe
s
X1)(θ1θ2 +

1

2
(θ2)

2)− 2(Ãe
s
X1)

⊤(Ãe
k
X1)θ2

]
σ2 + Ee[ϵ

e⊤ϵeϵe⊤(Ãe
s
X1)]

−Ee[N
e]Ee

[
(Ãe

s
X1)

⊤(Ãe
s
X1)θ1 − (Ãe

k
X1)

⊤Ce
1

]
θ2σ

2 = 0.

(65)

Now we start calculating the expression of ∂Ve[R(e)]
∂θ2

:

∂Ve[R(e)]

∂θ2
= Ee

[
2En1,n2

[
l⊤e le

]
En1,n2

[
2l⊤e Z

e
]]

− 2Ee

[
En1,n2

[
l⊤e le

]]
Ee

[
En1,n2

[
2l⊤e Z

e
]]

.

(66)

Let ∂Ve[R(e)]
∂θ2

= 0:

Ee

[
(Ce

1
⊤Ce

2
′ + Ce

2
′⊤Ce

1
⊤)θ1θ2 + (Ce

2
′)⊤Ce

2
′(θ2)

2 − 2(Ãe
k
X1)

⊤Ce
2
′θ2

]
Ee

[
(−(Ãe

k
X1)

⊤Ce
2
′)
]
σ2

− Ee

[
Neσ2

(
tr((Ãe

k
)⊤Ãe

k
) +Ne + Ce

2
′⊤Ce

2
′σ2
)
(θ2)

2
]

= 0.
(67)

Plug Equation (65) in (67), we reach:[
Ee

[
Ne(Ãe

s
X1)

⊤(Ãe
s
X1)θ1 −Ne(Ãe

k
X1)

⊤Ce
1

]
θ2σ

2 − Ee[ϵ
e⊤ϵeϵe⊤(Ãe

s
X1)]

]
Ee

(
−(Ãe

k
X1)

⊤1Ne

)
− Ee

[
Ne
(

tr((Ãe
k
)⊤Ãe

k
) +Ne(1 + σ2)

)]
(θ2)

2

= 0.
(68)

Let c1 = E[(Ãe
s
X1)

⊤(Ãe
s
X1)], c2 = E[(Ãe

s
X1)

⊤(Ãe
k
X1)],

c3 = Ee[ϵ
e⊤ϵeϵe⊤(Ãe

s
X1)]σ

2,c4 = Ee

[
(Ãe

k
X1)

⊤1Ne

]
σ2, c5 =

Ee

[
Ne
(

tr((Ãe
k
)⊤Ãe

k
) +Ne(1 + σ2)

)]
,

we conclude that{
c1σ

2(2θ1θ2 + (θ2)
2 − 2c2σ

2θ2) + c3 − Ee[N
e]c1σ

2θ1θ2 + Ee[N
e]c2σ

2θ2 = 0[
c3 − Ee[N

e]c1σ
2θ1θ2 + Ee[N

e]c2σ
2θ2
]
c4 − c5(θ2)

2 . (69)

As for the derivative respect to θ11
(l), θ21

(l), θ12
(l),θ22

(l), when they take the special value in (59), we
have ∂Ve[R(e)]

∂θ1
⇒ θ11

(l)
= θ21

(l)
= 0 and ∂Ve[R(e)]

∂θ2
⇒ θ12

(l)
= θ22

(l)
= 0, l = 1, ..., L So we conclude

the solution induced by 69 is the solution of the objective.

E.2.2 PROOF OF THE FAILURE CASE OF IRMV1 UNDER COVARIATE SHIFT

Proof.
LIRMv1 = Ee

[
∥∇w|w=1.0En1,n2

[L(fΘ(Ae, Xe), Y e)]∥22
]

= Ee

[
2En1,n2 [(Ŷ

e − Y e)⊤ϕ(Ae, Xe)]
]

= Ee

[
2En1,n2

[(
Ce

1θ1 + Zeθ2 − Ãe
k
X1 − n1

)⊤
(Ce

1θ1 + Zeθ2)

]]
= Ee

[
2En1,n2

[
Ce

1
⊤Ce

1(θ1)
2 + 2Ce

1
⊤Zeθ1θ2

]]
− Ee

[
2En1,n2

[
(Ãe

k
X1 + n1)

⊤Ce
1θ1 − (Ãe

k
X1 + n1)

⊤Zeθ2

]]
.

(70)
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Take the derivative of LIRMv1 w.r.t. θ1:

∂LIRMv1

∂θ1
= Ee[2En1,n2 [C

e
1
⊤Ce

1θ1 + 2Ce
1
⊤Zeθ2 − ((Ãe

k
X1) + n1)

⊤Ce
1 ]], (71)

Let it be zero, we get θ1 = Ee[(Ãek
X1)

⊤(Ãe2k
X1)]

Ee[(Ãe2k
X1)⊤(Ãe2k

X1)]

Take the derivative of LIRMv1 w.r.t. θ2:

∂LIRMv1

∂θ2
= Ee[2En1,n2 [2C

e
1
⊤Zeθ1 − ((Ãe

k
X1) + n1)

⊤Ze]] ≡ 0 (72)

Also, when {θ11
(l)
, θ21

(l)
, θ12

(l)
, θ22

(l)} take the values of Θ0, we have

∂LIRMv1

∂θ1
=

∂LIRMv1

∂θ11
(l)

=
∂LIRMv1

∂θ21
(l)

= 0

∂LIRMv1

∂θ2
=

∂LIRMv1

∂θ12
(l)

=
∂LIRMv1

∂θ22
(l)

= 0

(73)

E.3 PROOF OF THE SUCCESSFUL CASE OF CIA UNDER COVARIATE SHIFT

Proof. For brevity, denote a node representation of Ce
1c as Ci

1 and the one of Ce′

1 c as Cj
1 . The same

is true for Ci
2 and Cj

2 . In this toy model, we need to consider the expectation of the noise, while
in real cases such noise is included in the node features so taking expectation on e will handle this.
Therefore, we add En1,n2

in this proof, and this expectation is excluded in the formal description of
the objective in the main paper.

LCIA = E e,e′

e ̸=e′
En1,n2EcE i,j

(i,j)∈Ωe,e′

[
D(ϕΘ(A

e, Xe)[c][vi], ϕΘ(A
e, Xe′)[c][vj ])

]
= E e,e′

e ̸=e′
En1,n2

EcE i,j

(i,j)∈Ωe,e′
∥Ci

1 + Ze − Cj
1 − Ze′∥22

(74)

∂LCIA

∂θ1
= E e,e′

e ̸=e′
En1,n2

EcE i,j

(i,j)∈Ωe,e′

[
Ci

1θ1 + Zeθ2 − Cj
1θ1 − Ze′θ2

]⊤
(Ci

1 − Cj
1) (75)

Let ∂LCIA
∂θ1

= 0, we have:

E e,e′

e ̸=e′
EcE i,j

(i,j)∈Ωe,e′

[
(Ci

1 − Cj
1)

⊤(Ci
1 − Cj

1)θ1

]
= 0 (76)

Thus, we get two possible solutions of the invariant branch. The first valid solution is the optimal
one: 

θ1 = 1

θ11
(l)

= 1, θ21
(l)

= 1, l = L− 1, ..., L− k + 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− k, L− k − 1, ..., 1

. (77)

The second valid solution is a trivial one:{
θ1 = 0 or ∃l ∈ {1, ..., L− 1} s.t. θ11

(l)
= θ21

(l)
= 0 . (78)

Take the derivative of the objective w.r.t. θ2:

∂LCIA

∂θ2
= E e,e′

e ̸=e′
EcE i,j

(i,j)∈Ωe,e′

[[
(Ze − Ze′)⊤(Ze − Ze′)

]
θ2

]
= 2(1 + σ2)θ2 (79)

Let ∂LCIA
∂θ2

= 0, we get θ2 = 0. Thus, CIA will remove spurious features.
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Now we show that when CIA objective has been reached (the spurious branch has zero outputs), the
objective of minΘ Ee[L(fΘ(Ae, Xe), Y e)] will help to learn predictive parameters of the invariant
branch θ1, θ11

(
l) and θ21

(
l). When θ2 = 0:

∂Ee[L(fΘ(Ae, Xe), Y e)]

∂θ1
= 2EeEn1,n2

[(
Ce

1θ1 − Ãe
k
X1 − n1

)⊤
Ce

1

]
= 2Ee

[(
Ce

1θ1 − Ãe
k
X1

)⊤
Ce

1

] (80)

Let ∂Ee[L(fΘ(Ae,Xe),Y e)]
∂θ1

= 0, we get the predictive parameters
θ1 = 1

θ11
(l)

= 1, θ21
(l)

= 1, l = L− 1, ..., L− k + 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− k, L− k − 1, ..., 1

. (81)

Plug the final solution back in ∂LCIA

∂θ1
1
(l) , ∂LCIA

∂θ2
1
(l) , ∂LCIA

∂θ1
2
(l) , ∂LCIA

∂θ2
2
(l) , ∂Ee[L(fΘ(Ae,Xe),Y e)]

∂θ1
1
(l) ,

∂Ee[L(fΘ(Ae,Xe),Y e)]

∂θ2
1
(l) , ∂Ee[L(fΘ(Ae,Xe),Y e)]

∂θ1
2
(l) , ∂Ee[L(fΘ(Ae,Xe),Y e)]

∂θ2
2
(l) , we can verify that these

terms are all 0.
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