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Abstract
We present the analysis of feature learning in neural networks when target functions are defined by
periodic functions applied to one-dimensional projections of the input. Previously, Damian et al. [2]
considered a similar question for target functions of the form f∗(x) = p∗(⟨u1, x⟩, . . . , ⟨ur, x⟩) for
some vectors u1, . . . , ur ∈ Rd and polynomial p∗, and proved that feature learning occurs during
the training of a shallow neural network, even when the first-layer weights of the network are
updated only once during training. Here feature learning refers to a subset of the first-layer weights
w1, . . . , wm ∈ Rd of the trained network being in the same directions as {u1, . . . , ur}. We show
that for periodic target functions, the same single gradient-based update of the first-layer weights
induces feature learning of a shallow neural network, despite the additional challenge that feature
learning for periodic functions now involves both directions and magnitudes of {u1, . . . , ur}: a
useful feature of, say, f∗(x) = sin(⟨u, x⟩) is a vector w ∈ Rd such that ∠(w, u) ≈ 0 and ∥w∥ ≈
∥u∥. Our theoretical result shows that the sample complexity for learning a periodic target function
of limited form using a shallow neural network grows polynomially with the input dimension,
due to feature learning of the gradient-based training. Experimental results further support our
theoretical finding, and illustrate the benefits of feature learning for a broader class of periodic
target functions.

1. Introduction

Recent advances in deep learning theory have provided answers to several fundamental questions re-
garding the training and generalisation of deep neural networks. For instance, for over-parameterised
networks, researchers have shown that the gradient-based training achieves a global optimum al-
though the training objective is not convex [13]. Also, researchers have found ways to parameterise
neural networks and their training algorithms so as to promote feature learning [17], and have come
up with theoretical explanations on several puzzling phenomena of network training, such as double
descent [11] and grokking [10].

In this paper, we focus on the analysis of feature learning. We build on the work of Damian
et al. [2] who analysed feature learning from the perspective of sample complexity and showed
the importance of a large learning rate for feature learning. Concretely, they considered shallow
neural networks with one hidden layer, and studied a training scheme where the first step of training
updates the weights of the first-layer only based on gradients, and the subsequent steps change the
weights of the second-layer only until convergence. They showed that although the weights of
the first-layer get updated only once in their setup, if the learning rate is large enough, this single
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Algorithm 1 Layerwise training algorithm with learning rates η1, η2 > 0, regularisation coefficients
λ1, λ2 > 0, max update step T > 0, and training dataset {(xi, yi)}Ni=1.

W (1) =W (0) − η1∇W (0)

(
1
2N

∑N
j=1(yj − f(xj ;A

(0),W (0)))2 + λ1
2 ∥W (0)∥2

)
for t = 1, ..., T do

A(t) = A(t−1) − η2∇A(t−1)

(
1
2N

∑N
j=1(yj − f(xj ;A

(t−1),W (1)))2 + λ2
2 ∥A(t−1)∥2

)
end

update is still good enough to induce the learning of useful features, which in turn lets their training
algorithm achieve a better sample complexity than kernel-based alternatives. This result is for a
particular class of target functions f∗ that have the following form:

f∗ : Rd → R, f∗(x) = g∗(⟨u1, x⟩, . . . , ⟨ur, x⟩), (1)

for some integers r ≪ d, vectors u1, . . . , ur ∈ Rd, and a polynomial g∗. That is, f∗ is a polynomial
on a low-dimensional projection of the input.

Our goal is to analyse feature learning when a target function f∗ to learn is a periodic function
applied to a low-dimensional projection of the input. This means that in our case, the target function
f∗ has the form of Equation (1) except that g∗ is not a polynomial but a periodic function. Note that
since f∗ is defined by means of a periodic function, the results of Damian et al. [2] do not apply
here. More importantly, because of the use of a periodic function, learning a useful feature in our
setup is more difficult than learning such a feature in the setup of Damian et al. [2]. In the latter
setup, it is enough to approximate the directions of u1, . . . , ur in Equation (1) well, but in the former
setup, we need to have good approximations of both the directions and magnitudes of u1, . . . , ur.

In this paper, we report the preliminary results that assume the target function has the form
f∗(x) = h∗(sin(⟨u, x⟩)) for some u ∈ Rd and a polynomial h∗ with odd-degree terms only. For the
case that h∗ is the identity function, we formally show that one gradient-based update step of the
first-layer weights of a neural network is still good enough to induce the learning of useful features,
i.e., those that describe both the direction and the magnitude of u well. We prove that when the first-
layer weights of the network are updated once based on gradients, the number of samples needed to
learn the target function grows polynomially with respect to the input dimension d. We also report
the results of our experiments that confirm our formal result for the case of the identity h∗, and also
show experimentally the presence of feature learning and its benefit for more general h∗’s.

2. Setup

Let Sd−1 be the unit sphere in Rd (i.e., Sd−1 = {x ∈ Rd : ∥x∥ = 1}). We assume that the
input x has the distribution x ∼ N(0, Id), and the target function f∗ : Rd → R is of the form
f∗(x) = h∗(sin(⟨u, x⟩)) for some u ∈ Rd and a function h∗ : R → R. Note that the norm of
u is not fixed, and changing u by 2u induces a dramatic change of f∗ because sin(b) and sin(2b)
have very different periods. Our theoretical results make a further assumption that h∗ is the identity
function, but our experimental results consider general h∗, polynomials consisting only odd-degree
terms. This choice of odd polynomials allow us to rewrite h∗(sin(b)) by linear combination of
sin((2k − 1)b) for k = 1, 2, . . . with application of the trigonometric law.

Our model is a shallow neural network defined by f(x; {wi, ai}mi=1) =
∑m

i=1 ai sin(⟨wi, x⟩)
for each input x ∈ Rd. Here m is an even integer, denoting the width of the network, and the
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wi ∈ Rd and ai ∈ R are network parameters. We assume the following initialisation of the network
parameters: w(0)

i
i.i.d.∼ P , w(0)

i+(m/2) = w
(0)
i , a(0)i

i.i.d.∼ Unif({±1}), and a(0)i+m/2 = −a(0)i for all
i = 1, . . . ,m/2. Here P is some spherically symmetric distribution; for the details about P , see
Section A of the supplementary materials. This initialisation is similar to the one used by Damian
et al. [2], and it guarantees that f is the constant zero function at initialisation. For each training
step t ≥ 0, we write W (t) = (w

(t)
1 , . . . , w

(t)
m ) and A(t) = (a

(t)
1 , . . . , a

(t)
m ) to mean, respectively, a

tuple of the wj’s and that of the aj’s at step t.
The training algorithm for network parameters is given in Algorithm 1, which is a simplified

version of the training algorithm used by Damian et al. [2]. The algorithm minimises the L2-
regularised mean-squared error (MSE) using the full-batch gradient descent (GD). Concretely, it
starts by updating the parameters W of the first-layer once based on the gradient of the loss. The
learning rate of this update is η1, and the hyperparameter λ1, multiplied to the L2 regulariser ∥W∥2
in the loss, is set to 1/η1. Then, the algorithm repeatedly updates the parameters of the second-layer
A again based on the gradient of the regularised MSE loss. This time the regulariser is only for the
second-layer parameters, and the algorithm uses a new learning rate η2. The number of repetition
T and the learning rate η2 are chosen, respectively, large enough and small enough to ensure the
convergence of the updated second-layer parameters (within a small fixed error). For the value of the
other hyperparameter λ2, in our experiments, we used the one found by the usual hyperparameter
search with a separated validation set.

3. Theoretical Result

Our theoretical results are summarised by the following theorem. Ω̃d,ϵ,δ is the standard big-Omega
notation where subscript denotes the asymptotic variables, ignoring the (poly-)logarithmic factors.

Theorem 1 Let {(xi, yi)}Ni=1 be the training set. Assume that the target function has the form
f∗(x) = sin(⟨u, x⟩) for some u ∈ Rd with ∥u∥ ≤ 2. Suppose that the xi’s are i.i.d. samples
from the d-dimensional standard normal distribution xi ∼ N (0, Id) and yi = f∗(xi) for all i. Fix
sufficiently small δ > 0 and ϵ > 0. If the learning rate η1 of first step, the number N of samples,
the width m of the neural network f satisfy η1 ≥ exp(∥u∥2/2), m ≥ Ω̃d,ϵ,δ(log(1/δ)ϵ

−4), and
N ≥ Ω̃d,ϵ,δ(d(log(1/δ))

2ϵ−8 + δ−2) for some large enough C > 0, then there exists some T0 > 0
such that for all T ≥ T0, the parameters (A(T ),W (1)) of the network learnt by Algorithm 1 with T
iterations of its for-loop satisfies

1

2
· Ex∼N (0,Id)

[(
f∗(x)− f(x;A(T ),W (1))

)2]
≤ ϵ (2)

with probability at least 1− δ. Here the probability is over the randomness of the sampled training
set {(xi, yi)}Ni=1 and the initialisation of network parameters.

The left-hand side of the inequality in Equation 2 is often referred to as risk. The theorem asserts that
a sufficiently wide neural network, trained with a sufficient number of training examples, exhibits
low risk with high probability. Notably, the required network width is independent of the input
dimension, indicating that a constant width is adequate for any input dimension. Additionally, the
number of required training samples increases linearly with the input dimension. In consequence, a
single gradient step suffices to alleviate the curse of dimensionality. The proof of the theorem can
be found in Section C of the supplementary material.
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Figure 1: (Top) MSE losses of the networks trained by Algorithm 1 and the RF networks for multi-
ple choices of input dimension d and learning rate η1. The black dashed line represents the
loss of the constant-zero predictor, and the stars the smallest losses achieved. (Bottom)
Minimum distances between first-layer weights and target feature u, i.e., mini ∥wi − u∥.

101 102 103 104 105

10 3

10 2

10 1

M
SE

 L
os

s

u = 1/2

101 102 103 104 105

10 3

10 2

10 1

u = 1

101 102 103 104 105

10 2

10 1

u = 2

Training Set Sizes

Figure 2: MSE losses of the networks trained by Algorithm 1 and the RF networks, for multiple
target features u and learning rates η1. We set d = 100. The black dashed line represents
the loss of the constant-zero predictor, and the stars the smallest losses achieved.

We conjecture that if we omit the first one-step gradient update of the first-layer weights in Al-
gorithm 1, which we call random-feature (RF) network, we cannot get the same width complexity as
the one in Theorem 1. The formal statement of this conjecture is given as Conjecture 13 in Section D
of the supplementary material, which also contains in-depth discussion about the conjecture.

4. Experimental Results

We describe the findings from our experiments. The first group of experiments are concerned with
the target function f∗(x) = sin(⟨u, x⟩) with ∥u∥ being 1/2, 1 or 2, and they aim at checking
the claim of Theorem 1. The next group of experiments consider the target function f∗(x) =
(sin(⟨u, x⟩))3, or He5(sin(⟨u, x⟩))/

√
5! with the same set of norms of u.1 They check whether the

claim of Theorem 1 holds for a wider class of target functions than those considered in the theorem.

1. He5(t) = t5 − 10t3 + 15t is the sixth Hermite polynomial.
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Figure 3: MSE losses of the networks trained by Algorithm 1 and the RF networks. The first row
is about f∗(x) = sin(⟨u, x⟩)3, and the second row f∗(x) = He5(sin(⟨u, x⟩))/

√
5!. The

columns correspond to the ∥u∥ = 1/2, 1, 2 cases. The black dashed lines represent the
loss of the constant-zero predictor, and the stars the smallest losses achieved.

In these two groups of experiments, we set the widths of neural networks to 1,000. By networks,
we mean both those trained by Algorithm 1 and the RF networks (considered in Conjecture 13)
whose first-layer weights are not trained. The experiments consider training sets of different sizes
N ∈ {10i, 3×10i : i = 1, 2, 3, 4, 5}, and input dimensions d ∈ {10, 30, 100, 300} for first group of
experiments and d = 100 for second group. The iteration number T of the for-loop of Algorithm 1
is set to 10,000, but is shortened during the training when the algorithm detects the convergence of
the training loss. The regularisation coefficient λ2 is selected based on the hyperparameter search
over the grid {2i/4}72i=−48 with the validation set of size 10,000. We repeated the experiments 5
times and plotted their results with 95% bootstrap confidence intervals.

Figures 1 and 2 show the results of the experiments in the first group under seven different
choices of the learning rate η1 for the one-step first-layer training of Algorithm 1. The plots in the
first row show the mean-squared-error (MSE) losses estimated with 100,000 samples, and those in
the second show the minimum L2 distance between the vector u of the target function (which can
be viewed as a feature used by the target function) and the weight wi of the neuron i in a neural
network; the minimum is taken over all the neurons in the network. When η1 is exp(0) or exp(1),
the networks with trained first and second layers (by Algorithm 1) outperform the RF networks in
terms of the MSE loss. Furthermore, the gaps between the losses of these two types of networks
grow as the input dimension increases. As expected, the RF networks do not learn the u vector of the
target function in their W parameters, but the networks trained by Algorithm 1 under appropriately
large η1 (namely, η1 ∈ {exp(0), exp(1), exp(2)}) learn the u vector in their W parameters. Since
we measure ∥u−wj∥, the learning here is concerned with both the direction and the magnitude of u.
Comparing the best performing learning rate in Figure 2, one can see that as the norm of u increases,
the larger learning rate performs better, as indicated in the condition of η1 of Theorem 1. Note the
slow-down in the decreases of the MSE losses of the RF networks in the later part of training (of
the second-layer parameters) when d > 10. This indicates the possibility that the RF networks have
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exponential sample complexities as conjectured (since all polynomial relationships appear as lines
in the log-log plots that we use here).

Figure 3 shows the results of the experiments in the second group, which are concerned with
general target functions not covered by Theorem 1. It shows clear performance gaps in terms of the
MSE loss between the networks trained by Algorithm 1 and the random feature networks.

5. Related Works and Future Works

After observing that theoretical predictions of over-parameterised neural networks often fail to de-
scribe the outcomes of practical network training [4, 7, 14], researchers studied alternative setups
to over-parameterisation, which are still simple enough to facilitate theoretical analysis. One such
alternative is a setup of Damian et al. [2] and Ba et al. [1], where the model is a shallow neural
network f(x) =

∑m
i=1 aiσ(⟨wi, x⟩ + bi) with its parameters being trained as in our paper, and the

target function has the form in Equation (1). Damian et al. [2] proved that while the models based
on rotation-invariant kernels cannot exploit the low-dimensional structure of the target function (i.e.,
r ≪ d) and their sample complexities increase as dp where p is degree of g∗, their neural-network
model can exploit the structure and have sample complexity d2r + drp. Ba et al. [1] considered a
similar setup where r = 1 and g∗ in Equation 1 is allowed to be a non-polynomial. They showed
that while the so-called random feature model or the models based on over-parameterised networks
do not perform better than the linear estimator asymptotically, their neural-network model (trained
by an algorithm similar to ours) exhibits performance improvement over the linear estimator by
learning higher-order features. Our work extends this line of research by studying periodic target
functions.

While our work goes beyond the existing research on feature learning, it is limited in that we
only analyse particular cases, and we have the same function for activation and target functions. As
in the results of the Yehudai and Shamir [19], one of our future directions is giving general results
for different activations and finding general conditions on the activation that allows feature learning.
Also, we assume that the input is distributed as standard Gaussian, which allows us to use existing
theory on the Gaussian expectations. It will be interesting to relax this assumption, like allowing
the input distribution to be only spherically symmetric.

Our work was motivated by the recent uses of periodic activation functions in neural networks.
Sitzmann et al. [15] used such functions in their work on the implicit representations of images
and 3D objects, and showed that those activation functions lead to the improvement in the qualities
of the reconstructed images and 3D objects over the baselines with ReLU and tanh. The neural
networks with periodic activation functions studied by Sitzmann et al. [15] are closely related to
a kernel similar to the RBF kernel, which is known to model high-frequency functions well. Li
and Pathak [8] proposed to regularise the learned function’s frequencies by including a periodic
embedding layer and controlling the initialisation of the parameters of the layer. Their approach has
been applied to the problem of modelling the reward function in RL under high-frequency noises and
mid- or low-frequency signals. Our results suggest the relevance of the theoretical and empirical
analysis of feature learning to these works on periodic activation functions. Similar approaches
suggest use of repeated application of Gabor or Fourier basis filter [3], and even infinite application
of them [6]. We conjecture that such iterative nature of these architectures allow the network learn
the high-frequency features thereby showing different feature learning behaviour compared to MLP.
Extending our analysis to such models is interesting future direction.
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Appendix A. Experiment Details

The experiments were done in 4 NVIDIA GeForce RTX 2080 Ti GPU and Intel(R) Xeon(R) Gold
6234 CPU @ 3.30GHz with 2 CPU and 512 GB RAM.

The initialisation distribution P is designed so that in asymptotics, w(1) has its norm’s distribu-
tion close to Unif([0, η exp(−∥u∥2/2)∥u∥]). The implementation of sampling from this distribution
is given as following:

w ∼ Unif(Sd−1), t ∼ Exp(λ = 0.5), w = w ×
√
t.

Appendix B. Additional Experiments
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Figure 4: Feature Learning under Larger Frequency: (Top) The MSE loss of experiments same
as Figure 1, but with ∥u∥ = 2. Black dashed line represents the risk of zero predictor.
(Bottom) The minimum distance between learned weight and target feature mini ∥w(1)

i −
u∥.

In this section, we report additional experiments. We first include the case where u is not unit
norm. Figure 4 is the case when ∥u∥ = 2, and Figure 5 is the case when ∥u∥ = 1/2. As stated
in Theorem 1, the required learning rate changes as ∥u∥ changes, but as long as the learning rate is
large enough, the feature learning occurs.

We finally give a preliminary version of our experiments to see whether our results generalise
beyond the single-index setting, i.e., the multi-index case

f∗(x) = sin(⟨u1, x⟩) + sin(⟨u2, x⟩).

We randomly sample u1, u2 ∼ Unif(Sd−1) where the input dimension d = 100. This gives orthog-
onal u1, u2 with high probability, so this randomness does not affect the result largely. As shown
in Figure 6, we can see the slight performance gap between networks trained with Algorithm 1 and
random feature networks, but the difference is not so dramatic. Note that the y-axis is a linear scale,
which is different to the figures in the main text.
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Figure 5: Feature Learning under Smaller Frequency: (Top) The MSE loss of experiments same
as Figure 1, but with ∥u∥ = 1/2. Black dashed line represents the risk of zero predictor.
The stars denote the smallest risk achieved. (Bottom) The minimum distance between
learned weight and target feature mini ∥w(1)

i − u∥.

Appendix C. Proof of Theorem 1

In this section, we will give proof of Theorem 1. Throughout the proof, we will use universal
constant C that is not consistently used, which means that multiple C can occur in the proof while
being their values distinct. Before giving the proof, we give a more detailed proof idea.

First assume that there exist infinitely many training samples so that we can compute the true
gradient of w:

g(w) :=
1

2
· ∇

w
(0)
i

E
x

[(
f(x;A(0),W (0))− f∗(x)

)2]

=E
x

cos(⟨w, x⟩)︸ ︷︷ ︸
∇wf(x;A,W )

sin(⟨u, x⟩)︸ ︷︷ ︸
f∗(x)

x


=E

x
[− sin(⟨w, x⟩) sin(⟨u, x⟩)w + cos(⟨w, x⟩) cos(⟨u, x⟩)u] ,

where we used Stein’s lemma in the last equality.
Applying the analytic form of these expressions (see Section 5.3 of [9]), we can get a closed-

form gradient

exp

(
−∥u∥2 + ∥w∥2

2

)
(cosh(⟨w, u⟩)u− sinh(⟨w, u⟩)w).

If one chooses w to be orthogonal to u or close to being orthogonal, one can see that

g(w) ≈ exp

(
−∥u∥2 + ∥w∥2

2

)
u.

The initialisation scheme (A) was chosen so that exp(−∥w∥2/2) has distribution Unif([0, 1]), so
with learning rate η1, this ideal gradient gives g(w) close to the Cu where

C ∈ [0, η1 exp(−∥u∥2/2)].

11
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Figure 6: Feature Learning for Multi-index: The MSE Loss of experiments same as Figure 1, but
with f∗(x) = sin(⟨u1, x⟩) + sin(⟨u2, x⟩). The input dimension d is set to 100. The stars
denote the smallest risk achieved.

To show this claim, we first show some properties of this g function.

Lemma 2 (Lipschitz-ness of Gradient) Let

g(w) = E[σ′(⟨w, x⟩)f∗(x)x],

then g(w) is 1-Lipschitz.

Proof Consider the fixed x case, i.e.,

ĝ1(w) = cos(⟨w, x⟩) sin(⟨u, x⟩)x.

We can take the derivative w.r.t. w, which gives

− sin(⟨w, x⟩) sin(⟨u, x⟩)xx⊺.

So, the Lipschitz constant of g can be upper bounded as

∥g∥Lip ≤
∥∥∥∥ E
x∼N (0,Id)

[− sin(⟨w, x⟩) sin(⟨u, x⟩)xx⊺]
∥∥∥∥

12



ANALYSING FEATURE LEARNING OF GRADIENT DESCENT USING PERIODIC FUNCTIONS

≤
∥∥∥∥ E
x∼N (0,Id)

[xx⊺]

∥∥∥∥
≤ ∥Id∥
= 1.

Lemma 3 (Boundedness of Gradient) Let

g(w) = E[σ′(⟨w, x⟩)f∗(x)x],

then g(w) is bounded, i.e.,
∥g(w)∥ ≤ 2∥u∥+ 1.

Proof We can upper bound each terms in the closed-form solution,

g(w) = exp

(
−∥w∥2 + ∥u∥2

2

)
(cosh(⟨w, u⟩)u− sinh(⟨w, u⟩)w) .

From
cosh(⟨w, u⟩) = cosh(|⟨w, u⟩|) ≤ cosh(∥w∥∥u∥) ≤ exp (∥w∥∥u∥) ,

we have ∥∥∥∥exp(−∥w∥2 + ∥u∥2

2

)
cosh(⟨w, u⟩)u

∥∥∥∥
≤ exp

(
−∥w∥2 + ∥u∥2 − 2∥w∥∥u∥

2

)
∥u∥

≤∥u∥.

For the second term, we can first upper bound by similar computation:

exp

(
−∥w∥2 + ∥u∥2

2

)
∥sinh(⟨w, u⟩)w∥ ≤ exp

(
−∥w∥2 + ∥u∥2

2

)
sinh(∥w∥∥u∥)∥w∥

≤ 1

2
exp

(
−∥w∥2 + ∥u∥2 − ∥w∥∥u∥

2

)
∥w∥

We can easily find the maximum of this term by taking the derivative w.r.t. ∥w∥, by substituting
∥w∥ with t,

d

dt
exp

(
− t

2 + ∥u∥2 − 2∥u∥t
2

)
t

=exp

(
− t

2 − 2∥u∥t+ ∥u∥2

2

)(
−t2 + ∥u∥t+ 1

)
,

setting this value to zero gives

t∗ =
∥u∥+

√
∥u∥2 + 4

2

13
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which gives an upper bound

exp

(
−1

2

(√
∥u∥2 + 4− ∥u∥

)2)
·
∥u∥+

√
∥u∥2 + 4

2
≤

∥u∥+
√
∥u∥2 + 4

2
≤ ∥u∥+ 1.

We now begin showing the first claim, that if w is close to being orthogonal to u, g(w) is similar
to u.

Lemma 4 (Gradient aligns with feature of target function) Let g(w) be the expected gradient
of the first-layer weight w at initialisation,

g(w) = E
x

[
σ′(⟨w, x⟩)f∗(x)x

]
.

If δ ≤ 1/∥u∥, then the existence of some v ∈ Rd satisfying

⟨v, u⟩ = 0, ∥v − w∥ ≤ δ,

implies ∥∥∥∥g(w)− exp

(
−∥w∥2 + ∥u∥2

2

)
u

∥∥∥∥ ≤ 3δ.

Proof We first have∥∥∥∥g(w)− exp

(
−∥w∥2 + ∥u∥2

2

)
u

∥∥∥∥
=exp

(
−∥w∥2 + ∥u∥2

2

)
∥cosh(⟨u,w⟩)u− u− sinh(⟨u,w⟩)w∥

≤ exp

(
−∥w∥2 + ∥u∥2

2

)
(∥cosh(⟨u,w⟩)u− u∥+ ∥sinh(⟨u,w⟩)w∥)

To bound the first term, we can relate the value by existence of vector v:

∥cosh(⟨u,w⟩)u− u∥
≤ |cosh(⟨u,w⟩)− 1| ∥u∥
≤ |cosh(⟨u,w − v⟩)− 1| ∥u∥
≤ |cosh(∥u∥∥w − v∥)− 1| ∥u∥

where we used the fact that cosh is increasing function, and cosh(x) ≥ 1 for any x. From the
assumption ∥w − v∥ ≤ δ, we can reduce further and

|cosh(∥u∥∥w − v∥)− 1| ∥u∥ ≤ |cosh(δ∥u∥)− 1| ∥u∥ ≤ δ∥u∥

assuming that δ∥u∥ ≤ 1, using numerical inequality x ≥ cosh(x)− 1 in 0 ≤ x ≤ 1.
For the second term, again we can introduce v and use the fact that sinh is increasing function

to have

∥sinh(⟨u,w⟩)w∥

14
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≤ |sinh(⟨u,w⟩)| ∥w∥
= |sinh(⟨u,w − v⟩)| ∥w∥
≤ |sinh(∥u∥∥w − v∥)| ∥w∥
≤2∥u∥δ∥w∥,

again assuming that δ∥u∥ ≤ 1 and numerical inequality sinh(x) ≤ 2x in 0 ≤ x ≤ 1.
Combining these two results, we have∥∥∥∥g(w)− exp

(
−∥w∥2 + ∥u∥2

2

)
u

∥∥∥∥ ≤ exp

(
−∥w∥2 + ∥u∥2

2

)
(∥u∥2 + 2∥u∥∥w∥)δ.

One can see that both

exp

(
−∥w∥2 + ∥u∥2

2

)
∥u∥2 ≤ 1,

exp

(
−∥w∥2 + ∥u∥2

2

)
∥u∥∥w∥ ≤ 1,

so we have ∥∥∥∥g(w)− exp

(
−∥w∥2 + ∥u∥2

2

)
u

∥∥∥∥ ≤ 3δ.

Lemma 5 Suppose that w follows distribution described in Section 2. Let ∥u∥ and η1 fixed, and
satisfy ϵ ≤ 2∥u∥. If

η1 ≥ exp

(
∥u∥2

2

)
,

then

P (∥η1g(w)− u∥ ≤ ϵ) ≥ ϵ2

12π2η21
√
2 log η1

.

for p only depending on η1 and ϵ.

Proof We use the result of Lemma 4. We bound the probability to choose ‘nearly orthogonal’
direction of u, and the probability of choosing appropriate η1 each. Formally, we introduce w′

which is dependent on w and proceed as following:

P (∥η1g(w)− u∥ ≤ ϵ) = P (∥η1g(w)− η1g(w
′) + η1g(w

′)− u∥ ≤ ϵ)

≥ P (∥η1g(w)− η1g(w
′)∥+ ∥η1g(w′)− u∥ ≤ ϵ)

≥ P (∥η1g(w)− η1g(w
′)∥ ≤ ϵ/2 ∧ ∥η1g(w′)− u∥ ≤ ϵ/2) ≥ p.

Here, we define w′ as follows.

w′ =
∥w∥
∥w⊥∥

w⊥, w⊥ = w − ⟨w, u⟩
∥u∥2

u.

15
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Then, w′ satisfies ⟨w′, u⟩ = 0 and ∥w′∥ = ∥w∥. We decompose the probability by introducing
conditional probability,

P (∥η1g(w)− η1g(w
′)∥ ≤ ϵ/2 ∧ ∥η1g(w′)− u∥ ≤ ϵ/2)

=P (∥η1g(w′)− u∥ ≤ ϵ/2)P
(
∥η1g(w)− η1g(w

′)∥ ≤ ϵ

2

∣∣∣ ∥η1g(w′)− u∥ ≤ ϵ

2

)
.

We will handle the first term, then consider the conditional probability. For the first term, we can
compute as

∥∥η1g(w′)− u
∥∥ =

∥∥∥∥η1 exp(−∥w∥2 + ∥u∥2

2

)
(cosh(0)u− sinh(0)w)− u

∥∥∥∥
=

∣∣∣∣η1 exp(−∥w∥2 + ∥u∥2

2

)∣∣∣∣ ∥u∥.
Since ∥w∥2 ∼ exp(1/2), we have

P

(
exp

(
−∥w∥2

2

)
≤ t

)
= P (∥w∥2 ≥ −2 log x)

= exp

(
−1

2
log x−2

)
= x,

which showing
exp(∥w∥2/2) ∼ Unif([0, 1]).

Therefore,

∥η1g(w′)− u∥ ∼ Unif

([
−∥u∥, η1 exp

(
−∥u∥2

2

)
∥u∥ − ∥u∥

])
,

and from the assumption of η1 ≥ exp(∥u∥2/2), we can see that this support includes 0.
Assuming that ϵ ≤ 2∥u∥, we have

P
(
∥η1g(w′)− u∥ ≤ ϵ

2

)
≥ ϵ

2η1 exp(−∥u∥2/2)∥u∥
≥ ϵ

2η1
,

where we used that exp(−t2/2)t ≤ 1 for any t ≥ 0. Now for the conditional probability, note that
by construction of w′, we have

g(w′) = exp

(
−∥w∥2 + ∥u∥2

2

)
u.

We can see that applying δ = ϵ/(6η1) implies the error bound of ϵ/2, by Lemma 4. Using these,
we can see that

∥w − w′∥ ≤ ϵ

6η1
⇒ ∥η1g(w)− η1g(w

′)∥ ≤ ϵ

2
.

From our previous conditioning, we have

η1 exp

(
−∥w∥2

2

)
∈
[
1− ϵ

2∥u∥
, 1

]
16
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which gives
∥w∥ ≤

√
2 log η1. (3)

From this, it is enough to have

∥w − w′∥ ≤ ∥w∥∠(w,w′) ≤ ϵ

6η1
,

which is equivalent to
∠(w,w′) ≤ ϵ

6η1
√
2 log η1

.

Since ∠(w,w′) = π/2− ∠(w, u) ≤ π
2 cos(∠(w, u)), we can weaken the inequality to

|⟨w, u⟩|
∥w∥ · ∥u∥

≤ ϵ

3πη1
√
2 log η1

.

Due to the spherical symmetry of w’s distribution, we can see that this probability increases as the
input dimension d increases, so it is enough to consider the case when d = 2. In such cases, we can
replace the inner product to some z ∼ Unif([−π, π]) and have

P

(
|z| ≤ ϵ

3πη1
√
2 log η1

)
=

ϵ

3π2η1
√
2 log η1

.

What we have shown in Lemma 4 is that if we assume infinitely many samples, so that we can
compute the exact gradient, the weight aligns with the feature of the target function. Moreover, we
have shown that such an event happens with constant probability for any input dimension, hence
with enough width not depending on the input dimension, we get close to the u.

Now we relate this result toW (1) in Algorithm 1 by showing that the empirical gradient concen-
trates around its expectation. We write ĝN (w) as the empirical gradient computed in Algorithm 1,
whose expression is

ĝN (w) =
1

N

N∑
i=1

σ′(⟨w, xi⟩)f∗(xi)xi =
1

N

w∑
i=1

cos(⟨w, xi⟩) sin(⟨u, xi⟩)xi.

Lemma 6 (Concentration of gradient) Over the randomness of sampling of training data,

sup
∥w∥≤L

∥ĝN (w)− g(w)∥ ≤ 64

√
d log(dNL)

N

with probability ≥ 1− 1/
√
N .

Proof We first introduce the truncation on ĝN (w) to work on the bounded space. We define g̃N (w)
as

g̃N (w) =
w∑
i=1

cos(⟨w, xi⟩) sin(⟨u, xi⟩)xiI∥xi∥≤M

for some constant M to be defined later.

17
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Using this truncation, we will upper bound the difference as

∥ĝN (w)− g(w)∥ ≤ ∥ĝN (w)− g̃N (w)∥+
∥∥∥g̃N (w)− E

x
[g̃N (w)]

∥∥∥+ ∥∥∥E
x
[g̃N (w)]− g(w)

∥∥∥ .
The first term is zero if all the inputs are bounded ∥xi∥ ≤M . For x ∼ N (0, Id), we have

P
(
∥x∥ ≥

√
d+ t

)
≤ exp(−t)

for any t ≥ 0. Using this for independent x, we can apply Union-bound to have

P

(
sup
i∈[N ]

∥xi∥ ≥
√
d+ t

)
= P

(
∃(i ∈ [N ]). ∥xi∥ ≥

√
d+ t

)
≤ N exp(−t).

Upon rewriting, we have

P

(
sup
i∈[N ]

∥xi∥ ≥M

)
≤ N exp(−M2 + d)

so we have
ĝN (w) = g̃N (w) (4)

with probability ≥ 1−N exp(−M2 + d).
For the second term, we will consider the concentration of this truncated gradient. We can first

rewrite the norm of the difference by inner product with unit vectors,∥∥∥g̃N (w)− E
x
[g̃N (w)]

∥∥∥ = sup
u∈Sd−1

〈
g̃N (w)− E

x
[g̃N (w)], u

〉
.

Let N1/2 be the ϵ-net on the sphere Sd−1, then

sup
u∈Sd−1

〈
g̃N (w)− E

x
[g̃N (w)], u

〉
≤ 2 sup

u∈N1/2

〈
g̃N (w)− E

x
[g̃N (w)], u

〉
.

Now if we recall the definition of g̃N (w),

g̃N =
1

N

N∑
i=1

cos(⟨w, xi⟩) sin(⟨u, xi⟩)xiI∥xi∥≤M ,

cos(⟨w, xi⟩), sin(⟨u, xi⟩) are bounded by 1, so the sub-Gaussian norm of this random vector is
determined by the sub-Gaussian norm of xiI∥xi∥≤M .

For the spherically symmetric distribution with its norm bounded by M , we can see that the
random variable with the largest sub-Gaussian norm is Unif(MSd−1), whose sub-Gaussian norm
is 2M/

√
d. So we have 〈

cos(⟨w, xi⟩) sin(⟨u, xi⟩)xiI∥xi∥≤M , u
〉

is 2M/
√
d-sub-Gaussian random variable. Applying the centering lemma [16], we have〈

cos(⟨w, xi⟩) sin(⟨u, xi⟩)xiI∥xi∥≤M − E
x
[g̃N (w)] , u

〉
18
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as 4M/
√
d-sub-Gaussian random variable. Applying Hoeffding’s inequality shows that〈

g̃N (w)− E
x
[g̃N (w)] , u

〉
≤ 4M

√
2z

dN

with probability ≥ 1− 2 exp(−z), for any z ≥ 0. By applying the union-bound over u ∈ N1/2, we
have ∥∥∥g̃N (w)− E

x
[g̃N (w)]

∥∥∥ ≤ 8M

√
2z

dN

with probability ≥ 1− 2 · 5d · exp(−z).
Now let Nϵ be the ϵ-net of {w : ∥w∥ ≤ L}, whose cardinality is smaller than (1 + 2L/ϵ)d. Let

π : {w : ∥w∥ ≤ L} → Nϵ as the projection function that satisfy ∥π(w)− w∥ ≤ ϵ. Then we have

sup
∥w∥≤L

∥∥∥g̃N (w)− E
x
[g̃N (w)]

∥∥∥
≤ sup

∥w∥≤L
∥g̃N (w)− g̃N (π(w))∥+ sup

w∈Nϵ

∥∥∥g̃N (w)− E
x
[g̃N (w)]

∥∥∥+ sup
∥w∥≤L

∥∥∥E
x
[g̃N (π(w))]− E

x
[g̃N (w)]

∥∥∥ .
The second term can be upper bounded by taking the union-bound on the ϵ-net Nϵ, i.e.,

sup
w∈Nϵ

∥∥∥ g̃N (w)− E
x
[g̃N (w)]

∥∥∥ ≤ 8M

√
2z

dN

with probability ≥ 1− 2 · 5d + (1 + 2L/ϵ)d exp(−z).
By similar computation as Lemma 2, we can show that

w 7→ cos(⟨w, x⟩) sin(⟨u, x⟩)xI∥x∥≤M

is M2-Lipschitz, hence both g̃N (w) and Ex[g̃N (w)] are M2-Lipschitz. Therefore,

sup
∥w∥≤L

∥g̃N (w)− g̃N (π(w))∥ ≤M2ϵ,

sup
∥w∥≤L

∥E [g̃N (w)]− E [g̃N (π(w))]∥ ≤M2ϵ.

Summing up, we have

sup
∥w∥≤L

∥∥∥g̃N (w)− E
x
[g̃N (w)]

∥∥∥ ≤ 2M2ϵ+ 8M

√
2z

dN

with probability ≥ 1− 2 · 5d · (1 + 2L/ϵ)d · exp(−z).
Set

z = 10d log(L/ϵ) + t,

then

sup
∥w∥≤L

∥∥∥g̃N (w)− E
x
[g̃N (w)]

∥∥∥ ≤ 2M2ϵ+ 8
√
10M

√
d log(L/ϵ) + t

dN

holds with probability ≥ 1− exp(−t). Here, we used the constant number as C again.
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The bound between the expectations can be derived as

sup
∥w∥≤L

∥E [g̃N (w)]− g(w)∥ = sup
∥w∥≤L

∥∥E [cos(⟨w, x⟩) sin(⟨u, x⟩)xI∥x∥>M

]∥∥
≤ E

[
∥x∥I∥x∥≥M

]
≤ E

[
∥x∥2

]1/2 E [I∥x∥≥M

]1/2
≤

√
d
√
P (∥x∥ ≥M)

≤
√
d exp(−M2 + d).

Combining these results, we have

sup
∥w∥≤L

∥ĝN (w)− g(w)∥ ≤ 2M2ϵ+ 8
√
10M

√
d log(L/ϵ) + t

dN
+
√
d exp(−M2 + d)

with probability ≥ 1− exp(−t)− n exp(−M2 + d).
Now, set M =

√
d+

√
t, ϵ = 1/

√
dN , and t = (logN)/2, which gives −M2 + d ≤ −t, so

sup
∥w∥≤L

∥ĝN (w)− g(w)∥

≤6
d+ t√
dt

+ 8
√
10(

√
d+

√
t)

√
d logL+ d logN + d log d+ t

dN
+
√
d exp(−t)

≤(13 + 16
√
10)

√
d logN + d log d+ d logL

N

≤64

√
d logN + d log d+ d logL

N

with probability ≥ 1− 1/
√
N .

Combining Lemma 5 and Lemma 6 shows that with high probability, the one-step gradient
has some feature w(1) close to the feature of target function u, which is summarised as following
Corollary.

Corollary 7 Let the error threshold ϵ, and failure probability δ be given. Suppose that the learning
rate η1, the width of network m and the number of training sample N satisfies

η1 ≥ exp

(
∥u∥2

2

)
,

m ≥ 2
log(δ/2)

log
(
1− ϵ2

12π2η21
√
2 log η1

) ,
N ≥ 4

δ2
,

N ≥ (
√
2 log η1)

1/4,

N ≥ 64dη21
ϵ2

(
log

64dη21
ϵ2

)2

,
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then there exists feature ∥∥∥w(1)
i − u

∥∥∥ ≤ ϵ

with probability ≥ 1− δ.

Proof One can plug in (3) to L of Lemma 6, then solve each required conditions.

Now we proceed by showing that such an approximation of feature will conclude the proof of
Theorem 1. To do so, we first show that if there is some feature w that is close enough to the feature
of target function u, there is some choice of second-layer weightA∗ that has a population risk small.

Lemma 8 (Approximation with learned feature) Assume that ∥u∥ ≤ 2. Suppose that there ex-
ists w(i) such that ∥wi − u∥ ≤ ϵ with ϵ ≤ 1

10000 min
(
∥u∥2, 1

∥u∥2

)
. Then, there exists A∗ ∈ Rm

with
1

2
· E
[
(sin(⟨u, x⟩)− f(x;A∗,W ))2

]
≤ 4

√
ϵ,

and ∥A∗∥ =
√∑m

i=1 a
2
i ≤ 3.

Proof Consider single-neuron case first:

1

2
min
a

E
x

[
(sin(⟨u, x⟩)− a sin(⟨w, x⟩))2

]
.

Using the analytic expression, we can evaluate the expectation to obtain

min
a

E
x

[
(sin(⟨u, x⟩)− a sin(⟨w, x⟩))2

]
=exp(−∥u∥2) sinh(∥u∥2)− 2a exp

(
−∥u∥2 + ∥w∥2

2

)
sinh(⟨u,w⟩) + a2 exp(−∥w∥2) sinh(∥w∥)2.

Since this is a quadratic equation on a, we can directly solve and find minimum value with

a∗ = exp

(
∥w∥2 − ∥u∥2

2

)
sinh(⟨u,w⟩)
sinh(∥w∥2)

.

Applying this, we can get

1

2
E
x

[
(sin(⟨u, x⟩)− a∗ sin(⟨w, x⟩))2

]
=
1

2

∣∣exp (−∥u∥2
)
sinh(∥u∥2)− exp(−∥w∥2) sinh(∥w∥2)(a∗)2

∣∣
≤1

2

∣∣exp (−∥u∥2
)
sinh(∥u∥2)− exp(−∥w∥2) sinh(∥w∥2)

∣∣
+

1

2

∣∣exp(−∥w∥2) sinh(∥w∥2)− exp(−∥w∥2) sinh(∥w∥2)(a∗)2
∣∣ .

For the first term, since d
dte

−t sinh(t) = e−2t ≤ 1 for all t ≥ 0, we can upper bound as∣∣exp (−∥u∥2
)
sinh(∥u∥2)− exp(−∥w∥2) sinh(∥w∥2)

∣∣
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=

∣∣∣∣∣
∫ ∥w∥2

∥u∥2

d

dt
e−t sinh(t)dt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ ∥w∥2

∥u∥2

∣∣∣∣ ddte−t sinh(t)

∣∣∣∣ dt
∣∣∣∣∣

≤
∣∣∥u∥2 − ∥w∥2

∣∣
=(∥u∥+ ∥w∥)ϵ. (5)

Similarly, we can use e−t sinh(t) ≤ 1/2 for all t ≥ 0 which holds since it is monotonically increas-
ing and its limit at t→ ∞ is 1/2,∣∣exp(−∥w∥2) sinh(∥w∥2)− exp(−∥w∥2) sinh(∥w∥2)(a∗)2

∣∣
≤1

2

∣∣1− (a∗)2
∣∣

≤1

2
|1− a∗| · |1 + a∗|.

We first focus on the term |1− a∗|. To upper bound the difference, we can compute as

|1− a∗|

=

∣∣∣∣1− exp

(
∥w∥2 − ∥u∥2

2

)
sinh(⟨u,w⟩)
sinh(∥w∥2)

∣∣∣∣
≤
∣∣∣∣exp(∥w∥2 − ∥u∥2

2

)
− 1

∣∣∣∣+ exp

(
∥w∥2 − ∥u∥2

2

) ∣∣∣∣sinh(⟨u,w⟩)sinh(∥w∥2)
− 1

∣∣∣∣
≤
∣∣∣∣exp(∥u∥ϵ+ ϵ2

2

)
− 1

∣∣∣∣+ exp

(
∥u∥ϵ+ ϵ2

2

) ∣∣∣∣sinh(⟨u,w⟩)sinh(∥w∥2)
− 1

∣∣∣∣
From the assumption ϵ ≤ 1/(2∥u∥) and ϵ ≤ 1, we have∣∣∣∣exp(∥u∥ϵ+ ϵ2

2

)
− 1

∣∣∣∣ ≤ 2∥u∥ϵ+ ϵ2,

exp

(
∥u∥ϵ+ ϵ2

2

)
≤ 2,

with numerical inequality et − 1 ≤ 2t for 0 ≤ t ≤ 1. Applying these we get

|exp(∥u∥ϵ+ ϵ2/2)− 1|+ exp

(
∥u∥ϵ+ ϵ2

2

) ∣∣∣∣1− sinh(⟨u,w⟩)
sinh(∥w∥2)

∣∣∣∣ ≤ 2∥u∥ϵ+ ϵ2 + 2

∣∣∣∣1− sinh(⟨u,w⟩)
sinh(∥w∥2)

∣∣∣∣ .
We will upper bound the difference between the ratio and 1 on two side, depending on its sign.

When sinh(⟨u,w⟩) ≥ sinh(∥w∥2), we can upper bound the difference as

sinh(⟨u,w⟩)
sinh(∥w∥2)

− 1 ≤ sinh(∥u∥2 + ∥u∥ϵ)
sinh((∥u∥ − ϵ)2)

− 1

≤ sinh(∥u∥2 + ∥u∥ϵ)
sinh(∥u∥2 − 2∥u∥ϵ)

− 1,
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Here, using that f(x) = 50k−
(
sinh(x2(1+ k))/ sinh(x2(1− 2k))− 1

)
is decreasing function on

0 ≤ x ≤ 2 and k ≤ 0.001, and also using f(4) = f(22) > 0, assuming ϵ ≤ ∥u∥
1000 gives

sinh(⟨u,w⟩)
sinh(∥w∥2)

− 1 ≤ 50
ϵ

∥u∥
,

for ∥u∥ ≤ 2. On the other hand, when sinh(⟨u,w⟩) < sinh(∥w∥2), we can upper bound the
difference as

1− sinh(⟨u,w⟩)
sinh(∥w∥2)

≤ 1− sinh(∥u∥2 − ∥u∥ϵ)
sinh((∥u∥+ ϵ)2)

≤ 1− sinh(∥u∥2 − ∥u∥ϵ)
sinh(∥u∥2 + 2∥u∥ϵ)

,

and similarly using that f(x) = 50k −
(
1 − sinh(x2(1 − k))/ sinh(x2(1 + 2k))

)
is decreasing

function on 0 ≤ x ≤ 2 and k ≤ 0.001, and also using f(4) = f(22) > 0, assuming ϵ ≤ ∥u∥
1000 gives

sinh(⟨u,w⟩)
sinh(∥w∥2)

− 1 ≤ 50
ϵ

∥u∥
,

for ∥u∥ ≤ 2. Thus, we can conclude∣∣∣∣1− sinh(⟨u,w⟩)
sinh(∥w∥2)

∣∣∣∣ ≤ 50
ϵ

∥u∥
,

for ∥u∥ ≤ 2 and ϵ ≤ ∥u∥
1000 . Applying these, we get

|1− a∗| ≤ 2∥u∥ϵ+ ϵ2 +
100ϵ

∥u∥
.

Assuming ϵ ≤ 1
10000 min

(
1

∥u∥2 , ∥u∥
2
)

, by using
√
ϵ ≤ ∥u∥

100 and
√
ϵ ≤ 1

100∥u∥ , we get

|1− a∗| ≤ 2|u∥ 1

100∥u∥
√
ϵ+ ϵ2 +

100

∥u∥
∥u∥
100

√
ϵ

=

√
ϵ

50
+ ϵ2 +

√
ϵ ≤ 3

√
ϵ,

for enough small ϵ. Assuming ϵ < 1/9, we get a∗ ≤ 3 and |1 + a∗| ≤ 4. Applying these, we get

|exp(∥u∥ϵ+ ϵ2/2)− 1|+ exp

(
∥u∥ϵ+ ϵ2

2

) ∣∣∣∣1− sinh(⟨u,w⟩)
sinh(∥w∥2)

∣∣∣∣ ≤ 4

2
3
√
ϵ = 6

√
ϵ. (6)

by using (5), (6) we get

1

2
E
[
(sin(⟨u, x⟩)− f(x;A∗,W ))2

]
≤ (∥u∥+ ∥w∥)ϵ

2
+ 3

√
ϵ

≤
√
ϵ

100
+
ϵ2

2
+ 3

√
ϵ
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≤ 4
√
ϵ,

with using
√
ϵ ≤ 1

100∥u∥ .

What this Lemma shows is that there exists some weight A∗ that achieves small norm and small
population risk. We will now relate this crafted weight with the optimised weight A(T ). To do so,
we will rely on Rademacher complexity to show that the population risk and risk on the training
data are close enough.

Lemma 9 (Rademacher Complexity of Simple Neural Networks) Let F be the neural network
class of bounded first and second-layer weights, with 1-Lipschitz activation σ:

F =

x 7→
m∑
j=1

ajσ(⟨x,wj⟩) : ∥a∥2 ≤ Ba, ∥wj∥2 ≤ Bw, ∥a∥1 ≤ B′
a

 .

Then, the Rademacher complexity w.r.t. standard Gaussian density satisfies

RN (F) ≤ 2BaBw

√
md

N
.

Proof

RN (F) = E
x,σ

 sup
∥a∥2≤Ba,∥wj∥≤Bw

 1

N

N∑
i=1

σi

m∑
j=1

ajσ(⟨xi, wj⟩+ bj)


=
Ba

N
E
x,σ

 sup
∥wj∥≤Bw


√√√√√ m∑

j=1

(
N∑
i=1

σiσ(⟨xi, wj⟩+ bj)

)2



≤ Ba
√
m

N
E
x,σ

[
sup

∥w∥≤Bw

[∣∣∣∣∣
N∑
i=1

σiσ(⟨xi, wj⟩+ bj)

∣∣∣∣∣
]]

≤ Ba
√
m

N
E
x,σ

[(
sup

∥w∥≤Bw

[
N∑
i=1

σiσ(⟨xi, wj⟩+ bj)

]
+ sup

∥w∥≤Bw

[
N∑
i=1

−σiσ(⟨xi, wj⟩+ bj)

])]

≤ 2Ba
√
m

N
E
x,σ

[
sup

∥w∥≤Bw

[
N∑
i=1

σiσ(⟨xi, w⟩+ bj)

]]

≤ 2Ba
√
m

N
E
x,σ

[
sup

∥w∥≤Bw

[
N∑
i=1

σi(⟨xi, w⟩+ bj)

]]

=
2Ba

√
m

N
E
x,σ

[
sup

∥w∥≤Bw

[
N∑
i=1

σi⟨xi, w⟩

]]

=
2Ba

√
m

N
E
x,σ

[
sup

∥w∥≤Bw

[〈
wj ,

N∑
i=1

σixi

〉]]
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=
2BaBw

√
m

N
E
x,σ

[∥∥∥∥∥
N∑
i=1

σixi

∥∥∥∥∥
]

≤ 2BaBw

√
md

N
.

Corollary 10 For any δ > 0, with probability at least 1− δ over a sample S of size N , each of the
following inequalities holds for all network f ∈ F:

1

2
· E
x

[
(f(x)− f∗(x))2

]
≤ 1

2N

N∑
i=1

(f(xi)− f∗(xi))
2 + 2(B′

a + 1)Rn(F) +
1

2
(B′

a + 1)2
√

log 1/δ

2N
,

1

2N

N∑
i=1

(f(xi)− f∗(xi))
2 ≤ 1

2
· E
x

[
(f(x)− f∗(x))2

]
+ 2(B′

a + 1)Rn(F) +
1

2
(B′

a + 1)2
√

log 1/δ

2N
.

Proof This is direct application of Theorem 10.2 of Mohri et al. [12] with the fact that |f | ≤ B′
a

and |f∗| ≤ 1.

Using this result, we can relate the population risk and empirical risk.

Lemma 11 (Error Bound of Training the Second-Layer) Suppose that the feature of target func-
tion u has its norm bounded, ∥u∥ ≤ 2. If the weights w(1)

i satisfy

min
i

∥w(1)
i − u∥ ≤ ϵ,

max
i

∥w(1)
i ∥ ≤ BW ,

then there exists some regularisation coefficient λ2 such that for some large T ∗, any time step
T ≥ T ∗,

1

2
· E
x∼N (0,Id)

[(
f(x;A(1),W (T ))− f∗(x)

)2]
≤5

√
ϵ+ (144

√
m+ 72)BW

√
md

N
+ (18m+ 4

√
2)

√
log 1/δ

N
.

with probability at least 1− δ.

Proof First, Lemma 8 shows that there exists A∗ such that

1

2
· E
x∼N (0,Id)

[(
f(x;A∗,W (1))− f∗(x)

)2]
≤ 4

√
ϵ

satisfying
w

(1)
i ≤ BW , ∥A∗∥2 ≤ 3, ∥A∗∥1 ≤ 3
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Now applying Corollary 10, we have

1

2N

N∑
i=1

(f(xi;W
(1), A∗)− f∗(xi))

2

≤ 1

2
· E
x

[
(f(x)− f∗(x))2

]
+ 48BW

√
md

N
+ 4

√
2

√
log 1/δ

N
.

Now since we have A∗ satisfying ∥A∗∥2 ≤ 3, we can view this as instance in the feasible set of
following constrained regression problem:

min
∥A∥2≤3

1

2N

N∑
i=1

(f(xi;W
(1), A)− f∗(xi))

2.

One can rewrite this constrained regression problem with Lagrange multiplier,

min
A

max
λ≥0

1

2N

N∑
i=1

(f(xi;W
(1), A)− f∗(xi))

2 + λ(∥A∥2 − 3).

Since this problem is convex, we can apply minimax duality to have equivalent problem

max
λ≥0

min
A

1

2N

N∑
i=1

(f(xi;W
(1), A)− f∗(xi))

2 + λ(∥A∥2 − 3).

The inner problem is now Ridge regression problem with regularisation parameter λ, so by dual
attainment, we have some pair (λ∗, Aλ∗) that achieves optimum on both problem:

1

2N

N∑
i=1

(
f(xi;W

(1), Aλ∗)− f∗(xi)
)2

=
1

2N

N∑
i=1

(
f(xi;W

(1), A∗)− f∗(xi)
)2

≤4
√
ϵ+ 48BW

√
md

N
+ 4

√
2

√
log 1/δ

N
.

Since the Ridge regression problem is strongly convex, the gradient descent for some large
enough steps T ≥ T0 with sufficiently small learning rate η2 will give solution A(T ) such that

1

2N

N∑
i=1

(f(xi;W
(1), A(T ))− f∗(xi))

2 ≤ 5
√
ϵ+ 48BW

√
md

N
+ 4

√
2

√
log 1/δ

N
,

∥A(T )∥2 ≤ 6,

∥A(T )∥1 ≤ 6
√
m.

Applying Corollary 10 back, we have

1

2
· E
x

[(
f(x;W (1), A(T ))− f∗(x)

)2]
≤5

√
ϵ+ (144

√
m+ 72)BW

√
md

N
+ (18m+ 4

√
2)

√
log 1/δ

N
.

We are now ready to give detailed form of Theorem 1.
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Theorem 12 Suppose that the feature of target vector u has its norm bounded, ∥u∥ ≤ 2. Let ϵ > 0
be the error threshold, and δ > 0 the failure probability. If the number of training sample n, the
network width m, and the first-layer learning rate η1 satisfies following conditions,

η1 ≥ exp

(
∥u∥2

2

)
,

m ≥ 2
log(δ/4)

log
(
1− ϵ4/154

12π2η21
√
2 log η1

) ,
N ≥ 16

δ2
,

N ≥ (
√
2 log η1)

1/4,

N ≥ 64 · 152dη21
ϵ4

(
log

64 · 152dη21
ϵ4

)2

,

ϵ ≤ 2 · 152 · exp
(
−∥u∥2

2

)
∥u∥,

N ≥
(
23 · 34 · η21m

ϵ

)2

d,

N ≥ (72m)2 log(1/δ)

ϵ2

then for any η2 ≤ c for some sufficiently small c > 0, there exists λ2 such that for some large T ∗,
any time step T ≥ T ∗ satisfies

1

2
· E
x

[(
f(x;W (1), A(T ))− f∗(x)

)2]
≤ ϵ

with probability at least 1− δ.

Proof We will set N , η1, and m to satisfy assumptions of Corollary 7 and Lemma 11.
Let ϵ′ = ϵ2/152, and plug this to Corollary 7, which assures that the first term, 5

√
ϵ′ of

Lemma 11 is less than ϵ/3. The rest of probability conditions are satisfied by first five assump-
tions on the statement of this Theorem.

To apply the result of Lemma 11, we should upper bound BW . We can upper bound ∥w(1)
i ∥ by

relating with the expected value of gradient g(w(0)
i )

∥w(1)
i ∥ ≤ ∥ηg(w(0)

i )∥+ η∥g(w(0)
i )− ĝN (w

(0)
i )∥

≤ η1 exp

(
−∥u∥2

2

)
∥u∥+ η1

ϵ2

2 · 152

≤ 2η1 exp

(
−∥u∥2

2

)
∥u∥

≤ 2η1,

where we used the intermediate result of Lemma 6 used in the proof of Corollary 7, and the as-
sumption on ϵ and η1. Using this, last two assumptions on N ensures that the rest of two terms in
Lemma 11 is also less than ϵ/3.
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Appendix D. Conjecture on Random Feature Networks

In this section, we list several supporting claims the conjecture is probably true.

Conjecture 13 Consider the setting of Theorem 1. Assume that we omit the first update step of the
first-layer weights in Algorithm 1, and run the algorithm. If there exists some T0 such that for all
T ≥ T0, the parameters (A(T ),W (0)) satisfy

1

2
· Ex∼N (0,Id)

[(
f∗(x)− f(x;A(T ),W (0))

)2]
≤ ϵ,

with probability at least 1− δ, then we must have m = Ω(exp(d)) or N = Ω(exp(d)).

Lemma 8 argues that if there exists a learned feature w(1)
i close to the feature of target function

u, we can construct the second-layer weight A∗ to have a small risk. The natural idea is that this is
a sufficient and necessary condition. We give some intuitive derivation as to why this is reasonable.

Lemma 14 (Decomposition of risk) The risk (2) admits following decomposition:

1

2
· Ex∼N (0,Id)

[(
f∗(x)− f(x;A(T ),W (0))

)2]
≤ ϵ

=
1

2
· E
x⊥

E
g

(sin(g)− m∑
i=1

ai sin(g⟨u,wi⟩+ ⟨x⊥, wi⟩)

)2


=
1

2
·

(
E
g

[
sin(g)−

m∑
i=1

ai E
x⊥

[sin(g⟨u,wi⟩+ ⟨x⊥, wi⟩)]

])2

︸ ︷︷ ︸
Bias2

+
1

2
· E
g

[
Varx⊥

(
m∑
i=1

ai sin(g⟨u,wi⟩+ ⟨x⊥, wi⟩)

)]
︸ ︷︷ ︸

Variance

.

Proof We prove this by formula similar to the bias-variance decomposition.
We first rewrite the expectation as nested expectation,

E
[(

sin(⟨u, x⟩)− f(x; {(wi, ai)}mi=1)
)2]

= E
x⊥

[
E
xu

[
(sin(⟨u, x⟩)− f(x; {(wi, ai)}mi=1))

2
]]

where
xu = ⟨x, u⟩u, x⊥ = x− xu.

Since ⟨x, u⟩ d
= N (0, 1), we can rewrite as

E
[(

sin(⟨u, x⟩)− f(x; {(wi, ai)}mi=1)
)2]

= E
x⊥

E
g

(sin(g)− m∑
i=1

ai sin(g⟨u,wi⟩+ ⟨x⊥, wi⟩)

)2

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with g ∼ N (0, 1).
Now if we see this equation, the x⊥ term correspond to the randomness of prediction function∑m

i=1 ai sin(g(⟨u,wi⟩+ ⟨x⊥, wi⟩)), and g can be viewed as the input x where we measure the MSE
loss of prediction function. So, by bias-variance decomposition, we have

E
x⊥

E
g

(sin(g)− m∑
i=1

ai sin(g⟨u,wi⟩+ ⟨x⊥, wi⟩)

)2


=

(
E
g

[
sin(g)−

m∑
i=1

ai E
x⊥

[sin(g⟨u,wi⟩+ ⟨x⊥, wi⟩)]

])2

︸ ︷︷ ︸
Bias2

+E
g

[
Varx⊥

(
m∑
i=1

ai sin(g⟨u,wi⟩+ ⟨x⊥, wi⟩)

)]
︸ ︷︷ ︸

Variance

.

Intuitively, we view this prediction as 1D regression in the direction of u, and consider the rest
of the direction as a random predictor. Now, for some A to have a small error, we need a small
variance term, which requires ⟨x⊥, wi⟩ to be small. One can show that the variance of this inner
product vanishes only when wi and u are parallel. However if we assume that ∥wi−u∥ ≥ ϵ for any
i, we need wi = u(1 + C) for some C ≥ ϵ or C ≤ −ϵ, which makes it impossible to decrease the
bias term.

Under this intuition, it is enough to show that random feature requires an exponentially wide
network. This is illustrated in the following Lemma.

Lemma 15 (Random feature is far from true feature) Fix an unit vector u ∈ Sd−1, the failure
probability δ, the error constant ϵ. For the weights wi

i.i.d.∼ N (0, Id/d), if N ≤
√
πδ

ϵd−1 ,

min
i∈[N ]

∥wi − u∥ ≥ ϵ

with probability ≥ 1− δ.

Proof
Suppose that ∥w − u∥ ≤ ϵ. Note that for any ∥w∥ ∈ R, This implies that

∠(u,w) ≤ sin∠(u,w) ≤ ϵ.

Using the fact that w/∥w∥ is uniformly distributed over Sd−1, we can simplify the probability as

P (∠(u,w) ≤ ϵ) =
Area({w ∈ Sd−1 : ∠(u,w) ≤ ϵ})

Area(Sd−1)
.

Now we can relate the areas as

1

2
Area(Sd−1) =

∫ π/2

0
Area(sin θSd−2)dθ,
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and
Area({w ∈ Sd−1 : ∠(u,w) ≤ ϵ}) =

∫ ϵ

0
Area(sin θSd−2)dθ,

where sin θSd−2 is the sphere in (d− 1)-dimension with radius sin θ.
Since the area of hypersphere is proportional to (d− 2)-power of radius, we have

P (∠(u,w) ≤ ϵ) =

∫ ϵ
0 sind−2 θdθ

2
∫ π/2
0 sind−2 θdθ

≤
∫ ϵ
0 θ

d−2dθ

2
∫ π/2
0 sind−2 θdθ

using the approximation sin t ≤ t for t ≥ 0.
The denominator can be approximated as

2

∫ π/2

0
sind−2 θdθ =

√
π
Γ((d− 1)/2)

Γ(d/2)
≥

√
π
Γ(d/2− 1)

Γ(d/2)
=

√
π

d/2− 1
≥ 2

√
π

d

and the numerator can be computed as∫ ϵ

0
θd−2dθ =

1

d− 1
ϵd−1,

so the probability is upper bounded by

P (∠(u,w) ≤ ϵ) ≤ d

d− 1

1

2
√
π
ϵd−1 ≤ 1√

π
ϵd−1.

So we have
P (∥w − u∥ ≤ ϵ) ≤ 1√

π
ϵd−1.

Since each draw of wi are independent, we have

P (min
i

∥wi − u∥2 ≥ ϵ) ≥
(
1− 1√

π
ϵd−1

)N

.

Expanding this power, by writing t = 1√
π
ϵd−1,

(1− t)N =

N∑
i=0

(−t)i
(
N

i

)

= 1−Nt+
N∑
i=2

(−t)i
(
N

i

)
≥ 1−Nt

assuming

t ≤
(
N
i

)(
N
i+1

) =
i+ 1

N − i

for i ≥ 2.
This holds if Nt ≤ 1, and if it is not the case, the lower bound 1−Nt is trivial.
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Now if we consider the second-layer optimisation, one can think of it as linear regression where
the input dimension is exp(d), and standard results show that gradient descent requires exp(d)
number of samples to learn the target function.

We also note that several related works prove similar impossibility results. Yehudai and Shamir
[18] have shown that the random feature model can not model even the single ReLU neuron without
the exponentially large number of neurons. While this result does not directly relate to our result,
they show that the periodic triangle wave function ψ has output having nearly zero correlation with
any other function, i.e., Ew∼Sd−1

[
f(x)2ψ(⟨w, x⟩)

]
→ 0 as d → ∞, i.e., the signal does not give

any information on w. Similar results apply to any periodic function, however, the result requires
∥u∥ = Θd(d), which does not fit to our case, since we let ∥u∥ = Θd(1). The Gaussian equivalent
theorem [5] applies to our result, showing that the random feature model performs the same as
the linear predictor in their proportional limit, which gives non-zero population risk as the target
function is non-linear. Since the best linear predictor of sin(⟨u, x⟩) is f(x) = 0, this shows that
as long as the number of the sample remains linear on the input dimension, random feature model
performs equivalently to the trivial predictor. While this result applies to our result, they do not
give exact sample complexity, which we presume to be exponential, and also only work on the
proportional limit setting.
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