
Selective Attention: Enhancing Transformer through
Principled Context Control

Xuechen Zhang
University of Michigan
zxuechen@umich.edu

Xiangyu Chang
University of California, Riverside

cxian008@ucr.edu

Mingchen Li
University of Michigan

milii@umich.edu

Amit Roy-Chowdhury
University of California, Riverside

amitrc@ece.ucr.edu

Jiasi Chen
University of Michigan

jiasi@umich.edu

Samet Oymak
University of Michigan

oymak@umich.edu

Abstract

The attention mechanism within the transformer architecture enables the model
to weigh and combine tokens based on their relevance to the query. While self-
attention has enjoyed major success, it notably treats all queries q in the same
way by applying the mapping V⊤softmax(Kq), where V,K are the value and key
embeddings respectively. In this work, we argue that this uniform treatment hinders
the ability to control contextual sparsity and relevance. As a solution, we introduce
the “Selective Self-Attention” (SSA) layer that augments the softmax nonlinearity
with a principled temperature scaling strategy. By controlling temperature, SSA
adapts the contextual sparsity of the attention map to the query embedding and its
position in the context window. Through theory and experiments, we demonstrate
that this alleviates attention dilution, aids the optimization process, and enhances
the model’s ability to control softmax spikiness of individual queries. We also
incorporate temperature scaling for value embeddings and show that it boosts the
model’s ability to suppress irrelevant/noisy tokens. Notably, SSA is a lightweight
method which introduces less than 0.5% new parameters through a weight-sharing
strategy and can be fine-tuned on existing LLMs. Extensive empirical evalua-
tions demonstrate that SSA-equipped models achieve a noticeable and consistent
accuracy improvement on language modeling benchmarks.

1 Introduction

Attention is a pivotal mechanism in modern machine learning that allows the model to focus on and
retrieve different parts of the data, enhancing its ability to capture contextual relationships across time
and space. While it was originally developed for NLP tasks through the transformer architecture, it
has enjoyed widespread success in other domains such as computer vision, sequence modeling, and
reinforcement learning [45, 35, 5, 9, 39].

The canonical self-attention mechanism is a sequence-to-sequence map that outputs X → S(QK⊤)V
where S(·) denotes the row-wise softmax nonlinearity and Q, K, V are the query, key, and value
embeddings obtained through linear projections of the input sequence X. Through this process, for
each query, the model creates a query-dependent composition of the input context. Importantly, the
model has to accomplish two objectives: namely, capturing semantic similarity between tokens and
also adjusting the contextual sparsity. Here, semantic similarity can be quantified through the angle
between key-query embeddings and the contextual sparsity through the spikiness of the attention
map. While the importance of the former is clear, the latter is equally important given the fact that
attention maps tend to be sparse in practice [8, 43, 37, 6].

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

In this paper, we argue that these two objectives can be at odds and, as a result, the self-attention layer
may struggle to achieve both objectives simultaneously due to its relatively inflexible parameterization.
To address this issue, we propose the Selective Self-Attention (SSA) layer that aims to decouple
semantic similarity from contextual sparsity. SSA relies on a principled application of temperature-
scaling (TS) to query and value embeddings. For instance, given query embedding q, rather than
computing S(Kq), SSA computes S(τ(q) · Kq) where τ(q) is the learnable inverse-temperature.
Intuitively, this allows for better control of the context window because τ(q) can control contextual
sparsity while the projection matrices Wk,Wq can fully focus on controlling semantic similarity.
Figure 1 shows an example of the learned token temperatures when training the Pythia model with
SSA. In summary, we make the following theoretical and empirical contributions:

• Query selectivity. We show that introducing TS to the query embeddings enhances the
model’s capability to express a target attention map with smaller parameter norms (Proposi-
tion 1). This is particularly so when attention maps exhibit large spikiness variations across
different queries. Real experiments corroborate that TS leads to sparser attention maps with
smaller norms. See Figure 3 as an illustration.

• Value selectivity. We formalize the benefit of TS on value embeddings through a denoising
perspective. Namely, we describe a denoising task where the linear value projection fails to
filter the noisy tokens, and demonstrate how nonlinear scaling can boost denoising capability.

• Positional temperature. We incorporate a term that adjusts the query-temperature according
to the position in the context window. We show that this term can mitigate the dilution of
attention scores caused by the increasing context length.

• Modularity and parameter-efficiency of SSA. Selective Attention is accomplished by
introducing a parameter-efficient temperature module that can be easily integrated into
existing attention models. In practice, this introduces 5% additional parameters to the model.
We also introduce a weight sharing strategy that reduces the number of parameter overhead to
less than 0.5% while maintaining the benefits of SSA. We reuse the attention weights within
the temperature module, which results in negligible inference/latency overhead since no
additional matrix multiplication is required. These methods only involve vector dot-products
(at the output layer of the temperature module) and elementwise scaling of matrices.

• Empirical benefits. Our evaluations on the NLP benchmarks of Wikitext [27], Lam-
bada [32], Piqa [4], Hella [50], Winogrande [38], Arc-E, and Arc-C [10] demonstrate that
Selective Attention noticeably improves language modeling performance. These benefits
are consistent across various models including GPT-2 [34], Pythia [3], Llama [44] and
Llama3 [16], as well as during both fine-tuning and pre-training, as shown in Table 3.
Additionally, evaluations on the passkey retrieval task [33, 29] reveal that SSA substantially
enhances the retrieval capabilities of the transformer, shown in Table 4.

Figure 1: A quotation by Steve Jobs. We highlight tokens according to their temperatures learned by
the SSA layer. Darker colors correspond to lower temperatures and receive a sparser attention map.

2 Related Work

Temperature Scaling (TS): TS is a fundamental method for controlling model behavior, influencing
aspects such as stochasticity of generative LLMs, calibration and uncertainty, and imbalanced data,
as highlighted in several studies [26, 22, 51]. Related to us, previous research [33, 49, 7] has also
proposed utilizing a temperature term in the softmax function to enhance the length extrapolation
capabilities of transformers. For instance, Yarn [33] scales the attention logits as a function of the
sequence length and shows that this improves the perplexity when extending the context window. Our
work provides a formal justification for the temperature scaling rule proposed in Yarn (see Proposition
2) and also highlights the value of adapting temperature to the individual positions. Importantly, our
approach is differentiable and obviates the need for grid search required by prior works. Since we

2

don’t focus on length generalization, we have found that position-aware temperature has a much
smaller benefit compared to token-aware temperature, which is our primary contribution.

Gating mechanisms and selectivity: Various strategies have been developed to mitigate the impact
of uninformative inputs in model training and processing. Gating mechanisms, originally introduced
through LSTMs [19], have been proposed to selectively filter or scale down the input sequence
[48, 13, 14, 25, 40]. Very recent sequence models such as Mamba (a.k.a. selective state-space
model) and Griffin also incorporate gating to boost language modeling [18, 46, 53, 14, 21]. These
models leverage input-dependent gating to ensure parallellizable training and enjoyed noticeable
success. These methodologies inspired our approach, which incorporates TS to augment the selection
capabilities of the attention layer. Specifically, TS can be viewed as an instance of gating that
selectively passes or suppresses tokens to provide better control of contextual sparsity and relevance.
In this light, our work also provides a mechanistic understanding of how gating mechanism can aid
self-attention to improve its expressive capabilities.

Mechanistic understanding of transformers: The importance of transformer-based models led to
many research efforts on developing a stronger understanding of various aspects of transformer and
attention [30, 47, 15]. While it is impossible to cover all of these works, it is evident that capability to
select relevant features and promote contextual sparsity is crucial for the ability of language models
to perform complex tasks such as reasoning [23, 1, 43, 52]. These have provided inspiration for us to
pursue an enhanced modeling of attention’s spikiness (e.g. as in Figure 3). The experiments in Figure
3 are inspired by the recent work [20] which characterizes the learnability of a ground-truth attention
model via the next-token prediction objective in terms of the associated Markov transition matrix.

3 Methodology: Selective Attention Layer

Let us recap the self-attention mechanism in Transformer [45]. Canonical softmax attention admits an
input sequence X = [x1 . . . xL]⊤ ∈ RL×d of length L with embedding dimension d. We then project
X to obtain key, query, and value embeddings (K = XWk, Q = XWq, V = XWv) and compute the
output of the dot-product attention as Att(Q, K,V) = S(QK⊤

√
d

)V. Here S(·) : RL → RL
+ denotes the

softmax nonlinearity that applies row-wise and Wq,Wk,Wv ∈ R
d×d are learnable weight matrices.

In this paper, we mainly focus on casual language modeling where each token can only attend to
previous tokens in the input.

The uniform treatment of all tokens through the same softmax map could hinder the ability to
control contextual sparsity and relevance. For instance, it has been observed that current Transformer
language models suffer from an attention dilution issue: the longer the input sequence, the flatter
the attention distribution [49, 7]. A natural solution to the dispersed attention issue is to sharpen the
self-attention distribution. Selective Attention aims to provide a general strategy to control spikiness
of the softmax adaptive to the query and value embedding, as well as the position of the token.
Definition 1 (Selective Self-Attention (SSA)). Let X = [x1 . . . xL]⊤ ∈ RL×d be an input sequence.
Let τk/q/v(·) : Rd → Rd be the inverse-temperature functions for keys, queries, and values, respectively.
Then the embeddings for keys (K), queries (Q), and values (V) are computed as follows:

K = τk(X) ⊙ XWk, Q = τq(X) ⊙ XWq, V = τv(X) ⊙ XWv.

where ⊙ denotes the elementwise product that assigns temperature to individual tokens. Selective
Self-Attention (SSA) is then computed as S(QK⊤

√
d

)V.

In essence, SSA incorporates a temperature modulation mechanism into the attention framework
to enhance selectivity and context control. The inverse-temperature function τ(·) is data-dependent,
allowing for dynamic adjustment of attention across different parts of the input sequence. In practice,
we choose τk/q/v to be a scalar valued function as vector-valued temperature does not provide a
significant advantage. It is also worth mentioning that we don’t restrict τk/q/v to be non-negative. As
a result, our temperature scaling strategy can be seen as an application of scalar gating on K/Q/V
embeddings, and hence, the SSA layer could also be referred to as Scalar-Gated Attention (SGA)
layer. The GitHub repo containing SSA implementation is provided in https://github.com/
umich-sota/selective_attention. Below, we discuss the design choices underlying SSA.

• Temperature scaling for query and value tokens. In an attention mechanism, the concepts
of keys (K), queries (Q), and values (V) play distinct roles in determining how information is

3

https://github.com/umich-sota/selective_attention
https://github.com/umich-sota/selective_attention

weighted and combined across a sequence. Temperature functions can be applied to all of those
components, designated as Key-temperature τk(·), Query-temperature τq(·) and Value-temperature
τv(·). We explore the advantages of each temperature function in in Appendix B.1. In practice,
we employ Query-temperature τq(·) and Value-temperature τv(·) but don’t touch the original key
embeddings. The query-temperature τq adjusts the spikiness of the attention map associated with
the query according to its embedding and position in the context window. The value-temperature τv
enhances the model’s ability to suppress irrelevant or noisy tokens, ensuring a refined aggregation
of context window. In Section 4, we provide insights into theoretical and empirical benefits of
incorporating these terms.While we keep the keys unmodified, guided by the intuition from word
embeddings of [28] suggests that the similarity between a (key, query) pair should align with their
cosine similarity. That is, cos(key1, query) > cos(key2, query) should ideally imply that the query
attends more to key1 compared to key2. Assigning temperature/gating to scale the query vector does
not change this order. However, if we assign distinct scalings to key1 and key2, we will end up with
scenarios where attention scores are flipped i.e. τ1 ∗ key⊤1 query < τ2 ∗ key⊤2 query. In other words, our
intuition is that assigning gating on keys will end up influencing their relative semantic similarities
to queries (which could perhaps be better achieved via attention weights). This is in contrast to
query-scaling which helps decouple the semantic similarity and contextual sparsity and the associated
theoretical benefits (Section 4.1 and Proposition 1).

• Token-aware and position-aware temperature scaling. The data-dependent inverse-temperature
function is composed of two distinct components τ(x) = τtok(x) + τpos(x), x is a token within the
sequence X: Token-aware Temperature Scaling τtok(·) and Position-aware Temperature Scaling
τpos(·). Token-aware Temperature Scaling τtok(·) is devised to modulate the influence of individual
tokens within the sequence. The formula for this component is given by τtok(x) = tanh(f (x)), where
f (·) represents a trainable function that adjusts the impact of the token x. The activation function
tanh(·) is used to enable the scaling function to output both positive and negative temperatures;
for instance, if we want to have the option to fully-suppress a token τtok(x) can attain ≈ 0. To
address the issue of dispersed attention, where increasing length of the input sequence leads to
a flatter attention distribution, we introduce Position-aware Temperature Scaling. This is defined
by τpos(x) = 1 + σ(α)log(n), where n denotes the position of the token x within the sequence
X = [x1 . . . xL]⊤ ∈ RL×d, n ∈ [L]. We remark that n reflects the token length when computing the
temperature of token xn , aligning with our focus on causal attention where each token is restricted to
attending only to previous tokens in the sequence. α is a parameter designed to modify the scale of
the factor. The non-linearity σ(·) is the sigmoid function, employed to control the range of τpos and
ensure the stability of the training process.

• Weight sharing. We introduce a weight sharing strategy to reduce the number of parameter
overhead below 0.5% (10x fewer) while maintaining the benefits of SSA. Specifically, the Position-
aware Temperature Scaling term, τpos(x) only includes a single parameter α, whereas the Token-
aware Temperature Scaling term τtok(x) = tanh(f (x)), relies on a trainable function f (·) defined
as WtmpGeLU(W′

tmpx), involves separate trainable parameters Wtmp and W′
tmp, which increases

parameter load. To improve efficiency, we (re)use the attention weights Wk/q/v for the temperature
module by setting f (x) = WtmpGeLU(Wk/q/vx). Here, SSA only adds the output layer of the MLP,
a vector with few parameters. The approach only only stores 3 vectors (not matrices) per attention
head. This also have negligible inference/latency overhead because we don’t require additional matrix
multiplication. These methods only require vector dot-products (at the output layer of the temperature
module) and elementwise scaling of matrices. Other strategies can also be deployed to reduce the
computational overhead. We describe feature-based approach which use simple token-level statistics,
such as their frequencies in training corpus. Only constant parameters per head need to be stored that
reduce the number of parameter overhead below 0.1%. The deatils are shown in B.2.

Finally, we discuss conceptual connections to sparse attention methods in Appendix D.

4 Theoretical Insights into Selective Attention

Selective attention computes the query temperature based on the embedding and the position of the
query. It also computes the value temperature based on the value embedding. In what follows, we
discuss how these three components provably enhance expressivity of the attention mechanism.

4

4.1 The benefits of incorporating query embedding

Decoupling semantics from specificity. Consider two words: “Hinton” and “Scientist”. The former
is a specific instance of the latter. As a result, while we expect token embeddings of these two
words to have high cosine similarity, they might benefit from different attention maps. Specifically,
“Hinton” refers to a specific person and we expect it to have a more targeted attention to the context
associated with it. We argue that query-temperature can aid optimization by retaining semantic
similarity while allowing for distinct specificity. More formally, by specificity we are referring to the
contextual sparsity level of a query. Denoting the combined key-query weights to be W =WqW⊤

k as
a problem-agnostic measure of specificity, we will consider the magnitude of the query embedding.
That is, given query token q, define specW(q) := ∥W⊤q∥2. It is well-established [43] that in order
for attention map to be more sparse (hence higher specificity), the norm of the query embedding, or
more generally the operator norm of W, has to grow larger, justifying this definition. The following
Lemma shows that, without TS, the attention weights within softmax have to be lower bounded by
the ratio of specificity difference to semantic distance.

Lemma 1. Let W =WqW⊤
k ∈ R

d×d be the combined query-key matrix. Let a, b ∈ Rd be unit norm
token embeddings associated with the specific and general token respectively. Suppose we wish to
achieve specificities specW(a) ≥ La and specW(b) ≤ Lb. Then, the associated W obeys ∥W∥ ≥ La−Lb

∥a−b∥2 .

Above La − Lb is the specificity_difference whereas ∥a − b∥2 is the semantic distance. The proof
follows from the triangle inequality ∥W∥ ≥ ∥W

⊤(a−b)∥2
∥a−b∥2 ≥

∥W⊤a∥2−∥W⊤b∥2
∥a−b∥2 ≥

La−Lb
∥a−b∥2 .

Comparison to Selective Attention. In SSA, the effective attention weight matrix for a query q is
W = τ(q) ·WqW⊤

k . To achieve the same specificity in Lemma 1 with SSA, we can set the temperatures
as τ(a) = La, τ(b) = Lb, and KQ-weights as ∥W∥ = 1 (e.g. via W = Id). This achieves the desired
specificities while maintaining that effective weights are upper bounded as ∥Wa∥, ∥Wb∥ ≤ max(La, Lb).
In other words, the required norm growth is entirely decoupled from the semantic distance between
the queries.

In essence, this highlights that without query-selectivity, the model weights have to grow excessively
to assign different specificity to similar words. In practice, this is expected to create performance
bottlenecks: (1) As the weights grow, optimization may slow down along certain directions due
to vanishing softmax derivative and, (2) even if the optimization is successful, the final model
could overfit or be overly sensitive to small perturbations in the context, hindering test accuracy.

<0.2
0.2

-0.
4

0.4
-0.

6
0.6

-0.
8

0.8
-1

1-1
.2

>1.2

Ranges

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y

vanilla
SSA

Figure 2: The operator norm of W with and without
Query-temperature scaling, scaled by ×103. The fig-
ure depicts the distribution across 1000 tokens. The
dashed line is the average norm. Notably, the norm of
the vanilla attention layer is approximately three times
larger than that of SSA(dashed red line compare to green
line). Furthermore, the vanilla attention layer exhibits a
lower spikiness score (0.39) compared to SSA (0.26),
where a lower value indicates higher spikiness.

This is also verified by our experiments. To
study the norm growth of attention weights,
we train Pythia from scratch, trainig
with the SlimPajama dataset [41](our pre-
training setting) and evaluate on Wikitext
dataset. We examine the average norm of
combined query-key matrix weight ∥W∥
from the average of all layers within the
model. Additionally, we quantify the spik-
iness of the attention map computed as
the ratio of the l1–norm to the squared
l2–norm and normalized by the length, de-
fined as ∥s∥1

∥s∥2L , s where s is the softmax prob-
ability vector. It takes values from 0 to 1.
A smaller value indicates a sparser vector.
We compute the average of the first 1000
tokens of the Wikitext dataset. The results
shown in Figure 2 align with the theory.
The attention weights for selective atten-
tion are smaller than the original ones, while the attention is sparser. Expressivity benefits of
query-selectivity. A closely related consideration is whether query-selectivity can enhance expres-
sivity. We expect that through query-temperature, the same attention head will have an easier time
expressing sparse and dense attention maps associated with distinct queries. To formalize this, we
investigate the ability of a single (selective) attention head to express a target attention map between

5

3

7

2

0

1

4

6
5

(a) The graph.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7
0.0

0.2

0.4

0.6

0.8

1.0

(b) Ground-truth
token transitions P⋆

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7
0.0

0.2

0.4

0.6

0.8

1.0

(c) P̂ learned
by SSA

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7
0.0

0.2

0.4

0.6

0.8

1.0

(d) P̂ learned by
Self-Attention

Figure 3: We compare 1-layer SSA and 1-layer attention when solving next-token prediction on a
small vocabulary of size 8. (a) is the graph associated to the token transition dynamics. (b) is the
the pairwise token transition matrix of this vocabulary. Each row of P⋆ represents an attention map
where a particular token is the query and all tokens in the vocabulary serve as keys (see Sec 4.1 for
details). The transition matrix P̂ estimated by SSA in (c) is sharper and more closely resembles
the optimal P⋆. SSA achieves a smaller cross-entropy loss compared to vanilla attention, 0.009 vs
0.0126. The ℓ1 approximation error of the attention map of SSA is also smaller than that of vanilla
attention, 0.358 vs 0.543.

all tokens in a discrete vocabulary. Let V = ei
K
i=1 be a vocabulary of K tokens. To capture all K2

pairwise interactions of these tokens, we first form the sequence E = [e1 . . . eK]⊤ ∈ RK×d where
each token appears uniquely and then study K attention maps associated with individual queries,
i.e., att(E, ei) for 1 ≤ i ≤ K. Stacking these together as rows, we study the K × K attention matrix
att(E). For standard attention with weights W, this is given by att(E,W) = S(EWE⊤), whereas
for query-selective attention, att(E,W) = S(τ(E) ⊙ EWE⊤).

Thanks to the softmax nonlinearity, att(E) is a stochastic matrix where rows add up to 1. This matrix
can be viewed as a Markov chain transition between different tokens, which motivates a fundamental
question: Can query-selective attention help express a larger class of stochastic matrices? Intuitively,
we expect that if a stochastic matrix P⋆, which we wish to express via att(E), exhibits a lot of
spikiness variation across its rows (i.e., different queries), selectivity can better capture these.

This can be verified with a token generation experiments. Recall that we expect “bacteria” to attend
to more words compared to “salmonella”. We might expect more general words to have a larger
number of neighbors in a graph. Accordingly, we abstract the vocabulary, which comprises words
with various levels of specificity, into a simple undirected graph. This is depicted in Section 4.1.
Additionally, the stochastic matrix P⋆ can be derived from this graph, with the results displayed in
Figure 3(a). To build the estimation of the stochastic matrix P⋆ training, we conduct next token
prediction experiments.

Token generation setting: Let X ∈ VL be a sequence of length L drawn fromV. Suppose X ends with
q := xL. The token Y = xL+1 that follows X will be drawn uniformly from q or one of the neighbors
of q. This neighborhood is parameterized via the latent attention map P⋆ which will govern the
generation process. Let E = [e1 . . . eN]⊤ be the token embeddings associated with the vocabulary
V. Assume elements of E have unit ℓ2 norm. In data generation, we simple sample input sequences
containing each token in the vocabulary precisely once, and sample the next token according to the
attention map P⋆, that is, the row of P⋆ that corresponds to the final query token. We then fit a
one-layer self-attention or SSA model f (X) to approximate this latent dynamics. Concretely, we
predict the next token Ŷ of f (X) according to the distribution g(X) = S(C f (X)) ∈ RN . Here C ∈ RN×d

is the linear prediction head. As loss measure on how well we fit to the latent P⋆ dynamics, use the
cross entropy distance between g(X) and the true label Y . Through this, we wish to formalize and
visualize the intuitions on why “salmonella” deserves a lower temperature than “bacteria”. Further
experimental details are described in Appendix A.

In our experiments, besides smaller cross-entropy loss, we find that Selective Attention achieves a
better approximation of P⋆ as shown in Figure 3. To evaluate the similarity between the attention
map P⋆ and P̂, we also define the ℓ1 distance between the attention maps, namely,

err_map = ∥P̂ − P⋆∥1.
We find that the err_mapSSA is also much lower than err_mapvanilla (0.358 vs 0.543). Additionally,
SSA naturally assigns lower temperatures to tokens with fewer neighbors. This is in line with our
expectations as fewer neighbors imply a sparser attention map. The results are shown in Table 1.

6

Table 1: Temperature for each depth. Nodes with the same # of neighbors share the same temperature.
of neighbors(including itself) 1 2 3 4

nodes index 7 4,5,6 1,2,3 0
temperature 0.002 0.019 0.152 0.751

To further formalize this, we revisit Lemma 1 in terms of softmax map. Let K = 2 and P⋆ =[
1 − γ γ

0 1

]
be the target pairwise attention map. Here second token is highly specific (only selects

itself) whereas the first token is less specific when 0 < γ < 1. The following proposition establishes a
variation of Lemma 1 when approximating P⋆.

Proposition 1. Suppose the embeddings e1, e2 have unit ℓ2 norm with correlation ρ = e⊤1 e2. Fix

0 < ε ≤ 1
2 min(γ, 1 − γ) and Γ =

∣∣∣∣log
(

1−γ
γ

)∣∣∣∣. For any W obeying ∥P⋆ − S(EWE⊤)∥∞ ≤ ε, we have

that ∥W∥ ≥ ∥e1−e2∥
−1

√
2−2ρ2

(
log

(
1
4ε

)
− Γ

)
. Conversely, Selective Attention can achieve this ε-approximation

with weights bounded as τ(e1,2) · ∥W∥ ≤ ∥e1 − e2∥
−1 max

(
log

(
1
ε

)
, Γ√

1−ρ2

)
.

4.2 The benefits of incorporating query position

The need for position-dependent scaling arises from the fact that, for a fixed weight matrix W =
WqW⊤

k , the attention scores sL = S(XW⊤xL) become diluted as sequence length L grows. Specifically,
for retrieval-type tasks, the model may want to concentrate softmax scores sL on a single token.
However, assuming unit norm tokens, the top probability in sL is upper bounded via ∥sL∥ℓ∞ ≤

1
1+(L−1)e−2∥W∥ . This implies that, to enforce ∥sL∥ℓ∞ to be constant, we require the spectral norm lower
growth rate of ∥W∥ ≥ 0.5 log L + O(1). This motivates our logarithmic scaling strategy which was
also proposed by [33, 7].

Here we provide a more formal justification on the optimal temperature scaling rule by describing a
simple yet insightful task which is not solvable by a single attention head unless temperature scaling
is employed. Specifically, we consider a setting where the sequence exhibits feature imbalances
where frequent tokens start dominating the context and potentially overwhelm the less frequent but
relevant tokens.

Imbalanced token setup: Suppose the input sequence X = [x1 . . . xL]⊤ is composed of a minority
token a ∈ Rd and a majority token b ∈ Rd, that is, xi ∈ {a, b} for all i ∈ [L]. For each position, we
will simply ask the model to output a target mixture of a and b, namely, y = αa + (1 − α)b for some
α ∈ (0, 1). Thus, using a 1-layer causal attention, we study the following objective by calculating the
loss between target y and each attention output:

L(W) =
1
L

L∑
n=n0

∥y − X⊤S≤n(τn · XW⊤xn)∥22. (1)

Above, τn is the inverse-temperature for the nth position. Here, n0 is a burn-in period to simplify our
exposition: n0 is the smallest number such that both a and b appear at least once within the first n0
tokens1. Additionally, let na be the number of tokens xi that are equal to a within i ∈ [n]. We have
the following theorem.

Proposition 2. Assume a, b are unit Euclidean norm and linearly independent. Define the imbalance
ratio κn = (n − na)/na for n ∈ [L]. There is a W⋆ such that, setting τn = log κn + log α

1−α , L(W⋆)
minimizes the risk (1) to achieve L(W⋆) = 0.

Conversely, consider the problem instance with target mixture of α = 1/2, second-quadrant imbalance
of 2 ≥ κn ≥ 1 for L/4 ≤ n ≤ L/2 and fourth-quadrant imbalance of κn ≥ 4 for n ≥ 3L/4. If we employ
flat temperature τn = 1 for all n ∈ [L], for any choice of attention weights W ∈ Rd×d, we have the
lower bound L(W) > 1/500.

1This is without loss of generality, otherwise, causal attention would output a fixed vector (either a or b)
regardless of the attention weights.

7

Table 2: We apply normalization to attention output and compute the MSE risk.
Vanilla Value-selective Naive averaging Bayes optimal estimator
1.390 0.071 2.058 0.003

Proposition 2 inspired our design of position-aware temperature scaling. Intuitively, as n increases,
the sequence may include less related tokens, leading to an increase in κn. When κn follows power-
law κn = npow, we recover the logarithmic temperature scaling rule of τn = const + pow · log n.
Consequently, our Position-aware Temperature Scaling function τn is designed as τpos(x) = 1 +
σ(α)log(n), n is the position length, α is the trainable parameter, σ is the non-linearity function
sigmoid. The function is motivated by, other paper’s rules [33, 26, 22, 51].

4.3 The benefits of incorporating value embedding

Within attention, value embeddings (V) are transformed using only a linear projection. Consequently,
each token’s contribution to the output is a weighted sum based on the attention scores, with these
weights adjusted linearly. In sequences with many tokens, irrelevant or noisy tokens can negatively
influence the attention mechanism. Because value embeddings are linearly projected, they may not
be able to fully distinguish between relevant and irrelevant tokens. The value-temperature scaling
acts as a nonlinear scalar weighting function. By adjusting the temperature, we aim to control the
impact of each token, suppressing the influence of irrelevant or noisy tokens. This helps emphasize
more relevant tokens, thereby improving the quality of the context representation. We motivate the
potential benefits of TS on value embeddings through the following synthetic denoising task.

Denoising task Let [K] be the token alphabet with embeddings (ei)K
i=1. Assume d = K and ei’s are

standard basis. Consider the following data distribution (X, y) ∼ D where X = [x1 . . . xL]⊤ ∈ RL×d

is the input sequence and y ∈ Rd is the target label.

• Draw q ∼ Unif([K]). Set y = eq.

• Let (zi)L
i=1 be IID noise vectors with N(0, σ2I)

• xL = eq + zL. For i ∈ [L−1], xi is determined by a Bernoulli distribution with a parameter of
α, selecting between eq + zi and zi. Consequently, α of the tokens are signal tokens eq + zi.

The denoising objective is minimizing the MSE risk

L(f) = ED[∥y − norm(ŷ)∥22]

where norm(ŷ) = ŷ/∥ŷ∥2, ŷ is the output of model f (·), ŷ = f (X).

To solve this task, the attention model f (X) should intelligently combine the tokens within X to
approximate the denoised target eq. Importantly, the model will strictly benefit from eliminating the
pure noise tokens, i.e., instances with xi = zi. Note that the value projection of the attention matrix
will not suffice to denoise the input sequence. The reason is that q is uniform, and signal tokens span
the whole space. Thus, we will benefit from a nonlinear denoising procedure.

To test this intuition, we use a 1-layer single-head attention model, denoted as different f (·) to
minimize the denoising objective. We compare the model with value-selectivity to the following
baselines:

1. Vanilla Attention: The standard 1-layer single-head attention model, ŷatt = Att(X)
2. Value-selective self-attention: 1-layer Selective Self-Attention (SSA). ŷS S A = SSA(X).

Since this is a synthetic task, as a proxy for the token-aware temperature scaling, we use the
selection function max j∈[d] xi j ≥ 1/2. Intuitively, when noise σ ≲ 1/

√
log d, thresholding

with the largest entry will detect the signal tokens.
3. Naive averaging: Directly average the tokens, ŷnaive =

1
L
∑L

i=1 xi.

4. Bayes optimal estimator: ŷopt =
1
|S |

∑
i∈S xi where S ⊂ [L] is the ground-truth set of signal

tokens distributed as eq + zi.

The resulting MSE risks are displayed in Table 2. We set d = k = 8 and α = 1
4 . With the addition of

the value-selection function, the model achieved a loss comparable to the optimal estimator, indicating

8

Table 3: Experiment results for model pretraining and finetuning. For perplexity (ppl), lower is better,
and for accuracy (acc), higher is better.

Model Wikitext
ppl↓

Lambada_std
ppl↓

Lambada_openai
ppl↓

Lambada_std
acc↑

Lambada_openai
acc↑

Piqa
acc↑

Hella
acc_norm↑

Winogrande
acc↑

Arc-E
acc↑

Arc-C
acc_norm↑

Average
acc↑

Finetune

GPT2 36.503 51.631 29.134 0.340 0.451 0.584 0.313 0.476 0.457 0.221 0.406
+SSA base 34.618 50.412 27.235 0.361 0.469 0.610 0.338 0.512 0.479 0.249 0.431
+SSA weight sharing 35.147 50.832 27.905 0.357 0.465 0.603 0.334 0.500 0.472 0.243 0.425

Pythia-160m 26.681 47.996 24.102 0.383 0.494 0.674 0.362 0.542 0.503 0.277 0.462
+SSA base 26.514 47.945 23.956 0.388 0.513 0.688 0.375 0.557 0.530 0.291 0.477
+SSA weight sharing 26.780 47.961 24.027 0.386 0.509 0.685 0.369 0.553 0.524 0.285 0.473

Pythia-410m 20.310 42.694 21.895 0.418 0.542 0.696 0.372 0.547 0.561 0.288 0.489
+SSA base 19.976 42.689 21.704 0.430 0.553 0.714 0.381 0.558 0.572 0.302 0.501
+SSA weight sharing 20.190 42.692 21.810 0.428 0.549 0.707 0.380 0.551 0.566 0.295 0.497

Llama 19.764 28.023 16.513 0.426 0.574 0.704 0.377 0.549 0.595 0.302 0.504
+SSA base 19.305 27.627 15.860 0.428 0.581 0.710 0.388 0.562 0.618 0.336 0.518
+SSA weight sharing 19.512 27.892 16.038 0.426 0.579 0.708 0.385 0.557 0.608 0.331 0.513

Llama3-8b 12.416 24.002 13.954 0.481 0.684 0.772 0.544 0.698 0.780 0.463 0.632
+SSA base 10.982 23.671 12.052 0.489 0.690 0.779 0.550 0.703 0.787 0.472 0.639
+SSA weight sharing 11.498 23.805 10.164 0.487 0.687 0.776 0.548 0.701 0.784 0.471 0.636

Pretrain

GPT2 35.813 104.225 42.187 0.216 0.304 0.608 0.309 0.462 0.359 0.186 0.349
+SSA base 33.528 103.933 40.960 0.221 0.318 0.631 0.317 0.480 0.365 0.203 0.362
+SSA weight sharing 34.601 104.004 41.326 0.219 0.312 0.622 0.312 0.469 0.365 0.197 0.356

Pythia-160m 27.943 75.487 34.406 0.279 0.351 0.630 0.348 0.498 0.401 0.219 0.389
+SSA base 26.912 72.891 33.126 0.294 0.360 0.661 0.359 0.508 0.426 0.230 0.405
+SSA weight sharing 27.046 73.071 33.814 0.291 0.360 0.660 0.352 0.503 0.421 0.221 0.401

Pythia-410m 22.516 69.814 32.781 0.321 0.371 0.655 0.357 0.530 0.441 0.234 0.416
+SSA base 21.402 68.553 31.269 0.336 0.387 0.660 0.363 0.536 0.449 0.237 0.424
+SSA weight sharing 21.980 69.041 31.458 0.331 0.384 0.658 0.362 0.534 0.445 0.237 0.422

successful suppression of noisy tokens. In contrast, while vanilla softmax self-attention performs
similarly to naive averaging, it fails to sufficiently denoise, resulting in a much larger loss compared
to our value-selective attention.

5 Empirical Evaluations

5.1 Standard Benchmarks

Drawing on theoretical insights, we assess the performance of SSA on NLP tasks by integrating
SSA into established models such as GPT-2 [34], Pythia [3], Llama [44] and Llama3 [16]. Our
methodology includes both pre-training and fine-tuning to evaluate SSA’s performance and efficiency.
For the pre-training evaluation, we train the model from scratch on the SlimPajama dataset [41].
Subsequently, we evaluate the model on various downstream zero-shot tasks, including Wikitext [27],
Lambada [32], Piqa [4], Hella [50], Winogrande [38], Arc-E, and Arc-C [10]. This approach is widely
used for measuring the performance and generalization capabilities of pretrained large language
models across diverse tasks [2, 3, 18]. For the fine-tuning evaluation, we start by loading the official
pre-trained model and then fine-tune it on the downstream tasks. Unlike pre-training, where the
downstream tasks are unseen during training, fine-tuning involves direct training on the tasks. This
allows the model to better approximate the token distribution and understand the text domain. Details
of the models are provided in Appendix A.

Our primary results are shown in Table 3. Based on the theoretical insights and ablation study
results, we conduct both Token-aware and Position-aware Temperature Scaling on query Q, and value
V. We observe that across various models and datasets, incorporating SSA consistently enhances
performance. Notably, experiments with larger and more recent models, such as Llama3-8B and
Pythia 410M, confirm that SSA improves accuracy across across model scales and architectures. We
further introduce a weight sharing strategy that reduces the number of parameter overhead to less
than 0.5% while preserving the benefits of SSA and still outperforming the standard transformer.
This underscores the value of selectivity irrespective of its precise implementation. Thus, our
improvements are not arising from an increase in the parameter count, but rather from the strategic
integration of SSA. Additionally, we have also explored a feature-based method to further enhance
SSA’s parameter efficiency. In a nutshell, rather than training an MLP, we select the temperature as a
function of token-level features, such as the frequency of a token in the training corpus, by fitting a
single scalar parameter. This process requires only O(1) additional weights (<0.01% of total). Further
details and results are provided in Appendix B.2.

9

For the ablation study, we fine-tuned the models on the Wikitext dataset to compare the in-
fluence of each component, using the same dataset and training configurations as those in the
real experiments. The results are shown in Appendix B.1. Among the results, we observe
that deploying both Token-aware and Position-aware Temperature Scaling on Q and V inde-
pendently could achieve significant improvement, aligning with our theoretical insights. Addi-
tionally, combining Key and Query temperatures can achieve additional improvement. More-
over, between token-aware and position-aware temperature scaling, the latter demonstrates a
more consistent improvement across different scenarios, while combining them can achieve
the best overall result. We also compare with more baselines including [26, 22, 51] and
the results are shown in Appendix B.3. Our method consistently outperforms the baselines.

Speed up

Figure 4: Comparison of training curves.
SSA provides reasonable benefits in
terms of training speedup.

Additionally, SSA can accelerate the training process by
achieving comparable performance with fewer tokens.
This efficiency not only reduces the demand on compu-
tational resources but also shortens the time required to
effectively train models. We illustrate this efficiency by
plotting the training results when fine-tuning the Llama
model on the Wikitext dataset, both with vanilla attention
layer or SSA, in Figure 4. The results indicate that SSA
can accelerate training, achieving similar performance
with 1.45× reduction in pretraining steps.

5.2 Passkey Retrieval

We also examines the perfromance on the passkey retrieval task as defined in [33, 29].This is a
synthetic task to measure a model’s ability to retrieve a simple passkey (i.e., a five-digit number)
within a large amount of otherwise meaningless text. We performed 10 iterations of the passkey
retrieval task with the passkey placed at a random location uniformly distributed across the evaluation
context window. Intuitively, SSA could better solve this task by assigning different token-level
temperatures to digits vs words. For our evaluation of the fine-tuned Pythia, SSA leads to substantial
improvement (from 56.9% to 74.4%), as seen in Table 4.

Table 4: Passkey retrieval performance of various models.

Model Original +SSA +SSA(weight sharing)

Pythia-160m 56.89 74.41 66.90
Llama 77.62 89.53 89.45

6 Conclusions, Limitations, and Future Directions

We have introduced the Selective Self-Attention layer, which augments the softmax nonlinearity
with a principled temperature-scaling strategy. SSA shows consistent benefits and augments the
performance of existing transformer-based models such as Pythia and Llama 2. We also provide
theoretical insights into the benefits of query, value, and positional selectivity.

Future research. Based on SSA, there are several interesting research avenues to pursue. Firstly,
our method can extend to linear attention strategies. While we can use the same method for value
embeddings, for queries, we can train an additive bias term on attention similarities rather than
using temperature scaling. Secondly, based on the visual benefits of SSA on Figure 3, it would be
interesting to explore how SSA can help the interpretability and quality of the attention maps. Overall,
SSA has the potential to assist in more principled use of transformers in language, vision, and other
modalities.

Limitations. Our work focuses on the canonical softmax-attention mechanism, which suffers from the
quadratic computation bottleneck. As mentioned above, extending our method to linear attention can
mitigate computational costs. Another direction to enhance efficiency is building stronger connections
to sparsity and understanding how SSA can benefit and be integrated with sparse attention algorithms.

10

Acknowledgements

This work was supported in part by the National Science Foundation grants CCF-2046816, CCF-
2403075, the Office of Naval Research award N000142412289, an Adobe Data Science Research
award, and gifts by Open Philanthropy and Google Research.

References
[1] Emmanuel Abbe, Samy Bengio, Aryo Lotfi, and Kevin Rizk. Generalization on the unseen,

logic reasoning and degree curriculum. In International Conference on Machine Learning,
pages 31–60. PMLR, 2023.

[2] Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance
the recall-throughput tradeoff. arXiv preprint arXiv:2402.18668, 2024.

[3] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,
Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward
Raff, et al. Pythia: A suite for analyzing large language models across training and scaling. In
International Conference on Machine Learning, pages 2397–2430. PMLR, 2023.

[4] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about phys-
ical commonsense in natural language. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 7432–7439, 2020.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[6] Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain:
Unifying sparse and low-rank attention. Advances in Neural Information Processing Systems,
34:17413–17426, 2021.

[7] Ta-Chung Chi, Ting-Han Fan, and Alexander I Rudnicky. Attention alignment and flexible posi-
tional embeddings improve transformer length extrapolation. arXiv preprint arXiv:2311.00684,
2023.

[8] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with
sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

[9] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–
113, 2023.

[10] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

[11] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

[12] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in Neural Information Processing
Systems, 35:16344–16359, 2022.

[13] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with
gated convolutional networks. In International conference on machine learning, pages 933–941.
PMLR, 2017.

[14] Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru,
Albert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin:
Mixing gated linear recurrences with local attention for efficient language models. arXiv
preprint arXiv:2402.19427, 2024.

11

[15] Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure
attention loses rank doubly exponentially with depth. In International Conference on Machine
Learning, pages 2793–2803. PMLR, 2021.

[16] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[17] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse
text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

[18] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

[19] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[20] M Emrullah Ildiz, Yixiao Huang, Yingcong Li, Ankit Singh Rawat, and Samet Oymak. From
self-attention to markov models: Unveiling the dynamics of generative transformers. Interna-
tional Conference on Machine Learning, 2024.

[21] Tobias Katsch. Gateloop: Fully data-controlled linear recurrence for sequence modeling. arXiv
preprint arXiv:2311.01927, 2023.

[22] Mingchen Li, Xuechen Zhang, Christos Thrampoulidis, Jiasi Chen, and Samet Oymak. Au-
tobalance: Optimized loss functions for imbalanced data. Advances in Neural Information
Processing Systems, 34:3163–3177, 2021.

[23] Bingbin Liu, Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Exposing
attention glitches with flip-flop language modeling. Advances in Neural Information Processing
Systems, 36, 2024.

[24] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[25] Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language
modeling via gated state spaces. In International Conference on Learning Representations,
2023.

[26] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit,
and Sanjiv Kumar. Long-tail learning via logit adjustment. ICLR, 2021.

[27] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

[28] Tomas Mikolov. Efficient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[29] Amirkeivan Mohtashami and Martin Jaggi. Landmark attention: Random-access infinite context
length for transformers. arXiv preprint arXiv:2305.16300, 2023.

[30] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning
and induction heads. arXiv preprint arXiv:2209.11895, 2022.

[31] Matteo Pagliardini, Daniele Paliotta, Martin Jaggi, and François Fleuret. Fast attention over
long sequences with dynamic sparse flash attention. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

[32] Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

12

[33] Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context
window extension of large language models. arXiv preprint arXiv:2309.00071, 2023.

[34] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[35] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020.

[36] Liliang Ren, Yang Liu, Shuohang Wang, Yichong Xu, Chenguang Zhu, and ChengXiang Zhai.
Sparse modular activation for efficient sequence modeling. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

[37] Arda Sahiner, Tolga Ergen, Batu Ozturkler, John Pauly, Morteza Mardani, and Mert Pilanci.
Unraveling attention via convex duality: Analysis and interpretations of vision transformers. In
International Conference on Machine Learning, pages 19050–19088. PMLR, 2022.

[38] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

[39] Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training
enables zero-shot task generalization. arXiv preprint arXiv:2110.08207, 2021.

[40] Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

[41] Zhiqiang Shen, Tianhua Tao, Liqun Ma, Willie Neiswanger, Joel Hestness, Natalia Vassilieva,
Daria Soboleva, and Eric Xing. Slimpajama-dc: Understanding data combinations for llm
training. arXiv preprint arXiv:2309.10818, 2023.

[42] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

[43] Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang, and Samet Oymak. Max-margin
token selection in attention mechanism. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

[44] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[46] Junxiong Wang, Tushaar Gangavarapu, Jing Nathan Yan, and Alexander M Rush. Mambabyte:
Token-free selective state space model. arXiv preprint arXiv:2401.13660, 2024.

[47] Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of
in-context learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

[48] Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear
attention transformers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

[49] Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. Self-attention
networks can process bounded hierarchical languages. In Chengqing Zong, Fei Xia, Wenjie Li,
and Roberto Navigli, editors, Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 3770–3785, Online, August 2021. Association for
Computational Linguistics.

[50] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

13

[51] Xuechen Zhang, Mingchen Li, Jiasi Chen, Christos Thrampoulidis, and Samet Oymak. Class-
attribute priors: Adapting optimization to heterogeneity and fairness objective. to appear at
AAAI, 2024.

[52] Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy
Bengio, and Preetum Nakkiran. What algorithms can transformers learn? a study in length
generalization. arXiv preprint arXiv:2310.16028, 2023.

[53] Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang.
Vision mamba: Efficient visual representation learning with bidirectional state space model.
arXiv preprint arXiv:2401.09417, 2024.

14

Table 5: Fine-tuning experiment results for language models on the Wikitext dataset, showcasing
baseline and variations with different components (Q, K,V).

Configuration Pythia GPT2

Baseline 28.781 36.503
Q 27.416 34.832
K 28.715 36.443
V 27.980 35.857

Q, V 26.514 34.618
K, Q, V 26.603 34.609

A Implementation details

For the next token prediction experiment that substantiates the expressivity benefit of query-selectivity,
as detailed in Figure 3 and Table 1, we employ the Adam optimizer to train a model. This model
consists of a single-layer, single-head attention mechanism, accompanied by a tokenizer and a fully
connected layer. The tokenizer embeds the discrete sequence to continuous embedding E. The
fully connected layer is used as the classifier to predict the node index. We set the learning rate
at 1e−4. The training loss is the cross-entropy loss. In our experiments, L = N = 8. For SSA, we
implement Token-aware Temperature Scaling for the query matrix Q. We assign a scaling parameter
to each group of nodes that share the same number of neighbors. To have better visualization, we do
normalization to plot the attention map P⋆ and P̂. For the experiments shown in Table 2, we also use
the Adam optimizer and learning rate 1e−4. But the objective is the MSE risk.

For our empirical evaluation, we utilize several models. We employ GPT-2, which has 124 million
parameters, and use the official OpenAI GPT-2 checkpoints that were pre-trained on the WebText
dataset [34] for our finetuning experiments. For Pythia, our experiments are conducted with a model
size of 160 million and 410 million parameters, using the official checkpoint pre-trained on the Pile
dataset [17]. Lastly, for Llama, we utilize the smallest variant available, with 7 billion parameters,
and similarly fine-tune using the official pre-trained model. As the training configuration, we train
with 3.5 million tokens for fine-tuning and 15B tokens for pre-training. We always use the AdamW
optimizer [24], β1 = 0.9 and β2 = 0.95. We set learning rate 1e−6 with no weight decay and no
warmup. The pre-training takes about 2 hours using 4 A40 and fine-tuning takes about 2 days. We
use FlashAttention [11] to accelerate the training. For weight sharing, each head shares the same
funtion.

All the experiments are conducted with 4 or 8 A40 or L40S. We can directly reuse FlashAttention[12],
which significantly improves model efficiency.

B Additional experiments

B.1 Ablation study

For the ablation study, we conducted fine-tuning on the Wikitext dataset to compare the influence of
each component, using the same dataset and training configurations as those in the real experiments.
The models are evaluated with perplexity (ppl).

B.1.1 Key-temperature, Query-temperature, and Value-temperature

To evaluate the benefits of applying temperature scaling to K, Q, and V, we conducted an ablation
study, examining each component individually and in combination. For a fair comparison, both
position-aware and token-aware temperature scaling were applied to all components. The results,
detailed in table 5, indicate that modifying Q, and V independently yields clear benefits, whereas
alterations to K result in performance that is similar to, or even worse than, the baseline vanilla
attention layer. The results align well with the theoretical analysis presented in section 4. However,
when Q and V are combined, we observe consistent improvements. These findings led us to develop
our final algorithm, which applies temperature scaling to both Q and V.

15

Table 6: Investigate the benefits of Token-aware Temperature Scaling, Position-aware Temperature
Scaling.

model vanilla q v
τpos + τtok τpos τtok τpos + τtok τpos τtok

Pythia 28.781 27.416 27.995 27.503 27.980 28.342 27.975
GPT2 36.503 34.832 34.970 35.064 35.857 36.320 35.617

Table 7: Comparing different SSA parameterizations

Model Wikitext
ppl↓

Lambada_std
ppl↓

Lambada_openai
ppl↓

Lambada_std
acc↑

Lambada_openai
acc↑

Finetune

Pythia 26.681 47.996 24.102 0.383 0.494
Pythia +SSA base 26.514 47.945 23.956 0.388 0.513

Pythia +SSA weight sharing 26.780 47.961 24.027 0.386 0.509
Pythia + SSA feature-based 27.048 47.966 24.114 0.387 0.499

Pretrain

Pythia 27.943 75.487 34.406 0.279 0.351
Pythia +SSA base 26.912 72.891 33.126 0.294 0.360

Pythia +SSA weight sharing 27.046 73.071 33.814 0.291 0.360
Pythia +SSA feature-based 27.281 73.614 33.794 0.287 0.357

B.1.2 Token-aware Temperature Scaling, Position-aware Temperature Scaling

We also conduct experiments to investigate the benefits of Token-aware and position-aware Tem-
perature Scaling applied to Query q and value v. The results are shown in table 6. Token-aware
Temperature Scaling positively impacts both Query q and value v, whereas Position-aware Tempera-
ture Scaling shows smaller improvement on value v, aligning with our theoretical insights. Further-
more, when compared to GPT-2, Pythia—which features a more advanced positional encoding[42]
—demonstrates fewer improvements. This suggests that while new strategies may mitigate the dis-
persed attention issue, our Selective Self-Attention (SSA) method still offers additional improvements.

B.2 Parameter-efficient SSA: Weight sharing and featurization

Here, we also introduce a feature-based approach to improve parameter efficiency. In a nutshell,
rather than training an MLP, we select the temperature as a function of token-level features, such
as the frequency of a token in the training corpus, by fitting a single scalar parameter. This process
requires only O(1) additional weights per attention head (<0.01% of total). This is inspired by the
logit adjustment strategy of [26] which sets the cross-entropy temperature as a function of class
frequencies.

Our evaluations on feature-based SSA are provided in Table 7. We find that, while the feature-based
method is beneficial and highly parameter-efficient, it can be sensitive to feature selection and exhibits
more variability across datasets.

B.3 Ablation of Different Parameterizations

In addition to the functions we propose for temperature design, we also explore alternative approaches.
Instead of employing our Position-aware Temperature Scaling function, we use a constant parameter,
as suggested in other studies [26, 22, 51]. We also compare with the temperature scaling method
proposed by [33]. Furthermore, in place of our Token-aware Temperature Scaling, we adopt a simpler
approach by directly utilizing token frequency and training only a scale parameter. These experiments
were conducted using the Pythia model, fine-tuned on the Wikitext dataset. The outcomes of these
comparative analyses are presented in Table 8. Among those baselines, we consistently outperform
their results.

16

Table 8: Conducting different functions.
Configuration Pythia

Vanilla 28.781

Token Yarn [33] 27.602
Constant 28.058

Position Frequency 27.360
Position+Token SSA 26.514

C Proofs

C.1 Proof of Proposition 1

Proof. Given embeddings e1, e2 with unit ℓ2 norm, their correlation is ρ = e⊤1 e2.

First, consider the approximation error bound ∥P⋆ − S(EWE⊤)∥∞ ≤ ε. To achieve this, the weight
matrix W must satisfy the inequality.

To derive a lower bound on ∥W∥, observe that:

∥P⋆ − S(EWE⊤)∥∞ ≤ ε

∥P⋆ − S(EWE⊤)∥∞ =
∥∥∥∥∥ 1

1 + e−EWE⊤ − P⋆
∥∥∥∥∥
∞

≤ ε

Using the fact that e1 and e2 are unit vectors and ρ = e⊤1 e2, we have:

∥EWE⊤∥∞ ≥
1
4ε
− Γ.

Now, the norm ∥W∥ is given by:

∥W∥ ≥
∥e1 − e2∥

−1√
2 − 2ρ2

(
log

(
1
4ε

)
− Γ

)
.

Conversely, to achieve ε-approximation using Selective Attention, the weights need to be bounded
such that:

τ(e1,2) · ∥W∥ ≤ ∥e1 − e2∥
−1 max

log
(

1
ε

)
,
Γ√

1 − ρ2

 .
Therefore, the selective attention avoids the 1/

√
1 − ρ2 dependence on the log(1/ε) term, decoupling

the high-specificity requirement (small ε) from the semantic similarity of the tokens.

This completes the proof of Proposition 1. □

C.2 Proof of Proposition 2

Proof. We first show the success direction. Set W such that b⊤W = 0 and a⊤Wa = a⊤Wb = 1. Such
W exists thanks to the linear independence of a, b. Now plugging this W into (1), for each position,
regardless of whether xn = a or xn = b, we obtain

X⊤S≤n(τn · XWxn) =
naeτn

naeτn + (n − na)
a +

(n − na)eτn

naeτn + (n − na)
b.

We wish to ensure

naeτn

naeτn + (n − na)
=

1
1 + (n/na − 1)e−τn

=
1

1 + κne−τn
= α.

17

This in turn implies

κne−τn =
1 − α
α

⇐⇒ τn = log κn + log
α

1 − α
.

Next, we discuss the failure case of flat temperature. To do so, we will lower bound the loss over the
queries xn = b. Set M = e(b−a)⊤Wb. Following same argument as above, for fixed temperature, W will
output a non-adaptive composition of the form

X⊤S≤n(XWb) =
1

1 + Mκn
a +

Mκn
1 + Mκn

b.

Thus, the loss function will be lower bounded by (accounting for the prediction error in a, b terms
and their orthogonality)

L(W) ≥ min
M>0

∑
n:xn=b

(0.5 −
1

1 + Mκn
)2 + (0.5 −

Mκn
1 + Mκn

)2 = min
M>0

∑
n:xn=b

2 · (0.5 −
1

1 + Mκn
)2.

Now since κn ≥ 1 over both second, at least 1/2 of the queries are xn = b. Similarly, at least 4/5 of
the queries are xn = b over the last quadrant. We will lower bound the loss over the two scenarios
depending on M ≥ 1/3 or not.

First, suppose M ≥ 1/3, in that case, using κn ≥ 4 over the last quadrant, the loss is lower bounded by

L(W) ≥ min
M>0

1
N

∑
n≥3N/4,xn=b

2 · (0.5 −
1

1 + Mκn
)2 ≥

2
5

(0.5 −
1

1 + 4/3
)2 > 0.002.

where we used the fact that there are ≥ N
5 =

N
4 ·

4
5 queries with xn = b over the last quadrant.

Similarly, suppose M ≤ 1/3, in that case, using κn ≤ 2 over second quadrant, the loss is lower
bounded by

L(W) ≥ min
M>0

1
N

∑
N/2≥n≥N/4,xn=b

2 · (0.5 −
1

1 + Mκn
)2 ≥

1
4

(0.5 −
1

1 + 2/3
)2 = 0.0025.

where we used the fact that there are at least N/8 queries with xn = b over the second quadrant.
Combining these two cases, we found that, for any choice of W, the loss is lower bounded by
0.002. □

D Further Discussion on the Sparsity and Temperature Connection

Connections between sparsity and temperature.

To formally study the sparsity and temperature connection, let us consider a fixed attention row n and
introduce:

• s(τ) = S≤n(τ · XWxn), the scaled attention scores with inverse-temperature τ > 0.
• s̄(κ) = S≤n(XWxn, κ) denote the sparse attention scores where the top-κn entries are retained

and the rest are set to 0 where 0 ≤ κ ≤ 1.

The connection between sparsity and temperature scaling is clear. For instance, the top entry of
s(τ) will be decreasing in τ whereas the entropy of s(τ) will be increasing. Here, we would like to
establish how temperature scaling rule can be mapped to a sparsity rule. We will do this under a
power-law relevance assumption on the attention scores. Here, we assume that the attention scores
admit two values and the fraction of larger/relevant attention scores follow a power-law as context
window grows.
Assumption 1 (Power-law relevance). Consider the vector of raw attention scores a = XWxn. Each
entry of a is either c or c+ = c + γ for some γ > 0. Additionally, n−pow fraction of the entries are
equal to c+ for some pow > 0.

Above c+ is the score attained by the salient tokens, γ is the score advantage of salient tokens over rest
of the tokens, and pow dictates the fraction of the salient tokens. To proceed, we have the following
lemma which identifies condition under which TS and sparse-attention exhibit the same softmax
temperature behavior.

18

Lemma 2. For any choice of τ = 1 + α log n > 0 and corresponding sparsity κ = n−αγ
1−n−pow + n−pow, we

have that ∥s(τ)∥ℓ∞ = ∥s̄(κ)∥ℓ∞ .

This reveals the clear connection between temperature scaling and sparsification rules. Simplifying
the above, this lemma advocates that the sparsification rule should follow the power law decay of
κ ≈ n−αγ∧pow. Consistent with this lemma, our experiments demonstrate that sparsification with
power-law results in respectable performance.

Proof. We first compute the top entry of s(τ) as follows

sτ1∑n
i=1 sτi

=
eγτ

n1−poweγτ + (n − n1−pow)
=

1
n1−pow + n(1 − n−pow)e−γτ

We similarly compute the top sparse attention score as

s1∑κ
i=1 si

=
eγ

n1−poweγ + (κ − n−pow)n
=

1
n1−pow + (κ − n−pow)e−γn

.

Combining these, the top softmax probabilities are matched by setting

(κ − n−pow)e−γ = (1 − n−pow)e−γτ ⇐⇒ κ =
e−γ(τ−1)

1 − n−pow
+ n−pow.

□

We need to clarify that our method is not about sparse approximation of the attention map and
instead aims to control the “spikiness of attention”. The “spikiness of attention” can be viewed as
an “effective sparsity” which can be quantified through L∞ norm, L1/L2 ratio, or inverse-entropy
of the softmax map. This discussion will also better clarify what is meant by “contextual sparsity”
throughout the paper and distinguish it from (hard) sparsity targeted in [31, 36].

E Theoretical Considerations

E.1 Hierarchical vocabulary

Hierarchical vocabulary. Consider a k-ary tree of depth D: Each node has exactly k children, except
at depth d. Such a tree has 1 + k + k2 + · · · + kD = N = (kD+1 − 1)/(k − 1) nodes. The tree will
correspond to the words/tokens in the vocabularyV of size N.

Token generation rule: Let X ∈ VL be a sequence of length L drawn fromV. Suppose X ends with
q := xL. The token Y = xL+1 that follows X will be drawn from q or the children of q available in
the context window. If q is at depth l, it can attend to a total of (kD+1−l − 1)/(k − 1) unique tokens,
including itself. LetDXY denote the data distribution (Y, X) where Y is drawn uniformly from one of
the child tokens of xL available in the context window X.

The claims below aim to formalize the benefits of SSA for modeling the hierarchical token generation
process. Let E = [e1 . . . eN]⊤ be the token embeddings associated to the vocabulary V. Assume
elements of E are unit ℓ2 norm. During training, we embed the discrete sequence X into X =
[ex1 . . . exN].
Claim 1 (Benefits on attention map). Consider the attention map map(X) = S(τ(xL) · XWxL). Note
that map is a function of W, E, τ. Define the ideal attention map X to be map⋆(X) which uniformly
attends to the children of xL and assigns zero probability to other tokens. Define the population error

err_map(E,W, τ) = EX∼DX

[
∥map(X) − map⋆(X)∥1

]
.

Under suitable assumptions (see remark below), QSSA is provably better than vanilla self-attention
i.e. having τ(x) improves attention capability by reducing err_map(E,W, τ).
Claim 2 (Benefits on prediction). Let f (X) be an attention layer (SSA or vanilla). Suppose we sample
the next token Ŷ from f (X) according to the distribution g(X) = S(C f (X)) ∈ RN . Here C ∈ RN×d is
the linear prediction head. As loss measure, use the expected total-variation (TV) distance between
g(X) and the true label Y. Under suitable assumptions, g(X) with QSSA f (X) fits better to the
hierarchical distribution compared to vanilla f (X).

19

20

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We introduce the studied question and list our contribution in Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
• The claims made should match theoretical and experimental results, and reflect how

much the results can be expected to generalize to other settings.
• It is fine to include aspirational goals as motivation as long as it is clear that these goals

are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitation of our work in Section 6

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
• The authors should reflect on the scope of the claims made, e.g., if the approach was

only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
• The authors should reflect on the factors that influence the performance of the approach.

For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.
• The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.
• If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.
• While the authors might fear that complete honesty about limitations might be used by

reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

21

Justification: We provide our theory and related theoretical definitions in Section 4. We
provide the related lemmas and proofs in Appendix.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.
• Inversely, any informal proof provided in the core of the paper should be complemented

by formal proofs provided in appendix or supplemental material.
• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the design of our algorithm in Section 3 and implementation details
in Section 5. We also provide main experimental results and detailed analysis in Section 5
and additional results in Appendix.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
• While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

22

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We release our training and evaluation code in a zip file.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
• The instructions should contain the exact command and environment needed to run to

reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
• At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We explain the training and testing details in Section 5
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We run our experiments on 2 representative datasets and compare our models
performance with several baselines. The experiments results are 3 runs average and we
provide error bar in the table.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
• The factors of variability that the error bars are capturing should be clearly stated (for

example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
• For asymmetric distributions, the authors should be careful not to show in tables or

figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
• If error bars are reported in tables or plots, The authors should explain in the text how

they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Section 5, we state the hardware to run the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: There is no potential harms caused by the research process and potential
harmful societal impact.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We state the potential social benefit of our work in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

24

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
• The conference expects that many papers will be foundational research and not tied

to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
• The authors should consider possible harms that could arise when the technology is

being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
• If there are negative societal impacts, the authors could also discuss possible mitigation

strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We state the safeguards of our work in Section 6.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
• Datasets that have been scraped from the Internet could pose safety risks. The authors

should describe how they avoided releasing unsafe images.
• We recognize that providing effective safeguards is challenging, and many papers do

not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the dataset and also all the models used in our paper.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

25

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
• If this information is not available online, the authors are encouraged to reach out to

the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We include our experiment code and data generation code in our supplementary
files.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
• The paper should discuss whether and how consent was obtained from people whose

asset is used.
• At submission time, remember to anonymize your assets (if applicable). You can either

create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our method and experiments only relate to next token generation, which does
not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our method and experiments only relate to next token generation, which does
not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

26

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
• For initial submissions, do not include any information that would break anonymity (if

applicable), such as the institution conducting the review.

27

	Introduction
	Related Work
	Methodology: Selective Attention Layer
	Theoretical Insights into Selective Attention
	The benefits of incorporating query embedding
	The benefits of incorporating query position
	The benefits of incorporating value embedding

	Empirical Evaluations
	Standard Benchmarks
	Passkey Retrieval

	Conclusions, Limitations, and Future Directions
	Implementation details
	Additional experiments
	Ablation study
	Key-temperature, Query-temperature, and Value-temperature
	Token-aware Temperature Scaling, Position-aware Temperature Scaling

	Parameter-efficient SSA: Weight sharing and featurization
	Ablation of Different Parameterizations

	Proofs
	Proof of lem soft approx
	Proof of Proposition 2

	Further Discussion on the Sparsity and Temperature Connection
	Theoretical Considerations
	Hierarchical vocabulary

