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Abstract

Deep NLP models have been shown to be brit-001
tle to input perturbations. Recent work has002
shown that data augmentation using counter-003
factuals — i.e. minimally perturbed inputs —004
can help ameliorate this weakness. We focus005
on the task of creating counterfactuals for ques-006
tion answering, which presents unique chal-007
lenges related to world knowledge, semantic008
diversity, and answerability. To address these009
challenges, we develop a Retrieve-Generate-010
Filter (RGF) technique to create counterfac-011
tual evaluation and training data with minimal012
human supervision. Using an open-domain013
QA framework and question generation model014
trained on original task data, we create coun-015
terfactuals that are fluent, semantically diverse,016
and automatically labeled. Data augmenta-017
tion with RGF counterfactuals improves per-018
formance on out-of-domain and challenging019
evaluation sets over and above existing meth-020
ods, in both the reading comprehension and021
open-domain QA settings. Moreover, we find022
that RGF data leads to significant improve-023
ments to robustness to local perturbations.1024

1 Introduction025

Models for natural language understanding (NLU)026

may outperform humans on standard benchmarks,027

yet still often perform poorly under a multitude of028

distributional shifts (Jia and Liang (2017); Naik029

et al. (2018); McCoy et al. (2019), inter alia) due030

to over-reliance on spurious correlations or dataset031

artifacts. This behavior can be probed using coun-032

terfactual data (Kaushik et al., 2020; Gardner et al.,033

2020) designed to simulate interventions on spe-034

cific attributes: for example, perturbing the movie035

review “A real stinker, one out of ten!" to “A real036

classic, ten out of ten!" allows us to discern the037

effect of adjective polarity on the model’s predic-038

tion. Many recent works (Kaushik et al., 2020,039

2021; Wu et al., 2021a; Geva et al., 2021, , inter040
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Wikipedia

Who is the captain of the Richmond Football Club? 

List of Richmond Football Club
captains >> Jeff Hogg 1994 -- 1996
... Current Captain:  
Trent Cotchin  

The ...  Richmond Football club ran a
women's team and ... Jess
Kennedy was named the team ' s
captain 

Who captained Richmond Football Club's women's team? 

Who won the inaugural best  in VFL 2018 season? 

Who captained Richmond Football Club's women's team? 

Figure 1: Retrieve-Generate-Filter to generate coun-
terfactual queries for Natural Question (Kwiatkowski
et al., 2019) using an open-domain retrieval system,
question generation and post-hoc filtering.

alia) have shown that training augmented with this 041

counterfactual data (CDA) improves out-of-domain 042

generalization and robustness against spurious cor- 043

relations. Consequently, several techniques have 044

been proposed for the automatic generation of coun- 045

terfactual data for several downstream tasks (Wu 046

et al., 2021a; Ross et al., 2021b,a; Bitton et al., 047

2021; Geva et al., 2021; Asai and Hajishirzi, 2020; 048

Mille et al., 2021). 049

In this paper, we focus on counterfactual data for 050

question answering, in both the reading compre- 051

hension and open-domain settings (e.g. Rajpurkar 052

et al., 2016; Kwiatkowski et al., 2019). Model 053

inputs consist of a question and optionally a con- 054

text passage, and the target a is a short answer 055

span. Counterfactuals are often considered in the 056

context of a specific causal model (Miller, 2019; 057

Halpern and Pearl, 2005), but in this work we fol- 058

low Wu et al. (2021a) and Kaushik et al. (2020) 059

and seek a method to generate counterfactuals that 060

may be useful in many different settings. In QA, 061

the set of possible causal features is large and dif- 062

ficult to specify a priori; relevant factors are often 063
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instance-specific and exploring them may require064

world knowledge. For example, going from “Who065

is the captain of the Richmond Football Club” to066

“Who captained Richmond’s women’s team?” as067

in Figure 1 requires knowledge about the club’s068

alternate teams, and the perturbation “Who was069

the captain of RFC in 1998?” requires knowledge070

about the time-sensitive nature of the original ques-071

tion. In the absence of such knowledge, otherwise072

reasonable edits — such as “Who captained the073

club in 2050?” — can result in false premises or074

unanswerable questions.075

We develop a simple yet effective technique to076

address these challenges: Retrieve, Generate, and077

Filter (RGF; Figure 1). We use the near-misses078

of a retrieve-and-read QA model to propose alter-079

nate contexts and answers which are closely related080

to — but semantically distinct from — the origi-081

nal question. We then use a sequence-to-sequence082

question generation model (Alberti et al., 2019) to083

generate corresponding questions to these passages084

and answers. This results in fully-labeled examples,085

which can be used directly to augment training data086

or filtered post-hoc for analysis.087

While our method requires no supervised inputs088

besides the original task training data, it is able089

to generate highly diverse counterfactuals cover-090

ing a range of semantic phenomena (§4), including091

many transformation types which existing meth-092

ods generate through heuristics (Dua et al., 2021),093

meaning representations (Ross et al., 2021b; Geva094

et al., 2021) or human generation (Bartolo et al.,095

2020; Gardner et al., 2020). Compared to alterna-096

tive sources of synthetic data (§5.1), training aug-097

mented with RGF data improves performance on098

a variety of settings (§5.2, §5.3), including out-of-099

domain (Fisch et al., 2019) and contrast evaluation100

sets (Bartolo et al., 2020; Gardner et al., 2020),101

while maintaining in-domain accuracy. Addition-102

ally, we introduce a measure of pairwise consis-103

tency, and show that RGF significantly improves104

robustness to a range of local perturbations (§6).105

2 Related Work106

2.1 Counterfactual Generation107

There has been considerable interest in developing108

challenge sets for NLU that evaluate models on a109

wide variety of counterfactual scenarios. Gardner110

et al. (2020); Khashabi et al. (2020); Kaushik et al.111

(2020); Ribeiro et al. (2020) use humans to create112

these perturbations, optionally in an adversarial113

setting against a particular model (Bartolo et al., 114

2020). However, these methods can be expensive 115

and difficult to scale. 116

This has led to an increased interest in creating 117

automatic counterfactual data for evaluating out- 118

of-distribution generalization (Bowman and Dahl, 119

2021) and for counterfactual data augmentation 120

(Geva et al., 2021; Longpre et al., 2021). Some 121

work focuses on using heuristics like swapping su- 122

perlatives and nouns (Dua et al., 2021), changing 123

gendered words (Webster et al., 2020), or target- 124

ing specific data splits (Finegan-Dollak and Verma, 125

2020). More recent work has focused on using 126

meaning representation frameworks and structured 127

control codes (Wu et al., 2021a), including gram- 128

mar formalisms (Li et al., 2020), semantic role 129

labeling (Ross et al., 2021b), structured image rep- 130

resentations like scene graphs (Bitton et al., 2021), 131

and query decompositions in multi-hop reasoning 132

datasets (Geva et al., 2021). Ye et al. (2021) and 133

Longpre et al. (2021) perturb contexts instead of 134

questions by swapping out all mentions of a named 135

entity. The change in label can be derived heuristi- 136

cally or requires a round of human re-labeling of 137

the data. These may also be difficult to apply to 138

tasks like Natural Questions (Kwiatkowski et al., 139

2019), where pre-defined schemas can have diffi- 140

culty covering the range of semantic perturbations 141

that may be of interest. 142

2.2 Data Augmentation 143

Non-counterfactual data augmentation methods for 144

QA, where the synthetic examples are not paired 145

with the original data, have shown only weak im- 146

provements to robustness and out-of-domain gener- 147

alization (Bartolo et al., 2021; Lewis et al., 2021). 148

Counterfactual data augmentation is hypothesized 149

to perform better, as exposing the model to mini- 150

mal pairs should reduce spurious correlations and 151

make the model more likely to learn the correct, 152

causal features (Kaushik et al., 2020). However, 153

Joshi and He (2021) find that methods that limit 154

the structural and semantic space of perturbations 155

can potentially hurt generalization to other types 156

of transformations. This problem is exacerbated in 157

the question answering scenario where there can be 158

multiple semantic dimensions to edit. Our method 159

attempts to address this by targeting a broad range 160

of semantic phenomena, thus reducing the chance 161

for the augmented model to overfit. 162
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3 RGF: Counterfactuals for163

Information-seeking Queries164

We define a counterfactual example is an alterna-165

tive input x′ which differs in some meaningful,166

controlled way from the original x, which in turn167

allows us to reason – or teach the model – about168

changes in the label (the outcome). For question-169

answering, we take as input triples (q, c, a) consist-170

ing of the question, context passage, and short an-171

swer, and produce counterfactual triples (q′, c′, a′)172

where a′ 6= a. This setting poses some unique173

challenges, such as the need for background knowl-174

edge to identify relevant semantic variables to alter,175

ensuring sufficient semantic diversity in question176

edits, and avoiding questions with false premises177

or no viable answers. Ensuring (or characteriz-178

ing) minimality can also be a challenge, as small179

changes to surface form can lead to significant se-180

mantic changes, and vice-versa. We introduce a181

generalized paradigm — Retrieve, Generate and182

Filter — to tackle these challenges.183

3.1 Overview of RGF184

An outline of the RGF method is given in Figure 1.185

Given an input example x = (q, c, a) consisting186

of a question, a context paragraph, and the cor-187

responding answer, RGF generates a set of new188

examples N(x) = {(q′1, c′1, a′1), (q′2, c′2, a′2), . . . }189

from the local neighborhood around x. We first190

use an open-domain retrieve-and-read model to re-191

trieve alternate contexts c′ and answers a′ where192

a 6= a′. As near-misses for a task model, these193

candidates (c′, a′) are closely related to the origi-194

nal target (c, a) but often differ along interesting,195

latent semantic dimensions (Figure 2) in their rela-196

tion to the original question, context, and answer.197

We then use a sequence-to-sequence model to gen-198

erate new questions q′ from the context and answer199

candidates (c′, a′). This yields triples (q′, c′, a′)200

which are fully labeled, avoiding the problem of201

unanswerable or false-premise questions.202

Compared to methods that rely on a curated set203

of minimal edits (e.g. Wu et al., 2021b; Ross et al.,204

2021b), our method admits the use of alternative205

contexts2 c′ 6= c, and we do not explicitly constrain206

our triples to be minimal perturbations during the207

generation step. Instead, we use post-hoc filtering208

2An alternative approach would be to make direct, targeted
edits to the original context c. However, beyond a limited
space of local substitutions (Longpre et al., 2021; Ye et al.,
2021; Ross et al., 2021a) this is very difficult due to the need
to model complex discourse and knowledge relations.

to reduce noise, select minimal candidates, or se- 209

lect for specific semantic phenomena based on the 210

relation between q and q′. This allows us to explore 211

a significantly more diverse set of counterfactual 212

questions q′ (§C.1), capturing relations that may 213

not be represented in the original context c. 214

We describe each component of RGF below; 215

additional implementation details are provided in 216

Appendix A. 217

3.2 Retrieval 218

We use REALM retrieve-and-read model of (Guu 219

et al., 2020). REALM consists of a BERT- 220

based bi-encoder for dense retrieval, a dense 221

index of Wikipedia passages, and a BERT- 222

based answer-span extraction model for reading 223

comprehension, all fine-tuned on Natural Ques- 224

tions (NQ; Kwiatkowski et al., 2019). Given 225

a question q, REALM outputs a ranked list 226

of contexts and answers within those contexts: 227

{(c′1, a′1), (c′2, a′2), . . . (c′k, a′k)}. These alternate 228

contexts and answers provide relevant yet diverse 229

background information to construct counterfac- 230

tual questions. For instance, in Figure 1, the ques- 231

tion “Who is the captain of the Richmond Football 232

Club" with answer “Trent Cotchin" also returns 233

other contexts with alternate answers like “Jeff 234

Hogg" (q′ =“Who captained the team in 1994"), 235

and “Steve Morris" (q′ =“Who captained the re- 236

serve team in the VFL league"). Retrieved con- 237

texts can also capture information about closely re- 238

lated or ambiguous entities. For instance, the ques- 239

tion “who wrote the treasure of the sierra madre" 240

retrieves passages about the original book Sierra 241

Madre, its movie adaptation, and a battle fought 242

in the Sierra de las Cruces mountains. This back- 243

ground knowledge allows us to perform contextual- 244

ized counterfactual generation, without needing to 245

specify a priori the type of perturbation or semantic 246

dimension. To focus on label-transforming coun- 247

terfactuals, we retain all (c′i, a
′
i) where a′i does not 248

match any of the gold answers a from the original 249

NQ example. 250

3.3 Question Generation 251

This component generates questions q′ that cor- 252

respond to the answer-context pairs (c′, a′). We 253

use a T5 (Raffel et al., 2020) model fine-tuned 254

on (q, c, a) triples from Natural Questions, using 255

context passages as input with the answer marked 256

with special tokens. We use the trained model to 257

generate questions (q′1, q
′
2, . . . q

′
k) for each of the 258
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the retrieved set of alternate contexts and answers,259

((c′1, a
′
1), (c

′
2, a
′
2), . . . (c

′
k, a
′
k)). For each (c′i, a

′
i),260

we use beam decoding to generate 15 different261

questions q′. We measure the fluency and correct-262

ness of generated questions in §4.263

3.4 Filtering for Data Augmentation264

Noise Filtering The question generation model265

can be noisy, resulting in a question that cannot be266

answered given c′ or for which a′ is an incorrect an-267

swer. Round-trip consistency (Alberti et al., 2019;268

Fang et al., 2020) uses an existing QA model to269

answer the generated questions, ensuring that the270

predicted answer is consistent with the target an-271

swer provided to the question generator. We use an272

ensemble of six T5-based reading-comprehension273

((q, c)→ a) models, trained on NQ using different274

random seeds (Appendix A), and keep any gen-275

erated (q′, c′, a′) triples where at least 5 of the 6276

models agree on the answer. This discards about277

5% of the generated data, although some noise still278

remains; see §4 for further discussion.279

Filtering for Minimality Unlike prior work on280

generating counterfactual perturbations, we do not281

explicitly control for the type of semantic shift or282

perturbation in the generated questions. Instead,283

we use post-hoc filtering over generated questions284

q′ to encourage minimality of perturbation. We285

define a filtering function f(q, q′) that categorizes286

the semantic shift or perturbation in q′ with respect287

to q. One simple version of f is the word-level288

edit (Levenshtein) distance between q and q′. Af-289

ter noise filtering, for each original (q, c, a) triple290

we select the generated (q′, c′, a′) with the small-291

est word-edit distance between q and q′ such that292

a 6= a′. We use this simple heuristic to create large-293

scale counterfactual training data for augmentation294

experiments (§5). Over-generating potential coun-295

terfactuals based on latent dimensions identified296

in retrieval and using a simple filtering heuristic297

avoids biasing the model toward a narrow set of298

perturbation types (Joshi and He, 2021).299

3.5 Semantic Filtering for Evaluation300

To better understand the types of counterfactuals301

generated by RGF, we can apply additional filters302

based on query meaning representations to catego-303

rize counterfactual (q, q′) pairs during evaluation.304

Meaning representations provide a way to decom-305

pose a question into semantic units and categorize306

(q, q′) based on which of these units are perturbed.307

Question from NQ
Original: who is the captain of richmond football club?
Predicate: who is the captain of X?

Reference Change
CF1: who is the captain of richmond’s vfl reserve team?
Predicate: who is the captain of X?

Predicate Change
CF2: who wears number 9 for richmond football club?
Predicate: who wears Y for X?

Predicate and Reference Change
CF3: who did graham negate in the grand final last year?
Predicate: who did X negate in Y last year?

Table 1: Categorization of generated questions based
on QED decomposition. The original reference “Rich-
mond football Club" changes in CF1 and CF3. Predi-
cate “Who is the captain" changes in CF2 and CF3.

In this work, we employ the QED formalism for 308

explanations in question answering (Lamm et al., 309

2021). QED explanations segment the question 310

into a predicate template and a set of reference 311

phrases. For example, the question “Who is cap- 312

tain of richmond football club" decomposes into 313

one question reference “richmond football club" 314

and the predicate “Who is captain of X". A few 315

example questions and their QED decompositions 316

are illustrated in Table 1. 317

We use these query decompositions to identify 318

the relation between a counterfactual pair (q, q′). 319

Concretely, we fine-tune a T5-based model on the 320

QED dataset to perform explanation generation 321

following the recipe of Lamm et al. (2021), and 322

use this to identify predicates and references for 323

the question from each (q, c, a) triple. We use ex- 324

act match between strings to identify reference 325

changes. As predicates can often differ slightly 326

in phrasing (who captained vs. who is captain), we 327

take a predicate match to be a prefix matching with 328

more than 10 characters. For instance, “Who is the 329

captain of Richmond’s first ever women’s team?", 330

“Who is the captain of the Richmond Football Club" 331

have same predicates. We filter generated ques- 332

tions into three perturbation categories — reference 333

change, predicate change, or both. 334

4 Intrinsic Evaluation 335

Following desiderata from Wu et al. (2021a) and 336

Ross et al. (2021b), we evaluate our RGF data 337

along three qualitative evaluation measures: flu- 338

ency, correctness, and directionality. 339

Fluency Fluency measures whether the gener- 340

ated text is grammatically correct and semantically 341
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who has won the women's
single wimbledon tennis
tournament in 2018?

who won the men's singles at
wimbledon ? 
who won the women's doubles at
wimbledon 2015 ?

who did serena williams beat in
the wimbledon finals 2015 ? 
who did osaka beat in the
finals of indian wells ?

who won the wimbledon women's
singles title in 2016 ?

who was the runner up
in the women's singles
at wimbledon in 2018?

how many games in wimbledon final
set tie break ?
who is the patron of wimbledon
tennis club ?

who won the women's
singles Australian Open?

Tournament 
Name

Game
Type

Misc.Tournament 
Year

Player
Specific

Game
Outcome

Figure 2: Context-specific semantic diversity of perturbations achieved by RGF on an NQ Question. The multiple
latent semantic dimensions identified (arrows in the diagram) emerge from our retrieval-guided approach.

Semantic Change Example (Original, Counterfactual)

Reference Change O: when did lebron_james join
TAILOR the Miami_Heat? C: When did
(Ross et al., 2021b) lebron_james come into the league?

Predicate Change O: Who won the war between india
AmbigQA and pakistan C: Who started
(Min et al., 2020b) the war between india and pakistan

Disambiguation O: When does walking dead season
AmbigQA 8 start? C: When does walking
(Min et al., 2020b) dead season 8 second half start?

Negation O: what religion observes the
Polyjuice sabbath day C: what religion does
(Wu et al., 2021a) not keep the sabbath day

Table 2: Patterns of semantic change between original
queries (O) and RGF counterfactuals (C), correspond-
ing to patterns explored by related works.

meaningful. Fluency is very high from RGF, as the342

generation step leverages a high-quality pretrained343

langauge model (T5). We manually annotate a sub-344

set of 100 generated questions, and find that 96%345

of these are fluent.346

Correctness Correctness measures if the gener-347

ated question q′ and context, alternate answer pairs348

(c′, a′) are aligned i.e. the question is answerable349

given context c′ and a′ is that answer. We quantify350

correctness in the generated dataset by manually351

annotating a samples of 100 (q′, c′, a′) triples (see352

Appendix B). The proportion of noise varies from353

30% before noise filtering and 25% after noise fil-354

tering using an ensemble of models (§3.4).355

Directionality/Semantic Diversity In Table 2,356

we show examples of semantic changes that occur357

in our data, including reference changes (50% of358

changes), predicate changes (30%), negations (1%),359

question expansions, disambiguations, and contrac-360

tions (13%). These cover many of the transforma-361

tions found in prior work (Gardner et al., 2020;362

Ross et al., 2021b; Min et al., 2020b), but RGF is 363

able to achieve these without the use of heuristic 364

transformations or structured meaning representa- 365

tions. As shown in Figure 2, the types of relations 366

are semantically rich and cover attributes relevant 367

to each particular instance that would be difficult 368

to capture with a globally-specified schema. 369

5 Data Augmentation 370

Unlike many counterfactual generation methods, 371

RGF natively creates fully-labeled (q′, c′, a′) exam- 372

ples which can be used directly for counterfactual 373

data augmentation (CDA). We augment the origi- 374

nal NQ training set with additional examples from 375

RGF, shuffling all examples in training. We explore 376

two experimental settings, reading comprehension 377

(§5.2) and open-domain QA (§5.3), and compare 378

RGF-augmented models to those trained only on 379

NQ, as well as to alternative baselines for synthetic 380

data generation. Additional training details for all 381

models and baselines are included in Appendix A. 382

5.1 Baselines 383

In the abstract, our model for generating counterfac- 384

tuals specifies a way of selecting contexts c′ from 385

original questions, and answers a′ within those 386

contexts, and a way of a generating questions q′ 387

from them. RGF uses a retrieval model to identify 388

relevant contexts; here we experiment with two 389

baselines that use alternate ways to select c′. We 390

also compare to the ensemble of six reading com- 391

prehension models described in 3.4, with answers 392

selected by majority vote. 393

Random Passage (Rand. Agen-Qgen) Here, c′ 394

is a randomly chosen paragraph from the Wikipedia 395

index, with no explicit relation with the original 396

question. This setting simulates generation from 397

the original data distribution of Natural Questions. 398

To ensure that the random sampling of Wikipedia 399
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Exact Match (RC) Train Size NQ SQuAD TriviaQA HotpotQA BioASQ AQA AmbigQA

Original NQ 90K 70.40 80.22 14.69 51.03 37.30 26.30 46.55
Ensemble 90K 71.41 79.83 13.71 51.09 36.97 27.80 47.47

Gold Agen-Qgen 90K + 90K 70.60 74.64 13.24 45.59 31.98 20.50 43.45
Rand. Agen-Qgen 90K + 90K 71.08 76.78 13.87 45.26 33.64 22.50 42.04

RGF (REALM-Qgen) 90K + 90K 70.68 79.88 16.99 53.41 44.88 28.20 47.61

Table 3: Exact Match results for the reading comprehension task for in-domain NQ development set, out-of-
domain datasets from MRQA 2019 Challenge (Fisch et al., 2019), Adversarial QA (Bartolo et al., 2020) and
AmbigQA (Min et al., 2020b). RGF improves out-of-domain and challenge-set performance compared to other
data augmentation baselines.

paragraphs has a similar distribution, we employ400

the learned passage selection model from Lewis401

et al. (2021),3. This baseline corresponds to the402

model of Bartolo et al. (2021), which was applied403

to the SQuAD dataset (Rajpurkar et al., 2016); our404

version is trained on NQ and omits AdversarialQA.405

Gold Context (Gold Agen-Qgen) Here, c′ is the406

passage c containing the original short answer a407

from the NQ training set. This baseline specifically408

ablates the retrieval component of RGF, testing409

whether the use of alternate passages leads to more410

diversity in the resulting counterfactual questions.411

Answer Generation for Baselines For both the412

above baselines for context selection, we select413

spans in the new passage that are likely to be an-414

swers for a potential counterfactual question. We415

use a T5 (Raffel et al., 2020) model fine-tuned for416

question-independent answer selection c → a on417

NQ, and select the top 15 candidates from beam418

search. To avoid simply repeating the original ques-419

tion, we only retain answer candidates a′ which do420

not match the original NQ answers a for that exam-421

ple. These alternate generated answer candidates422

and associated passages are then used for question423

generation and filtering as in RGF (§3.3).424

5.2 Reading Comprehension (RC)425

In the reading comprehension (RC) setting, the in-426

put consists of the question and context and the task427

is to identify an answer span in the context. Thus,428

we augment training with full triples (q′, c′, a′) con-429

sisting of the retrieved passage c′, generated and430

filtered question q′, and alternate answer a′.431

Experimental Setting We finetune a T5 (Raf-432

fel et al., 2020) model for reading comprehension,433

with input consisting of the question prepended to434

3https://github.com/facebookresearch/
PAQ

the context. We evaluate domain generalisation of 435

our RC models on three evaluation sets from the 436

MRQA 2019 Challenge (Fisch et al., 2019). We 437

also measure performance on evaluation sets con- 438

sisting of counterfactual or perturbed versions of 439

RC datasets on Wikipedia, including SQuAD (Ra- 440

jpurkar et al., 2016), AQA (adversarially-generated 441

SQuAD questions; Bartolo et al., 2020), and human 442

authored counterfactual examples (contrast sets; 443

Gardner et al., 2020) from the QUOREF dataset 444

(Dasigi et al., 2019). We also evaluate on the set 445

of disambiguated queries in AmbigQA (Min et al., 446

2020b), which by construction are minimal edits to 447

queries from the original NQ. 448

Results We report exact-match scores in Table 3; 449

F1 scores follow a similar trend. We observe 450

only limited improvements on the in-domain NQ 451

development set, but we see significant improve- 452

ments from CDA with RGF data in out-of-domain 453

and challenge-set evaluations compared both to 454

the original NQ model and the Gold and Random 455

baselines. RGF improves by 1-2 EM points on 456

most challenge sets, and up to 7 EM points on 457

the BioASQ set compared to training on NQ only, 458

while baselines often underperform the NQ-only 459

model on these sets. Note that all three augmen- 460

tation methods have similar proportion of noise 461

(Appendix B), so CDA’s benefits may be attributed 462

to improving model’s ability to learn more robust 463

features for the task of reading comprehension. Us- 464

ing an ensemble of RC models improves slightly 465

on some tasks, but does not improve on OOD per- 466

formance as much as RGF. RGF’s superior perfor- 467

mance compared to the Gold Agen-Qgen baseline 468

is especially interesting, since the latter also gen- 469

erates topically related questions. We observe that 470

RGF counterfactuals are more closely related to the 471

original question compared to this baseline (Fig- 472

ure 5 in Appendix C), since q′ is derived from a 473

near-miss candidate (c′, a′) to answer the original 474
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Exact Match (OD) Train Size NQ TriviaQA AmbigQA SQuAD v1.0 TREC

Original 90K 37.65 26.75 22.43 14.25 31.93
Gold Agen-Qgen 90K + 90K 37.86 27.02 23.65 15.01 32.94
Rand. Agen-Qgen 90K + 90K 37.45 29.87 24.13 14.55 26.89

RGF (REALM-Qgen) 90K + 90K 39.11 32.32 26.98 16.94 33.61

Table 4: Exact Match results on open-domain QA datasets (TriviaQA, AmbigQA, SQuAD and TREC) for data
augmentation with RGF counterfactuals and baselines. Open-domain improvements are larger than in the RC
setting, perhaps as the more difficult task benefits more from additional data.

q (S3.1).475

5.3 Open-Domain Question Answering (OD)476

In the open-domain (OD) setting, only the question477

is provided as input. The pair (q′, a′), consisting478

of generated and filtered question q′ and alternate479

answer a′, is used for augmentation. Compared to480

the RC setting where passages change as well, here481

the edit distance filtering of §3.4 ensures the aug-482

mentation data represents minimal perturbations.483

Experimental Setting We use the method and484

implementation from Guu et al. (2020) to finetune485

REALM on (q, a) pairs from NQ. End-to-end train-486

ing of REALM updates both the reader model and487

the query-document encoders of the retriever mod-488

ule. We evaluate domain generalization on pop-489

ular open-domain benchmarks: TriviaQA (Joshi490

et al., 2017), SQuAD (Rajpurkar et al., 2016), Cu-491

rated TREC dataset (Min et al., 2021), and dis-492

ambiguated queries from AmbigQA (Min et al.,493

2020b).494

Results In the open-domain setting, we observe495

an improvement of 2 EM points over the original496

model even in the in-domain setting on Natural497

Questions (Table 4), while also improving signifi-498

cantly when compared to other data augmentation499

techniques. RGF improves over the next best base-500

line — Random Agen-Qgen — by up to 6 EM501

points (for TriviaQA). We hypothesize that data502

augmentation has more benefit in this setting, as503

the open-domain task is more difficult than read-504

ing comprehension, and counterfactual queries may505

help the model learn better query and document506

representations to improve retrieval.507

6 Analysis508

To better understand how CDA improves the model,509

we introduce a measure of local consistency (§6.1)510

to measure model robustness, and perform a strat-511

ified analysis (§6.2) to show the benefits of the512

semantic diversity available from RGF.513

6.1 Local Robustness 514

Compared to synthetic data methods such as PAQ 515

(Lewis et al., 2021), RGF generates counterfactual 516

examples that are paired with the original inputs 517

and concentrated in local neighborhoods around 518

them (Figure 2). As such, we hypothesize that 519

augmentation with this data should specifically im- 520

prove local consistency, i.e. how the model behaves 521

under small perturbations of the input. 522

Experimental Setting We explicitly measure
how well a model’s local behavior respects per-
turbations to input. Specifically, if a model f :
(q, c) → a correctly answers q, how often does
it also correctly answer q′? We define pairwise
consistency as accuracy over the counterfactuals
(q′, a′, c′), conditioned on correct predictions for
the original examples:

C(D) = ED[f(q′, c′) = a′ | f(q, c) = a]

To measure consistency, we construct val- 523

idation sets consisting of paired examples 524

(q, c, a), (q′, c′, a′): one original, and one counter- 525

factual. We use QED to categorize our data, as 526

described in §3.5. Specifically, we create two types 527

of pairs: (a) a change in reference where question 528

predicate remains fixed, and (b) a change in predi- 529

cate, where the original reference(s) are preserved.4 530

We create a clean evaluation set by first selecting 531

RGF examples for predicate or reference change, 532

then manually filtering the data to discard incorrect 533

triples (§4) until we have 1000 evaluation pairs of 534

each type (see Appendix B). 535

We also construct paired versions of AQA, Am- 536

bigQA, and the QUOREF contrast set. For Am- 537

bigQA, we pair two disambiguated questions and 538

for QUOREF, we pair original and human-authored 539

counterfactuals. AQA consists of human-authored 540

adversarial questions q′ which are not explicitly 541

4We require that the new reference set is a superset of
the original, since predicate changes can introduce additional
reference slots (see CF2 in Table 1).
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Consistency (RC) Train Size AQA AmbigQA QUOREF-C RGF (∆ Ref) RGF (∆ Pred)

Original NQ 90K 62.18 46.67 45.12 64.57 51.50
Ensemble 90K 63.79 45.00 44.08 65.68 53.54

Gold Agen-Qgen 90K + 90K 59.27 50.23 42.83 44.62 38.10
Rand. Agen-Qgen 90K + 90K 55.45 49.06 41.93 60.77 48.53

RGF (REALM-Qgen) 90K + 90K 63.29 51.61 46.42 76.36 64.98

RGF ∆ Ref. 90K + 52K 62.55 53.85 41.34 80.10 62.33
RGF ∆ Pred. 90K + 52K 64.10 47.45 44.25 74.96 64.08

Table 5: Results for pairwise consistency (§6.1) on reading comprehension, measured for datasets containing pairs
of very similar questions. QUOREF-C refers to the QUOREF contrast set from (Gardner et al., 2020). RGF leads
to better consistency in RC and open-domain settings (Appendix C.2). Results on effect of perturbation type during
training (∆ Ref. and ∆ Pred.) suggest that perturbation-bias does not degrade consistency over the original model.

paired with original questions; we create pairs by542

randomly selecting an original question q and a543

generated question q′ from the same passage.544

Results Training with RGF data improves consis-545

tency by 12-14 points on the QED-filtered slices of546

RGF data, and 5-7 points on AQA, AmbigQA and547

QUOREF contrast (Table 5). The Gold Agen-Qgen548

baseline (which contains topically related queries549

about the same passage) also improves consistency550

over the original model compared to the Random551

Agen-Qgen baseline. The ensemble model slightly552

improves on AQA, but otherwise underperforms553

compared to RGF. Consistency improvements on554

AQA, AmbigQA and QUOREF are especially note-555

worthy, since they suggest an improvement in ro-556

bustness to local perturbations that is independent557

of other confounding distributional similarities be-558

tween training and evaluation data.559

6.2 Effect of Perturbation Type560

QED-based decomposition of queries allows for the561

creation of label-changing counterfactuals along562

orthogonal dimensions — a change of reference or563

predicate. We investigate whether training towards564

one type of change induces generalization bias, a565

detrimental effect which has been found in tasks566

like NLI (Joshi and He, 2021).567

Experimental Setting We shard training exam-568

ples into two categories based on whether q and q′569

have the same reference (predicate change) or same570

predicate (reference change), as defined in §3.5.571

We over-generate by starting with 20 (q′, c′, a′) for572

each original training example to ensure that we573

find at least one q′ that matches the criterion. We574

also evaluate on paired evaluation sets from §6.1.575

Results Results are shown for QED-filtered train-576

ing in Table 5. Counterfactual perturbation of a spe-577

cific kind (a predicate or a reference change) during 578

augmentation does not hurt performance on another 579

perturbation type compared to the baseline NQ 580

model, which differs from the observations of Joshi 581

and He (2021) on NLI. Furthermore, similar to the 582

observations of Min et al. (2020a), augmenting 583

with one type of perturbation has orthogonal bene- 584

fits that improve model generalization on another 585

perturbation type: augmenting with RGF (∆ Pred.) 586

leads to significant improvement on RGF (∆ Ref.), 587

and vice-versa. Compared to reference-change ex- 588

amples, augmenting with predicate-change exam- 589

ples leads to greater improvements in local consis- 590

tency, except for on RGF (∆ Ref.) and on Am- 591

bigQA which contains a disproportionate number 592

of reference-change pairs. Predicate-change ex- 593

amples may be more informative to the model, as 594

reference changes can be modeled more easily by 595

lexical matching within common context patterns. 596

7 Conclusion 597

Retrieve-Generate-Filter (RGF) creates counterfac- 598

tual examples for QA which are semantically di- 599

verse, using knowledge from the passage context 600

and a retrieval model to capture semantic changes 601

that would be difficult to specify a priori with a 602

global schema. The resulting examples are fully- 603

labeled, and can be used directly for training or 604

filtered using meaning representations for analy- 605

sis. We show that training with this data leads to 606

improvements on open-domain QA, as well as on 607

challenge sets, and leads to significant improve- 608

ments in local robustness. While we focus on ques- 609

tion answering, for which retrieval components are 610

readily available, we note that the RGF paradigm 611

is quite general and could potentially be applied to 612

other tasks with a suitable retrieval system. 613
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A Model Training and Implementation886

Details887

Below, we describe the details of different models888

trained in the RGF pipeline. Unless specified oth-889

erwise, we use the T5X library5 and pre-trained890

checkpoints from Raffel et al. (2020)6.891

Question Generation We use a T5-3B model892

fine-tuned on Natural Questions (NQ) dataset. We893

only train on the portion of the dataset that consists894

of gold short answers and an accompanying long895

answer evidence paragraph from Wikipedia. The896

input consists of the title of the Wikipedia article897

the passage is taken from, a separator (‘»’) and898

the passage. The short answer is enclosed in the899

passage using character sequences ‘« answer =’900

and ‘»’ on left and right respectively. The output901

is the original NQ question. The input and output902

sequence lengths are restricted to be 640 and 256903

respectively. We train the model for 20k steps with904

a learning rate of 2 · 10−5, dropout 0.1, and batch905

size of 128. We decode with a beam size of 15, and906

take the top candidate as our generated question q′.907

Answer Generation We use a T5-3B model908

trained on the same subset of Natural Questions909

(NQ) as question generation with same set of hyper-910

parameters and model size described above. The911

input consists of the title of the Wikipedia article912

the passage is taken from, a separator (‘»’) and913

the passage, while the output sequence is the short914

answer from NQ.915

Reading Comprehension Model We model the916

task of span selection-based reading comprehen-917

sion, i.e. identifying an answer span given question918

and passage, as a sequence-to-sequence problem.919

Input consists of the question, separator (‘»’), and920

title of Wikipedia article, separator (‘»’) and pas-921

sage. The answer format is simply one of the gold922

answer strings. The reading comprehension model923

is a T5-large model trained with batch size of 512924

and learning rate 2 · 10−4 for 20K steps.925

Open-domain Question Answering model926

The open domain QA model is based on the927

implementation from (Lee et al., 2019), and928

initialized with the REALM checkpoint from (Guu929

5https://github.com/google-research/
t5x

6https://github.com/google-research/
text-to-text-transfer-transformer#
released-model-checkpoints

et al., 2020)7. Both the retriever and reader are 930

initialized from the BERT-base-uncased model. 931

The query and document representations are 128 932

dimensional vectors. When finetuning, we use a 933

learning rate of 10−5 and a batch size of 1 on a 934

single Nvidia V100 GPU. We perform 2 epochs of 935

fine-tuning for Natural Questions. 936

Noise Filtering We train 6 reading comprehen- 937

sion models based on the configurations above 938

with different seed values for randomizing train- 939

ing dataset shuffling and optimizer initialization. 940

We retain examples where more than 5 out of 6 941

models have the same answer for a question. 942

QED Training We use a T5-large model fine- 943

tuned on the Natural Questions subset with QED 944

annotations (Lamm et al., 2021).8 We refer the 945

reader to the QED paper for details on the lineariza- 946

tion of explanations and inputs in the T5 model. 947

Our model is fine-tuned with batch size of 512 and 948

learning rate 2 · 10−4 for 20k steps. 949

Experimental Variability Unless otherwise 950

stated, results are reported from single runs. 951

However, we used the six RC models discussed in 952

Section 3.4 to estimate cross-run variation. Using 953

the procedure and code of Sellam et al. (2021), we 954

find variation of about 0.5 points (F1). As such, we 955

do not find differences smaller than this significant, 956

and in our results focus only on larger effects. 957

Computational Budget and Environmental Im- 958

pact We fine-tune all T5 models on Cloud TPU 959

v3 hardware; each takes approximately 8 hours on 960

4 TPUs in pod confifuration. We estimate a Total 961

compute time is approximately 96 TPU hours and 962

192 GPU hours, which we estimate as 43 kg CO2e 963

using the method of Lacoste et al. (2019)9. 964

B Evaluation of Fluency and Noise 965

The authors sampled 300 examples of generated 966

questions. To annotate for fluency, authors use 967

the following rubric: Is the generated question 968

grammatically well-formed barring non-standard 969

spelling and capitalization of named entities. This 970

noise annotation was done for RGF, as well as Gold 971

Agen-Qgen and Random Agen-Qgen. 972

7https://github.com/google-research/
language/tree/master/language/realm

8https://github.com/
google-research-datasets/QED

9https://mlco2.github.io/impact/#co2eq
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Creation of paired data for counterfactual eval-973

uation Once again, authors annotate for cor-974

rectness of counterfactual RGF instances that are975

paired by reference or predicate, as described in976

§3.5. Filtering is done until 1000 examples are977

available under each category.978

Data Unfiltered Filtered

RGF 29.8% 25.3%
Gold Agen-Qgen 27.9% 20.7%

Random Agen-Qgen 30.7% 28.3%

Table 6: Fraction of noise (incorrect (q′, c′, a′)) in gen-
erated data, from 300 examples manually annotated by
the authors.

C Additional Experiments979

C.1 Intrinsic Evaluation980

Figure 3: Distribution of edit distance between origi-
nal q and counterfactual q′ for RGF and other baselines
for context selection. Note: For Random Wiki Pass-
sage, original and generated questions bear no relation
to each other and are randomly paired.

In Figure 3, we compare distributions of the981

edit distance between the original and generated982

questions for questions generated by our approach,983

those generated with the gold evidence passage,984

and those generated from a random Wikipedia985

passage (§5). We find that RGF counterfactuals986

undergo minimal perturbations from the original987

question compared to questions that are generated988

from random Wikipedia paragraph. Surprisingly,989

this pattern also holds when compared to questions990

generated from gold NQ passages. We hypothe-991

size that the set of alternate answers retrieved in992

our pipeline approach are semantically similar to 993

the gold answer — same entity type, for instance. 994

Random answer spans chosen from the gold NQ 995

passage can result in significant semantic shifts in 996

generated questions. 997

Figure 4: Plot of average edit distance between q, q′

vs. retrieval rank r, where q′ is generated from rth pas-
sage, showing that edit distance and retrieval rank are
monotonically related.

In Figure 4, we measure the relation between re- 998

trieval rank and edit-distance for RGF. For retrieval 999

rank i, we plot average edit distance between the 1000

original question and counterfactual question that 1001

was generated using the ith passage and answer. 1002

We observe a monotonic relation between retrieval 1003

rank and edit distance (which we use for filtering 1004

our training data). We measure changes in the dis- 1005

tribution of question type and predicate type. 1006

Question Type
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Figure 5: Distribution of top 20 question types for orig-
inal NQ data, RGF counterfactuals and questions gen-
erated from random Wikipedia passage, indicating bias
towards popular question types.

Figure 5 indicates that counterfactual data ex- 1007

acerbates question-type bias. However, this bias 1008

exists in RGF as well as baselines. 1009
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Consistency (OD) Train Size AQA AmbigQA RGF ∆ Ref. RGF ∆ Pred.

Original NQ 90K 16.58 13.33 25.12 11.23
Random Agen-Qgen 90K + 90K 15.80 20.00 27.94 17.16

RGF (REALM-Qgen) 90K + 90K 17.66 28.57 31.77 19.81

Table 7: Consistency Results for Open-domain QA.

C.2 Consistency for Open-Domain QA1010

In Table 7, we show results on evaluating consis-1011

tency on paired datasets in the open-domain results,1012

similar to the results shown in §6.1 in the Reading1013

Comprehension setting.1014

C.3 Low-resource Transfer1015

Joshi and He (2021) show CDA to be most effective1016

in the low-resource regime. To better understand1017

the role that dataset size plays in CDA in the read-1018

ing comprehension setting, we evaluate RGF in a1019

cross-domain setting where only a small amount of1020

training data is available.1021

Experimental Setting Since our approach de-1022

pends on using an open-domain QA model and1023

a question generation model trained on all Natural1024

Questions data, we instead experiment with a low-1025

resource transfer setting on the BioASQ domain,1026

which consists of questions on the biomedical do-1027

main. We use the domain-targeted retrieval model1028

from (Ma et al., 2021), where synthetic question-1029

passage relevance pairs generated over the PubMed1030

corpus are used to train domain-specific retrieval1031

without any in-domain supervision. We further fine-1032

tune the question generation model trained on NQ1033

on the limited amount of in-domain data, and use1034

a checkpoint trained on NQ as an initialization to1035

fine-tune the RC model for in-domain data. Details1036

of our training approach for low-resource transfer1037

can be found in Appendix A.1038

Training Data Train Size BioASQ (Dev)
F1 EM

Original 1000 42.93 23.67
Orig. + RGF 500 + 500 41.72 23.01

Original 2000 45.88 25.80
Orig. + RGF 1000 + 1000 44.64 26.80

Table 8: Results on the reading comprehension task
for Low Resource Transfer setting on BioASQ 2019
dataset. A model trained on 1000 gold BioASQ plus
1000 RGF examples performs nearly as well as a model
trained on 2000 gold examples.

Results We observe significant improvements 1039

over the baseline model in the low resource setting 1040

for in-domain data (< 2000 examples), as shown in 1041

Table 8. Compared with the limited gains we see 1042

on the relatively high-resource NQ reading compre- 1043

hension task, we find that on BioASQ, CDA with 1044

1000 examples improves performance by 2% F1 1045

and 3% exact match, performing nearly as well as 1046

a model trained on 2000 gold examples. 1047

C.4 Effect of perturbation type 1048

Consistency (RC) Val 1-4 Val 5-10 Val > 10

Train 1-4 71.02 67.55 64.78
Train 5-10 68.89 68.98 63.92
Train >10 65.78 66.33 65.33
Train All 72.34 67.82 65.12

Table 9: Results on sharding training data based on edit
distance between (q, q′). Training dataset size for each
bin is 90k NQ + 167k generated. Once again, training
with all RGF data robustly improves consistency across
different amounts of perturbations.

Experimental Setting For edit distance-based 1049

experiments, we shard training examples into three 1050

categories by binning word-level edit distance be- 1051

tween q and q′ into three ranges: 1–4, 5–10, and 1052

> 10. We similarly categorize RGF data gener- 1053

ated for the NQ development set into the same 1054

categories. Evaluation sets for edit-distance experi- 1055

ments based were not manually noise filtered. We 1056

again report consistency on the reading comprehen- 1057

sion model. 1058

Results Similar to the observations for dataset 1059

sharding along QED annotations, when data is 1060

sharded by edit distance, we observe that using 1061

the full RGF data nearly matches the best perfor- 1062

mance from training on that shard, suggesting that 1063

CDA with the highly diverse RGF data can lead to 1064

improved consistency on a broad range of pertur- 1065

bation types. 1066
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D Semantic Diversity 1067

Figure 6 includes more examples from Natural Questions, showing the counterfactual questions generated 1068

for different input questions by RGF. 1069

what's the population of
walnut grove minnesota?

what is the population of apple
valley minnesota ?

what is the population of
walnut grove bc ? 

how long has the walnut twig beetle
been in california ? 
here was the nursing home that caught
on fire ? 

where is walnut grove
located in minnesota ?

how many students at walnut grove
secondary school ? 
what percentage of walnut grove
is below the poverty line ? 

what's the population of
walnut grove washington? 

State
Name

Town
Name

Misc

Country

Locative
(Predicate
Change)

Population
based

origin of mother's day
in the u.s.

where was the first mother's day
held

when was mother's day first
celebrated in czech republic?

What is the traditional flower for
mother's day 
What event was honored at the first recorded
mother's day in the united states? 

when did father's day
start in u.s.?

Who is considered the founder of
mother's day

Status Locative 

Misc

Country

Gender

Agent

when did mother's day
become a holiday 

Figure 6: Context-specific semantic diversity of perturbations achieved by RGF on an NQ Question. The multiple
latent semantic dimensions identified (arrows in the diagram) fall out of our retrieval-guided approach.
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E Error analysis of generated examples1070

Table 10 shows examples where the RGF model produced incorrect (q′, a′, c′) triples, selected from the1071

manually-annotated subset described in Section 4.1072

Nonsensical Question
Context: The security management process relates to other ITIL - processes . However , in this
particular section the most obvious relations are the relations to the service level management , incident
management and change management processes . Security management is a continuous process that can
be compared to W . Edwards Deming ’ s Quality Circle ( Plan , Do , Check , Act ) . The inputs are
requirements from clients . The requirements are translated into security services and security metrics.
Answer: W . Edwards Deming
Generated Question: the security management process is similar to the itil ?

Incomplete Question
Context: Using Cartesian coordinates , inertial motion is described mathematically as : where " x " is the
position coordinate and " τ " is proper time . ( In Newtonian mechanics , " τ ≡ t " , the coordinate time ) .
In both Newtonian mechanics and special relativity , space and then spacetime are assumed to be flat ,
and we can construct a global Cartesian coordinate system . In general relativity , these restrictions on
the shape of spacetime and on the coordinate system to be used are lost . Therefore , a different
definition of inertial motion is required .
Answer: general relativity
Generated Question: which theory states that all motion is a function of ?

Correct Type, but Wrong Entity
Context: Ruth McDevitt Ruth McDevitt ( September 13 , 1895 – May 27 , 1976 ) was an American stage ,
film , radio and television actress . She was born Ruth Thane Shoecraft in Coldwater , Michigan . After
attending the American Academy of Dramatic Arts , she married Patrick McDevitt and decided to devote
her time to her marriage . After her husband ’ s death in 1934 , she returned to acting . She performed on
Broadway , in particular understudying and succeeding Josephine Hull in " Arsenic and Old Lace " and
" The Solid Gold Cadillac " . She also worked as a radio actor . McDevitt was a familiar face on
television during the 1950s , 1960s , and 1970s . She played " Mom Peepers " in the 1950s sitcom
" Mister Peepers " . She was a regular with Ann Sheridan , Douglas Fowley , and Gary Vinson in CBS ’ s
" Pistols ’ n ’ Petticoats " , a 1966 - 67 satire of the Old West .
Answer: Ann Sheridan
Generated Question: who played the mother on mr peepers ?

Table 10: Common error classes of RGF-generated (q, c, a) triplets.
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