
Boosting Protein Graph Representations through Static-Dynamic Fusion

Pengkang Guo 1 Bruno Correia 1 Pierre Vandergheynst 1 Daniel Probst 1 2

Abstract
Machine learning for protein modeling faces sig-
nificant challenges due to proteins’ inherently
dynamic nature, yet most graph-based machine
learning methods rely solely on static structural
information. Recently, the growing availability of
molecular dynamics trajectories provides new op-
portunities for understanding the dynamic behav-
ior of proteins; however, computational methods
for utilizing this dynamic information remain lim-
ited. We propose a novel graph representation that
integrates both static structural information and
dynamic correlations from molecular dynamics
trajectories, enabling more comprehensive model-
ing of proteins. By applying relational graph neu-
ral networks (RGNNs) to process this heteroge-
neous representation, we demonstrate significant
improvements over structure-based approaches
across three distinct tasks: atomic adaptability
prediction, binding site detection, and binding
affinity prediction. Our results validate that com-
bining static and dynamic information provides
complementary signals for understanding protein-
ligand interactions, offering new possibilities for
drug design and structural biology applications.

1. Introduction
With the recent surge and successes of deep learning meth-
ods in protein structure prediction, attention is rapidly turn-
ing towards the prediction of the temporal behavior of these
highly dynamic macromolecules. Combined with quantita-
tive and qualitative advances in molecular dynamics simu-
lations (Joshi & Deshmukh, 2021; Zeng et al., 2021; Ma-
jewski et al., 2023; Nam & Wolf-Watz, 2023), this attention
is resulting in the increased availability and accessibility of
simulated molecular dynamics trajectories (Vander Meer-
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sche et al., 2024; Siebenmorgen et al., 2024a; Liu et al.,
2024). Consequently, various approaches are being devel-
oped to train predictive and generative models capable of
producing molecular dynamics trajectories or sample spe-
cific conformations (López-Correa et al., 2023; Jing et al.,
2024; Lewis et al., 2024). So far, the potential of these
increasingly large trajectory datasets to enhance property
predictions in proteins and protein-ligand complexes, such
as binding site identification and affinity prediction, remains
largely unexplored (Dhakal et al., 2022).

Despite these advances, representing and exploiting molec-
ular dynamics trajectories of proteins for machine learning
remains challenging due to the diverse and complex nature
of protein structures. One effective alternative is to focus on
a higher-order representation of protein dynamics through
correlation patterns derived from molecular motion. These
dynamic correlations are essential to protein function, and
the resulting correlation matrices have long been used to
analyze protein dynamics (Agarwal et al., 2002; Lange &
Grubmüller, 2008).

In this work, we propose combining molecular struc-
ture and simulated molecular trajectories through residue-
based correlation matrices and relational graph neural net-
works (Schlichtkrull et al., 2017). We show that this ap-
proach enables the exploitation of the rapidly expanding
collection of readily available protein dynamics trajecto-
ries for protein and protein–ligand property prediction. In
summary:

• We propose a novel heterogeneous graph representa-
tion that integrates both static structural information
and dynamic correlations from molecular trajectories,
enabling more comprehensive modeling of protein
properties.

• We introduce the first application of relational graph
neural networks to directly process molecular dynam-
ics trajectories, demonstrating clear benefits over graph
neural networks (GNNs) based on structure alone.

• We validate our approach across three distinct tasks:
atomic adaptability prediction, binding site detection,
and binding affinity prediction, showing consistent ben-
efits of combining static and dynamic information.
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2. Related Work
2.1. Dynamic Correlations in Protein Analysis

Dynamic correlations can be derived through various ap-
proaches, including methods like the Gaussian Network
Model that use coarse-grained representations and harmonic
approximation (Bahar et al., 1997), as well as from molecu-
lar dynamics trajectories. The latter approach has been ex-
tensively applied in protein analysis, particularly for under-
standing allosteric mechanisms and signal propagation (Mc-
Clendon et al., 2009; Long & Brüschweiler, 2011; Wang
et al., 2020), investigating tRNA-protein complex interac-
tions (Sethi et al., 2009), and identifying catalytically im-
portant regions for enzyme engineering (Bunzel et al., 2021;
Gao et al., 2024).

However, they have not been used as a representation of
trajectories when training predictive models on large data
sets but mainly as a means to investigate the propagation of
structural changes in a single, or a class of proteins through
methods such as dynamical network analysis (Melo et al.,
2020; Calvó-Tusell et al., 2022).

2.2. Machine Learning for Protein Structure and
Dynamics

Machine learning for protein structure and dynamics has
primarily focused on graph-based methods, though other
paradigms are also emerging. Graph neural networks have
been widely applied to predict properties and functions of
proteins as well as properties of protein-ligand or protein-
protein interactions based on structure (Gligorijević et al.,
2021a; Li et al., 2021b; Réau et al., 2023). More recently,
they have been used to enhance and accelerate molecular
dynamics simulations (Wang et al., 2022; Yue et al., 2024).

Chiang et al. (2022) explored incorporating dynamic infor-
mation into protein graphs by using normal mode analysis to
generate correlation edges, combining this with 1D and 2D
persistence diagrams of α-carbons for molecular function
classification using graph convolutional networks (GCN)
(Defferrard et al., 2017; Kipf & Welling, 2017).

Relational graph neural networks have also shown promise
in small molecular graph generation (Zou et al., 2023), and
protein representation learning, integrating sequential and
spatial distance in proteins (Zhang et al., 2022).

Beyond graph-based approaches, Sun et al. (2023) intro-
duced Dynamical Surface Representation, which uses im-
plicit neural networks to model protein dynamics through
continuous surface representations, enabling scalable mod-
eling of large protein conformational changes.

Figure 1. Fusion of static structure and molecular dynamics
information. The left side shows the transformation of protein
structure (PDB ID 5GMU) into a distance-based matrix, while the
right side presents the correlation matrix derived from molecular
dynamics trajectories, which shows motion correlations between
different regions. The correlation edges create direct connections
between dynamically coupled regions that may be spatially distant
(shown in red), enabling efficient information flow across the pro-
tein structure. The fusion of these structural and dynamic features
creates a heterogeneous graph representation, which serves as in-
put to relational graph neural networks.
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3. Methodology
3.1. Graph Construction Framework

We represent a protein complex as a tuple (V,Ed, Ec),
where V represents the set of nodes, Ed represents distance-
based edges, and Ec represents correlation-based edges
derived from molecular dynamics trajectories.

We present a novel approach for incorporating both static
structural and dynamic motion information into protein
graph representations. Our method consists of two key com-
ponents: (1) a heterogeneous graph construction framework
that combines spatial proximity with dynamic correlations
from molecular dynamics simulations, and (2) the appli-
cation of relational neural networks to effectively process
the heterogeneous graphs enriched by both structural and
dynamic information.

As illustrated in Figure 1, our approach derives two comple-
mentary edge types from protein data: distance edges based
on static structure, and correlation edges from molecular dy-
namics trajectories. These correlation edges provide direct
links between dynamically coupled regions of the protein,
enabling more efficient long-range information flow than
in the original graph structure. The mechanism is akin to
graph rewiring, which is known to mitigate over-squashing
in GNNs (Topping et al., 2021) (see Appendix A.6 for fur-
ther analysis).

3.1.1. NODE DEFINITION AND FEATURES

Nodes are defined based on the specific requirements of
each task:

For atomic-level predictions (e.g., atomic property predic-
tion), each node represents a non-hydrogen atom, capturing
detailed molecular interactions at the atomic scale.

For residue-level tasks (e.g., binding site detection), each
node represents a residue, where the coordinates of its Cα

atom are used to determine the residue’s spatial position.

Each node vi ∈ V is associated with a feature vector hi ∈
Rd consisting of the one-hot encoding of the atom/residue
type and the atom charge (for atomic-level graphs).

3.1.2. DISTANCE-BASED EDGE CONSTRUCTION

The distance-based edges Ed capture spatial proximity in
the static structure:

Ed = (vi, vj) | d(vi, vj) < τd (1)

where d(vi, vj) represents the Euclidean distance between
nodes, and τd is a distance threshold (4.5 Å for atomic-level
and 10 Å for residue-level graphs). These thresholds are
widely used in protein modeling: the 4.5 Å threshold cap-

tures meaningful atomic interactions (Bouysset & Fiorucci,
2021), while the 10 Å threshold is commonly adopted for
residue-level contacts (Gligorijević et al., 2021b).

3.1.3. DYNAMIC CORRELATION EDGE CONSTRUCTION

To capture dynamic behaviors, we analyze molecular dy-
namics trajectories to construct correlation-based edges Ec.
Before computing correlations, all trajectory frames are
aligned to the initial structure through rigid-body superpo-
sition optimized to minimize the root-mean-square devi-
ation (RMSD) between equivalent atomic positions. The
alignment eliminates global translations and rotations while
preserving internal conformational changes.

Unlike distance-based representations that primarily capture
local structural relationships, correlation-based edges can
identify dynamically coupled regions regardless of spatial
proximity, creating direct pathways between motion-related
but spatially distant parts of the protein (as shown in Fig-
ure 1). For each pair of nodes, we compute their motion
correlation across simulation frames:

Cij =
1

T

T∑
t=1

∆rti ·∆rtj
|∆rti||∆rtj |

(2)

where ∆rti represents the displacement vector of node i at
frame t, and T is the total number of frames. The correlation
edges are then defined as:

Ec = (vi, vj) | |Cij | > τc (3)

where τc is the correlation threshold (0.6 for atomic-level
and 0.3 for residue-level graphs). These thresholds are
chosen to maintain similar graph sparsity, thereby achieving
a fairer comparison when either Correlation or Distance
Graph is used.

3.1.4. COMBINED GRAPH

The final graph representation integrates both distance-based
and correlation-based edges, yielding a heterogeneous graph
that captures both static structural information and dynamic
behavioral patterns. This combined representation enables
the model to utilize local spatial relationships and potential
long-range dynamic interactions simultaneously.

3.2. Relational Graph Neural Network Architecture

The heterogeneous nature of our Combined Graph, con-
taining both distance-based and correlation-based edges,
requires a neural network architecture capable of process-
ing different types of relationships. We therefore employ
two established relational neural networks: the Relational
Graph Convolutional Network (RGCN) (Schlichtkrull et al.,
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2018) and the Relational Graph Attention Network (RGAT)
(Busbridge et al., 2019). These architectures are particu-
larly suited for our approach as they handle heterogeneous
edges by learning different weight matrices for different
edge types.

The RGCN extends the traditional Graph Convolutional
Network by introducing relation-specific transformations.
For each layer l, the message passing operation is defined
as:

h
(l+1)
i = σ(

∑
r∈R

∑
j∈Nr(i)

1

|Nr(i)|
W(l)

r h
(l)
j +W

(l)
0 h

(l)
i )

(4)
where Nr(i) denotes neighbors of node i connected by
edges of type r, W(l)

r is the relation-specific transformation
matrix, and W

(l)
0 is the self-connection weight matrix. In

our case, R represents the set of edge types (distance and
correlation). This formulation allows the network to learn
distinct transformations for distance-based and correlation-
based relationships, enabling it to capture the unique char-
acteristics of each edge type.

The RGAT extends this formulation by incorporating an
attention mechanism. This formulation allows the net-
work to learn distinct transformations for distance-based
and correlation-based relationships, enabling it to capture
the unique characteristics of each edge type. For each layer
l, the attention-based message passing operation is defined
as:

h
(l+1)
i = σ(

∑
r∈R

∑
j∈Nr(i)

α
(r)
ij W(l)

r h
(l)
j +W

(l)
0 h

(l)
i ) (5)

The attention coefficients α
(r)
ij are computed using query

and key kernels for each relation type r:

q
(r)
i = W

(r)
1 xi ·Q(r) and k

(r)
i = W

(r)
1 xi ·K(r) (6)

These kernels are used to compute attention logits:

a
(r)
i,j = LeakyReLU(q

(r)
i + k

(r)
j ) (7)

The final attention coefficients are obtained as:

α
(r)
i,j =

exp(a
(r)
i,j )∑

r′∈R
∑

k∈Nr′ (i)
exp(a

(r′)
i,k )

(8)

This attention mechanism enables the model to automati-
cally determine the relative importance of different relation-
ships, potentially providing insights into the contributions
of structural and dynamic information in protein modeling.

To validate the generalizability of our approach, we also
evaluate three additional architectures representing different
paradigms: EGNN (Satorras et al., 2021) as a representative
equivariant GNN, GPS (Rampášek et al., 2022) as a pop-
ular graph transformer, and SS-GNN (Zhang et al., 2023)
as a domain-specific model for binding affinity prediction.
We create relational variants (R-EGNN, R-GPS, and R-
SS-GNN, respectively) as follows: for EGNN, we process
distance and correlation graphs with separate models and
merge their outputs; for GPS, we replace its local message
passing layer with RGCN; for SS-GNN, we similarly re-
place the GNN component with RGCN while maintaining
the original hyperparameters and featurization.

4. Experiments
4.1. Dataset

We evaluate our approach using the MISATO dataset
(Siebenmorgen et al., 2024b), which contains 19,443
protein-ligand complexes derived from PDBbind (Su et al.,
2018; Liu et al., 2017; Wang et al., 2005). Each complex un-
dergoes semi-empirical quantum mechanical refinement and
10 ns molecular dynamics simulation using the Amber20
software package. The dataset also provides key physico-
chemical properties, forming a high-quality benchmark for
machine learning tasks.

To ensure robust evaluation and prevent information leak-
age through structural similarities, the dataset is split into
training (80%), validation (10%), and test (10%) sets using
protein sequence clustering via BlastP, ensuring that pro-
teins with high sequence similarity are assigned to the same
split (details in Appendix A.3).

4.2. Experimental Setup

As discussed in Section 3.2, we use RGCN, RGAT, R-
EGNN, R-GPS, and R-SS-GNN to validate our approach.
We evaluate three tasks: (1) atom adaptability prediction,
(2) binding site detection, and (3) binding affinity predic-
tion. For each task, we evaluate three graph representations:
Distance Graph based on the static structure, Correlation
Graph derived from the molecular dynamics trajectory, and
Combined Graph that integrates both sources. To ensure a
fair comparison, we maintain identical input node features
and model architectures across all graph types for all tasks,
with edge definitions being the only variable, allowing us to
validate the role of dynamic information.

4.3. Results and Discussion

We evaluate our approach on three distinct prediction tasks:
atomic adaptability, binding site identification, and binding
affinity prediction. For each task, we analyze how differ-
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ent graph representations (Distance, Correlation, and Com-
bined) affect model performance using the various architec-
tures.

4.3.1. ATOMIC ADAPTABILITY PREDICTION

Atomic adaptability quantifies the conformational plasticity
of atoms within a protein structure, where higher values
indicate greater flexibility and lower values indicate rigidity
(see Appendix A.4). This property helps identify key re-
gions of motion, making it crucial for understanding protein
dynamics and molecular design. We formulate adaptability
prediction as a node-level regression task, where each atom
is annotated with an adaptability score from the MISATO
dataset (see Figure 2).

Figure 2. Atomic Adaptability Prediction. Visualization of per-
atom adaptability in a protein structure (PDB ID 5C11). Left:
ground-truth (target) adaptability values shown as blue spheres.
Right: predicted adaptability values shown as pink spheres. Sphere
size indicates the magnitude of adaptability, with larger spheres
corresponding to more flexible (higher adaptability) regions.

Table 1 presents the performance comparison across dif-
ferent graph representations using four architectures. The
Correlation Graph, which captures dynamic motion patterns
derived from molecular dynamicss trajectories, consistently
outperforms the Distance Graph across all metrics and archi-
tectures. Using RGCN, we observe improvements in both
error metrics (MAE reduces from 0.2658 to 0.2311) and
correlation coefficients (Pearson R increases from 0.5259 to
0.6426). Similar comprehensive improvements are observed
with RGAT, R-EGNN, and R-GPS, suggesting the value of
dynamic information for atomic adaptability prediction.

When both types of information are integrated in the
Combined Graph, we observe further significant improve-
ments across all metrics: the Pearson correlation coefficient
reaches 0.7326 (RGCN) and 0.7153 (RGAT), representing
improvements of 39.3% and 50.7% respectively over the
Distance Graph baseline (0.5259 using RGCN and 0.4746
using RGAT). Similar improvements are observed across
other metrics, as evidenced by the reduction in MAE from
0.2658 to 0.1981 (RGCN) and 0.2766 to 0.2074 (RGAT).
R-GPS follows the same pattern, with the Combined Graph

achieving strong performance across all metrics. Notably,
R-EGNN shows a different pattern where the Correlation
Graph alone achieves the best performance, while the Com-
bined Graph performs similarly to the Distance Graph. We
attribute this to limitations in our preliminary R-EGNN im-
plementation, which may not optimally fuse information
from different relation types. We leave the exploration of
improved fusion mechanisms for equivariant architectures
to future work.

These performance improvements align with the physical
nature of atomic adaptability. While spatial proximity (cap-
tured by the Distance Graph) provides important structural
constraints, atomic adaptability is inherently a dynamical
property that highly depends on atomic fluctuations and
conformational changes, which cannot be fully captured by
spatial proximity alone. The Correlation Graph, leveraging
dynamical information derived from molecular dynamics
trajectories, better captures elements tied to motion and
complements the structural information. When combined,
these two edge types enable the model to learn from both
spatial constraints and dynamic coupling patterns, resulting
in the Combined Graph’s superior performance.

The consistent improvement across multiple architectures
suggests that the performance gains primarily stem from
the richer graph structure rather than specific architectural
choices. This robustness validates our approach of incorpo-
rating dynamic information through correlation edges as an
effective strategy for enhancing protein graph representa-
tions in dynamical property prediction.

4.3.2. BINDING SITE DETECTION

Binding site detection aims to identify key residues in pro-
teins that directly interact with ligands, specifically those
residues within 10 Å from the ligand, following PDBbind.
This task is essential for understanding protein functionality
and facilitating early-stage drug design. We formulate this
as a binary node classification problem at the residue level,
where each node represents a residue and is classified as
either a binding site or a non-binding site (see Figure 3).

Table 2 presents the classification performance across dif-
ferent graph representations using four architectures. The
Combined Graph consistently achieves the best performance
across all metrics for all architectures. For RGCN, the F1
score increases from 0.2428 (Distance Graph) and 0.2578
(Correlation Graph) to 0.2834, representing improvements
of 16.7% and 9.9% respectively. Similar patterns emerge
with RGAT, where the F1 score improves from 0.2089 (Dis-
tance Graph) and 0.2294 (Correlation Graph) to 0.2574.
R-EGNN and R-GPS show the same pattern of Combined
Graph achieving the best results, with R-EGNN achieving
notably higher performance, reaching an F1 score of 0.4142
with the Combined Graph.
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Table 1. Atomic Adaptability Prediction. Node-level regression task predicting atomic adaptability values using data from the MISATO
dataset. Results show mean ± standard deviation over 5 runs (↓ indicates lower is better, ↑ indicates higher is better). Notably, the
Correlation Graph alone achieves better performance than the Distance Graph on all metrics, suggesting the importance of dynamic
information for this task.

MODEL GRAPH TYPE MAE (↓) RMSE (↓) PEARSON R (↑) SPEARMAN R (↑)

RGCN
DISTANCE 0.2658 ± 0.0061 0.4274 ± 0.0008 0.5259 ± 0.0015 0.5543 ± 0.0017

CORRELATION 0.2311 ± 0.0014 0.3846 ± 0.0011 0.6426 ± 0.0026 0.6990 ± 0.0019
COMBINED 0.1981 ± 0.0020 0.3417 ± 0.0008 0.7326 ± 0.0014 0.7922 ± 0.0010

RGAT
DISTANCE 0.2766 ± 0.0038 0.4419 ± 0.0018 0.4746 ± 0.0066 0.4762 ± 0.0085

CORRELATION 0.2443 ± 0.0013 0.3976 ± 0.0013 0.6106 ± 0.0037 0.6521 ± 0.0068
COMBINED 0.2074 ± 0.0030 0.3511 ± 0.0018 0.7153 ± 0.0033 0.7699 ± 0.0024

R-EGNN
DISTANCE 0.2305 ± 0.0047 0.3807 ± 0.0007 0.6530 ± 0.0012 0.6914 ± 0.0015

CORRELATION 0.2028 ± 0.0055 0.3387 ± 0.0006 0.7398 ± 0.0016 0.7710 ± 0.0033
COMBINED 0.2321 ± 0.0053 0.3809 ± 0.0016 0.6532 ± 0.0018 0.6917 ± 0.0012

R-GPS
DISTANCE 0.2552 ± 0.0098 0.4232 ± 0.0015 0.5420 ± 0.0091 0.5704 ± 0.0136

CORRELATION 0.2293 ± 0.0028 0.3806 ± 0.0009 0.6543 ± 0.0020 0.7066 ± 0.0017
COMBINED 0.1921 ± 0.0009 0.3434 ± 0.0017 0.7361 ± 0.0018 0.7961 ± 0.0013

Table 2. Binding Site Detection. Node-level binary classification task identifying binding site residues (those within 10 Å from the
ligand) using data from the MISATO dataset. Results show mean ± standard deviation over 5 runs (↑ indicates higher is better). The
Combined Graph demonstrates superior performance across all metrics and architectures.

MODEL GRAPH TYPE ACC (↑) PRECISION (↑) RECALL (↑) F1 SCORE (↑)

RGCN
DISTANCE 0.7112 ± 0.0092 0.1678 ± 0.0024 0.4464 ± 0.0164 0.2428 ± 0.0027

CORRELATION 0.7282 ± 0.0069 0.1808 ± 0.0022 0.4552 ± 0.0102 0.2578 ± 0.0012
COMBINED 0.7433 ± 0.0067 0.2005 ± 0.0030 0.4889 ± 0.0111 0.2834 ± 0.0023

RGAT
DISTANCE 0.6602 ± 0.0120 0.1475 ± 0.0032 0.4439 ± 0.0234 0.2089 ± 0.0040

CORRELATION 0.6938 ± 0.0111 0.1664 ± 0.0031 0.4441 ± 0.0182 0.2294 ± 0.0030
COMBINED 0.7226 ± 0.0067 0.1861 ± 0.0029 0.4750 ± 0.0137 0.2574 ± 0.0032

R-EGNN
DISTANCE 0.8038 ± 0.0131 0.2749 ± 0.0110 0.5368 ± 0.0359 0.3617 ± 0.0049

CORRELATION 0.7628 ± 0.0136 0.2181 ± 0.0043 0.4929 ± 0.0356 0.3012 ± 0.0037
COMBINED 0.8387 ± 0.0149 0.3353 ± 0.0191 0.5498 ± 0.0414 0.4142 ± 0.0043

R-GPS
DISTANCE 0.7574 ± 0.0055 0.2065 ± 0.0023 0.4675 ± 0.0131 0.2856 ± 0.0023

CORRELATION 0.7480 ± 0.0051 0.2051 ± 0.0021 0.4935 ± 0.0093 0.2890 ± 0.0008
COMBINED 0.7567 ± 0.0060 0.2274 ± 0.0029 0.5594 ± 0.0142 0.3228 ± 0.0022

Compared to atomic adaptability, which relies more directly
on dynamic information, binding site identification depends
heavily on static structural features such as protein surfaces
and binding pockets. The varying performance patterns
between Distance and Correlation graphs across different ar-
chitectures reflect the balanced importance of both static and
dynamic features in this context, with some architectures
better suited for leveraging specific types of information.
When combined, the model can utilize both spatial proxim-
ity and motion patterns, leading to more accurate binding
site identification.

The consistent improvement across various architectures
demonstrates that these improvements result from the com-
plementary nature of static and dynamic features rather than
specific architectural choices. These results validate our

approach of incorporating both types of information into
protein graph representations, offering new possibilities for
studying complex protein-ligand interactions.

4.3.3. BINDING AFFINITY PREDICTION

Binding affinity prediction represents a critical task in drug
design and virtual screening, as it quantifies the interaction
strength between proteins and ligands. We formulate this as
a graph-level regression task, where each graph represents a
protein pocket and its ligand, with experimentally measured
binding affinities as targets. Following previous work (Li
et al., 2021a), we evaluate our approach on the PDBbind
2020 benchmark (details in Appendix A.3).

Table 3 presents the regression performance across different
graph representations using five architectures. The Com-
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Table 3. Binding Affinity Prediction. Graph-level regression task predicting protein-ligand binding affinity values using MISATO and
PDBbind datasets. Results show mean ± standard deviation over 5 runs (↓ indicates lower is better, ↑ indicates higher is better). The
Combined Graph consistently yields improvements across all metrics and architectures, demonstrating the complementary value of static
and dynamic information for binding affinity prediction.

MODEL GRAPH TYPE MAE (↓) RMSE (↓) PEARSON R (↑) SPEARMAN R (↑)

RGCN
DISTANCE 1.3046 ± 0.0267 1.6653 ± 0.0336 0.6596 ± 0.0156 0.6352 ± 0.0234

CORRELATION 1.3572 ± 0.0792 1.6974 ± 0.0827 0.6360 ± 0.0428 0.6185 ± 0.0440
COMBINED 1.2439 ± 0.0256 1.5798 ± 0.0447 0.6983 ± 0.0193 0.6773 ± 0.0208

RGAT
DISTANCE 1.3028 ± 0.0261 1.6427 ± 0.0459 0.6694 ± 0.0222 0.6417 ± 0.0225

CORRELATION 1.3249 ± 0.0341 1.6623 ± 0.0335 0.6643 ± 0.0212 0.6481 ± 0.0254
COMBINED 1.2596 ± 0.0290 1.6012 ± 0.0411 0.6931 ± 0.0157 0.6752 ± 0.0157

R-EGNN
DISTANCE 1.2900 ± 0.0484 1.6614 ± 0.0635 0.6721 ± 0.0265 0.6502 ± 0.0265

CORRELATION 1.4097 ± 0.0334 1.7888 ± 0.0585 0.5987 ± 0.0248 0.5720 ± 0.0199
COMBINED 1.2632 ± 0.0463 1.6176 ± 0.0394 0.6876 ± 0.0178 0.6773 ± 0.0206

R-GPS
DISTANCE 1.2444 ± 0.0183 1.5832 ± 0.0336 0.7026 ± 0.0104 0.6814 ± 0.0130

CORRELATION 1.2800 ± 0.0418 1.6216 ± 0.0561 0.6862 ± 0.0155 0.6735 ± 0.0168
COMBINED 1.2127 ± 0.0365 1.5326 ± 0.0521 0.7197 ± 0.0212 0.7080 ± 0.0266

R-SS-GNN
DISTANCE 1.2378 ± 0.0378 1.4306 ± 0.0491 0.7638 ± 0.0205 0.7454 ± 0.0256

CORRELATION 1.2278 ± 0.0330 1.5345 ± 0.0397 0.7229 ± 0.0181 0.7015 ± 0.0254
COMBINED 1.0874 ± 0.0430 1.3658 ± 0.0504 0.7873 ± 0.0187 0.7792 ± 0.0221

Table 4. Effect of Trajectory Alignment on Atomic Adaptability Prediction. Comparison of atomic adaptability prediction results using
aligned versus unaligned molecular dynamics trajectories. Results show mean ± standard deviation over 5 runs (↓ indicates lower is better,
↑ indicates higher is better). Trajectory alignment, performed by minimizing RMSD between frames, consistently enhances performance
across all metrics for both Correlation and Combined graphs, highlighting the importance of isolating intrinsic conformational dynamics
from global rigid-body motions.

MODEL GRAPH TYPE MAE (↓) RMSE (↓) PEARSON R (↑) SPEARMAN R (↑)

RGCN

UNALIGNED CORRELATION 0.2591 ± 0.0050 0.4198 ± 0.0010 0.5493 ± 0.0024 0.5682 ± 0.0014
ALIGNED CORRELATION 0.2311 ± 0.0014 0.3846 ± 0.0011 0.6426 ± 0.0026 0.6990 ± 0.0019

UNALIGNED COMBINED 0.2192 ± 0.0030 0.3703 ± 0.0017 0.6762 ± 0.0026 0.7016 ± 0.0032
ALIGNED COMBINED 0.1981 ± 0.0020 0.3417 ± 0.0008 0.7326 ± 0.0014 0.7922 ± 0.0010

RGAT

UNALIGNED CORRELATION 0.2653 ± 0.0024 0.4350 ± 0.0020 0.5001 ± 0.0076 0.5194 ± 0.0073
ALIGNED CORRELATION 0.2443 ± 0.0013 0.3976 ± 0.0013 0.6106 ± 0.0037 0.6521 ± 0.0068

UNALIGNED COMBINED 0.2274 ± 0.0017 0.3759 ± 0.0018 0.6633 ± 0.0037 0.6914 ± 0.0037
ALIGNED COMBINED 0.2074 ± 0.0030 0.3511 ± 0.0018 0.7153 ± 0.0033 0.7699 ± 0.0024

bined Graph consistently achieves the best performance
across all metrics and architectures, demonstrating the value
of fusing both types of information. Using RGCN, the Com-
bined Graph reaches a Pearson correlation of 0.6983 and
reduces MAE to 1.2439, improving upon both the Distance
Graph (0.6596, 1.3046) and Correlation Graph (0.6360,
1.3572). Similar patterns emerge with RGAT, where the
Combined Graph achieves a Pearson correlation of 0.6931
and MAE of 1.2596, outperforming both single-information
approaches (Distance Graph: 0.6694, 1.3028; Correlation
Graph: 0.6643, 1.3249). R-EGNN, R-GPS, and R-SS-GNN
show the same pattern of Combined Graph achieving the
best results.

These results reflect the complex nature of protein-ligand

binding affinity, which requires both structural and dynamic
information for accurate prediction. While static distance in-
formation captures essential geometric constraints, it cannot
reflect potential conformational adjustments and long-range
interactions during binding. Similarly, dynamic correlations
alone, though capturing important motion patterns, can-
not fully characterize the binding pocket geometry, leaving
room for additional improvements. The integration of both
information types enables the model to simultaneously con-
sider geometric constraints and dynamic interaction patterns,
achieving better performance across both error metrics and
correlation coefficients and demonstrating the value of this
combined approach.

The consistent improvement pattern across multiple archi-
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Figure 3. Binding Site Prediction. Visualization of binding site
detection task using protein structure (PDB ID 3M67). Left:
Ground truth binding site residues (shown in red) and the bound
ligand (yellow). Right: Predicted binding site residues using the
Combined Graph, showing reasonable agreement with the true
binding regions for this example. This case illustrates how the
model aims to identify residues within 10 Åfrom the ligand. The
ligand is shown only for reference and is not provided to the model.

tectures validates that these performance gains arise from
the complementary nature of static and dynamic features
rather than specific architectural choices. These results show
that the fusion of both static and dynamic information en-
hances the accuracy of binding affinity prediction, offering
valuable insights for drug design and molecular screening
applications.

4.3.4. EFFECT OF TRAJECTORY ALIGNMENT

To validate the impact of trajectory alignment on our
correlation-based representations, we compare model per-
formance using aligned versus unaligned trajectories on
the atomic adaptability prediction task, as it most directly
reflects the quality of our dynamic information capture. Ta-
ble 4 shows that the aligned Correlation Graph consistently
outperforms its unaligned counterpart across all metrics. Us-
ing RGCN, alignment improves Pearson correlation from
0.5493 to 0.6426 and reduces MAE from 0.2591 to 0.2311.
The Aligned Combined Graph, which integrates aligned cor-
relations with distance information, also shows substantial
performance improvements, with RGCN achieving a Pear-
son correlation of 0.7326 (vs 0.6762 unaligned) and MAE
of 0.1981 (vs 0.2192 unaligned). Similar comprehensive
improvements are observed with RGAT for both Correla-
tion and Combined graphs, where alignment consistently
enhances performance across all metrics. These compre-
hensive improvements across both architectures and graph
types demonstrate that removing global rigid-body motions
effectively isolates meaningful conformational dynamics,
leading to more accurate predictions.

5. Conclusion
This work addresses a key limitation in current protein graph
representations: their exclusive reliance on static structural
information without incorporating crucial information about
protein dynamics. We propose a novel heterogeneous graph
representation that integrates static structural information
and dynamic correlations from molecular simulation tra-
jectories, and apply relational graph neural networks to
process these enriched representations. Our systematic eval-
uation across diverse architectures examines three distinct
tasks: atomic adaptability prediction, binding site detection,
and binding affinity prediction. The experimental results
show that while Distance and Correlation graphs exhibit dif-
ferent performance patterns across architectures and tasks,
the Combined Graph consistently achieves superior perfor-
mance across all tasks, metrics, and architectures. These
results demonstrate that static and dynamic information
provide complementary signals for understanding protein
behavior. Our approach opens new possibilities for protein
modeling and design by effectively capturing both static
structural constraints and dynamic correlations in a unified
framework.

Future directions include exploring advanced architectures
like graph transformers to enhance heterogeneous infor-
mation processing, and investigating additional correlation
measures such as mutual information to enrich dynamic
feature representation. As a broader direction, integration
with emerging generative models for molecular dynamics
could further expand the applicability of our approach by
trajectory generation, especially when molecular dynamics
trajectories are not readily available. These developments
will further strengthen our approach’s capability in protein
modeling, advancing applications in drug design and struc-
tural biology.
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A. Appendix
A.1. Trajectory Alignment

During preprocessing, we aligned all molecular dynamics trajectories to their initial frames using PyTraj’s align function
(Roe & Cheatham III, 2013). The alignment eliminates global translations and rotations, ensuring that ∆rti captures
meaningful conformational changes rather than rigid-body motions. By focusing on intrinsic protein dynamics, this
preprocessing step improves the quality of our correlation-based edges and leads to more informative graph representations.

A.2. Implementation Details and Hyperparameters

We implemented our models using PyTorch Geometric. Each model consists of 5 GNN layers followed by a two-layer MLP
for prediction. We trained models using the Adam optimizer with a learning rate of 1e-4 and batch size of 32. Training
epochs were task-specific: 50 for atomic adaptability prediction, 200 for binding site detection, and 500 for binding affinity
prediction.

For model architecture optimization, we explored different hidden dimensions for each model-task-graph type combination,
with detailed results presented in Tables 5, 6 and 7, . The dimension ranges were selected based on architectural differences
and memory constraints. For example, in atomic adaptability prediction using RGCN, we explored hidden dimensions {26,
32, 53, 64}, while for RGAT we tested {17, 20, 24} due to its higher memory requirements. For R-EGNN and R-GPS, we
tested hidden dimensions {32, 64} across all tasks. For R-SS-GNN, we followed the original SS-GNN hyperparameters and
set the hidden dimension to 108.

Table 5. Detailed Results for Atomic Adaptability Prediction with Different Hidden Dimensions. Supplementary results to Table 1,
showing the performance of different hidden dimensions for each model and graph type combination. Values represent individual runs (↓
indicates lower is better, ↑ indicates higher is better).

MODEL GRAPH TYPE HIDDEN DIM MAE (↓) RMSE (↓) PEARSON R (↑) SPEARMAN R (↑)

RGCN

DISTANCE

26 0.2636 0.4347 0.5008 0.5292
32 0.2726 0.4361 0.4960 0.5216
53 0.2670 0.4423 0.5134 0.5409
64 0.2687 0.4412 0.5160 0.5454

CORRELATION

26 0.2359 0.3965 0.6130 0.6790
32 0.2397 0.3951 0.6170 0.6817
53 0.2316 0.3884 0.6336 0.6909
64 0.2321 0.3874 0.6359 0.6967

COMBINED

21 0.2074 0.3530 0.7115 0.7753
26 0.2077 0.3548 0.7073 0.7732
32 0.2078 0.3549 0.7084 0.7778
44 0.2039 0.3481 0.7206 0.7824
53 0.2016 0.3475 0.7214 0.7854
64 0.2034 0.3433 0.7301 0.7910

RGAT

DISTANCE
20 0.2768 0.4406 0.4790 0.4811
24 0.2763 0.4426 0.4715 0.4750

CORRELATION
20 0.2461 0.3976 0.6104 0.6496
24 0.2465 0.3984 0.6084 0.6504

COMBINED
17 0.2085 0.3536 0.7098 0.7555
20 0.2067 0.3538 0.7096 0.7578
24 0.2161 0.3557 0.7088 0.7615

A.3. Dataset Details

For atomic adaptability and binding site detection tasks, we used the data splitting in the MISATO dataset splits, with 13,597
samples for training, 1,582 for validation, and 1,593 for test. These splits were created using sequence-based clustering with
BlastP (similarity threshold of 30%) to prevent information leakage through structural similarities. The dataset contains
molecular dynamics trajectories generated using the Amber20 software package with a simulation length of 10ns.
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Table 6. Detailed Results for Binding Affinity Prediction with Different Hidden Dimensions. Supplementary results to Table 3,
showing the performance of different hidden dimensions for each model and graph type combination. Values represent individual runs (↓
indicates lower is better, ↑ indicates higher is better).

MODEL GRAPH TYPE HIDDEN DIM RMSE (↓) MAE (↓) PEARSON R (↑) SPEARMAN R (↑)

RGCN

DISTANCE
32 1.7036 1.3441 0.6444 0.6147
64 1.6377 1.2750 0.6740 0.6486

CORRELATION
32 1.7497 1.4077 0.6204 0.5965
64 1.5761 1.2053 0.7025 0.6921

COMBINED

25 1.6186 1.2465 0.6772 0.6666
32 1.6454 1.3366 0.6650 0.6570
51 1.6150 1.2999 0.6821 0.6678
64 1.5996 1.2243 0.6860 0.6718

RGAT

DISTANCE
32 1.7134 1.3655 0.6330 0.6141
64 1.6194 1.2626 0.6875 0.6478

CORRELATION
32 1.6456 1.3295 0.6803 0.6651
64 1.6670 1.3527 0.6555 0.6150

COMBINED

26 1.7224 1.3993 0.6237 0.5948
32 1.7016 1.3542 0.6389 0.6196
55 1.6411 1.3309 0.6704 0.6563
64 1.5685 1.2378 0.7075 0.6855

Table 7. Detailed Results for Binding Site Detection with Different Hidden Dimensions. Supplementary results to Table 2, showing
the performance of different hidden dimensions for each model and graph type combination. Values represent mean ± standard deviation
over 5 runs (↑ indicates higher is better).

MODEL GRAPH TYPE HIDDEN DIM ACC (↑) PRECISION (↑) RECALL (↑) F1 SCORE (↑)

RGCN

DISTANCE
32 0.7112 ± 0.0092 0.1678 ± 0.0024 0.4464 ± 0.0164 0.2428 ± 0.0027
64 0.7217 ± 0.0136 0.1694 ± 0.0031 0.4270 ± 0.0223 0.2412 ± 0.0018

CORRELATION
32 0.7282 ± 0.0069 0.1808 ± 0.0022 0.4552 ± 0.0102 0.2578 ± 0.0012
64 0.7206 ± 0.0033 0.1784 ± 0.0007 0.4652 ± 0.0079 0.2569 ± 0.0014

COMBINED

26 0.7433 ± 0.0067 0.2005 ± 0.0030 0.4889 ± 0.0111 0.2834 ± 0.0023
32 0.7527 ± 0.0054 0.2042 ± 0.0037 0.4748 ± 0.0125 0.2847 ± 0.0044
53 0.7649 ± 0.0100 0.2083 ± 0.0029 0.4477 ± 0.0244 0.2829 ± 0.0033
64 0.7640 ± 0.0063 0.2086 ± 0.0025 0.4531 ± 0.0133 0.2846 ± 0.0018

RGAT

DISTANCE
32 0.6447 ± 0.0232 0.1453 ± 0.0034 0.4607 ± 0.0327 0.2084 ± 0.0036
48 0.6602 ± 0.0120 0.1475 ± 0.0032 0.4439 ± 0.0234 0.2089 ± 0.0040

CORRELATION
32 0.6938 ± 0.0111 0.1664 ± 0.0031 0.4441 ± 0.0182 0.2294 ± 0.0030
48 0.6955 ± 0.0122 0.1653 ± 0.0036 0.4379 ± 0.0169 0.2279 ± 0.0031

COMBINED

27 0.7226 ± 0.0067 0.1861 ± 0.0029 0.4750 ± 0.0137 0.2574 ± 0.0032
32 0.7291 ± 0.0148 0.1882 ± 0.0072 0.4637 ± 0.0218 0.2564 ± 0.0075
40 0.7367 ± 0.0055 0.1916 ± 0.0018 0.4563 ± 0.0133 0.2594 ± 0.0037
48 0.7387 ± 0.0103 0.1884 ± 0.0077 0.4360 ± 0.0033 0.2516 ± 0.0071
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For binding affinity prediction, following previous work (Li et al., 2021a), we used the PDBbind 2020 refined set for training
and validation, and evaluated on the core set. The refined set consists of 5,316 protein-ligand complexes specifically selected
for high-quality binding data and crystal structures through a comprehensive filtering process (Liu et al., 2017). This dataset
construction ensures reliable binding affinity values derived from carefully curated experimental measurements.

A.4. Atomic adaptability

Atomic adaptability (γx) for each atom x is calculated as the mean distance from its initial position across all simulation
frames after alignment:

γx =
1

Nframes

Nframes∑
i

∥rref,x − ri,x∥ (9)

where rref,x is the initial position of atom x and ri,x is its position in frame i. This measure quantifies each atom’s mobility
throughout the simulation, providing insight into conformational flexibility at atomic resolution.

While atomic adaptability can be directly computed from molecular dynamics trajectories, predicting it from graph
representations provides a valuable benchmark for evaluating how effectively different graph structures capture dynamic
information. The Correlation Graph represents a compressed encoding of the full trajectory information, so the ability to
accurately predict adaptability demonstrates that this encoding successfully preserves essential dynamic features. This task
also maintains continuity with the established MISATO benchmark, facilitating direct comparison with current and future
approaches.

A.5. Architecture Performance Analysis

We analyzed the performance of invariant (RGCN, RGAT) and equivariant (R-EGNN) graph neural networks across our
three tasks and graph types. R-GPS and R-SS-GNN are excluded from this comparison as they represent different paradigms
(graph transformer and domain-specific model, respectively). Table 8 summarizes the best-performing architecture for each
scenario.

Table 8. Best-performing GNN for each task and graph type combination

Task Distance Graph Correlation Graph Combined Graph

Atomic Adaptability Prediction R-EGNN R-EGNN RGCN
Binding Site Detection R-EGNN R-EGNN R-EGNN
Binding Affinity Prediction R-EGNN RGAT RGCN

Several patterns emerge from this analysis. R-EGNN generally outperforms invariant models across most scenarios, which is
expected as equivariant architectures preserve rotational and translational symmetries crucial for protein modeling. R-EGNN
consistently performs best on Distance Graphs across all tasks, which aligns with the fact that EGNN explicitly uses
coordinates and distances in its message passing process, making them well-suited for distance-based representations.
Binding site detection shows the most consistent benefit from equivariant architectures across all graph types, likely due to
the more regular graph structure (all nodes represent Cα atoms, although belonging to different amino acids), making 3D
spatial relationships particularly important.

Interestingly, for Combined Graphs, invariant models (RGCN) outperform R-EGNN in two tasks. This suggests that our
current implementation of relational EGNN may not optimally integrate information from different edge types, indicating
opportunities for improved fusion mechanisms for equivariant architectures in future work.

A.6. Theoretical Analysis

To understand why our Combined Graph approach consistently improves performance, we conducted additional theoretical
analyses.
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A.6.1. GRAPH PROPERTIES

We analyzed graph properties of Distance and Combined graphs using randomly selected subsets of 50 proteins each at
atomic and residue levels. Table 9 shows that adding correlation edges significantly reduces both graph diameter and average
shortest path length at both levels, suggesting that correlation edges create critical shortcuts between dynamically coupled
regions.

Table 9. Graph properties of Distance and Combined graphs

Graph Level Metric Distance Combined

Atomic Diameter 24.4 21.3
Atomic Avg. Shortest Path 9.7 8.9
Residue Diameter 10.1 6.7
Residue Avg. Shortest Path 4.3 3.2

A.6.2. GRAPH CURVATURE ANALYSIS

We analyzed Ollivier-Ricci curvature of Distance and Combined graphs using an example protein (PDB-ID 2I5J). Figure 4
shows that Combined graphs exhibit more positively curved edges, indicating reduced over-squashing and improved
long-range information propagation in graph neural networks (Topping et al., 2021).

A.7. Code Availability

Implementation will be made available at https://github.com/PKGuo/
protein-static-dynamic-fusion.git.
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Figure 4. Ollivier-Ricci curvature analysis comparing Distance and Combined graphs for protein PDB-ID 2I5J. The color scale represents
curvature values, with red indicating positive curvature and blue indicating negative curvature. The density plot shows the distribution of
curvature values, showing that Combined graphs have more positively curved edges.
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