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1 Abstract001

The composition of objects and their parts, along002

with object-object positional relationships, provides003

a rich source of information for representation learn-004

ing. Hence, spatial-aware pretext tasks have been005

actively explored in self-supervised learning. Ex-006

isting works commonly start from a grid structure,007

where the goal of the pretext task involves predicting008

the absolute position index of patches within a fixed009

grid. However, grid-based approaches fall short of010

capturing the fluid and continuous nature of real-011

world object compositions. We introduce PART,012

a self-supervised learning approach that leverages013

continuous relative transformations between off-grid014

patches to overcome these limitations. By model-015

ing how parts relate to each other in a continuous016

space, PART learns the relative composition of im-017

ages—an off-grid structural relative positioning that018

generalizes beyond occlusions and deformations. In019

tasks requiring precise spatial understanding such as020

object detection and time series prediction, PART021

outperforms grid-based methods like MAE and Drop-022

Pos, while maintaining competitive performance on023

global classification tasks. By breaking free from024

grid constraints, PART opens up a new trajectory025

for universal self-supervised pretraining across di-026

verse datatypes—from images to EEG signals—with027

potential in medical imaging, video, and audio.028

2 Introduction029

Most visual datasets lack the ground truth labels030

required for supervised learning [1–5]. However,031

even without relying on expensive labeled data, raw032

images provide a rich source of information for learn-033

ing visual representations. Self-supervised learning034

(SSL) leverages this information by defining pretext035

tasks [6]. While many pretext tasks focus on global036

visual invariances to pretrain deep networks [7–15],037

local spatial structures in images are suitable for pre-038

cise downstream tasks [16]. Specifically, many works039

in self-supervised visual learning define local pretext040

tasks that extract patches from images using a grid041

structure, building on the popularity of grid-based042

vision transformers. For instance, early well-known043

SSL methods, often referred to as puzzle solvers [6,044

17, 18] shuffle grid-shaped patches from the image045

and predict the absolute position of each patch, as046

in Jigsaw [19]. The same idea has been applied to047

pretraining the recent transformer architectures. For048

example, Masked Auto Encoders [20], MP3 [21], and 049

DropPos [22] mask and shuffle grid-based patches, 050

and regenerate the original unmasked image. 051

So far, local SSL approaches, such as puzzle solvers 052

and masked image modeling, (i) rely on fixed grid 053

structures to patchify images and (ii) predict abso- 054

lute patch positions. Yet real-world objects rarely 055

conform to rigid grid patterns, and absolute posi- 056

tion prediction limits the generalizability. In this 057

work, we look beyond these two aspects that current 058

SSL approaches adopt. First, we propose sampling 059

patches freely in location and size. The random 060

off-grid sampling enables fine-grained and occlusion- 061

friendly representations. Second, we learn the rel- 062

ative relationships between off-grid patches rather 063

than the absolute relations of patches to the image. 064

Such a relative pretext task allows us to learn 065

visual representations better suited for downstream 066

tasks beyond classification. Pretraining with abso- 067

lute positions captures only the typical location of a 068

given object in an image, leading to misinterpreta- 069

tions when objects appear in uncommon locations. 070

Pretraining with relative positions enables the model 071

to capture relationships between different objects 072

and the internal composition of object parts, which 073

can be generalized to other objects. Furthermore, 074

while grid-based methods first sample the entire im- 075

age uniformly and then apply a separate masking 076

step, off-grid sampling inherently results in partial 077

coverage—some regions are sampled while others 078

are left out—thereby integrating masking directly 079

into the sampling process. Off-grid sampling also 080

allows greater control over the location and size of 081

patches—for example, enabling focused sampling on 082

objects, backgrounds, or uniformly across the image. 083

Finally, off-grid sampling is more flexible and can 084

be extended to patches of different scales and aspect 085

ratios to also include odd-shaped objects. Figure 086

1 shows the difference between our approach and 087

canonical grid-based SSL methods. 088

We introduce PAirwise Relative Translations a 089

pretraining method that predicts relative transla- 090

tions between randomly sampled patches. The pre- 091

text objective is set up as a regression task to pre- 092

dict the translation (∆x,∆y) between each pair 093

of patches (Figure 2). We also introduce a cross- 094

attention architecture that serves as a projection 095

head. We empirically show that PART outper- 096

forms baselines in precise tasks such as object detec- 097
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Figure 1. Comparison of PART to other masked
image modeling approaches. (a) generative recon-
struction of the masked parts using a fixed grid structure.
(b) Masks parts of the image and position embeddings
and predicts the absolute patch positions within a pre-
defined grid. (c) Unlike grid-based methods, samples
patches freely and predicts relative translations between
patch pairs, enabling finer spatial understanding.
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Figure 2. Sampling and Objective. Two random
patches are sampled from an image—a yellow reference
(ref) patch and a green target (tgt) patch. Given the
pixel values of patches, the model predicts the relative
translation. The task is to learn the displacement ∆x,
∆y, mapping the position of the reference patch to the
target patch. While data augmentations are comple-
mentary and applied at the image level to learn global
invariances, PART learns local relative representations.

tion and 1D EEG signal classification and remains098

competitive in image classification. We also per-099

form ablation studies on different sampling strate-100

gies, projection head architectures, and the num-101

ber of patch pairs. Code is openly available at102

https://tinyurl.com/mpz3fw4e.103

3 Related Work104

Self-supervised learning has emerged as a powerful105

paradigm for learning meaningful representations106

from vast amounts of unlabelled visual data, address-107

ing the limitations posed by the scarcity of annotated108

datasets required for supervised learning [3–6, 23].109

By designing pretext tasks, SSL methods exploit110

the inherent structure of unlabelled images to learn111

discriminative features without human-annotated112

labels. These pretext tasks are generally divided113

into two broad categories: those that operate on114

the global structure of images and those that focus115

on local structures within the image. Global meth-116

ods emphasize invariance to transformations applied117

to the entire image, while local methods focus on118

capturing fine-grained spatial structures.119

Global self-supervised learning Global pretext120

tasks have been extensively explored in the literature121

and focus on leveraging image-wide transformations122

to learn invariant features. Notable global methods123

include invariance to rotations [9, 10, 12] and ge-124

ometric transformations [13–15, 24]. In CIM [25],125

the model predicts the geometric transformation of 126

a sample with respect to the original image. Other 127

global tasks include colorization [7, 8], denoising [26, 128

27], and instance discrimination [11, 28]. Building on 129

instance discrimination, contrastive self-supervised 130

methods have emerged, where different views or rep- 131

resentations of the same data point are presented to 132

one or two parallel models, with the objective of max- 133

imizing agreement between the two views. Common 134

examples include MoCo [29–31] and SimCLR [32, 135

33] variants. A key concept in contrastive methods is 136

the contrastive loss, which minimizes when the two 137

input images are similar and maximizes when they 138

are dissimilar [34–36]. The fundamental loss func- 139

tion enabling contrastive training for image-based 140

SSL is InfoNCE [37, 38]. Self-labeling through clus- 141

tering is another SSL approach, with methods such 142

as DeepCluster [39], Self-Classifier [40], CoKe [41] 143

and SwAV [42]. Distillation-based methods avoid 144

the need for negative samples in clustering and con- 145

trastive techniques by training a student network to 146

predict the representations of a teacher network [43– 147

47]. Additionally, information-maximization meth- 148

ods focus on maximizing the information conveyed 149

by decorrelated embeddings, eliminating the need for 150

negative samples or asymmetric architectures [48– 151

51]. While these global methods effectively capture 152

high-level patterns, they often miss the rich spatial 153

details present in smaller image regions, which are 154

critical for tasks involving fine-grained image un- 155

derstanding [16]. By focusing on transformations 156

applied to the entire image, they may overlook the 157

nuanced information embedded in local structures. 158

Local self-supervised learning Real-world im- 159

ages contain a wealth of local patterns, which are 160

essential for understanding the finer aspects of vi- 161

sual content. Local pretext tasks, therefore, shift 162

the focus towards modeling the internal spatial 163

structure of images by extracting small grid-shaped 164

patches from the image and defining pretext tasks 165

on them. An early SSL method for learning local 166

intra-image structures is the Jigsaw puzzle [17, 18], 167

where patches are shuffled, and the model must pre- 168

dict their correct arrangement, commonly referred 169

to as puzzle solvers. Masked image modeling (MIM) 170

emerged as an adaptation of masked language mod- 171

eling in NLP [52], introducing a new pretext task for 172

self-supervised training [53]. In these methods, part 173

of the input is masked, and the model is tasked with 174

either reconstructing the original input or predicting 175

the masked-out portion. This can be considered a 176

variant of image inpainting. In Pathak et al. [54], 177

the network is trained to inpaint the contents of a 178

masked image region by understanding the context 179

of the entire image. This approach has also been 180

used to pretrain vision transformers [55], showing im- 181

proved performance on downstream tasks compared 182

to supervised and contrastive learning baselines. 183

2

https://tinyurl.com/mpz3fw4e


NLDL
#19

NLDL
#19

NLDL 2026 Full Paper Submission #19. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

A popular example of masked image modeling184

is MAE [20], based on BEiT [56], where a random185

subset of image patches is masked, and the model186

reconstructs the entire image in pixel space. Simi-187

larly, in I-JEPA [57], the pretext task is to predict188

the representation of the rest of the image blocks189

given a single context block, focusing on large-scale190

models in linear probing. These methods can be191

categorized as generative-based approaches, where192

the model reconstructs the original input using gen-193

erative models, such as VAEs [58] or GANs [59].194

However, generative-based masked prediction195

presents challenges, such as longer training times and196

increased complexity of the reconstruction task [21].197

To address these issues, alternative models focus198

on predicting the absolute position of the masked199

patches instead of pixel reconstruction [21, 22]. In200

MP3 [21], the corresponding keys to a random set of201

patches are masked out, whereas, in DropPos [22],202

the position embeddings of a random portion of the203

image are masked out. The pretext task in both204

methods is predicting the exact position of each205

patch, requiring it to solve the puzzle of determin-206

ing where each patch originated from. The idea207

behind these methods originates from works of Do-208

ersch et al. and Mundhenk et al. [60, 61] and later209

on the Jigsaw works [19, 62], where masking is per-210

formed by making a puzzle from a part of the image211

and pretraining a CNN to solve the jigsaw puzzle212

by predicting the absolute position of each piece.213

DILEMMA [63] enforces predicting the position of214

patches that have been artificially misplaced. In215

Caron et al. [64], the pretext task is the absolute216

position prediction of a random portion of the image217

given the input image as a reference. Self-supervised218

learning has demonstrated significant success across219

various domains and applications. After the intro-220

duction of Vision Transformers (ViT) [55] in 2021,221

ViTs were quickly adopted for self-supervised learn-222

ing through methods like BEiT [56], MAE [20], and223

DINO [45], sparking considerable interest in leverag-224

ing these architectures for large-scale unlabeled data225

in self-supervised learning. While vision transform-226

ers often exhibit insensitivity to the order of input227

tokens [21, 22, 65, 66], suggesting that they tend to228

model relationships between unordered tokens, the229

aforementioned models focus explicitly on absolute230

grid-based position prediction. In contrast, PART231

is trained on predicting off-grid relative translations232

between random input patches.233

Relative self-supervised learning The notion234

of relative information has been applied in self-235

supervised learning across various tasks and domains.236

In graph representation learning, Peng et al. [67]237

proposed predicting the local relative contextual po-238

sition of one node to another. For single-image depth239

estimation, Jiang et al. [68] introduced a method for240

estimating relative depth using motion from video se-241

quences. In the domain of object detection, LIO [69] 242

proposed a self-supervised spatial context learning 243

module that captures the internal structure of ob- 244

jects by predicting the relative positions within the 245

object’s extent. LIO localizes the main object in 246

an image and learns the relative positions of other 247

context points with respect to that main object. It 248

operates by defining one main object as a reference, 249

with other points or pixels learning their relative 250

positions to this reference point. In contrast, PART 251

learns relative information by considering any pair 252

of patches as reference and target, allowing it to 253

model relationships between any two patches. 254

4 Method 255

Random off-grid sampling An overview of our 256

method is shown in Figure 3. Given an image I ∈ 257

RH×W×C , we extract N random patches from the 258

image. H and W are the height and width of the 259

image, and C is the number of channels. With 260

(xs, ys) as the coordinates of the top left corner of 261

the patch uniformly sampled across the image and 262

(xs + D, yS + D) as the coordinates of the bottom 263

right corner of the patch, respectively. These patches 264

are of shape D ×D and are in random positions of 265

the image. Each sampled patch of shape D ×D is 266

then resized to P × P with C channels. P is the 267

patch size, and N = H×W
P 2 is the number of patches. 268

Now we have N samples of P × P × C that can be 269

reshaped into the original image size Î ∈ RH×W×C . 270

This reshaped image would be akin to a puzzled 271

version of the original image if the random samples 272

were on-grid and with a P ×P shape. In the process 273

of off-grid random sampling, parts of the image are 274

naturally masked out. In addition, some information 275

about each patch’s spatial frequency is masked by 276

resizing all samples to the patch size. The pretext 277

task is set up such that the ViT [55], which processes 278

images as sequences of patches, consumes images 279

with incomplete information. 280

The reshaped patches Î are then given to the 281

ViT model. In the ViT model, Î is reshaped into 282

a sequence of patches Ip ∈ RN×(P×P×C). A linear 283

projection is then applied to Ip, mapping it to d 284

dimensions to get patch embeddings X ∈ RN×d. 285

X is given as an input to the transformer blocks 286

without the position embeddings. The ViT model 287

returns the learned patch embeddings X ′ ∈ RN×d. 288

Relative translation parameterization Before 289

discussing how the patch embeddings X ′ are utilized 290

in the objective function, it is important to first in- 291

troduce the different components of the objective 292

function and how it is parameterized. This requires 293

us to revisit the off-grid sampling process and how 294

it produces the target values for the objective func- 295

tion. First, a pair of patches (reference, target) are 296

sampled from the image at random positions with 297

(xref , yref) and (xtgt, ytgt) representing the center 298

3
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Figure 3. Illustration of PART on 2D image data: First, a set of patches is randomly sampled from different
positions in the image. This selection is done independently for each image at every iteration. Next, all patches
are resized to a uniform size. A ViT model is then used to produce an embedding for each patch. A relative
cross-attention encoder then attends to pairs of patches, using a shared weight structure to predict the relative
translations between selected pairs. For each pair of reference and target patches (i, j), the cross-attention encoder
returns θ̂ij , which represents the relative translation needed to align the reference patch i to the target patch j.

pixel coordinates of the two patches in image space.299

Both patches are then resized to a uniform patch300

size P , masking their original position in the image301

space, as well as their pixel content. The goal is to302

learn the underlying translation between any pair of303

patches. This translation transforms the reference304

coordinate patch into the target coordinate patch,305

considering the width wref and height href of the306

reference patch. The task is to predict307

θref,tgt =

[
∆x
∆y

]
ref,tgt

=

[
(xtgt − xref)/wref

(ytgt − yref)/href

]
ref,tgt

308

309
with ∆x and ∆y capturing relative position. In310

simple terms, the goal is to move the reference frame311

so that it translates into the target frame. In this312

context, when referring to a “frame”, we specify313

the bounding box itself rather than the actual pixel314

contents in the bounding box i.e. the patch (Figure315

2). In contrast to augmentations that are applied316

to entire images (e.g., rotations, scaling) to enforce317

global invariance, PART focuses on learning spatial318

relationships within the image, capturing the relative319

geometry between regions.320

The emphasis on predicting the relative transla-321

tion is key because the pixel space information is322

lost after resizing patches to a uniform size. After323

resizing, the model no longer possesses details about324

the original image space and needs to learn to be325

robust to different image resolutions. The two terms326

we seek to predict are the translation in x normal-327

ized by the width of the reference patch wref and328

the translation in y normalized by the height of the329

reference patch href . In this case, both wref and href330

are equal to patch size P due to resizing.331

Cross-attention relative encoder The ViT332

model outputs a per-patch embedding X ′ ∈ RN×d.333

The relative encoder maps the per-patch embed-334

dings to the relative translations between a ran-335

dom number of patch pairs (#pairs), resulting in336

θ̂ ∈ R2×#pairs. The two outputs per patch pair337

are the relative positions between the reference and338

target patches. Given X ′, this module selects ran- 339

dom index pairs (#pairs) of patches S ∈ N2×#pairs
340

with S0 as the index of the reference patch and S1 341

as the index of the target patch. The embeddings 342

of reference patches S0 and S1 are then concate- 343

nated: X̂ = concat(X ′
S0
, X ′

S1
). X̂ goes through 344

a linear projection to convert from R#pairs×2×d to 345

R#pairs×d. X̂ is fed into a cross-attention module 346

[70] as the query, and X ′ is fed as both the key and 347

the value. d is the dimensionality of the keys/queries: 348

θ̂ = softmax
(

X̂X′⊤
√
d

)
X ′. The cross-attention mod- 349

ule allows for information dissemination between all 350

patch embeddings and enables the model to focus on 351

predicting the relative translation only for a subset S 352

of patch pairs. This imposes further masking of infor- 353

mation given to the model. We discuss the pros and 354

cons of this design choice in depth in the ablations 355

section. θ is only calculated for the subset S of patch 356

pairs. The model is trained with a mean squared 357

error loss between the predicted relative transla- 358

tions θ̂ and the ground-truth relative translations θ: 359

LMSE = 1
2×#pairs

∑2
k=1

∑#pairs
m=1

(
θmk − θ̂mk

)2

. 360

Supervised finetuning Once the model is pre- 361

trained, we tune the network end-to-end using la- 362

beled data in a supervised setup. Following the 363

standard ViT setup, we eliminate the relative en- 364

coder and substitute it with a linear classification or 365

detection head after the [CLS] token, which aggre- 366

gates global input information. Unlike pretraining, 367

we incorporate randomly initialized learnable po- 368

sition embeddings and apply fixed grid sampling 369

instead of random sampling and masking. 370

5 Results 371

5.1 Capabilities of PART 372

In this section, we start by emphasizing the poten- 373

tial capabilities that emerge from adopting relative 374

off-grid sampling in SSL frameworks, followed by 375

comparisons to other methods. These capabilities 376

highlight the unique advantages and transforma- 377
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Figure 4. Target image reconstruction given pre-
dicted relative translations in PART vs. grid sampling.

tive possibilities that such a paradigm shift offers,378

namely, (i) off-grid reconstruction, (ii) extension to379

other aspect ratios and scales, (iii) patch uncertainty,380

and (iv) symmetry. For reproducibility, implementa-381

tion, hyperparameters and the choice of architecture382

is explained in depth in the Appendix in section 8.1.383

384 Off-grid reconstruction Unlike grid-based ap-385

proaches, PART can reconstruct the original image386

from off-grid patches. This is especially valuable in387

domains like Satellite and LiDAR imaging, where388

overlapping patches from different images must be389

reassembled. These patches need not come from a390

single image—for instance, the model can compose a391

new face by arranging parts of different faces. Figure392

4 illustrates this: input patches (top row) and the393

predictions under different sampling strategies (bot-394

tom row). In PART, the ground truth visualization395

consists of a subset of the patches, thus providing a396

masked input to the model. Images are generated by397

fixing one random reference patch and positioning398

all other patches relative to it. In grid sampling, the399

ground truth positions reconstruct the full image,400

since patches cover the entire image. The model’s401

predictions nearly match the ground truth, even in402

fine details, having learned general scene structure403

(e.g., sky above, road below, clock’s triangular form).404

Some details are missing, such as clock hands and405

numbers, and mono-color patches are harder to place406

since the model sees only pixel content. PART’s abil-407

ity to reconstruct from off-grid patches highlights408

its grasp of underlying image structure.409

Extension to other aspect ratios and scales410

The combination of off-grid patch sampling and rel-411

ative position prediction as a pretext task, offers412

the opportunity to reimagine patch sampling in the413

vision transformers. If the method can predict rel-414

ative positions of equal-sized square patches (1:1415

aspect ratio), why not also between patches of vary-416

ing aspect ratios and scales? To test this, we run a417

proof-of-concept experiment extending the objective418

to include ∆w and ∆h for relative width and height:419

420

θref,tgt =


∆x
∆y
∆w
∆hs


ref,tgt

=


(xtgt − xref)/wref

(ytgt − yref)/href

wtgt/wref

htgt/href


ref,tgt

421

We modify the sampling to include bottom-right422

coordinates (xe, ye) of the patches, then resizing423

patches to the ViT patch size. Patch width and 424

height are constrained to between half and twice the 425

ViT patch size to ensure meaningful content. The 426

model is pretrained with the new objective for 100 427

epochs, and results on ImageNet classification and 428

COCO detection are reported in Table 1. Extending 429

grid-based methods like MAE to multiple aspect 430

ratios and patch sizes is non-trivial, requiring more 431

advanced positional embeddings and a decoder that 432

can upsample multi-scale representations.

Table 1. Extending PART to patches of different
aspect ratios & scales: comparison of PART and
its extension on COCO Object Detection and ImageNet
classification without extra hyperparameter tuning. This
proof-of-concept experiment motivates a new avenue for
further research in relative off-grid pretext tasks.

COCO OD INet Class.

APb APb
50 APb

75 Accuracy

PART 42.4 62.5 46.8 82.7
PART + aspect ratio + scale 42.0 61.8 46.3 82.6

433Patch uncertainty Another capability of PART 434

is estimating patch uncertainty by checking whether 435

different reference patches agree on the relative po- 436

sition of a target patch. Our model predicts the 437

relative translation both when patch i serves as a 438

reference and target patch. In Figure 5, one target 439

patch is positioned relative to all reference patches. 440

If patches are clustered, the model is more certain 441

of that patch. Such uncertainty estimation is valu- 442

able in applications like semantic segmentation for 443

autonomous vehicles or tumor detection, where it 444

helps distinguish common from anomalous scenarios. 445

Uncertain Patch                             Certain PatchOriginal Image

Figure 5. Patch uncertainty: A single target patch
is positioned relative to all reference patches. Left: two
target patches (orange, yellow). Middle/right: model
uncertainty for orange and yellow, respectively. The
model is more certain about the unique orange patch,
while the yellow patch resembles other regions, making
its position harder to predict. Easy patches (orange) are
consistently placed at the same location, showing that
some patches are more confidently localized than others. 446

Symmetry When observing a lip, one expects a 447

nose above it; seeing a nose suggests a lip below. 448

This illustrates symmetry. In this experiment, we 449

demonstrate that PART learns and represents these 450

symmetrical relationships. Figure 6 compares the 451

model’s prediction matrix with the ground truth, 452

showing strong alignment along both x and y axes. 453

The key property that emerges from this figure is 454

negative symmetry: if patch Pi predicts (∆x,∆y) 455

relative to Pj , then Pj predicts (−∆x,−∆y) rela- 456

tive to Pi. Despite heavy masking and lack of global 457

5
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patch information, the model positions patches cor-458

rectly relative to each other. Learning the negative459

symmetry results in consistent relative positioning460

of object parts, which we expect benefits localization461

and fine-grained understanding. When samples are462

scarce, our approach allows for learning from fewer463

variations due to these built-in symmetries.464
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Figure 6. Negative symmetry in output predic-
tion matrices for x and y translations with ordered vs.
shuffled patch indices, showing that PART positions each
patch-pair correctly relative to each other. Ordered ma-
trices sort patches from top-left to bottom-right. Each
N ×N element (i, j) gives the relative translation from
reference patch i to target j. Bright colors indicate posi-
tive values, dark negative, and gray zero; color intensity
reflects magnitude.

5.2 Comparison to grid-based465

So far, we have qualitatively demonstrated that466

PART learns to reconstruct the target image us-467

ing the relative positions of off-grid patches. It468

also learns the negative symmetry between pairs of469

patches. These capabilities arise because PART has470

learned the structure of input images and how they471

relate to each other both locally and globally within472

the image. Here, we focus on quantitative results473

and compare PART to other grid-based methods474

that provide a fair comparison on precise local tasks,475

such as object detection and time-series prediction.476

Object detection In Table 2, we compare PART477

with MAE [20], MP3 [21] and DropPos [22] grid-478

based pretraining methods in the downstream ob-479

ject detection performance. The results demon-480

strate that PART’s off-grid sampling with overlap-481

ping patches and relative patch position prediction482

improve detection accuracy, particularly for fine-483

grained local tasks where precise spatial understand-484

ing is critical, outperforming methods like MAE,485

MP3, and DropPos, which rely on fixed grid-based486

sampling. Notably, while MAE and DropPos use po-487

sitional embeddings, MP3 and PART do not. PART488

achieves performance comparable to DropPos, de-489

spite DropPos employing additional losses (attentive490

reconstruction and position smoothing). Without491

these auxiliary losses, DropPos’s detection perfor-492

mance drops by roughly 2% (Tables 3 & 4 in [22]),493

highlighting the strength of PART’s objective.494

Time-series prediction PART can also be ap-495

plied to 1D data. Here we take 1D time series pre-496

diction as an example. For 1D data, PART predicts497

Table 2. Object detection comparison. Our
method outperforms state-of-the-art grid-based base-
lines on COCO detection while relying on the same
backbone. † means our implementation, ♯ means the
result is borrowed from [22].

APb APb
50 APb

75

Grid-based
MAE [20]♯ 40.1 60.5 44.1
MP3 [21]† 41.8 61.4 46.0
DropPos [22] 42.1 62.0 46.4

Relative off-grid
PART 42.4 62.5 46.8

relative time shifts (∆t) between randomly-sampled, 498

unequally-spaced windows (the 1D equivalent of off- 499

grid patches) from longer sequences. We validate 500

this approach by pretraining a 1D ViT on biosignals 501

from the PhysioNet 2018 ”You Snooze You Win” 502

Challenge Dataset [71]. As shown in Table 3, our 503

method achieves at least a 2% improvement in sleep 504

staging classification performance compared to both 505

supervised and self-supervised baselines. This task 506

particularly benefits from PART’s capabilities, as 507

accurate sleep staging requires both precise local rep- 508

resentations and global understanding of each stage’s 509

position within the complete sequence. Addition- 510

ally, PART demonstrates superior data efficiency by 511

effectively learning the structure of 1D EEG signals, 512

although limited training data is available. 513

Table 3. Sleep stage classification accuracy rep-
resented using Cohen’s Kappa. PT, FT = number of
pretraining, finetuning epochs. †= our implementation.

PT FT Cohen’s Kappa

Supervised
Supervised w/ Pos Embed† 0 100 0.531

Grid-based
MP3 [21]† 1000 100 0.553
DropPos [22]† 1000 100 0.582
MAE [20]† 1000 100 0.595

Relative off-grid
PART 1000 100 0.616

5.3 Ablations 514

Sampling strategies An essential component of 515

our method is the patch sampling process. Besides 516

random sampling, we ablate on on-grid sampling 517

similar to MP3 and DropPos (Figure 7). In the grid 518

sampling, all patches are arranged in a grid form, 519

with a fixed size at fixed positions. PART-grid has 520

a similar patch sampling to MP3 but with a relative 521

objective function. The results in Table 4 show that 522

random continuous sampling improves performance 523

in different tasks and domains compared to PART- 524

grid while introducing more masking. Looking be- 525

yond the grid improves downstream performance. 526

527

Impact of relative encoder Besides the cross- 528

attention relative encoder in the method, we perform 529
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PART-grid PART

Figure 7. PART adopts a random sampling strategy.
Grid sampling (PART-grid) is performed as an ablation.

COCO CIFAR-100 IN-1K Time-series

PART-grid 41.4 82.1 82.43 0.500
PART 42.4 83.0 82.7 0.616

Table 4. Apples-to-apples comparison for on-grid
versus off-grid patch sampling with relative position pre-
diction objective. For detection (COCO), classification
(CIFAR-100, IN-1K), and time-series prediction, off-grid
patch sampling performs better since it can capture pre-
cise local information better.

an ablation study on two other ways to learn this530

mapping. The most straightforward approach is a531

fully connected MLP that receives all patches con-532

catenated as an input and predicts the translation for533

any two patches. So, given N patches with d dimen-534

sions, the relative encoder would have N ∗ d ∗N2 ∗ 2535

parameters. Although the weights are not shared in536

this approach, such as in the cross-attention head,537

the relative encoder can access all patch embeddings.538

This helps the model to converge faster because it539

can use extra information from other patches. How-540

ever, the classification head will replace the relative541

encoder during finetuning. The time spent on train-542

ing the fully connected MLP can be spent on training543

better representations instead.544

Table 5. Ablation on different relative encoders
for CIFAR-100 pretrained for 1000 epochs. The cross-
attention is preferred over standard feed-forward layers.

Error ↓ Accuracy ↑
x y Euclidean

MLP 3.18 2.02 1.68 82.38
Pairwise MLP 2.84 1.76 1.59 82.52
Cross-attention 1.14 0.77 0.81 83.00

We propose an alternative relative encoder that545

compensates for the high parameter count in the546

fully connected MLP approach through weight547

sharing, which we term a pairwise MLP. The548

pairwise MLP receives two concatenated patches549

as input and predicts their relative translation.550

Although this approach uses only 2∗d∗2 parameters,551

the relative encoder cannot access all the patches,552

thus predicting the translations solely based on the553

content of these two patches. Table 5 shows the554

results for different relative encoders. The results555

suggest that the cross-attention head (83.00%)556

outperforms pairwise MLP (82.52%) and MLP557

(82.38%). MLP is computationally more expensive558

than pairwise MLP and cross-attention.559

560 Does PART come at the cost of image clas-561

sification? In Table 6, we compare PART with562

Table 6. ImageNet-1k classification with ViT-B.
PART is comparable to other grid-based methods. Pos
Embed = using position embedding. †= our implemen-
tation, ♯= borrowed from [20], ∗= borrowed from [21].

Pos Embed PT FT Accuracy

Supervised
Labelled baseline∗ ✓ 0 300 81.8
Labelled baseline∗ 0 300 79.1

Contrastive
MoCo v3 [66]♯ ✓ 300 150 83.2
DINO [45]♯ ✓ 300 300 82.8
BEiT [56]♯ ✓ 800 100 83.2
CIM [25] ✓ 300 100 83.1

Grid-based
MAE [20]∗ ✓ 150 150 82.7
MAE [20]∗ ✓ 1600 100 83.6
MP3 [21]† ✓ 400 300 82.6
MP3 [21] 100 300 81.9
DropPos [22] ✓ 200 100 83.0

Relative off-grid
PART 400 300 82.7

Table 7. CIFAR-100 ViT-S. PART is comparable to
other grid-based methods. ♯= borrowed from [21].

Pos Embed PT Accuracy

Supervised
Labelled baseline♯ ✓ 0 73.6
Labelled baseline♯ 0 64.6

Contrastive
MoCo v3 [66] ♯ ✓ 2000 83.3

Grid-based
MAE [20]♯ ✓ 2000 84.5
MP3 [21] ✓ 2000 84.0
MP3 [21] 2000 82.6

Relative off-grid
PART 1000 83.0

supervised and state-of-the-art SSL alternatives on 563

the ImageNet-1K [72] classification benchmark. Our 564

method outperforms the supervised results as well 565

as MP3 [21] and shows competitive performance 566

with respect to DropPos [20] and MAE [20]. Note 567

the latter methods employ position embedding dur- 568

ing pretraining. DropPos employs extra position 569

smoothing and attentive reconstruction techniques 570

that could further accelerate training. 571

We compare PART with supervised and self- 572

supervised alternatives on the CIFAR100 [73] classi- 573

fication benchmark in Table 7. PART consistently 574

outperforms the supervised baselines with and with- 575

out position embeddings, although it does not use 576

any position embeddings. With only 1000 pretrain- 577

ing epochs, PART outperforms the MP3 [21] baseline 578

with 2000 epochs of pretraining. 579

Number of patch pairs As explained in 4, a sub- 580

set S is randomly chosen from the patch embeddings. 581

7



NLDL
#19

NLDL
#19

NLDL 2026 Full Paper Submission #19. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Ac
cu

ra
cy

80

81

82

83

84

Number of patch-pairs
512 1024 1536 2048 2560 3072 3584 4096

400 Epochs 1000 Epochs 4000 Epochs

Figure 8. #patch pairs ablation CIFAR-100.

#pairs is the parameter that determines the length582

of S. We study the effect of #pairs in Figure 8 after583

400, 1000, and 4000 epochs of pretraining. We ob-584

serve that curves follow similar patterns for different585

epochs of pretraining, while more pretraining epochs586

result in higher accuracy. We also observe a trade-587

off in #pairs. Higher #pairs means the model sees588

more patch information but must also predict the589

relative translations for more contradicting patch590

pairs. Whereas smaller #pairs means the model has591

access to less information, thus overfitting on the592

task leading to less general representations. There593

is a sweet spot with 2048 patch pairs, where enough594

global patch information is given to the model, and595

the training task is neither easy nor difficult.596

6 Conclusion597

The composition of objects and their parts, along598

with their relative positions, offers rich information599

for representation learning. We introduced PART, a600

pretraining method that predicts continuous relative601

transformations between random off-grid patches,602

learning the relative composition of images that gen-603

eralize beyond occlusions and deformations. We604

demonstrated PART’s capabilities—off-grid recon-605

struction, flexible patch forms, patch uncertainty,606

and symmetry—and how these support the quanti-607

tative results. On tasks requiring precise spatial un-608

derstanding, such as object detection and time-series609

prediction, PART outperforms grid-based methods610

like MAE and DropPos, while remaining competi-611

tive on global classification. Our experiments show612

PART’s applicability across data types, domains,613

and tasks, with potential for further extensions dis-614

cussed in the next section.615

7 Discussion & Future Work616

So far, we demonstrated the capabilities of PART617

as well as its applicability on multiple data types618

(1D & 2D), domains (medical & every-day) and619

tasks (classification & detection). Here, we discuss620

potential benefits and future directions in depth.621

Complementary to contrastive learning:622

PART provides fine-grained local representations,623

making it a complement to contrastive methods.624

Combined, they can capture both local and global625

patterns by uniting PART’s off-grid position predic-626

tion with contrastive learning’s view augmentations.627

628

Hierarchical multi-scale learning: PART’s 629

sampling strategy raises questions on whether 630

patches should be sampled randomly or focus on ob- 631

jects or background depending on the downstream 632

task. Extending to multiple scales and aspect ratios 633

could enable hierarchical multi-resolution represen- 634

tations, where objects and their parts at different 635

scales are accurately captured. 636

Modeling rotations: For example, seeing a lip 637

suggests a nose above it—but if the lip is rotated, the 638

expectation is a rotated nose. A key question is how 639

PART can be generalized for rotation equivariance. 640

Universal pretraining across diverse data 641

types and domains: PART can be extended 642

to audio spectrograms, videos, and sensor data 643

by adding a temporal constraint, learning relative 644

spatio-temporal relationships. Off-grid sampling 645

with overlapping, variable-sized patches enables flex- 646

ible representations that capture real-world struc- 647

tures. This makes PART useful for reconstruction 648

in satellite and LiDAR imaging, as well as for data- 649

scarce, high-precision domains like medical imaging. 650

651

Extension to other tasks: Relative position pre- 652

diction strengthens spatial reasoning in continuous 653

space, benefiting tasks that demand fine-grained spa- 654

tial understanding such as scene graph generation, 655

spatial relation prediction, and 3D reconstruction. 656
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8 Appendix 951

8.1 Implementation details 952

For both CIFAR-100 and ImageNet-1k, our pretrain- 953

ing and finetuning configurations closely align with 954

the pipeline outlined in MP3 [21], which itself builds 955

upon the foundational work of [74]. We adopt the 956

MP3 codebase as our starting point for implementa- 957

tion. During the finetuning phase, we adhere strictly 958

to the supervised training protocols recommended 959

in DeiT [74], ensuring consistency with established 960

practices. Detailed descriptions of the implementa- 961

tion specifics for each task are provided below: 962

Object detection We evaluate the transfer learn- 963

ing capacity of our method on the COCO Dataset. 964

We perform self-supervised pretraining on the 965

ImageNet-1K [72] with a resolution of 224×224 using 966

ViT-B [74] as the backbone. The model is pretrained 967

for 200 epochs with a learning rate of 0.0005, a batch 968

size of 1024 with 4802 patch pairs on 8 GPUs. We 969

perform end-to-end finetuning on COCO [75] for ob- 970

ject detection. Specifically, Mask R-CNN [76] is fine- 971

tuned with 1× schedule (12 epochs) and 1024×1024 972

resolution. We use the configuration of ViTDet [77] 973

and take ViTB/16 [55] as the backbone. APb is 974

reported as the main performance metric for object 975

detection. We additionally report APb
50 and APb

75. 976

1D time series classification PhysioNet 2018 977

”You Snooze You Win” Challenge Dataset [71] con- 978

tains multi-channel biosignals that are continuously 979

monitored overnight during sleep studies conducted 980

at Massachusetts General Hospital. The task is to 981

predict one of five sleep stages (Wake, Non-REM1, 982

Non-REM2, Non-REM3, REM) given a 30-second 983

window of data containing six channels of scalp 984

electroencephalography (EEG). The EEG data is 985

bandpass filtered with cutoffs 0.1-30 Hz and then 986

re-sampled to have a 100 Hz sampling rate. Thirty- 987

second windows are instance normalized as an ad- 988

ditional pre-processing step before being tokenized 989

by a linear layer. Forty 1-second patches are then 990

randomly sampled. We use recordings from 1,653 991

subjects across the entire dataset for all pretrain- 992

ing strategies. For finetuning, we down-sample the 993

dataset to 10 subjects to simulate a low-labeled data 994

regime. For testing, the finetuned models are evalu- 995

ated on recordings from 200 subjects, which are held 996

out from both pretraining and finetuning stages. We 997

randomly mask out 20% of the position embeddings 998

for this experiment. All experiments use a 1D ViT 999

backbone with 12.9M parameters and the input to 1000

the model is the 1D data for both pretraining and 1001

finetuning. 1002
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Image classification We perform self-supervised1003

pretraining on CIFAR100 [73] and ImageNet-1K1004

[72] with a resolution of 32x32 and 224×224 respec-1005

tively. Following Zhai et al. [21], we use ViT-S1006

as the backbone of CIFAR100 and ViT-B [74] as1007

the backbone of ImageNet-1K. During pretraining,1008

we perform a hyperparameter search on learning1009

rates {0.0005, 0.001, 0.01}, and the number of pairs1010

{512, 1024, 2048, 4096} and choose the best result1011

for each experiment. We perform 400 epochs of fine-1012

tuning on CIFAR100 and 300 epochs of finetuning1013

on ImageNet-1K with a learning rate of 5e−4. We1014

report accuracy, ℓ2 error, and the mean squared1015

error in x and y dimensions.1016

Choice of Architecture Due to computational1017

limitations, we employ vision transformer architec-1018

tures tailored to the specific datasets and tasks. For1019

pretraining on the CIFAR-100 dataset, we utilize1020

the smaller ViT-S model, while for the ImageNet1021

dataset, we adopt the larger ViT-B model to ac-1022

commodate its greater complexity and scale. For1023

one-dimensional (1D) data, we implement a special-1024

ized 1D variant of the vision transformer to ensure1025

optimal performance and compatibility with the1026

data structure.1027
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