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1 Abstract
The composition of objects and their parts, along
with object-object positional relationships, provides
a rich source of information for representation learn-
ing. Hence, spatial-aware pretext tasks have been
actively explored in self-supervised learning. Ex-
isting works commonly start from a grid structure,
where the goal of the pretext task involves predicting
the absolute position index of patches within a fixed
grid. However, grid-based approaches fall short of
capturing the fluid and continuous nature of real-
world object compositions. We introduce PART,
a self-supervised learning approach that leverages
continuous relative transformations between off-grid
patches to overcome these limitations. By modeling
how parts relate to each other in a continuous space,
PART learns the relative composition of images—an
off-grid structural relative positioning that is less
tied to absolute appearance and can remain coherent
under variations such as partial visibility or stylistic
changes. In tasks requiring precise spatial under-
standing such as object detection and time series
prediction, PART outperforms grid-based methods
like MAE and DropPos, while maintaining competi-
tive performance on global classification tasks. By
breaking free from grid constraints, PART opens
up a new trajectory for universal self-supervised
pretraining across diverse datatypes—from images
to EEG signals—with potential in medical imaging,
video, and audio.

2 Introduction
Most visual datasets lack the ground truth labels
required for supervised learning [1–5]. However,
even without relying on expensive labeled data, raw
images provide a rich source of information for learn-
ing visual representations. Self-supervised learning
(SSL) leverages this information by defining pretext
tasks [6]. While many pretext tasks focus on global
visual invariances to pretrain deep networks [7–15],
local spatial structures in images are suitable for pre-
cise downstream tasks [16]. Specifically, many works
in self-supervised visual learning define local pretext
tasks that extract patches from images using a grid
structure, building on the popularity of grid-based
vision transformers. For instance, early well-known

SSL methods, often referred to as puzzle solvers [6,
17, 18] shuffle grid-shaped patches from the image
and predict the absolute position of each patch, as
in Jigsaw [19]. The same idea has been applied to
pretraining the recent transformer architectures. For
example, Masked Auto Encoders [20], MP3 [21], and
DropPos [22] mask and shuffle grid-based patches,
and regenerate the original unmasked image.

So far, local SSL approaches, such as puzzle solvers
and masked image modeling, (i) rely on fixed grid
structures to patchify images and (ii) predict abso-
lute patch positions. Yet real-world objects rarely
conform to rigid grid patterns, and absolute posi-
tion prediction limits the generalizability. In this
work, we look beyond these two aspects that current
SSL approaches adopt. First, we propose sampling
patches freely in location and size. The random
off-grid sampling enables fine-grained and occlusion-
friendly representations. Second, we learn the rel-
ative relationships between off-grid patches rather
than the absolute relations of patches to the image.

Such a relative pretext task allows us to learn
visual representations better suited for downstream
tasks beyond classification. Pretraining with abso-
lute positions captures only the typical location of a
given object in an image, leading to misinterpreta-
tions when objects appear in uncommon locations.
Pretraining with relative positions enables the model
to capture relationships between different objects
and the internal composition of object parts, which
can be generalized to other objects. Furthermore,
while grid-based methods first sample the entire im-
age uniformly and then apply a separate masking
step, off-grid sampling inherently results in partial
coverage—some regions are sampled while others
are left out—thereby integrating masking directly
into the sampling process. Off-grid sampling also
allows greater control over the location and size of
patches—for example, enabling focused sampling on
objects, backgrounds, or uniformly across the image.
Finally, off-grid sampling is more flexible and can
be extended to patches of different scales and aspect
ratios to also include odd-shaped objects. Figure
1 shows the difference between our approach and
canonical grid-based SSL methods.

We introduce PAirwise Relative Translations a
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Figure 1. Comparison of PART to other masked
image modeling approaches. (a) generative recon-
struction of the masked parts using a fixed grid structure.
(b) Masks parts of the image and position embeddings
and predicts the absolute patch positions within a pre-
defined grid. (c) Unlike grid-based methods, samples
patches freely and predicts relative translations between
patch pairs, enabling finer spatial understanding.
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Figure 2. Sampling and Objective. Two random
patches are sampled from an image—a yellow reference
(ref) patch and a green target (tgt) patch. Given the
pixel values of patches, the model predicts the relative
translation. The task is to learn the displacement ∆x,
∆y, mapping the position of the reference patch to the
target patch. While data augmentations are comple-
mentary and applied at the image level to learn global
invariances, PART learns local relative representations.

pretraining method that predicts relative transla-
tions between randomly sampled patches. The pre-
text objective is set up as a regression task to pre-
dict the translation (∆x,∆y) between each pair
of patches (Figure 2). We also introduce a cross-
attention architecture that serves as a projection
head. We empirically show that PART outper-
forms baselines in precise tasks such as object detec-
tion and 1D EEG signal classification and remains
competitive in image classification. We also per-
form ablation studies on different sampling strate-
gies, projection head architectures, and the num-
ber of patch pairs. Code is openly available at
https://github.com/Melika-Ayoughi/PART.

3 Related Work
Self-supervised learning has emerged as a powerful
paradigm for learning meaningful representations
from vast amounts of unlabelled visual data, address-
ing the limitations posed by the scarcity of annotated
datasets required for supervised learning [3–6, 23].
By designing pretext tasks, SSL methods exploit
the inherent structure of unlabelled images to learn
discriminative features without human-annotated
labels. These pretext tasks are generally divided
into two broad categories: those that operate on
the global structure of images and those that focus
on local structures within the image. Global meth-
ods emphasize invariance to transformations applied

to the entire image, while local methods focus on
capturing fine-grained spatial structures.

Global self-supervised learning Global pretext
tasks have been extensively explored in the literature
and focus on leveraging image-wide transformations
to learn invariant features. Notable global methods
include invariance to rotations [9, 10, 12] and ge-
ometric transformations [13–15, 24]. In CIM [25],
the model predicts the geometric transformation of
a sample with respect to the original image. Other
global tasks include colorization [7, 8], denoising [26,
27], and instance discrimination [11, 28]. Building on
instance discrimination, contrastive self-supervised
methods have emerged, where different views or rep-
resentations of the same data point are presented to
one or two parallel models, with the objective of max-
imizing agreement between the two views. Common
examples include MoCo [29–31] and SimCLR [32,
33] variants. A key concept in contrastive methods is
the contrastive loss, which minimizes when the two
input images are similar and maximizes when they
are dissimilar [34–36]. The fundamental loss func-
tion enabling contrastive training for image-based
SSL is InfoNCE [37, 38]. Self-labeling through clus-
tering is another SSL approach, with methods such
as DeepCluster [39], Self-Classifier [40], CoKe [41]
and SwAV [42]. Distillation-based methods avoid
the need for negative samples in clustering and con-
trastive techniques by training a student network to
predict the representations of a teacher network [43–
47]. Additionally, information-maximization meth-
ods focus on maximizing the information conveyed
by decorrelated embeddings, eliminating the need for
negative samples or asymmetric architectures [48–
51]. While these global methods effectively capture
high-level patterns, they often miss the rich spatial
details present in smaller image regions, which are
critical for tasks involving fine-grained image un-
derstanding [16]. By focusing on transformations
applied to the entire image, they may overlook the
nuanced information embedded in local structures.

Local self-supervised learning Real-world im-
ages contain a wealth of local patterns, which are
essential for understanding the finer aspects of vi-
sual content. Local pretext tasks, therefore, shift
the focus towards modeling the internal spatial
structure of images by extracting small grid-shaped
patches from the image and defining pretext tasks
on them. An early SSL method for learning local
intra-image structures is the Jigsaw puzzle [17, 18],
where patches are shuffled, and the model must pre-
dict their correct arrangement, commonly referred
to as puzzle solvers. Masked image modeling (MIM)
emerged as an adaptation of masked language mod-
eling in NLP [52], introducing a new pretext task for
self-supervised training [53]. In these methods, part
of the input is masked, and the model is tasked with
either reconstructing the original input or predicting
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the masked-out portion. This can be considered a
variant of image inpainting. In Pathak et al. [54],
the network is trained to inpaint the contents of a
masked image region by understanding the context
of the entire image. This approach has also been
used to pretrain vision transformers [55], showing im-
proved performance on downstream tasks compared
to supervised and contrastive learning baselines.

A popular example of masked image modeling
is MAE [20], based on BEiT [56], where a random
subset of image patches is masked, and the model
reconstructs the entire image in pixel space. Simi-
larly, in I-JEPA [57], the pretext task is to predict
the representation of the rest of the image blocks
given a single context block, focusing on large-scale
models in linear probing. These methods can be
categorized as generative-based approaches, where
the model reconstructs the original input using gen-
erative models, such as VAEs [58] or GANs [59].

However, generative-based masked prediction
presents challenges, such as longer training times and
increased complexity of the reconstruction task [21].
To address these issues, alternative models focus
on predicting the absolute position of the masked
patches instead of pixel reconstruction [21, 22]. In
MP3 [21], the corresponding keys to a random set of
patches are masked out, whereas, in DropPos [22],
the position embeddings of a random portion of the
image are masked out. The pretext task in both
methods is predicting the exact position of each
patch, requiring it to solve the puzzle of determin-
ing where each patch originated from. The idea
behind these methods originates from works of Do-
ersch et al. and Mundhenk et al. [60, 61] and later
on the Jigsaw works [19, 62], where masking is per-
formed by making a puzzle from a part of the image
and pretraining a CNN to solve the jigsaw puzzle
by predicting the absolute position of each piece.
DILEMMA [63] enforces predicting the position of
patches that have been artificially misplaced. In
Caron et al. [64], the pretext task is the absolute
position prediction of a random portion of the image
given the input image as a reference. Self-supervised
learning has demonstrated significant success across
various domains and applications. After the intro-
duction of Vision Transformers (ViT) [55] in 2021,
ViTs were quickly adopted for self-supervised learn-
ing through methods like BEiT [56], MAE [20], and
DINO [45], sparking considerable interest in leverag-
ing these architectures for large-scale unlabeled data
in self-supervised learning. While vision transform-
ers often exhibit insensitivity to the order of input
tokens [21, 22, 65, 66], suggesting that they tend to
model relationships between unordered tokens, the
aforementioned models focus explicitly on absolute
grid-based position prediction. In contrast, PART
is trained on predicting off-grid relative translations
between random input patches.

Relative self-supervised learning The notion
of relative information has been applied in self-
supervised learning across various tasks and domains.
In graph representation learning, Peng et al. [67]
proposed predicting the local relative contextual po-
sition of one node to another. For single-image depth
estimation, Jiang et al. [68] introduced a method for
estimating relative depth using motion from video se-
quences. In the domain of object detection, LIO [69]
proposed a self-supervised spatial context learning
module that captures the internal structure of ob-
jects by predicting the relative positions within the
object’s extent. LIO localizes the main object in
an image and learns the relative positions of other
context points with respect to that main object. It
operates by defining one main object as a reference,
with other points or pixels learning their relative po-
sitions to this reference point. Similarly, HASSOD
[70] identifies objects in an image through cluster-
ing and progressively refines object understanding
hierarchically by discovering object parts. Both
approaches are tailored to object-centric tasks. In
contrast, PART is applicable to both object-centric
and object-agnostic data, such as EEG, since it
learns relative information by considering any pair
of patches as reference and target, allowing it to
model relationships between any two patches.

4 Method

Sampling An overview of our method is shown in
Figure 3. Given an image I ∈ RH×W×C , we extract
N random patches from the image. H and W are the
height and width of the image, and C is the number
of channels. With (xs, ys) as the coordinates of the
top left corner of the patch uniformly sampled across
the image and (xs + P, yS + P ) as the coordinates
of the bottom right corner of the patch, respectively.
These patches are of shape P ×P and are in random
positions of the image. P is the patch size, and
N = H×W

P 2 is the number of patches. Now we have
N samples of P×P×C that can be reshaped into the
original image size Î ∈ RH×W×C . This reshaped
image would be akin to a puzzled version of the
original image if the random samples were on-grid
and with a P × P shape. In the process of off-grid
random sampling, parts of the image are naturally
masked out. In addition, some information about
each patch’s spatial frequency is masked by resizing
all samples to the patch size. The pretext task
is set up such that the ViT [55], which processes
images as sequences of patches, consumes images
with incomplete information.

The reshaped patches Î are then given to the
ViT model. In the ViT model, Î is reshaped into
a sequence of patches Ip ∈ RN×(P×P×C). A linear
projection is then applied to Ip, mapping it to d
dimensions to get patch embeddings X ∈ RN×d.
X is given as an input to the transformer blocks
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Figure 3. Illustration of PART on 2D image data: First, a set of patches is randomly sampled from different
positions in the image. This selection is done independently for each image at every iteration. Next, all patches
are resized to a uniform size. A ViT model is then used to produce an embedding for each patch. A relative
cross-attention encoder then attends to pairs of patches, using a shared weight structure to predict the relative
translations between selected pairs. For each pair of reference and target patches (i, j), the cross-attention encoder
returns θ̂ij , which represents the relative translation needed to align the reference patch i to the target patch j.

without the position embeddings. The ViT model
returns the learned patch embeddings X ′ ∈ RN×d.

Objective Before discussing how the patch embed-
dings X ′ are utilized in the objective function, it is
important to first introduce the different components
of the objective function and how it is parameter-
ized. This requires us to revisit the off-grid sampling
process and how it produces the target values for
the objective function. First, a pair of patches (refer-
ence, target) are sampled from the image at random
positions with (xref , yref) and (xtgt, ytgt) represent-
ing the center pixel coordinates of the two patches in
image space. Both patches are then resized to a uni-
form patch size P , masking their original position in
the image space, as well as their pixel content. The
goal is to learn the underlying translation between
any pair of patches. This translation transforms the
reference coordinate patch into the target coordinate
patch, considering the width wref and height href of
the reference patch. The task is to predict

θref,tgt =

[
∆x
∆y

]
ref,tgt

=

[
(xtgt − xref)/wref

(ytgt − yref)/href

]
ref,tgt

with ∆x and ∆y capturing relative position. In
simple terms, the goal is to move the reference frame
so that it translates into the target frame. In this
context, when referring to a “frame”, we specify
the bounding box itself rather than the actual pixel
contents in the bounding box i.e. the patch (Figure
2). In contrast to augmentations that are applied
to entire images (e.g., rotations, scaling) to enforce
global invariance, PART focuses on learning spatial
relationships within the image, capturing the relative
geometry between regions.

The emphasis on predicting the relative transla-
tion is key because the pixel space information is
lost after resizing patches to a uniform size. After
resizing, the model no longer possesses details about
the original image space and needs to learn to be
robust to different image resolutions. The two terms
we seek to predict are the translation in x normal-
ized by the width of the reference patch wref and

the translation in y normalized by the height of the
reference patch href . In this case, both wref and href

are equal to patch size P due to resizing.

Relative encoder architecture The ViT model
outputs a per-patch embedding X ′ ∈ RN×d. The
relative encoder maps the per-patch embeddings to
the relative translations between a random number
of patch pairs (#pairs), resulting in θ̂ ∈ R2×#pairs.
The two outputs per patch pair are the relative po-
sitions between the reference and target patches.
Given X ′, this module selects random index pairs
(#pairs) of patches S ∈ N2×#pairs with S0 as the
index of the reference patch and S1 as the index
of the target patch. The embeddings of reference
patches S0 and S1 are then concatenated: X̂ =
concat(X ′

S0
, X ′

S1
). X̂ goes through a linear pro-

jection to convert from R#pairs×2×d to R#pairs×d.
X̂ is fed into a cross-attention module [71] as the
query, and X ′ is fed as both the key and the
value. d is the dimensionality of the keys/queries:

θ̂ = softmax
(

X̂X′⊤
√
d

)
X ′. The cross-attention mod-

ule allows for information dissemination between all
patch embeddings and enables the model to focus on
predicting the relative translation only for a subset S
of patch pairs. This imposes further masking of infor-
mation given to the model. We discuss the pros and
cons of this design choice in depth in the ablations
section. θ is only calculated for the subset S of patch
pairs. The model is trained with a mean squared
error loss between the predicted relative transla-
tions θ̂ and the ground-truth relative translations θ:

LMSE = 1
2×#pairs

∑2
k=1

∑#pairs
m=1

(
θmk − θ̂mk

)2

.

Training setup Once the model is pretrained, we
tune the network end-to-end using labeled data in a
supervised setup. Following the standard ViT setup,
we eliminate the relative encoder and substitute it
with a linear classification or detection head after the
[CLS] token, which aggregates global input informa-
tion. Unlike pretraining, we incorporate randomly
initialized learnable position embeddings and apply
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Figure 4. Target image reconstruction given pre-
dicted relative translations in PART vs. grid sampling.

fixed grid sampling instead of random sampling and
masking.

5 Results
Having introduced the method, we now analyze the
properties learned by PART in practice. We begin
with qualitative capabilities that arise from off-grid
sampling and relative patch prediction, and then
evaluate PART quantitatively against established
baselines.

5.1 Capabilities of PART

In this section, we start by emphasizing the poten-
tial capabilities that emerge from adopting relative
off-grid sampling in SSL frameworks, followed by
comparisons to other methods. These capabilities
highlight the unique advantages and transforma-
tive possibilities that such a paradigm shift offers,
namely, (i) off-grid reconstruction, (ii) extension to
other aspect ratios and scales, (iii) patch uncertainty,
and (iv) symmetry. For reproducibility, implementa-
tion, hyperparameters and the choice of architecture
is explained in depth in the Appendix in section 8.1.

(i) Off-grid reconstruction Unlike grid-based
approaches, PART can reconstruct the original im-
age from off-grid patches. This is especially valuable
in domains like Satellite and LiDAR imaging, where
overlapping patches from different images must be
reassembled. These patches need not come from a
single image—for instance, the model can compose a
new face by arranging parts of different faces. Figure
4 illustrates this: input patches (top row) and the
predictions under different sampling strategies (bot-
tom row). In PART, the ground truth visualization
consists of a subset of the patches, thus providing a
masked input to the model. Images are generated by
fixing one random reference patch and positioning
all other patches relative to it. In grid sampling, the
ground truth positions reconstruct the full image,
since patches cover the entire image. The model’s
predictions nearly match the ground truth, even in
fine details, having learned general scene structure
(e.g., sky above, road below, clock’s triangular form).
Some details are missing, such as clock hands and
numbers, and mono-color patches are harder to place
since the model sees only pixel content. PART’s abil-
ity to reconstruct from off-grid patches highlights
its grasp of underlying image structure.

(ii) Extension to multiple aspect ratios and
scales The combination of off-grid patch sampling
and relative position prediction as a pretext task,
offers the opportunity to reimagine patch sampling
in the vision transformers. If the method can predict
relative positions of equal-sized square patches (1:1
aspect ratio), why not also between patches of vary-
ing aspect ratios and scales? To test this, we run a
proof-of-concept experiment extending the objective
to include ∆w and ∆h for relative width and height:

θref,tgt =


∆x
∆y
∆w
∆h


ref,tgt

=


(xtgt − xref)/wref

(ytgt − yref)/href

wtgt/wref

htgt/href


ref,tgt

We modify the sampling to include bottom-right
coordinates (xe, ye) of the patches, then resizing
patches to the ViT patch size P × P . Patch width
and height are constrained between half and twice
the ViT patch size to ensure meaningful content.
The model is pretrained with the new objective for
100 epochs, and results on ImageNet classification
and COCO detection are reported in Table 1. Ex-
tending grid-based methods like MAE to multiple
aspect ratios and patch sizes is non-trivial, requiring
more advanced positional embeddings and a decoder
that can upsample multi-scale representations.

Table 1. Extending PART to patches of different
aspect ratios & scales: comparison of PART and
its extension on COCO Object Detection and ImageNet
classification without extra hyperparameter tuning. This
proof-of-concept experiment motivates a new avenue for
further research in relative off-grid pretext tasks.

COCO OD INet Class.

APb APb
50 APb

75 Accuracy

PART 42.4 62.5 46.8 82.7
PART + aspect ratio + scale 42.0 61.8 46.3 82.6

In practice, the extended model is trained for the
same number of epochs and with the same hyper-
parameters as the base model, without additional
tuning. The slight performance drop is likely due to
the increased parameter and objective complexity
introduced by the additional ∆h and ∆w terms. We
observed in our experiments that the convergence of
scale and aspect ratio was fast, while delaying the
convergence of ∆x and ∆y compared to before.

(iii) Patch uncertainty Another capability of
PART is estimating patch uncertainty by checking
whether different reference patches agree on the rel-
ative position of a target patch. Our model predicts
the relative translation both when patch i serves as
a reference and target patch. In Figure 5, one target
patch is positioned relative to all reference patches.
If patches are clustered, the model is more certain
of that patch. Such uncertainty estimation is valu-
able in applications like semantic segmentation for
autonomous vehicles or tumor detection, where it
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helps distinguish common from anomalous scenarios.

Uncertain Patch                             Certain PatchOriginal Image

Figure 5. Patch uncertainty: A single target patch
is positioned relative to all reference patches. Left: two
target patches (orange, yellow). Middle/right: model
uncertainty for orange and yellow, respectively. The
model is more certain about the unique orange patch,
while the yellow patch resembles other regions, making
its position harder to predict. Easy patches (orange) are
consistently placed at the same location, showing that
some patches are more confidently localized than others.

(iv) Symmetry When observing a lip, one ex-
pects a nose above it; seeing a nose suggests a lip be-
low. This illustrates symmetry. In this experiment,
we demonstrate that PART learns and represents
these symmetrical relationships. Figure 6 compares
the model’s prediction matrix with the ground truth,
showing strong alignment along both x and y axes.
The key property that emerges from this figure is
negative symmetry: if patch Pi predicts (∆x,∆y)
relative to Pj , then Pj predicts (−∆x,−∆y) rela-
tive to Pi. Despite heavy masking and lack of global
patch information, the model positions patches cor-
rectly relative to each other. Learning the negative
symmetry results in consistent relative positioning
of object parts, which we expect benefits localization
and fine-grained understanding. When samples are
scarce, our approach allows for learning from fewer
variations due to these built-in symmetries.
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Figure 6. Negative symmetry in output predic-
tion matrices for x and y translations with ordered vs.
shuffled patch indices, showing that PART positions each
patch-pair correctly relative to each other. Ordered ma-
trices sort patches from top-left to bottom-right. Each
N ×N element (i, j) gives the relative translation from
reference patch i to target j. Bright colors indicate posi-
tive values, dark negative, and gray zero; color intensity
reflects magnitude.

5.2 Comparison to grid-based
So far, we have qualitatively demonstrated that
PART learns to reconstruct the target image us-
ing the relative positions of off-grid patches. It
also learns the negative symmetry between pairs of
patches. These capabilities arise because PART has
learned the structure of input images and how they
relate to each other both locally and globally within

the image. Here, we focus on quantitative results
and compare PART to other grid-based methods
that provide a fair comparison on precise local tasks,
such as object detection and time-series prediction.

Object detection In Table 2, we compare PART
with MAE [20], MP3 [21] and DropPos [22] grid-
based pretraining methods in the downstream ob-
ject detection performance. The results demon-
strate that PART’s off-grid sampling with overlap-
ping patches and relative patch position prediction
improve detection accuracy, particularly for fine-
grained local tasks where precise spatial understand-
ing is critical, outperforming methods like MAE,
MP3, and DropPos, which rely on fixed grid-based
sampling. Notably, while MAE and DropPos use po-
sitional embeddings, MP3 and PART do not. PART
achieves performance comparable to DropPos, de-
spite DropPos employing additional losses (attentive
reconstruction and position smoothing). Without
these auxiliary losses, DropPos’s detection perfor-
mance drops by roughly 2% (Tables 3 & 4 in [22]),
highlighting the strength of PART’s objective.

Table 2. Object detection comparison. Our
method outperforms state-of-the-art grid-based base-
lines on COCO detection while relying on the same
backbone. † means our implementation, ♯ means the
result is borrowed from [22].

APb APb
50 APb

75

Grid-based
MAE [20]♯ 40.1 60.5 44.1
MP3 [21]† 41.8 61.4 46.0
DropPos [22] 42.1 62.0 46.4

Relative off-grid
PART 42.4 62.5 46.8

Time-series prediction PART can also be ap-
plied to 1D data. Here we take 1D time series pre-
diction as an example. For 1D data, PART predicts
relative time shifts (∆t) between randomly-sampled,
unequally-spaced windows (the 1D equivalent of off-
grid patches) from longer sequences. We validate
this approach by pretraining a 1D ViT on biosignals
from the PhysioNet 2018 ”You Snooze You Win”
Challenge Dataset [72]. As shown in Table 3, our
method achieves at least a 2% improvement in sleep
staging classification performance compared to both
supervised and self-supervised baselines. This task
particularly benefits from PART’s capabilities, as
accurate sleep staging requires both precise local rep-
resentations and global understanding of each stage’s
position within the complete sequence. Additionally,
as shown in the Appendix 8.2, PART demonstrates
superior sample efficiency by effectively learning the
structure of 1D EEG signals, although limited train-
ing data is available.
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Table 3. Sleep stage classification accuracy rep-
resented using Cohen’s Kappa. PT, FT = number of
pretraining, finetuning epochs. †= our implementation.

PT FT Cohen’s Kappa

Supervised
Supervised w/ Pos Embed† 0 100 0.531

Grid-based
MP3 [21]† 1000 100 0.553
DropPos [22]† 1000 100 0.582
MAE [20]† 1000 100 0.595

Relative off-grid
PART 1000 100 0.616

5.3 Ablations
Sampling strategies An essential component of
our method is the patch sampling process. Besides
random sampling, we ablate on on-grid sampling
similar to MP3 and DropPos (Figure 7). In the grid
sampling, all patches are arranged in a grid form,
with a fixed size at fixed positions. PART-grid has
a similar patch sampling to MP3 but with a relative
objective function. The results in Table 4 show that

Apple Confidential–Internal Use Only

PART-grid PART

Figure 7. PART adopts a random sampling strategy.
Grid sampling (PART-grid) is performed as an ablation.

random continuous sampling improves performance
in different tasks and domains compared to PART-
grid while introducing more masking. Looking be-
yond the grid improves downstream performance.

COCO CIFAR-100 IN-1K Time-series

PART-grid 41.4 82.1 82.43 0.500
PART 42.4 83.0 82.7 0.616

Table 4. Apples-to-apples comparison for on-grid
versus off-grid patch sampling with relative position pre-
diction objective. For detection (COCO), classification
(CIFAR-100, IN-1K), and time-series prediction, off-grid
patch sampling performs better since it can capture pre-
cise local information better.

Impact of relative encoder Besides the cross-
attention relative encoder in the method, we perform
an ablation study on two other ways to learn this
mapping. The most straightforward approach is a
fully connected MLP that receives all patches con-
catenated as an input and predicts the translation for
any two patches. So, given N patches with d dimen-
sions, the relative encoder would have N ∗ d ∗N2 ∗ 2
parameters. Although the weights are not shared in
this approach, such as in the cross-attention head,
the relative encoder can access all patch embeddings.
This helps the model to converge faster because it
can use extra information from other patches. How-
ever, the classification head will replace the relative

encoder during finetuning. The time spent on train-
ing the fully connected MLP can be spent on training
better representations instead.

Table 5. Ablation on different relative encoders
for CIFAR-100 pretrained for 1000 epochs. The cross-
attention is preferred over standard feed-forward layers.

Error ↓ Accuracy ↑
x y Euclidean

MLP 3.18 2.02 1.68 82.38
Pairwise MLP 2.84 1.76 1.59 82.52
Cross-attention 1.14 0.77 0.81 83.00

We propose an alternative relative encoder that
compensates for the high parameter count in the
fully connected MLP approach through weight
sharing, which we term a pairwise MLP. The
pairwise MLP receives two concatenated patches
as input and predicts their relative translation.
Although this approach uses only 2∗d∗2 parameters,
the relative encoder cannot access all the patches,
thus predicting the translations solely based on the
content of these two patches. Table 5 shows the
results for different relative encoders. The results
suggest that the cross-attention head (83.00%)
outperforms pairwise MLP (82.52%) and MLP
(82.38%). MLP is computationally more expensive
than pairwise MLP and cross-attention.

Table 6. ImageNet-1k classification with ViT-B.
PART is comparable to other grid-based methods. Pos
Embed = using position embedding. †= our implemen-
tation, ♯= borrowed from [20], ∗= borrowed from [21].

Pos Embed PT FT Accuracy

Supervised
Labelled baseline∗ ✓ 0 300 81.8
Labelled baseline∗ 0 300 79.1

Contrastive
MoCo v3 [66]♯ ✓ 300 150 83.2
DINO [45]♯ ✓ 300 300 82.8
BEiT [56]♯ ✓ 800 100 83.2
CIM [25] ✓ 300 100 83.1

Grid-based
MAE [20]∗ ✓ 150 150 82.7
MAE [20]∗ ✓ 1600 100 83.6
MP3 [21]† ✓ 400 300 82.6
MP3 [21] 100 300 81.9
DropPos [22] ✓ 200 100 83.0

Relative off-grid
PART 400 300 82.7

Does PART come at the cost of image clas-
sification? In Table 6, we compare PART with
supervised and state-of-the-art SSL alternatives on
the ImageNet-1K [73] classification benchmark. Our
method outperforms the supervised results as well
as MP3 [21] and shows competitive performance
with respect to DropPos [20] and MAE [20]. Note
the latter methods employ position embedding dur-
ing pretraining. DropPos employs extra position
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Table 7. CIFAR-100 ViT-S. PART is comparable to
other grid-based methods. ♯= borrowed from [21].

Pos Embed PT Accuracy

Supervised
Labelled baseline♯ ✓ 0 73.6
Labelled baseline♯ 0 64.6

Contrastive
MoCo v3 [66] ♯ ✓ 2000 83.3

Grid-based
MAE [20]♯ ✓ 2000 84.5
MP3 [21] ✓ 2000 84.0
MP3 [21] 2000 82.6

Relative off-grid
PART 1000 83.0

Ac
cu
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cy

80

81

82

83

84

Number of patch-pairs
512 1024 1536 2048 2560 3072 3584 4096

400 Epochs 1000 Epochs 4000 Epochs

Figure 8. #patch pairs ablation CIFAR-100.

smoothing and attentive reconstruction techniques
that could further accelerate training.

We compare PART with supervised and self-
supervised alternatives on the CIFAR100 [74] classi-
fication benchmark in Table 7. PART consistently
outperforms the supervised baselines with and with-
out position embeddings, although it does not use
any position embeddings. With only 1000 pretrain-
ing epochs, PART outperforms the MP3 [21] baseline
with 2000 epochs of pretraining.

Number of patch pairs As explained in 4, a sub-
set S is randomly chosen from the patch embeddings.
#pairs is the parameter that determines the length
of S. We study the effect of #pairs in Figure 8 after
400, 1000, and 4000 epochs of pretraining. We ob-
serve that curves follow similar patterns for different
epochs of pretraining, while more pretraining epochs
result in higher accuracy. We also observe a trade-
off in #pairs. Higher #pairs means the model sees
more patch information but must also predict the
relative translations for more contradicting patch
pairs. Whereas smaller #pairs means the model has
access to less information, thus overfitting on the
task leading to less general representations. There
is a sweet spot with 2048 patch pairs, where enough
global patch information is given to the model, and
the training task is neither easy nor difficult.

6 Conclusion
The composition of objects and their parts, along
with their relative positions, offers rich information
for representation learning. We introduced PART, a

pretraining method that predicts continuous relative
transformations between random off-grid patches,
learning the relative composition of images that gen-
eralize beyond occlusions and deformations. We
demonstrated PART’s capabilities—off-grid recon-
struction, flexible patch forms, patch uncertainty,
and symmetry—and how these support the quanti-
tative results. On tasks requiring precise spatial un-
derstanding, such as object detection and time-series
prediction, PART outperforms grid-based methods
like MAE and DropPos, while remaining competi-
tive on global classification. Our experiments show
PART’s applicability across data types, domains,
and tasks, with potential for further extensions dis-
cussed in the next section.

7 Discussion & Future Work
So far, we demonstrated the capabilities of PART
as well as its applicability on multiple data types
(1D & 2D), domains (medical & every-day) and
tasks (classification & detection). Here, we discuss
potential benefits and future directions in depth.

Complementary to contrastive learning:
PART provides fine-grained local representations,
making it a complement to contrastive methods.
Combined, they can capture both local and global
patterns by uniting PART’s off-grid position predic-
tion with contrastive learning’s view augmentations.

Hierarchical multi-scale learning: PART’s
sampling strategy raises questions on whether
patches should be sampled randomly or focus on ob-
jects or background depending on the downstream
task. Extending to multiple scales and aspect ratios
could enable hierarchical multi-resolution represen-
tations, where objects and their parts at different
scales are accurately captured.

Modeling rotations: For example, seeing a lip
suggests a nose above it—but if the lip is rotated, the
expectation is a rotated nose. A key question is how
PART can be generalized for rotation equivariance.

Extension to other tasks: Relative position pre-
diction strengthens spatial reasoning in continuous
space, benefiting tasks that demand fine-grained spa-
tial understanding such as scene graph generation,
spatial relation prediction, and 3D reconstruction.

Universal pretraining across diverse data
types and domains: PART can be extended
to audio spectrograms, videos, and sensor data
by adding a temporal constraint, learning relative
spatio-temporal relationships. Off-grid sampling
with overlapping, variable-sized patches enables flex-
ible representations that capture real-world struc-
tures. This makes PART useful for reconstruction
in satellite and LiDAR imaging, as well as for data-
scarce, high-precision domains like medical imaging.
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Richemond, E. Buchatskaya, C. Doersch, B.
Avila Pires, Z. Guo, M. Gheshlaghi Azar, et al.
“Bootstrap your own latent-a new approach to
self-supervised learning”. In: NeurIPS (2020).

[45] M. Caron, H. Touvron, I. Misra, H. Jégou, J.
Mairal, P. Bojanowski, and A. Joulin. “Emerg-
ing properties in self-supervised vision trans-
formers”. In: ICCV. 2021.

[46] X. Chen and K. He. “Exploring simple siamese
representation learning”. In: CVPR. 2021.

[47] S. Ren, F. Wei, Z. Zhang, and H. Hu.
“Tinymim: An empirical study of distilling mim
pre-trained models”. In: CVPR. 2023.

[48] Y. Kalantidis, C. Lassance, J. Almazan, and
D. Larlus. “TLDR: Twin learning for di-
mensionality reduction”. In: arXiv preprint
arXiv:2110.09455 (2021).

[49] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S.
Deny. “Barlow twins: Self-supervised learning
via redundancy reduction”. In: ICML. 2021.

[50] A. Bardes, J. Ponce, and Y. LeCun. “Vicregl:
Self-supervised learning of local visual fea-
tures”. In: NeurIPS (2022).

[51] S. Zhang, L. Qiu, F. Zhu, J. Yan, H. Zhang,
R. Zhao, H. Li, and X. Yang. “Align repre-
sentations with base: A new approach to self-
supervised learning”. In: CVPR. 2022.

[52] J. Devlin, M.-W. Chang, K. Lee, and K.
Toutanova. “Bert: Pre-training of deep bidirec-
tional transformers for language understand-
ing”. In: NAACL-HLT (2018).

[53] M. Chen, A. Radford, R. Child, J. Wu, H.
Jun, D. Luan, and I. Sutskever. “Generative
pretraining from pixels”. In: ICML. 2020.

[54] D. Pathak, P. Krahenbuhl, J. Donahue, T.
Darrell, and A. A. Efros. “Context encoders:
Feature learning by inpainting”. In: CVPR.
2016.

[55] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D.
Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, et
al. “An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale”. In:
ICLR. 2021.

10



[56] H. Bao, L. Dong, S. Piao, and F. Wei. “BEiT:
BERT Pre-Training of Image Transformers”.
In: ICLR. 2021.

[57] M. Assran, Q. Duval, I. Misra, P. Bojanowski,
P. Vincent, M. Rabbat, Y. LeCun, and N. Bal-
las. “Self-supervised learning from images with
a joint-embedding predictive architecture”. In:
CVPR. 2023.

[58] D. P. Kingma and M. Welling. “Auto-
encoding variational bayes”. In: arXiv preprint
arXiv:1312.6114 (2013).

[59] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B.
Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. “Generative adversarial net-
works”. In: Communications of the ACM
(2020).

[60] C. Doersch, A. Gupta, and A. A. Efros. “Un-
supervised visual representation learning by
context prediction”. In: ICCV. 2015.

[61] T. N. Mundhenk, D. Ho, and B. Y. Chen.
“Improvements to context based self-supervised
learning”. In: CVPR. 2018.

[62] M. Noroozi, A. Vinjimoor, P. Favaro, and H.
Pirsiavash. “Boosting self-supervised learning
via knowledge transfer”. In: CVPR. 2018.

[63] S. Sameni, S. Jenni, and P. Favaro. “Represen-
tation learning by detecting incorrect location
embeddings”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. 2023.

[64] M. Caron, N. Houlsby, and C. Schmid.
“Location-aware self-supervised transformers
for semantic segmentation”. In: WACV. 2024.

[65] M. M. Naseer, K. Ranasinghe, S. H. Khan,
M. Hayat, F. Shahbaz Khan, and M.-H. Yang.
“Intriguing properties of vision transformers”.
In: NeurIPS (2021).

[66] X. Chen, S. Xie, and K. He. “An empirical
study of training self-supervised vision trans-
formers”. In: ICCV.

[67] Z. Peng, Y. Dong, M. Luo, X.-M. Wu, and Q.
Zheng. “Self-supervised graph representation
learning via global context prediction”. In:
arXiv preprint arXiv:2003.01604 (2020).

[68] H. Jiang, G. Larsson, M. M. G. Shakhnarovich,
and E. Learned-Miller. “Self-supervised rela-
tive depth learning for urban scene understand-
ing”. In: ECCV. 2018.

[69] M. Zhou, Y. Bai, W. Zhang, T. Zhao, and T.
Mei. “Look-into-object: Self-supervised struc-
ture modeling for object recognition”. In:
CVPR. 2020.

[70] S. Cao, D. Joshi, L. Gui, and Y.-X.
Wang. “HASSOD: Hierarchical adaptive self-
supervised object detection”. In: NeurIPS
(2023).

[71] A. Vaswani, N. Shazeer, N. Parmar, J. Uszko-
reit, L. Jones, A. N. Gomez,  L. Kaiser, and
I. Polosukhin. “Attention is all you need”. In:
NeurIPS (2017).

[72] M. M. Ghassemi, B. E. Moody, H. Lehman Li-
wei, C. Song, Q. Li, H. Sun, R. G. Mark, M. B.
Westover, and G. D. Clifford. “You Snooze,
You Win: the PhysioNet/Computing in Cardi-
ology Challenge 2018”. In: IEEE Computing
in Cardiology Conference (CinC). 2018.

[73] J. Deng, W. Dong, R. Socher, L.-J. Li, K.
Li, and L. Fei-Fei. “Imagenet: A large-scale
hierarchical image database”. In: CVPR. 2009.

[74] A. Krizhevsky, G. Hinton, et al. “Learning
multiple layers of features from tiny images”.
In: (2009).

[75] H. Touvron, M. Cord, M. Douze, F. Massa, A.
Sablayrolles, and H. Jégou. “Training data-
efficient image transformers & distillation
through attention”. In: ICML. 2021.

[76] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P.
Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick. “Microsoft COCO: Common Objects
in Context”. In: ECCV. 2014.

[77] K. He, G. Gkioxari, P. Dollár, and R. Girshick.
“Mask R-CNN”. In: ICCV. 2017.

[78] Y. Li, H. Mao, R. B. Girshick, and K. He. “Ex-
ploring Plain Vision Transformer Backbones
for Object Detection”. In: ECCV. 2022.

8 Appendix

8.1 Implementation details

For both CIFAR-100 and ImageNet-1k, our pretrain-
ing and finetuning configurations closely align with
the pipeline outlined in MP3 [21], which itself builds
upon the foundational work of [75]. We adopt the
MP3 codebase as our starting point for implementa-
tion. During the finetuning phase, we adhere strictly
to the supervised training protocols recommended
in DeiT [75], ensuring consistency with established
practices. Detailed descriptions of the implementa-
tion specifics for each task are provided below:

Object detection We evaluate the transfer learn-
ing capacity of our method on the COCO Dataset.
We perform self-supervised pretraining on the
ImageNet-1K [73] with a resolution of 224×224 using
ViT-B [75] as the backbone. The model is pretrained
for 200 epochs with a learning rate of 0.0005, a batch
size of 1024 with 4802 patch pairs on 8 GPUs. We
perform end-to-end finetuning on COCO [76] for ob-
ject detection. Specifically, Mask R-CNN [77] is fine-
tuned with 1× schedule (12 epochs) and 1024×1024
resolution. We use the configuration of ViTDet [78]
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and take ViTB/16 [55] as the backbone. APb is
reported as the main performance metric for object
detection. We additionally report APb

50 and APb
75

that correspond to Average Precision at IoU thresh-
olds of 0.5 and 0.75, respectively, following standard
COCO evaluation protocols.

1D time series classification PhysioNet 2018
”You Snooze You Win” Challenge Dataset [72] con-
tains multi-channel biosignals that are continuously
monitored overnight during sleep studies conducted
at Massachusetts General Hospital. The task is to
predict one of five sleep stages (Wake, Non-REM1,
Non-REM2, Non-REM3, REM) given a 30-second
window of data containing six channels of scalp
electroencephalography (EEG). The EEG data is
bandpass filtered with cutoffs 0.1-30 Hz and then
re-sampled to have a 100 Hz sampling rate. Thirty-
second windows are instance normalized as an ad-
ditional pre-processing step before being tokenized
by a linear layer. Forty 1-second patches are then
randomly sampled. We use recordings from 1,653
subjects across the entire dataset for all pretrain-
ing strategies. For finetuning, we down-sample the
dataset to 10 subjects to simulate a low-labeled data
regime. For testing, the finetuned models are evalu-
ated on recordings from 200 subjects, which are held
out from both pretraining and finetuning stages. We
randomly mask out 20% of the position embeddings
for this experiment. All experiments use a 1D ViT
backbone with 12.9M parameters and the input to
the model is the 1D data for both pretraining and
finetuning.

Image classification We perform self-supervised
pretraining on CIFAR100 [74] and ImageNet-1K
[73] with a resolution of 32x32 and 224×224 respec-
tively. Following Zhai et al. [21], we use ViT-S
as the backbone of CIFAR100 and ViT-B [75] as
the backbone of ImageNet-1K. During pretraining,
we perform a hyperparameter search on learning
rates {0.0005, 0.001, 0.01}, and the number of pairs
{512, 1024, 2048, 4096} and choose the best result
for each experiment. We perform 400 epochs of fine-
tuning on CIFAR100 and 300 epochs of finetuning
on ImageNet-1K with a learning rate of 5e−4. We
report accuracy, ℓ2 error, and the mean squared
error in x and y dimensions.

Choice of Architecture Due to computational
limitations, we employ vision transformer architec-
tures tailored to the specific datasets and tasks. For
pretraining on the CIFAR-100 dataset, we utilize
the smaller ViT-S model, while for the ImageNet
dataset, we adopt the larger ViT-B model to ac-
commodate its greater complexity and scale. For
one-dimensional (1D) data, we implement a special-
ized 1D variant of the vision transformer to ensure

optimal performance and compatibility with the
data structure.

8.2 Sample efficiency

To evaluate sample efficiency, we varied the number
of subjects used for fine-tuning in the EEG sleep
staging task from 10 to 657, and repeated 5 times
with different random seeds and sample subsets.
As shown below, PART consistently outperforms
baselines across all label fractions with fewer fine-
tuning samples.

# Fine-tuning Samples MP3 DropPos MAE PART

10 0.56 0.58 0.62 0.64
50 0.63 0.64 0.65 0.67
100 0.65 0.66 0.67 0.68
657 0.68 0.68 0.68 0.70
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