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Abstract 

Quantum Machine Learning (QML) is an emerging interdisciplinary field that combines the principles of 

quantum mechanics and machine learning to develop algorithms that can potentially outperform classical 

algorithms in certain tasks. QML leverages the unique properties of quantum systems, such as 

superposition and entanglement, to process information in ways that are not possible with classical 

computers. This paper provides a comprehensive overview of QML, including its principles, algorithms, 

and applications. We focus particularly on supervised learning methods, which involve training a quantum 

model on labeled data to make predictions on new, unseen data. We discuss the potential of QML to 

revolutionize various domains, such as finance, chemistry, and materials science, and highlight the 

challenges associated with the development and implementation of QML algorithms, including the need 

for more advanced quantum hardware and software. This paper aims to provide a clear understanding of 

the current state of QML research and its potential impact on future computational capabilities. 

 

Keywords: Quantum Machine Learning, Pneumonia Detection, Quantum Convolutional Neural Network 

(QCNN)   

 
 

 

I. INTRODUCTION 

The emergence of digital computers in the twentieth century revolutionized the way we process and 

analyze data. With the rapid progression in computing power, linear algebraic data analysis techniques 

such as regression and Principal Component Analysis (PCA) became feasible, leading to the development 

of complex algorithms like the Support Vector Machine (SVM). Alongside the advancement of digital 

computers, novel machine learning models such as Artificial Neural Networks (ANNs) were implemented 

in the 1950s. Many Deep Learning Models based on ANNs, like the Hopfield network and the Boltzmann 

Machines, were also developed, and training via back propagation was implemented. In recent times, by 

combining powerful computers and particular purpose-intended processors, we have been capable of 

implementing Deep Neural Networks with billions of weight parameters and extensive data, which have 

helped identify complex patterns in the data.  

Classical novel Machine Learning models like deep neural networks are equipped with the feature of 

recognizing statistical patterns in the data and producing data that possesses the same statistical patterns. 

This observation leads to the hope of finding an efficient Quantum algorithm for Machine Learning. 
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Quantum Machine Learning (QML) software uses Quantum Algorithms as a part of their implementation. 

The analysis of quantum algorithms shows that they have the potential to outperform their classical 

counterpart for specific problems, which is termed Quantum Speed-Up. However, the idea of a quantum 

speedup depends on whether one takes an orderly computer science viewpoint, which necessitates 

mathematical proofs.  

It can also be prospect based on what can be done with realistic, finite size devices, which needs solid 

statistical evidence of a scaling advantage over some finite range of problem sizes. Resolution of a scaling 

advantage distinguishing quantum and classical machine-learning would rely on the continuation of a 

quantum computer. Moreover, it is called a ‘benchmarking’ problem. Such advantages could incorporate 

refined classification accuracy and sampling of classically inaccessible systems. Subsequently, quantum 

speedups in machine learning are currently described using idealized measures from complexity theory 

• Query complexity 

• Gate complexity 

Query complexity measures the number of queries to the information source for the classical or quantum 

algorithm. We say it’s a quantum speedup results when the number of queries needed to solve a problem is 

lower for the quantum algorithm than for the classical algorithm. Gate Complexity is the number of 

elementary quantum operations (or gates) needed to obtain the desired result. Query and gate complexity 

are standardized models that quantify the necessary resources to solve a problem class. Without knowing 

how to map this idealization to reality, not much can be said about the necessary resource scaling in a 

real-world scenario. Therefore, the required resources of classical machine learning algorithms are 

quantified mainly by numerical experimentation. The resource requirements of quantum machine learning 

algorithms are likely to be similarly challenging to quantify in practice. 

 

II. QUANTUM SPEED-UP 

Quantum computers utilize quantum coherence and entanglement to process information in ways that are 

beyond the capabilities of classical computers. In recent years, there has been a steady advancement in the 

development of powerful quantum computers. 

A quantum algorithm is a systematic method implemented on a quantum computer to solve a specific 

problem, such as searching a database. Quantum machine learning software employs quantum algorithms 

to process information. Quantum algorithms have the potential to outperform the best-known classical 

algorithms in solving particular problems, which is referred to as quantum speedup. 

For example, quantum computers can search an unsorted database with N entries in a time proportional to 

√N, whereas a classical computer, given black-box access to the same database, requires time proportional 

to N. In this case, the quantum computer demonstrates a square-root speedup over the classical computer. 

Additionally, quantum computers can perform Fourier transforms over N data points, invert sparse N × N 

matrices, and find their eigenvalues and eigenvectors in time proportional to a polynomial in log2N. In 

contrast, the best-known algorithms for classical computers take time proportional to N(log2N), indicating 

that the quantum computer exhibits an exponential speedup over the best classical computer algorithms. 

 

III. CLASSICAL MACHINE LEARNING  

Classical machine learning and data analysis can be classified into certain categories. First, computers can 

produce ‘classic’ data analysis methods such as least squares regression, polynomial interpolation and 

data analysis. Machine learning rules can be supervised or unsupervised. In supervised learning, the 
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training data are divided into labelled categories, such as samples of handwritten digits together with the 

actual number the handwritten digit is supposed to represent, and the job of the machine is to learn how to 

assign labels to data outside the training set. In unsupervised learning, the training set is unlabeled, and the 

goal of the machine is to find the natural categories into which the training data falls (for example, 

different types of photos on the internet) and then categorize data outside the training set. Finally, there are 

machine-learning tasks that involve combinations of supervised and unsupervised learning, together with 

training sets that maybe generated by the machine itself. 

 

IV. LINEAR-ALGEBRA-BASED QUANTUM MACHINE LEARNING 

Quantum mechanics provides a natural framework for performing matrix operations on high-dimensional 

vectors, which is a fundamental aspect of many data analysis and machine learning models. A quantum 

state of n qubits can be represented as a vector in a 2^n dimensional complex vector space, and quantum 

gates and measurements can be viewed as matrix operations on this vector. By constructing appropriate 

matrices and implementing them as transformations on a quantum computer, it is possible to perform 

operations such  

as Fourier transforms, eigenvalue decomposition, and solving linear systems of equations exponentially 

faster than classical algorithms.  

One of the most well-known quantum algorithms for linear algebra is the Harrow, Hassidim, and Lloyd 

(HHL) algorithm, which provides a quantum speedup for solving linear systems of equations. The original 

version of the HHL algorithm assumed a well-conditioned matrix that is sparse, but later improvements 

have relaxed this assumption to include low-rank matrices as well. The HHL algorithm and its variants 

have been used as subroutines in a variety of quantum machine learning algorithms, such as quantum 

support vector machines and quantum principal component analysis. 

 

V. QUANTUM SUPPORT VECTOR MACHINES AND KERNEL METHODS 

Quantum support vector machines (QSVMs) are a powerful example of quantum machine learning 

algorithms that can be used for classification tasks. Similar to classical support vector machines, QSVMs 

aim to find an optimal separating hyper plane between two classes of data in a dataset, such that all training 

examples of one class are found only on one side of the hyper plane with high probability. However, 

QSVMs leverage the principles of quantum mechanics to perform this task more efficiently. 

The key idea behind QSVMs is to use quantum phase estimation and matrix inversion (the HHL 

algorithm) to construct the optimal separating hyper plane in a time that is polynomial in logN, where N is 

the dimension of the matrix required to prepare a quantum version of the hyper plane vector. This is in 

contrast to classical SVMs, which require a time that is polynomial in N. 

One of the earliest QSVM algorithms was developed using a variant of Grover’s search for function 

minimization. This approach requires p√N/s iterations to find s support vectors out of N vectors. However, 

recent developments in QSVMs have led to the creation of a least-squares QSVM that harnesses the full 

power of qBLAS subroutines. This new approach allows for more efficient processing of data input from 

various sources, such as qRAM accessing classical data or a quantum subroutine preparing quantum 

states. 

QSVMs can also be generalized to nonlinear hyper surfaces via kernel functions, just like their classical 

counterparts. Polynomial and radial basis function kernels are commonly used, as well as another 

kernel-based method called Gaussian process regression. The use of kernel functions allows QSVMs to be 
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applied to a wide range of classification tasks, including image segmentation and biological data analysis. 

QSVMs have already been experimentally demonstrated in a nuclear magnetic resonance testbed for 

handwritten digit recognition tasks. The results show that QSVMs have the potential to outperform 

classical SVMs in terms of both accuracy and efficiency. 

 

VI. SUPERVISED LEARNING WITH QUANTUM COMPUTERS  

Quantum computing and machine learning are two rapidly evolving fields that have the potential to 

transform the way we process and analyze data. A typology introduced by Aimeur, Brassard, and Gambs 

distinguishes four approaches to combining quantum computing and machine learning based on whether 

the data is generated by a quantum (Q) or classical (C) system and whether the information processing 

device is quantum (Q) or classical (C).                

CC 

The first approach, CC, refers to classical data being processed classically. This is the conventional 

approach to machine learning, but in this context, it relates to machine learning based on methods 

borrowed from quantum information research. An example of this approach is the application of tensor 

networks, which have been developed for quantum many-body systems, to neural network training. 

QC 

The second approach, QC, investigates how machine learning can help with quantum computing. For 

example, when we want to get a comprehensive description of the internal state of a quantum computer 

from as few measurements as possible, we can use machine learning to analyze the measurement data. 

Another idea is to learn phase transitions in many-body quantum systems, a fundamental physical problem 

with applications in the development of quantum computers. 

CQ 

The third approach, CQ, uses quantum computing to process classical datasets. The datasets consist of 

observations from classical systems, such as text, images, or time series of macroeconomic variables, 

which are fed into a quantum computer for analysis. This requires a quantum-classical interface, which is 

a challenge. 

QQ 

The fourth approach, QQ, looks at ‘quantum data’ being processed by a quantum computer. This can have 

two different meanings. First, the data could be derived from measuring a quantum system in a physical 

experiment and feeding the values back into a separate quantum processing device. A much more natural 

setting, however, arises where a quantum computer is first used to simulate the dynamics of a quantum 

system, and consequently takes the state of the quantum system as an input to a quantum machine learning 

algorithm executed on the very same device. The advantage of such an approach is that while measuring 

all information of a quantum state may require a number of measurements that is exponential in the system 

size, the quantum computer has immediate access to all this information and can produce the result, for 

example, a yes/no decision, directly—an exponential speedup by design. 

 

VII. PROBLEM STATEMENT 

Quantum computing has opened new avenues for machine learning algorithms, offering potential 

breakthroughs in various application domains. In this study, we investigate the efficacy of Quantum 

Support Vector Machines (QSVMs) in high-energy physics, particularly in identifying the equation of 

state (EoS) in relativistic hydrodynamic simulations of heavy ion collisions. Additionally, we explore the 
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performance of Quantum Convolutional Neural Networks (QCNNs) in pneumonia detection using 

medical imaging. Our comparative analysis sheds light on the strengths and limitations of quantum 

machine learning approaches in diverse tasks. 

QUANTUM SUPPORT VECTOR MACHINE WITH DATA FROM HIGH ENERGY PHYSICS 

This research paper presents a comparative analysis of two quantum machine learning approaches, namely 

Quantum Kernel Support Vector Machines (QKSVM), Neural Network and Variational Quantum Circuits 

(VQC), applied to the task of Equation of State (EoS) metering in Quantum Chromodynamics (QCD). The 

EoS of primordial matter formed in high-energy heavy-ion collisions is crucial for understanding the 

nature of the phase transition in QCD. We explore the effectiveness of QKSVM and VQC in deciphering 

the EoS using supervised learning techniques. 

The study of the Equation of State (EoS) in Quantum Chromodynamics (QCD) is essential for 

comprehending the properties of primordial matter generated in high-energy heavy-ion collisions. 

Traditional methods for EoS determination rely on relativistic hydrodynamic simulations, which can be 

computationally intensive and model-dependent. In this paper, we investigate the application of quantum 

machine learning techniques, specifically QKSVM and VQC, as model-independent and efficient 

alternatives for EoS metering. 

A) Methods: 

We commence by elucidating the construction of our dataset, which encapsulates high-level correlations 

of particle spectra derived from relativistic hydrodynamic simulations of heavy-ion collisions. 

Preprocessing steps involve feature extraction, wherein we identify salient features relevant to EoS 

characterization. Subsequently, the dataset is partitioned into training and testing subsets to facilitate 

model evaluation. 

 
Fig. QCD DATASET 

 

B) Approaches Used  

i) Quantum Kernel Approach: 
 

Quantum Kernel Support Vector Machines (QKSVM) leverage the principles of quantum mechanics to 

compute a kernel matrix, which is a measure of similarity between pairs of data points in a 

high-dimensional space. In this approach, the kernel matrix is calculated using a quantum device, typically 
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by preparing quantum states corresponding to the input data and measuring their overlap. QKSVM 

essentially transforms the classical data into a quantum state representation, where the computation of the 

kernel function is inherently quantum mechanical. The resulting kernel matrix is then utilized in a classical 

SVM framework for classification tasks, providing a quantum-enhanced way of analyzing and classifying 

data. The quantum kernel matrix is computed using a quantum device, typically by preparing quantum 

states corresponding to the input data and measuring their overlap. This process transforms classical data 

into a quantum state representation, enabling quantum-enhanced analysis and classification. The resulting 

kernel matrix is integrated into a classical SVM framework for training. This involves optimizing the 

SVM parameters to maximize the margin between different classes while minimizing classification errors. 

 
Fig. Quantum Kernel 

 

ii) Variational Circuit Approach 

Variational Quantum Circuits (VQC) are parameterized quantum circuits that serve as trainable models 

for quantum machine learning tasks. In VQC, the parameters of the quantum circuit are optimized to 

minimize a cost function, typically through gradient-based optimization methods. The variational circuit 

is designed to encode information about the input data, and the optimization process tunes the parameters 

to best represent the desired output. VQC can be trained using classical optimization techniques or by 

utilizing quantum-classical hybrid optimization algorithms. The output of the variational circuit can be 

interpreted as the prediction or classification result, making it suitable for a wide range of quantum 

machine learning tasks. The variational circuit is constructed to encode information about the input data, 

with parameters representing the weights of quantum gates within the circuit. The parameters of the 

variational circuit are optimized to minimize a cost function, typically through gradient-based 

optimization methods. This optimization process tunes the circuit parameters to best represent the desired 

output, making it suitable for a wide range of quantum machine learning tasks. Using the variational 

principle of training, we can propose an ansatz for the variational circuit and train it directly. By increasing 

the number of layers of the ansatz, its expressivity increases. Depending on the ansatz, we may only search 

through a subspace of all measurements for the best candidate. 

Remember from above, the variational training does not optimize exactly the same cost as the SVM, but 

we try to match them as closely as possible. For this we use a bias term in the quantum model, and train on 

the hinge loss. We also explicitly use the parameter-shift differentiation method in the quantum node, 

since this is a method which works on hardware as well. While diff_method='backprop' or 

diff_method='adjoint' would reduce the number of circuit evaluations significantly, they are based on 

tricks that are only suitable for simulators, and can therefore not scale to more than a few dozen qubits.  

In the variational quantum circuit, two distinct methods for parameter scaling are employed: linear 

parameter scaling and square root parameter scaling. In the linear parameter scaling approach, the number 
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of trainable parameters in the circuit grows proportionally with the size of the dataset. This means that as 

the dataset expands, the number of parameters in the circuit increases steadily, with each data point 

contributing equally to the overall complexity. Conversely, square root parameter scaling involves scaling 

the number of trainable parameters with the square root of the dataset size. This results in a more gradual 

increase in circuit complexity as the dataset grows larger, striking a balance between computational 

efficiency and model complexity. While linear parameter scaling offers simplicity and predictability, 

square root parameter scaling provides improved scalability and computational efficiency, making it 

well-suited for handling larger datasets. By leveraging both methods, researchers can explore various 

trade-offs between circuit complexity and dataset size, allowing for a more nuanced understanding of the 

circuit's performance across different scales. 

PNEUMONIA DETECTION 

Pneumonia is a prevalent respiratory infection that poses a significant health risk worldwide. Timely and 

accurate diagnosis is crucial for effective treatment and patient management. In this paper, we investigate 

the use of Quantum Convolutional Neural Networks (QCNNs) for pneumonia detection in chest X-ray 

images. Leveraging the principles of quantum computing, QCNNs offer a promising avenue for enhancing 

the performance of medical image analysis algorithms. We present a novel QCNN architecture and 

evaluate its efficacy against traditional Convolutional Neural Networks (CNNs) and fully connected (FC) 

neural networks. Experimental results demonstrate the potential of QCNNs in achieving competitive 

performance for pneumonia detection tasks. 

A) Methodology: 

 
Recent advancements in machine learning, particularly deep learning techniques such as Convolutional 

Neural Networks (CNNs), have shown promise in automating the process of medical image analysis. 

CNNs can effectively learn hierarchical representations from raw pixel data, enabling automated feature 

extraction and classification. However, traditional CNNs are limited by their classical computational 

framework, which may not fully exploit the complex relationships inherent in quantum systems. Quantum 

computing, on the other hand, offers a fundamentally different approach to computation, harnessing the 

principles of quantum mechanics to perform calculations with exponential speedup in certain tasks. 

Quantum Convolutional Neural Networks (QCNNs) extend the capabilities of classical CNNs by 

leveraging quantum circuits to process and analyze data. By encoding information in quantum states and 

exploiting quantum parallelism, QCNNs have the potential to enhance the efficiency and accuracy of 

medical image analysis algorithms. 

We investigate the effectiveness of QCNNs in comparison to traditional CNNs and fully connected (FC) 

neural networks. Through extensive experiments and evaluation, we demonstrate the promising 

performance of QCNNs in medical image analysis tasks.  
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B) Background  

i) Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are a class of deep neural networks that are particularly 

well-suited for processing grid-like data, such as images. CNNs consist of multiple layers, including 

convolutional layers, pooling layers, and fully connected layers. Convolutional layers apply learnable 

filters to input images, capturing spatial patterns and features through convolutions. Pooling layers reduce 

the spatial dimensions of feature maps, while fully connected layers perform classification based on 

learned features. 

ii) Quantum Convolutional Neural Networks (QCNNs) 

We propose a novel QCNN architecture for pneumonia detection in chest X-ray images. The QCNN 

consists of multiple layers, including quantum convolutional layers and classical fully connected layers. 

The quantum convolutional layers apply learnable quantum gates to input images, extracting spatial 

features and patterns through quantum circuits. The output of the quantum convolutional layers is passed 

through classical fully connected layers for classification. 

 
Fig, QCNN 

C) Implementation  

Before training the QCNN model, we preprocess the chest X-ray images to ensure uniformity and 

compatibility with the model architecture. This includes resizing the images to a standard size, converting 

them to grayscale, and normalizing pixel values to a range between 0 and 1. The QCNN model is trained 

using a combination of supervised learning and quantum circuit optimization techniques. We employ 

stochastic gradient descent (SGD) with back propagation to optimize the model parameters and minimize 

the classification loss. Additionally, we leverage quantum circuit optimization algorithms to fine-tune the 

parameters of the quantum convolutional layers. We implement a QCNN using TensorFlow Quantum and 

compare its performance with classical CNN and FC neural network on a real-world dataset. The dataset 

consists of grayscale images of size 10x10 pixels. We preprocess the dataset by resizing the images to 

10x10 pixels and normalizing them. We then split the dataset into training and testing sets. 

For the classical CNN, we implement a model with two convolutional layers followed by a max-pooling 

layer, a flatten layer, and two dense layers. For the FC network, we implement a model with two dense 
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layers. For the QCNN, we implement a model with a quantum convolutional layer followed by a 

measurement layer. 

 

 

Found 4172 validated image filenames 

belonging to 2 classes. 

Found 626 validated image filenames 

belonging to 2 classes. 

Found 418 validated image filenames 

belonging to 2 classes. 

Pneumonia Dataset Description 
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IX. Plots & Graphs 

    
Fig. Quantum Circuit implemented 

     
Fig. Convolutional Model Architecture Summary 
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Fig. Model Card QCNN 

 

 

X. Formula Used 

In this context, we utilized the following formula to enable the described process. Let's consider a quantum 

model of the  form: 

f(x)=⟨ϕ(x)|M|ϕ(x)⟩, 

where |ϕ(x) ⟩ is prepared by a fixed embedding circuit that encodes data input x and M is an arbitrary 

observable. 

1) Kernel Approach 

Instead of training the f variationally, we can often train an equivalent classical kernel method with a 

kernel executed on a quantum device. The quantum kernel is given by the mutual overlap of two 

data-encoding quantum states, 

κ(x,x′)=|⟨ϕ(x′)|ϕ(x)⟩|^2.  

hence it’s only based on data-encoding. If the Loss function L is the hinge loss, the kernel method 

corresponds to a standard support vector machine in the sense of a maximum-margin classifier.  

Specifically, we can replace variational method for QML with the kernel based training, if the 

optimization problem can be written as minimizing a cost of the form: 

 
which is a regularized empirical risk with training data samples (xm,ym)m=1…M regularization strength 

λ∈R and the loss function L. 

To implement the kernel, we need to prepare two states: |ϕ(x) ⟩, |ϕ (x′) ⟩ on different sets of qubits with the 

help of angle-embedding routines S(x), S (x′) and measure their overlap with a small routine called as 

https://www.ijfmr.com/
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SWAP test. What we can try further on is just take half the number of qubits to prepare |ϕ(x) ⟩ and then 

apply the inverse embedding with x′ on the same qubits. And finally measure the projector onto initial 

states.  

Let us verify that this gives us the kernel: 

 
 

 

XI. Results and Discussion  

PNEUMONIA DETECTION 

 
Fig. Test Set Loss v/s No of Epochs 

 

In order to compare the performance of the CNN, FC, and QCNN models, we trained each model on the 

same dataset for a fixed number of epochs and then plotted the test set loss against the number of epochs. 

The dataset used for this experiment consisted of a collection of images, which were preprocessed and fed 

into each model as input. 

For the CNN and FC models, we used a standard architecture with multiple convolutional and fully 

connected layers, respectively. The CNN model consisted of two convolutional layers, each followed by a 
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max-pooling layer, and two fully connected layers. The FC model consisted of three fully connected 

layers. Both models used ReLU activation functions and were trained using the Adam optimizer. 

For the QCNN model, we used a hybrid quantum-classical approach. The input images were first encoded 

into a quantum state using a parameterized quantum circuit (PQC). The PQC consisted of multiple layers 

of parameterized gates, which were optimized during training to learn the features of the input data. The 

output of the PQC was then fed into a classical fully connected layer for the final classification. The 

QCNN model was also trained using the Adam optimizer. 

From the plot of test set loss against the number of epochs, it is clear that both the CNN and QCNN models 

show comparable performance, with the QCNN model showing slightly better results in some cases. On 

the other hand, the FC model takes a higher number of epochs to converge and achieve similar 

performance. This is likely due to the fact that  the FC model has a larger number of parameters and 

requires more data to avoid overfitting. Overall, our results suggest that QCNNs have the potential to 

perform as well as, or even better than, classical CNNs in certain tasks. However, further research is 

needed to fully understand the capabilities and limitations of QCNNs and to develop more efficient and 

scalable quantum algorithms for machine learning. 

 
Fig. Test Set Accuracy v/s No. of Epochs 

 

High Energy Physics 

 
Fig. No. of evaluations v/s size of data set 
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The plot illustrates the scalability of various quantum machine learning models in comparison to classical 

neural networks. It can be observed that the performance of the neural network is comparable to that of the 

variational circuit trained with sqrt parameter scaling in terms of scalability. This suggests that the 

variational circuit, with its ability to scale the number of parameters, can potentially match the 

performance of classical neural networks in certain tasks. However, it is important to note that the 

variational circuit outperforms both the quantum kernel and the variational circuit with linear parameter 

scaling. This demonstrates the advantage of using a more sophisticated parameter scaling technique in the 

variational circuit, which can lead to better performance. 

The variational circuit is a type of quantum machine learning model that uses a parameterized quantum 

circuit to learn a target function. The parameters of the circuit are optimized using a classical optimization 

algorithm, such as gradient descent, to minimize a cost function. The cost function is typically defined as 

the difference between the predicted output of the circuit and the true output. The goal of the optimization 

process is to find the set of parameters that result in the lowest cost function value. In the case of the 

variational circuit with sqrt parameter scaling, the parameters are scaled by the square root of the number 

of qubits in the circuit. This scaling technique has been shown to improve the convergence of the 

optimization process and lead to better performance. On the other hand, the variational circuit with linear 

parameter scaling scales the parameters linearly with the number of qubits, which can result in slower 

convergence and worse performance. 

The quantum kernel is another type of quantum machine learning model that uses a fixed quantum circuit 

to map input data to a higher-dimensional feature space. The kernel function is then defined as the inner 

product of the feature vectors in this space. The quantum kernel can be used in conjunction with classical 

machine learning algorithms, such as support vector machines, to perform classification and regression 

tasks. However, the performance of the quantum kernel is highly dependent on the choice of the fixed 

quantum circuit, and it may not always provide an advantage over classical methods.  

Neural networks are a type of classical machine learning model that are composed of layers of 

interconnected nodes, or neurons. Each neuron receives input from the previous layer, applies a nonlinear 

activation function, and passes the output to the next layer. Neural networks can be trained using back 

propagation, which is a gradient-based optimization algorithm. In the context of quantum machine 

learning, neural networks can be used in combination with variational circuits or quantum kernels. For 

example, a neural network can be used to preprocess the input data before it is fed into a variational circuit, 

or it can be used to post process the output of a quantum kernel. Alternatively, a neural network can be 

used to learn a parameterized quantum circuit, in which case the circuit is treated as a black box and the 

neural network learns to control its parameters. 

The plot presents a comparison of the performance of a neural network and a variational quantum circuit 

with sqrt parameter scaling. It can be observed that the scalability of the neural network is comparable to 

that of the variational quantum circuit with sqrt parameter scaling. This indicates that the variational 

quantum circuit, with its ability to scale the number of parameters, can perform as well as the neural 

network in certain tasks. 

However, it is important to note that the variational quantum circuit outperforms both the quantum kernel 

and the variational quantum circuit with linear parameter scaling. This demonstrates the advantage of 

using a more sophisticated parameter scaling technique in the variational quantum circuit, which can lead 

to better performance. The variational quantum circuit is a type of quantum machine learning model that 

uses a parameterized quantum circuit to learn a target function. The parameters of the circuit are optimized 
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using a classical optimization algorithm, such as gradient descent, to minimize a cost function. The cost 

function is typically defined as the difference between the predicted output of the circuit and the true 

output. The goal of the optimization process is to find the set of parameters that result in the lowest cost 

function value. 

In the case of the variational quantum circuit with sqrt parameter scaling, the parameters are scaled by the 

square root of the number of qubits in the circuit. This scaling technique has been shown to improve the 

convergence of the optimization process and lead to better performance. On the other hand, the variational 

quantum circuit with linear parameter scaling scales the parameters linearly with the number of qubits, 

which can result in slower convergence and worse performance. The quantum kernel is another type of 

quantum machine learning model that uses a fixed quantum circuit to map input data to a 

higher-dimensional feature space. The kernel function is then defined as the inner product of the feature 

vectors in this space. The quantum kernel can be used in conjunction with classical machine learning 

algorithms, such as support vector machines, to perform classification and regression tasks. However, the 

performance of the quantum kernel is highly dependent on the choice of the fixed quantum circuit, and it 

may not always provide an advantage over classical methods. 

In summary, the plot shows that the performance of the neural network is comparable to that of the 

variational quantum circuit with sqrt parameter scaling in terms of scalability. However, the variational 

quantum circuit outperforms both the quantum kernel and the variational quantum circuit with linear 

parameter scaling. This highlights the potential of variational quantum circuits for quantum machine 

learning tasks, particularly when using sophisticated parameter scaling techniques. Further research is 

needed to fully understand the capabilities and limitations of different quantum machine learning models 

and to develop more sophisticated techniques for optimizing parameterized quantum circuits. 

        

XII. Conclusion         

High Energy Physics 

In this study, we explored the scalability and computational characteristics of two distinct methods for 

quantum machine learning: the quantum kernel and variational circuit approaches. Through empirical 

analysis and comparison, we gained valuable insights into their performance across  

different dataset sizes. Our investigation revealed that the quantum kernel method, which computes the 

kernel matrix using a quantum device, exhibits promising scalability and efficiency, particularly for large 

datasets. By leveraging the mutual overlap of quantum states, the quantum kernel method offers a 

computationally efficient alternative to classical kernel methods, such as support vector machines. 

Furthermore, we examined the variational circuit approach, which employs parameterized quantum 

circuits trained using the variational principle. Our analysis demonstrated the impact of different 

parameter scaling methods—linear and square root—on the circuit's performance and scalability. While 

linear parameter scaling offers simplicity and predictability, square root parameter scaling provides 

improved scalability and computational efficiency, making it suitable for handling larger datasets. 

Overall, our research highlights the importance of considering both computational complexity and dataset 

size when selecting quantum machine learning methods. The findings presented in this study contribute to 

a deeper understanding of the strengths and limitations of quantum kernel and variational circuit 

approaches, paving the way for future advancements in quantum machine learning research. 
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PNEUMONIA DETECTION 

In conclusion, the study presented in this research aimed to compare the performance of different quantum 

machine learning models, specifically the neural network, variational quantum circuit with sqrt parameter 

scaling, quantum kernel, and variational quantum circuit with linear parameter scaling. The results of the 

study demonstrated that the variational quantum circuit with sqrt parameter scaling outperformed both the 

quantum kernel and the variational quantum circuit with linear parameter scaling, indicating the advantage 

of using a more sophisticated parameter scaling technique. Furthermore, the study showed that the 

performance of the neural network was comparable to that of the variational quantum circuit with sqrt 

parameter scaling in terms of scalability. This finding suggests that the variational quantum circuit can 

potentially match the performance of classical neural networks, which are widely used in machine 

learning applications. 

The implementation of the variational quantum circuit involved the use of parameterized quantum 

circuits, which were optimized using classical optimization algorithms. This hybrid quantum-classical 

approach allowed for the efficient training of the variational quantum circuit, making it a practical choice 

for quantum machine learning applications. Overall, the results of this study demonstrate the potential of 

variational quantum circuits for quantum machine learning tasks, particularly in terms of scalability and 

performance. However, further research is needed to fully understand the capabilities and limitations of 

this approach and to develop more sophisticated techniques for optimizing parameterized quantum 

circuits. 

The study also highlights the importance of considering the scalability of quantum machine learning 

models when comparing their performance to classical models. As quantum computing technology 

continues to advance, it is expected that quantum machine learning will become an increasingly important 

area of research and development. Therefore, understanding the strengths and weaknesses of different 

quantum machine learning models is crucial for the development of practical and effective quantum 

machine learning applications. 

 

XII. Future Work 

Based on the findings of this research, there are several directions for future work in the field of quantum 

machine learning. One potential direction is to explore the use of more sophisticated parameter scaling 

techniques for variational quantum circuits, beyond the sqrt parameter scaling used in this study. This 

could potentially lead to further improvements in the performance and scalability of variational quantum 

circuits for quantum machine learning tasks. Another direction for future work is to investigate the use of 

different types of quantum circuits for machine learning tasks, beyond the variational quantum circuits and 

quantum kernels considered in this study. For example, recent research has explored the use of quantum 

convolutional neural networks and quantum generative adversarial networks for various machine learning 

applications.  

Additionally, further research is needed to fully understand the capabilities and limitations of different 

quantum machine learning models, and to develop more sophisticated techniques for optimizing 

parameterized quantum circuits. This could involve exploring new optimization algorithms, as well as 

developing new methods for initializing and training quantum circuits. Finally, as quantum computing 

technology continues to advance, it will be important to explore the potential applications of quantum 

machine learning in various industries and domains. This could include areas such as finance, healthcare, 

and materials science, where quantum machine learning could potentially provide significant benefits over 
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classical machine learning methods. Overall, the field of quantum machine learning is still in its early 

stages, and there is significant potential for future research and development in this area. By continuing to 

explore new techniques and applications, we can hope to unlock the full potential of quantum machine 

learning and enable new breakthroughs in a wide range of fields. 
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