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Abstract

This paper considers blind inverse image restoration, the task of predicting a target1

image from a degraded source when the degradation (i.e. the forward operator)2

is unknown. Existing solutions typically rely on restrictive assumptions such as3

operator linearity, curated training data or narrow image distributions limiting their4

practicality. We introduce LADiBI, a training-free method leveraging large-scale5

text-to-image diffusion to solve diverse blind inverse problems with minimal as-6

sumptions. Within a Bayesian framework, LADiBI uses text prompts to jointly7

encode priors for both target images and operators, unlocking unprecedented flexi-8

bility compared to existing methods. Additionally, we propose a novel diffusion9

posterior sampling algorithm that combines strategic operator initialization with10

iterative refinement of image and operator parameters, eliminating the need for11

highly constrained operator forms. Experiments show that LADiBI effectively12

handles both linear and challenging nonlinear image restoration problems across13

various image distributions, all without task-specific assumptions or retraining.14

1 Introduction15

Image restoration is a critical problem in many fields such as medical imaging and computational16

photography, as it addresses real-world challenges including image decompression, deblurring, and17

super-resolution [Yuan et al., 2007, Greenspan, 2009, Isaac and Kulkarni, 2015]. These restoration18

tasks can be formulated as inverse problems, where the goal is to recover unknown image data x19

from observed measurements y. Formally, these problems can be expressed as y = Aϕ(x) + n,20

where A is an operator representing the forward degradation process parametrized by ϕ, and n is21

the measurement noise. Being widely applicable, this problem has attracted numerous solutions,22

ranging from methods with handcrafted inductive biases to deep learning, especially diffusion-based23

techniques [Kawar et al., 2022, Song et al., 2022, Bansal et al., 2023, Yu et al., 2023, He et al., 2024].24

However, most existing research focuses on the settings where the operator Aϕ is known. In practice,25

the operator is often unknown, leading to what are termed blind inverse problems that present26

significant challenges due to their ill-posed nature. Current methods attempt to address this problem27

through several restrictive strategies: (1) introducing hand-crafted inductive biases via explicit28

formulas or specialized neural architectures [Pan et al., 2018, 2017, Ren et al., 2020], (2) simplifying29

operators with linear assumptions [Chung et al., 2023a, Murata et al., 2023], (3) constraining target30

distributions to narrow image classes [Chihaoui et al., 2024, Laroche et al., 2024], or (4) training31

task-specific models on curated measurement, operator or image datasets [Zamir et al., 2021, Kupyn32

et al., 2019]. While effective in specific scenarios, these approaches suffer from limited flexibility33

and significant deployment barriers due to costly training and laborious hyperparameter tuning. This34

raises a fundamental question: can we develop a more generalizable algorithm capable of handling35

diverse degradation operators and image distributions without additional training or data collection?36
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Prompt: “a clear headshot of a person”

Negative prompts: “blurry, poorly drawn face, lowres, ...”
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Figure 1: Our proposed LADiBI is a training-free blind inverse problem solving algorithm for image
restoration using large pre-trained text-to-image diffusion models. LADiBI is applicable to a wide
variety of image distribution as well as operators with minimal modeling assumptions imposed.

To tackle this challenge, we reframe the problem via Bayesian inference, where we sample from the37

posterior p(x,Aϕ|y) ∝ p(y|x,Aϕ)p(x,Aϕ). This formulation naturally decomposes the seemingly38

intractable problem into two simpler sub-problems: estimating the prior p(x,Aϕ) and sampling39

according to the measurement likelihood p(y|x,Aϕ). This decomposition is particularly well-suited40

for diffusion-based frameworks, where we can leverage pre-trained models as the prior and guide the41

sampling process via measurement constraints. However, while pre-trained models typically exist for42

image, adequate priors or training data for the operators are generally unavailable. Thus, existing43

methods further factorize the joint prior into independent distributions and impose simplifying44

assumptions such as linearity on the operator, which severely restrict their generality and flexibility.45

Instead, our approach is motivated by the key observation that, common restoration tasks can be46

intuitively described through natural language (e.g., “high-definition, clear image” for targets, “blurry,47

low-quality” for measurements). Moreover, large pre-trained text-to-image diffusion models already48

encapsulate rich distributions of both targets and measurements. Although this can, in some way,49

seem to render the approach less of a true “blind” solution, in practice we note that all methods for50

blind inverse problems require some assumptions over the space of transformations, and using English51

text to encode the joint is an extremely flexible and easy-to-use mechanism. Based on these insights,52

we propose a simple yet powerful method: using classifier-free guidance [Ho and Salimans, 2021], we53

can approximate the joint prior’s score across diverse images and operators using a single pre-trained54

text-to-image diffusion model, dramatically broadening the flexibility of existing frameworks. Our55

approach is particularly advantageous in blind settings, since the appropriate prompts can often be56

easily inferred directly from the measurements, and textual descriptions enable us to co-encode57

unknown degradations and desired outputs without training or handcrafted priors.58

In addition to estimating the prior score, effectively sampling from the posterior distribution is59

also crucial for ensuring that restored images satisfy measurement constraints. In blind inverse60

problems, achieving this requires accurately estimating both data and operator parameters, ideally61

with generalized parameter classes such as neural networks to improve flexibility. However, reliably62

initializing these highly unconstrained operator parameters can be challenging. To address this,63

we propose a novel co-optimization diffusion posterior sampling algorithm specifically tailored for64

blind inverse problems. Our method begins with a new initialization scheme that leverages pseudo-65

supervision signals derived from multiple lower-quality target image approximations generated by fast66

posterior diffusion sampling. We then iteratively refine both operator parameters and data estimates67

through an alternating optimization procedure integrated within the diffusion sampling process. This68

strategy eliminates restrictive assumptions about operator forms, thereby enabling nonlinear blind69

inverse problem solving with highly flexible operator parametrizations.70
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Table 1: A conceptual comparison between our proposed LADiBI and the existing literature.
Method Family Method Prior Type Diverse Image Prior Training-free Flexible Operator

Pan-ℓ0 [Pan et al., 2017] Inductive bias × ✓ ×Optimization-based Pan-DCP [Pan et al., 2018] Inductive bias × ✓ ×

Self-supervised SelfDeblur [Ren et al., 2020] Inductive bias × ✓ ×

MPRNet [Zamir et al., 2021] Discriminative × × ✓Supervised DeblurGANv2 [Kupyn et al., 2019] GAN × × ✓

BlindDPS [Chung et al., 2023a] Pixel diffusion × × ×
BIRD [Chihaoui et al., 2024] Pixel diffusion × ✓ ×

GibbsDDRM [Murata et al., 2023] Pixel diffusion × ✓ ×Diffusion-based

LADiBI (Ours) Text-to-image
latent diffusion ✓ ✓ ✓

Combining the text-conditioned prior with our effective posterior sampling, we introduce Language-71

Assisted Diffusion for Blind Inverse problems (LADiBI), a training-free method that leverages72

large-scale text-to-image diffusion models to solve a broad range of blind image restoration problems73

with minimal assumptions. LADiBI can be directly applied across diverse data distributions and74

allows for easy specification of task-specific assumptions through simple prompting. Algorithm 1 and75

Figure 2 provide an overview of LADiBI, which can be easily adapted from the standard inference76

algorithm used in popular text-to-image diffusion models. Unlike existing methods, LADiBI requires77

no model retraining or reselection for different data distributions or operator functions. Instead, all78

prior parameterization is encoded directly in the prompt, which users can adjust as needed. Notably,79

we do not assume linearity of the operator, making LADiBI, to the best of our knowledge, the most80

generalizable approach to blind inverse problem solving in image restoration.81

We evaluate LADiBI against state-of-the-art baselines on a range blind image restoration tasks,82

including linear problem (e.g. motion and Gaussian deblurring) and nonlinear problem(e.g. JPEG83

decompression), across various image distributions, as illustrated in Figure 1. In the linear setting, our84

method matches the performance of the state-of-the-art approaches while requiring significantly fewer85

assumptions. In the nonlinear setting, LADiBI is the only method tested that can successfully perform86

JPEG decompression without any prior information of the task (such as the compression algorithm,87

quantization table or quantization factors), relying solely on observations of the compressed images.88

2 Background & Related Works89

Diffusion for Inverse Problem Solving Diffusion models [Song et al., 2021b, Ho et al., 2020]90

generate clean data samples x0 by iteratively refining noisy samples xt using a time-dependent score91

function ∇xt log pt(xt). This score function is usually parametrized as a noise predictor ϵθ(xt, t)92

and can be used to produce the clean data samples through iteratively denoising. Particularly, a93

popular sampling algorithm DDIM [Song et al., 2021a] adopts the update rule94

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt

)
︸ ︷︷ ︸

intermediate estimation of x0, denoted as x0|t

+
√
1− ᾱt−1 − σ2

t ϵθ(xt, t) + σtϵ (1)

that consists of an intermediate estimation of the clean data in order to perform fast sampling.95

Many efforts attempt to use unconditionally pretrained diffusion for conditional generation [Song et al.,96

2021b, Meng et al., 2022, Dhariwal and Nichol, 2021], especially inverse problem solving [Chung97

et al., 2023b, Kawar et al., 2022, Song et al., 2022], without additional training. Generally, when98

sampling from p(x|y), they decompose its score as99

∇xt
log pt(xt|y) = ∇xt

log pt(xt) +∇xt
log pt(y|xt) (2)

Since ∇xt
log pt(xt) can be obtained from an unconditionally pre-trained diffusion model, these100

methods usually aim at deriving an accurate approximation for ∇xt log pt(y|xt).101

Recent work has also explored text-to-image latent diffusion models for inverse problem-solving102

[Saharia et al., 2022, Balaji et al., 2023, Zhang et al., 2024]. In particular, MPGD [He et al., 2024]103

addresses inverse problems by leveraging the manifold preserving property of the latent diffusion104

models. Specifically, it modifies the intermediate clean latent estimate z0|t with105

z0|t = z0|t − ct∇z0|t∥y −Aϕ(D(z0|t))∥22 (3)
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where D(z0|t) represents the decoded intermediate clean image estimation and ct is the step size106

hyperparameter. The L2 loss ∥y − Aϕ(D(z0|t))∥22 is induced by the additive Gaussian noise107

assumption from conventional inverse problem setting. Although these diffusion-based methods108

perform well on diverse data distributions and tasks, they all require the operator Aϕ to be known.109

Blind Inverse Problem Blind inverse problems aim to recover unknown data x ∈ Rd from110

measurements y ∈ Rm, typically modeled as:111

y = Aϕ(x) + n (4)

where Aϕ : Rd → Rm is the forward degradation operator parameterized by unknown function ϕ,112

and n ∼ N (0, σ2I) ∈ Rm represents measurement noise with variance σ2I . Blind inverse problems113

are more difficult due to the joint estimation of x and Aϕ, and are inherently ill-posed without further114

assumptions. As a result, existing methods typically incorporate different assumptions about the115

priors of the target image data as well as the unknown operator.116

Conventional methods use hand-crafted functions as image and operator prior constraints [Chan117

and Wong, 1998, Pan et al., 2018, 2017, Krishnan et al., 2011, Levin et al., 2009]. They often118

obtain these functional constraints by observing certain characteristics (e.g. clear edges and sparsity)119

unique to distributions that are usually considered as the target image (e.g. high definition natural120

images) and the operator (e.g. blurring kernels). However, not only are these hand-made functions121

not generalizable, they also often require significant manual tuning for each individual image.122

With the rise of deep learning, neural network has become a popular choice for parameterizing123

priors [Ulyanov et al., 2018, Gandelsman et al., 2019, Ren et al., 2020, Kupyn et al., 2019, Zamir124

et al., 2021]. These methods offer significant improvement over traditional approaches. However, their125

learning procedures require separate data collection and model training for each image distribution126

and task, making them resource-intensive.127

Recently, inspired by advances in diffusion models for inverse problem solving, numerous efforts128

have incorporated the priors from pre-trained diffusion models. However, most of these methods129

still lack generalizability [Chung et al., 2023a, Murata et al., 2023, Sanghvi et al., 2023, Laroche130

et al., 2024, Tu et al., 2024, WeiminBai et al., 2025]. For instance, Chung et al. [2023a], Sanghvi131

et al. [2023] require training separate operator priors, while Murata et al. [2023] remains training-free132

but rely on the operator kernel’s SVD for feasible optimization. These approaches generally depend133

on linear assumptions about the operator and well-trained diffusion models tailored to specific image134

distributions, limiting their ability to generalize across diverse image and operator types.135

Table 1 summarizes the conceptual difference between our method and popular approaches in current136

literature. By leveraging large-scale pre-trained text-to-image latent diffusion models and our new137

posterior sampling algorithm, our method offers the most generalizability across diverse image and138

operator distributions with no additional training.139

3 Method140

In this paper, we aim to tackle the problem of blind inverse problem solving defined in Equation 4.141

Our solution has the following desiderata: (1) No additional training: it should not require data142

collection or model training, (2) Adaptability to diverse image priors: the same model should143

apply to various image distributions, (3) Flexible operators: no assumptions about the operator’s144

functional form, such as linearity or task-specific update rules, should be necessary. To make this145

problem feasible, we assume access to open-sourced pre-trained models.146

To tackle this problem, we first formulate it as a Bayesian inference problem where the optimal147

solution is to sample from the posterior148

p(x,Aϕ|y) ∝ p(y|x,Aϕ)p(x,Aϕ). (5)

This formulation allows us to decompose this problem into two parts: obtaining sampling to max-149

imizes the measurement likelihood p(y|x,Aϕ). This makes diffusion-based framework the ideal150

approach as its posterior sampling process naturally separates these two stages.151

3.1 Obtaining the prior score152

As established in Equation 2, diffusion-based approaches to inverse problems require access to the153

score of the prior distribution. For blind inverse problems, this extends to estimating the score of the154
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+ “a clear headshot 
of a person”
 - “blurry, pixelated, 
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Figure 2: A schematic overview of LADiBI (Algorithm 1).

joint distribution ∇xt log p(xt,Aϕ), which presents significant challenges beyond standard image155

priors. While strong pre-trained diffusion models usually exist for target image distributions p(x),156

appropriate models or even training data for degradation operators Aϕ are largely unavailable, making157

estimations of the joint distribution p(x,Aϕ) particularly difficult.158

Therefore, most existing diffusion-based methods further decompose p(x,Aϕ) ≈ p(x)p(Aϕ) and159

impose restrictive assumptions, such as linearity constraints, on the operator. To estimate the160

operator distribution, they either rely on simulated training data or perform constrained optimization161

under fixed operator distributions. In addition, these methods typically require different pre-trained162

diffusion models for different image domains (e.g., deblurring human v.s. animal faces necessitate163

different prior models). This reliance on domain-specific models and strong operator assumptions164

fundamentally limits their generalizability, particularly violating the second and third desiderata.165

Motivated by these limitations, we introduce an alternative approach inspired by the following key166

insights. First, many image restoration tasks can be intuitively described using natural language.167

In addition, large pre-trained text-to-image diffusion models like Stable Diffusion [Rombach et al.,168

2021] already capture rich distributions of both target images and common degradation artifacts that169

can be desribed by text. Based on these insights, we propose to approximate the joint prior’s score170

using large-scale pre-trained text-to-image diffusion models through classifier-free guidance [Ho and171

Salimans, 2021]. In particular, we encode the desired target image characteristics using the positive172

prompts, and the unwanted degradation artifacts via negative prompts. For example, when restoring a173

Gaussian blurred human face image, a suitable positive prompt can be “a clear headshot of a person”,174

and the corresponding negative prompt could be “blurry, low-quality image”.175

Formally, denoting the positive prompt as c+ and the negative prompt as c−,176

∇xt log p(xt,Aϕ) ≈ ∇xt log p(xt|c−) + γ(∇xt log p(xt|c+)−∇xt log p(xt|c−)) (6)

where γ > 1 is a weighting hyperparameter. When using latent diffusion models parameterized by θ,177

this translates to the empirical noise prediction178

ϵ̂θ(zt, t) = ϵθ(zt, t, c−) + γ(ϵθ(zt, t, c+)− ϵθ(zt, t, c−)) (7)

This straightforward approximation provides access to the otherwise intractable joint prior score,179

and enables versatile applications across diverse image and operator distributions. By leveraging180

the knowledge encoded in large pre-trained text-to-image models, our method bypasses the need for181

task-specific training, operator restriction or model re-selection.182

3.2 Sampling from the posterior183

In addition to a strong prior score, our output image should also satisfy the measurement constraint.184

Given the problem setup in Equation 4, the measurements are subject to additive Gaussian noise n,185

hence log p(y|x,Aϕ) = − 1
2σ2 ∥y −Aϕ(x)∥22. When Aϕ is known, we can use the MPGD update186

rule in Equation 3 for posterior sampling.187

However, since Aϕ is unknown, the true parameters ϕ is often approximated by another set of188

parameters ϕ̂. This approximation is usually addressed by one of the two strategies: an alternating189

optimization scheme that jointly approximates x and ϕ, or obtaining a reliable ϕ̂ first then solving a190

non-blind inverse problem. The first approach is well-suited for training-free settings, but it is often191

highly sensitive to ϕ̂ initialization and tuning. The second approach can perform well if a strong ϕ̂ is192

obtained, though it usually requires training and additional restrictions. We propose a hybrid strategy:193

we first obtain a reliable initial ϕ̂, and then perform an alternating optimization to iteratively refine194

both the operator parameter and data estimations throughout the diffusion process.195
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Algorithm 1 Our algorithm LADiBI

1: /* Initialize latent with encoded measurement y & SDEdit */
2: zTs

=
√
ᾱTs

E(y) +
√
1− ᾱTs

ϵTs
for ϵTs

∼ N (0, I)

3: Initialize ϕ̂ with a fixed operator prior or Algorithm 2
4: for t = Ts, . . . , 1 do
5: /* Use time-traveling for more stable results */
6: for j = 1, . . . ,M do
7: /* Use CFG to obtain accurate prior */
8: Calculate ϵ̂θ(zt, t) with Eq. 7
9: z0|t =

1√
ᾱt
(zt −

√
1− ᾱtϵ̂θ(zt, t))

10: if j ≡ 0 (mod 2) then
11: /* Perform MPGD with the estimated Aϕ̂ */
12: Update z0|t with Eq. 8
13: end if
14: ϵt, ϵ

′
t ∼ N (0, I)

15: zt−1 =
√
ᾱt−1z0|t+

√
1− ᾱt−1 − σ2

t ϵθ(zt, t)+σtϵt

16: zt =
√

ᾱt

ᾱt−1
zt−1 +

√
1− ᾱt

ᾱt−1
ϵ′t

17: end for
18: /* Periodically update ϕ̂ with z0|t and Eq. 9 */
19: if t ≡ 0 (mod 5) then
20: for k = 1, . . . ,K do
21: ϕ̂ = Adam(ϕ̂, Lϕ(z0|t, ϕ̂))
22: end for
23: end if
24: end for
25: return x0 = D(z0)

Algorithm 2 General Operator Initialization

1: for j = 1, . . . ,M do
2: /* Initialize latent batch with encoded y & SDEdit */
3: ϵ

(i)
Ts

∼ N (0, I) for i = 1, 2, . . . , N

4: z
(i)
Ts

=
√
ᾱTs

E(y) +
√
1− ᾱTs

ϵ
(i)
Ts

5: /* Use MPGD to obtain latent estimations {z(i)
0|t}

N
i=1 */

6: for t = Tj , . . . , 1 and all i in parallel do
7: Calculate ϵ̂θ(z

(i)
t , t) with Eq. 7

8: z
(i)
0|t =

1√
ᾱt
(z

(i)
t −

√
1− ᾱtϵ̂θ(z

(i)
t , t))

9: if j ̸= 1 then
10: Update z

(i)
0|t with Eq. 8

11: end if
12: z

(i)
t−1 =

√
ᾱt−1z

(i)
0|t+

√
1− ᾱt−1 − σ2

t ϵθ(z
(i)
t , t)+

σtϵ
(i)
t for ϵ(i)t ∼ N (0, I)

13: end for
14: /* Update ϕ̂ with {z(i)

0|t}
N
i=1 and Eq. 9 */

15: for k = 1, . . . ,K do
16: ϕ̂ = Adam(ϕ̂, 1

N

∑N
i=1 Lϕ(z

(i)
0 , ϕ̂))

17: end for
18: end for
19: return ϕ̂

ϕ̂ Initialization Sometimes initializing the operator parameters is straightforward – for example,196

for a slight blur, an identity function can be a reasonable starting point. Alternatively, reliable operator197

priors, such as the pre-trained prior in BlindDPS or the Gaussian prior in GibbsDDRM for linear198

operators, can also provide effective initializations for simple kernels. However, for complex operator199

estimator like neural networks, obtaining good initializations becomes more challenging.200

To address this, we propose a new algorithm for general operator initialization. Since the goal here is201

only to initialize ϕ̂, the quality of intermediate x estimates is less critical as long as they provide useful202

signals. Unlike other diffusion-based methods that alternate optimization targets at each diffusion203

step, we use SDEdit [Meng et al., 2022] and MPGD [He et al., 2024] with very few diffusion steps to204

quickly obtain a batch of x estimates. We then perform maximum likelihood estimation (MLE) on205

these estimates to update ϕ̂ using Adam optimizer. As detailed in Algorithm 2, repeating this process206

can leverage the diffusion prior to quickly converge to a reliable starting point for ϕ̂.207

Notice that we only assume that ϕ can be approximated by differentiable functions, allowing Aϕ̂ to208

be parameterized by general model families such as neural networks. Moreover, as mentioned earlier,209

any well-performing operator priors can be seamlessly integrated into our framework.210

Iterative Refinement After ϕ̂ initialization, we perform another alternating optimization to refine211

both the operator and the image. Throughout the diffusion process, we alternate between updating212

z0|t using MPGD with Aϕ̂ fixed and updating the MLE estimation of ϕ̂ using Adam with z0|t fixed.213

Since unlike GibbsDDRM, which uses Langevin dynamics to update the operator, we solve for a214

local optimum. Therefore, it’s reasonable not to update the operator too frequently. Empirically, we215

find that periodic updates to the operator combined with time-traveling [Lugmayr et al., 2022, Yu216

et al., 2023] yield the best results. In addition, since MPGD supports any differentiable loss function,217

we can incorporate regularization to further improve the visual quality. In practice, we use218

z0|t = z0|t − ct∇z0|t(∥y −Aϕ̂(D(z0|t))∥22 + λzLPIPS(D(z0|t),y)) (8)

as the MPGD update rule and219

Lϕ(z0|t, ϕ̂) = ∥y −Aϕ̂(D(z0|t))∥22 + λϕ∥ϕ̂∥1 (9)

as the Adam objective. Here LPIPS(·) denotes the LPIPS distance between two images and ∥ · ∥1220

denotes the L1 regularization term. λz and λϕ are adjustable hyperparameters.221

Combining large-scale language-conditioned diffusion priors, effective operator initializations and the222

iterative refinement process described above, we introduce LADiBI, a new training-free algorithm for223

blind inverse problem solving that supports diverse target image distributions and flexible operators.224
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Table 2: Quantitative results on blind linear deblurring tasks. “GibbsDDRM” denotes the results from
directly running their open-sourced code and “GibbsDDRM*” denotes the results after adjusting
their code to match with the ground truth kernel padding.

FFHQ AFHQ

Method Motion Gaussian Motion Gaussian

LPIPS ↓ PSNR ↑ KID ↓ LPIPS ↓ PSNR ↑ KID ↓ LPIPS ↓ PSNR ↑ KID ↓ LPIPS ↓ PSNR↑ KID ↓
DPS w/ GT kernel 0.164 22.82 0.0046 0.138 24.48 0.0052 0.367 21.28 0.1120 0.330 23.52 0.0813

SelfDeblur 0.732 9.05 0.1088 0.733 8.87 0.0890 0.742 9.04 0.0650 0.736 8.84 0.0352
MPRNet 0.292 22.42 0.0467 0.334 23.23 0.0511 0.324 22.09 0.0382 0.379 21.97 0.0461

DeblurGANv2 0.309 22.55 0.0411 0.325 26.61 0.0227 0.323 22.74 0.0350 0.340 27.12 0.0073
Pan-l0 0.389 14.10 0.1961 0.265 20.68 0.1012 0.414 14.16 0.1590 0.276 21.04 0.0320

Pan-DCP 0.325 17.64 0.1323 0.235 24.93 0.0490 0.371 17.63 0.1377 0.297 25.11 0.0263
BlindDPS 0.246 20.93 0.0153 0.216 25.96 0.0205 0.393 20.14 0.0913 0.330 24.79 0.0268

BIRD 0.294 19.23 0.0491 0.212 21.95 0.0414 0.438 18.92 0.0286 0.320 21.87 0.0089
GibbsDDRM 0.293 20.52 0.0746 0.216 27.03 0.0430 0.303 19.44 0.0265 0.257 24.01 0.0040

LADiBI (Ours) 0.230 20.96 0.0084 0.197 21.08 0.0068 0.262 21.20 0.0132 0.204 24.33 0.0065

GibbsDDRM* 0.199 22.36 0.0309 0.155 27.65 0.0252 0.278 19.00 0.0180 0.224 21.62 0.0040

Measurement Pan-l0 Pan-DCP SelfDeblur DeblurGANv2 MPRNet BlindDPS GibbsDDRM BIRD LADiBI (Ours) Ground Truth

Figure 3: Qualitative results on blind linear deblurring tasks. From top to bottom we showcase
examples from motion deblur on FFHQ, Gaussian deblur on FFHQ, motion deblur on AFHQ, and
Gaussian deblur on AFHQ respectively.

4 Experiments225

4.1 Experimental Setup226

We empirically verify the performance of our method with two linear deblurring tasks, Gaussian227

deblurring and motion deblurring, and a non-linear restoration task, JPEG decompression.228

Setup We conduct quantitative comparisons on FFHQ 256 × 256 [Karras et al., 2019] and AFHQ-229

dog 256 × 256 [Choi et al., 2020]. Following Murata et al. [2023], we use 1000 images for FFHQ230

and 500 images for AFHQ. We use LPIPS [Zhang et al., 2018], PSNR and KID [Bińkowski et al.,231

2018] to measure the perceptual similarity, pixel accuracy, and image fidelity respectively.232

Baselines We compare our method against other state-of-the-art approaches as baselines. Specifi-233

cally, we choose Pan-l0 [Pan et al., 2017] and Pan-DCP [Pan et al., 2018] as the optimization-based234

method, SelfDeblur [Ren et al., 2020] as the self-supervised approach, PRNet [Zamir et al., 2021]235

and DeblurGANv2 [Kupyn et al., 2019] as the supervised baselines, and BlindDPS [Chung et al.,236

2023a], BIRD [Chihaoui et al., 2024] and GibbsDDRM [Murata et al., 2023] as the diffusion-based237

methods. All baselines are experiments using their open-sourced code and pre-trained models.238

4.2 Blind Linear Deblurring239

We first conduct experiments on linear deblurring, which is the design space of most baselines. We240

evaluate all methods on two blurring kernels: Gaussian blur and motion blur. We apply random motion241

blur kernels with intensity 0.5 and Gaussian blur kernels with standard deviation 3. Measurements242

are derived by applying a pixel-wise Gaussian noise with σ = 0.02. We use a 61× 61 convolutional243

matrix as ϕ̂ and initialize it as a Gaussian kernel of intensity 6.0 following Murata et al. [2023]244

As shown in Table 2 and Figure 3, our method matches the performance of the state-of-the-art245

method GibbsDDRM, which is explicitly designed to solve linear problems using SVDs. In fact,246

GibbsDDRM’s highly specialized design makes it so sensitive that even small discrepancies (e.g.247

7



Table 3: Quantitative results (the mean and standard deviation) on blind JPEG decompression task.

Method FFHQ AFHQ
LPIPS ↓ PSNR ↑ KID ↓ LPIPS ↓ PSNR ↑ KID ↓

Pan-I0 0.787 ± 0.084 12.72 ± 2.53 0.2189 0.825 ± 0.083 13.15 ± 2.68 0.2168
Pan-DCP 0.710 ± 0.067 14.91 ± 2.63 0.2318 0.673 ± 0.055 18.27 ± 1.60 0.2472

SelfDeblur 0.676 ± 0.054 8.84 ± 1.93 0.1959 0.703 ± 0.052 8.89 ± 1.72 0.1173
MPRNet 0.785 ± 0.048 5.99 ± 1.81 0.8008 0.769 ± 0.048 5.93 ± 1.78 0.6809

DeblurGAN 0.473 ± 0.058 21.48 ± 1.85 0.2207 0.502 ± 0.061 21.76 ± 1.84 0.1527
BlindDPS 0.431 ± 0.079 21.55 ± 1.96 0.1791 0.397 ± 0.069 20.87 ± 1.89 0.2108

BIRD 0.406 ± 0.047 20.68 ± 1.09 0.0525 0.425 ± 0.068 21.08 ± 1.50 0.0673
GibbsDDRM 0.841 ± 0.057 13.91 ± 1.26 0.2915 0.775 ± 0.059 14.59 ± 1.48 0.2915

Ours 0.268 ± 0.070 21.40 ± 1.18 0.0172 0.315 ± 0.075 21.12 ± 1.27 0.0216

Measurement Pan-DCP SelfDeblur DeblurGANv2 BlindDPS GibbsDDRM BIRD LADiBI (Ours) Ground Truth

Figure 4: Qualitative results on the blind JPEG decompression task.

kernel padding) between their modeling assumption and the ground truth operator can result in248

significant performance degradation. Moreover, although BlindDPS and GibbsDDRM use diffusion249

models that are trained on the exact data distributions tested, our method can still match or outperform250

them with the large-scale pre-trained model. While supervised methods obtain higher PSNR, our251

method produces the fewest artifacts, validated by LPIPS and KID scores. Overall, our method offers252

a competitive performance on linear tasks, even though it is designed for more general applications.253

4.3 Blind JPEG Decompression254

We further compare all methods on JPEG decompression, a particularly challenging task due to its255

non-linear, non-differentiable nature. Unlike traditional settings, our experiments provide no task-256

specific knowledge, such as the compression algorithm, quantization table, or factors – algorithms257

rely solely on the measurement images. We generate measurements using JPEG compression with a258

quantization factor of 2. We use a neural network with a 3-layer U-net to parametrize the operator.259

The operator is initialized using Algorithm 2 with M = 8 and N = 4.260

Table 3 and Figure 4 present the results on the JPEG decompression task. It is evident through both261

quantitative and qualitative results that our method is the only one capable of enhancing the fidelity of262

the images and maintaining consistency to measurements. Unlike the baselines, which struggle with263

this task due to their limited posterior formulations, our flexible framework adapts to approximate264

this challenging operator and produces high quality images.265

5 Conclusion266

In this work, we propose LADiBI, a new training-free algorithm to solving blind inverse problems in267

image restoration using large-scale pre-trained text-to-image diffusion models. With unknown degra-268

dation operators, our method leverages text prompts as well as posterior guidance on intermediate269

diffusion steps to restore desired images based on the measurements. Experiments demonstrate that270

LADiBI’s effectiveness on diverse operator and image distributions.271
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A Additional Implementation Details381

In this section, we offer more detailed information regarding the implementation setup for Algorithms382

1 and 2. All experiments are conducted using Stable Diffusion 1.4 [Rombach et al., 2021], DDIM383

200-step, and Ts = 150,M = 4 on an NVIDIA A6000 GPU. In an effort to make our methodology384

generalizable and extensible to other inverse problems, we attempt to maintain the same hyper-385

parameter values across tasks wherever possible. Each hyper-parameter value has been chosen after386

conducting preliminary experiments for a specific range and opting for the value that offers the best387

performance. Indicative examples of such experiments are shown in C.388

In particular, we run Algorithm 1 for Ts = 150 timesteps while performing 4 repetitions as part of the389

time-traveling strategy. We encode the measurement as xTs
by applying the forward diffusion process390

up to timestep 800. In parallel with the reverse diffusion process, we update ϕ̂ every 5 timesteps, each391

time conducting K = 150 gradient steps. We adjust the ct and the λϕ parameters of Equations 8 and392

9 to 30 and 2 respectively. In terms of the operator initialization process described by Algorithm393

2, we make use of a batch of N = 4 samples and run M = 8 iterations, each comprising Tj = 60394

timesteps.395

We also take into consideration that the targets and measurements reside in the 256× 256 pixel space,396

whereas Stable Diffusion v1 operates on images of pixel size 512× 512. To address this disparity, we397

initially upsample the measurement using bilinear interpolation in order to transform it to a 512×512398

image, and then downsample the resulting x0 to map the final estimate back to the original image399

space.400

The schematic overviews of Algorithms 1 and 2 are presented in Figures 2 and 5.401

In addition, there are some parameters in our approach for which employing a task-aware setup402

strategy is essential for state-of-the-art performance, including the prompt as well as the architecture403

of ϕ̂. Here we provide details with respect to these parameters according to each restoration task:404

Motion Deblurring405

• Positive prompts: “a clear headshot of a person/animal"406

• Negative prompts: “shaken image, motion blur, pixelated, lowres, text, error, cropped,407

worst quality, blurry ears, low quality, ugly, duplicate, morbid, mutilated, poorly drawn408

face, mutation, deformed, blurry, dehydrated, blurry hair, bad anatomy, bad proportions,409

disfigured, gross proportions"410

• ϕ̂ architecture: A single 61× 61 convolutional block with 3 input and 3 output channels.411

Gaussian Deblurring412

• Positive prompts: “a clear headshot of a person/animal"413

• Negative prompts: “blurry, gaussian blur, lowres, text, error, cropped, worst quality, blurry414

ears, low quality, ugly, duplicate, morbid, mutilated, text in image, DSLR effect, poorly415

drawn face, mutation, deformed, dehydrated, blurry hair, bad anatomy, bad proportions,416

disfigured, gross proportions"417

• ϕ̂ architecture: A single 61× 61 convolutional block with 3 input and 3 output channels.418

JPEG Decompression419

• Positive prompts: “a clear headshot of a person/animal"420

• Negative prompts: “pixelated, lowres, text, error, cropped, worst quality, blurry ears,421

low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, text in image, DSLR effect,422

poorly drawn face, mutation, deformed, blurry, dehydrated, blurry hair, bad anatomy, bad423

proportions, disfigured, gross proportions"424

• ϕ̂ architecture: A neural network with a typical 3-layer U-net [Ronneberger et al., 2015]425

architecture. Each layer consists of 2 convolutional blocks of size 3 × 3 with ReLU426

activations and number of input and output channels ranging from 32 to 128.427
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Prompts:
+ “a clear headshot of a person”
 - “blurry, pixelated, low quality,                         
poorly drawn face, deformed, ...”

... ...

Repeat M times

Figure 5: A schematic overview of general operator initialization (Algorithm 2).

We conduct quantitative experiments on FFHQ 256× 256 [Karras et al., 2019] and AFHQ 256×428

256 [Choi et al., 2020]. Images in FFHQ are publicized under Creative Commons BY 2.0, Creative429

Commons BY-NC 2.0, Public Domain Mark 1.0, Public Domain CC0 1.0, or U.S. Government Works430

license and AFHQ is publicized under Attribution-NonCommercial 4.0 International license.431

The code implementation for LADiBI is linked here.432

B Additional Results433

In this section, we present additional experimental results on all benchmarks as well as additional434

tasks and data distributions. Table 4 include the standard deviation of the linear benchmark results.435

Figures 7, 8 and 9 offer more qualitative comparisons against baseline methods on motion deblurring,436

gaussian deblurring and JPEG decompression respectively.437

In order to show our method’s applicability on a wider range of image and operator distributions,438

we present indicative examples of Gaussian and motion deblurring on Monet paintings in Figure 6.439

We use the same negative prompts as in the previous experiments and “a portrait of a person as a440

Monet style painting" as positive prompts. We notice that, although the images portray human faces,441

the baseline method using models trained on realistic human face images cannot accurately solve442

the problem, while our method effectively generates images consistent with both the measurement443

image and the painting style present in the ground truth image. In Figure 10, we include additional444

comparisons against selected baseline methods on the 3 benchmark tasks using a set of Monet and445

Van Gogh portrait paintings as ground truth images.446

We also show additional demonstrations of applying LADiBI to solve colorization and non-linear447

deblurring problems. Figures 11 and 12 substantiate our claim that our algorithmic scheme is flexible448

enough to adapt to various inverse tasks. Additionally, thanks to the broad range of image distributions449

encapsulated by the pretrained model, as well as the minimal assumptions imposed by the proposed450

methodology, our approach is able to accurately solve inverse problems for a broad range of images.451

Figures 13 and 14 demonstrate our method’s capability to perform Gaussian deblurring, motion452

deblurring as well as JPEG decompression for images depicting cars and landscapes.453

Finally, to assess the real-world performance of our method, we test it on samples from the RealBlur454

dataset [Rim et al., 2020], which contains naturally captured blurry images using GoPro in real455

life settings. This dataset presents realistic blur patterns that are significantly more complex and456

diverse compared to the synthetically generated benchmarks. Figure 15 presents qualitative demos,457

which highlight our method’s ability to recover sharp structures and textures under various real-world458

blur conditions. These results demonstrate the applicability of our approach to real inverse problem459

solving tasks and support its generalization capability.460
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Table 4: Quantitative results on motion and Gaussian deblurring on FFHQ dataset. Mean ± standard
deviation shown.

Method Motion Gaussian

LPIPS ↓ PSNR ↑ KID ↓ LPIPS ↓ PSNR ↑ KID ↓
DPS w/ GT kernel 0.164 22.82 0.0046 0.138 24.48 0.0052

SelfDeblur 0.732± 0.147 9.05± 2.46 0.1088 0.733± 0.094 8.87± 2.21 0.0890
MPRNet 0.292± 0.101 22.42± 3.21 0.0467 0.334± 0.068 23.23± 2.19 0.0511
DeblurGANv2 0.309± 0.111 22.55± 3.44 0.0411 0.325± 0.145 26.61± 3.28 0.0227
Pan-l0 0.389± 0.090 14.10± 2.51 0.1961 0.265± 0.082 20.68± 3.81 0.1012
Pan-DCP 0.325± 0.105 17.64± 3.63 0.1323 0.235± 0.066 24.93± 3.60 0.0490
BlindDPS 0.246± 0.077 20.93± 2.09 0.0153 0.216± 0.076 25.96± 2.45 0.0205
BIRD 0.294± 0.076 19.23± 1.88 0.0491 0.212± 0.055 21.95± 1.62 0.0414
GibbsDDRM 0.293± 0.099 20.52± 2.81 0.0746 0.216± 0.046 27.03± 1.87 0.0430

LADiBI (Ours) 0.230± 0.076 20.96± 2.34 0.0084 0.197± 0.071 21.08± 2.71 0.0068

GibbsDDRM* 0.199 ± 0.110 22.36± 3.79 0.0309 0.155 ± 0.049 27.65 ± 2.66 0.0252

Table 5: Quantitative results on motion and Gaussian deblurring on AFHQ. Mean ± standard
deviation shown.

Method Motion Gaussian

LPIPS ↓ PSNR ↑ KID ↓ LPIPS ↓ PSNR ↑ KID ↓
DPS w/ GT kernel 0.367 21.28 0.1120 0.330 23.52 0.0813

SelfDeblur 0.742± 0.158 9.04± 1.84 0.0650 0.736± 0.112 8.84± 1.45 0.0352
MPRNet 0.324± 0.095 22.09± 3.01 0.0382 0.379± 0.081 21.97± 2.55 0.0461
DeblurGANv2 0.323± 0.105 22.74± 2.89 0.0350 0.340± 0.084 27.12± 2.94 0.0073
Pan-l0 0.414± 0.133 14.16± 3.97 0.1590 0.276± 0.079 21.04± 3.39 0.0320
Pan-DCP 0.371± 0.147 17.63± 5.94 0.1377 0.297± 0.086 25.11± 3.68 0.0263
BlindDPS 0.393± 0.061 20.14± 1.67 0.0913 0.330± 0.057 24.79± 1.76 0.0268
BIRD 0.438± 0.110 18.92± 2.04 0.0286 0.320± 0.079 21.87± 1.95 0.0089
GibbsDDRM 0.303± 0.114 19.44± 3.58 0.0265 0.257± 0.121 24.01± 4.77 0.0040

LADiBI (Ours) 0.262± 0.096 21.20± 2.72 0.0132 0.204± 0.066 24.33± 1.73 0.0065

GibbsDDRM* 0.278± 0.099 19.00± 3.09 0.0180 0.224± 0.091 21.62± 3.53 0.0040

Measurement Baseline LADiBI (Ours) Ground Truth

Figure 6: Qualitative results on blind deblurring Monet paintings.
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Measurement Pan-l0 Pan-DCP SelfDeblur DeblurGANv2 MPRNet BlindDPS GibbsDDRM BIRD LADiBI (Ours) Ground Truth

Figure 7: Additional qualitative results on motion deblurring task.

Measurement Pan-l0 Pan-DCP SelfDeblur DeblurGANv2 MPRNet BlindDPS GibbsDDRM BIRD LADiBI (Ours) Ground Truth

Figure 8: Additional qualitative results on Gaussian deblurring task.
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Measurement Pan-l0 Pan-DCP SelfDeblur DeblurGANv2 BlindDPS GibbsDDRM BIRD LADiBI (Ours) Ground Truth

Figure 9: Additional qualitative results on JPEG decompression task.

Measurement Pan-DCP DeblurGANv2 BlindDPS LADiBI (Ours) Ground Truth

Figure 10: Additional qualitative results on painting restoration.
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Measurement LADiBI (Ours) Ground Truth

Figure 11: Qualitative results on colorization
task.

Measurement LADiBI (Ours) Ground Truth

Figure 12: Qualitative results on non-linear de-
blurring task.
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Measurement LADiBI (Ours) Ground Truth

Figure 13: Demo inverse problem solving on car
images.

Measurement LADiBI (Ours) Ground Truth

Figure 14: Demo inverse problem solving on
landscape images.
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Measurement LADiBI (Ours) Ground Truth

Figure 15: Qualitative samples on the RealBlur dataset.
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Table 6: Ablation study on JPEG decompression.
Ablation LPIPS ↓ PSNR ↑ KID ↓

W/o text prompts 0.508 19.30 0.0319
W/o negative prompts 0.440 19.44 0.0242

Using generic c− 0.425 19.48 0.0255
Using task-irrelevant c− 0.406 19.40 0.0237

W/o MPGD guidance 0.403 19.44 0.0274
W/o regularization 0.307 21.35 0.0172
W/o ϕ̂ Initialization 0.289 20.17 0.0170

LADiBI 0.262 21.20 0.0132
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Figure 16: Ablation study on diffusion timestep
for encoding the measurement.
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Figure 17: Ablation study on number of time-
traveling steps.

C Ablation Study461

To showcase the effectiveness of each part of our algorithm, we conduct ablation study on AFHQ462

dataset with JPEG decompression task. In particular, we test the importance of suitable ad-hoc463

prompts, the use of MPGD guidance, the MPGD regularization term, and the operator initialization464

for neural network Aϕ̂. We keep SDEdit in all settings to encode the measurement information for465

fair comparisons. As shown in Table 6, each of the aforementioned components plays a significant466

role in our scheme and is indispensable for producing high quality results.467

To further our ablation, we extend the study on various hyperparameters and components of our468

LADiBI algorithm on the motion deblurring task using the AFHQ dataset.469

Figure 16 presents both the LPIPS and KID score for the value of the timestep Ts at which we encode470

the measurement using SDEdit [Meng et al., 2022]. Our experiments align with the observation471

in Meng et al. [2022]: If Ts is too large most of the information about the measurement has been472

replaced by noise which does not allow the sampling process to leverage useful features of the473

degraded image. On the other hand, if Ts is too small, the sampling process is not equipped with474

enough scheduled steps to reach the target distribution.475

In addition, Figure 17 presents the effectiveness of taking advantage of the time-traveling strategy.476

More time-traveling boosts the overall performance up to a specific value, after which we begin to477

notice a trade-off between perceptual clarity of the image and fidelity to the target distribution.478

Finally, we evaluate the performance of our algorithm when using a unconstrained configuration479

for Aϕ̂ in constrained tasks. In particular, we test the neural network architecture for the operator480

in linear inverse problems and we showcase quantitative results for the motion deblurring task in481

Table 7, and qualitative samples in Figure 18. We observe that, although performing worse than482

LADiBI employed with the aligned linear operator architecture, the neural operator is still capable483

of producing estimates of decent quality while also preserving a design that allows applicability to484

highly unconstrained image restoration task.485
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Table 7: Quantitative comparison between linear and deep operator architecture
AFHQ Motion Blur

Method LPIPS ↓ PSNR ↑ KID ↓
Panl0 0.414 14.16 0.1590

PanDCP 0.371 17.63 0.1377
SelfDeblur 0.742 9.04 0.0650
MPRNet 0.324 22.09 0.0382

DeblurGANv2 0.323 22.74 0.0350
BlindDPS 0.393 20.14 0.0913

GibbsDDRM 0.303 19.44 0.0265
GibbsDDRM* 0.278 19.00 0.0180

LADiBI (Kernel Operator) 0.262 21.20 0.0132
LADiBI (U-Net Operator) 0.343 18.93 0.0146

Measurement LADiBI w/ linear LADiBI w/ deep Ground Truth

Figure 18: Comparison between linear and deep operator architecture on linear tasks.
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D Prior Coverage of Large Pre-trained Text-to-image Diffusion486

In this section we provide an empirical justification for using Stable Diffusion v1.4 as our base model.487

To demonstrate this property, Figure 19 provides qualitative samples of images with Gaussian blur,488

motion blur and after JPEG compression. These examples show that Stable Diffusion 1.4 already489

capture rich distributions of both target images and common degradation artifacts.490

(a) Generated images with Gaussian blur effect.

(b) Generated images with motion blur effect.

(c) Generated images with JPEG compression effect.

Figure 19: Drawn samples from the posterior distribution using our baseline model.
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E Limitations and Future Works491

In this section, we discuss the limitation of LADiBI and potential future works to address these492

problems.493

Similar to many training-free diffusion posterior sampling algorithms [Chung et al., 2023a, Murata494

et al., 2023, Chung et al., 2023b, He et al., 2024], our method is also sensitive to hyper-parameter495

tuning. We have provided details about our hyperparameter choices in the previous sections, and we496

will release our code in a public repository upon publication of this paper.497

In addition, while generally simple, we do require the users to infer appropriate prompts from the498

measurement. An interesting future work direction can include automated prompt tuning similar to499

the method proposed in Chung et al. [2023c].500

Another notable drawback of our method is that LADiBI requires significantly longer inference time501

in comparison to the best performing baseline (i.e. GibbsDDRM [Murata et al., 2023]) in order502

to obtain high quality restorations. With the general operator initialization, our algorithm can take503

around 5 minutes to complete on a single NVIDIA A6000 GPU while GibbsDDRM only takes504

around 30 seconds. Although this is justifiable by the larger optimization space that we operate on,505

investigating on how to reduce the inference time requirement is an interesting and critical next step506

for our work.507

Lastly we would like to note that, while neural networks, as demonstrated in the previous sections,508

can serve as a general model family for various operator functional classes and achieve satisfactory509

results, obtaining state-of-the-art performance for linear tasks within a reasonable inference time still510

requires resorting to a linear kernel as the estimated operator. Exploring neural network architectures511

that can easily generalize across different operator functional classes while achieving state-of-the-art512

results efficiently remains an exciting direction for future work.513

F Impact Statement514

Lastly, since our algorithm leverages large pre-trained image generative models, we would like to515

address the ethical concerns, societal impact as well as the potential harm that can be caused by our516

method when being used inappropriately.517

As a consequence of using large pre-trained text-to-image generative models, our method also inherits518

potential risks associated with these pre-trained models, including the propagation of biases, copyright519

infringement and the possibility of generating harmful content. We recognize the significance of these520

ethical challenges and are dedicated to responsible AI research practices that prevent reinforcing these521

ethical considerations. Upon the release our code, we are committed to implement and actively update522

safeguards in our public repository to ensure safer and more ethical content generation practices.523
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NeurIPS Paper Checklist524

1. Claims525

Question: Do the main claims made in the abstract and introduction accurately reflect the526

paper’s contributions and scope?527

Answer: [Yes]528

Justification: Our abstract and introduction accurately reflect the paper’s main claims.529

Guidelines:530

• The answer NA means that the abstract and introduction do not include the claims531

made in the paper.532

• The abstract and/or introduction should clearly state the claims made, including the533

contributions made in the paper and important assumptions and limitations. A No or534

NA answer to this question will not be perceived well by the reviewers.535

• The claims made should match theoretical and experimental results, and reflect how536

much the results can be expected to generalize to other settings.537

• It is fine to include aspirational goals as motivation as long as it is clear that these goals538

are not attained by the paper.539

2. Limitations540

Question: Does the paper discuss the limitations of the work performed by the authors?541

Answer: [Yes]542

Justification: The limitation is discussed in Section E.543

Guidelines:544

• The answer NA means that the paper has no limitation while the answer No means that545

the paper has limitations, but those are not discussed in the paper.546

• The authors are encouraged to create a separate "Limitations" section in their paper.547

• The paper should point out any strong assumptions and how robust the results are to548

violations of these assumptions (e.g., independence assumptions, noiseless settings,549

model well-specification, asymptotic approximations only holding locally). The authors550

should reflect on how these assumptions might be violated in practice and what the551

implications would be.552

• The authors should reflect on the scope of the claims made, e.g., if the approach was553

only tested on a few datasets or with a few runs. In general, empirical results often554

depend on implicit assumptions, which should be articulated.555

• The authors should reflect on the factors that influence the performance of the approach.556

For example, a facial recognition algorithm may perform poorly when image resolution557

is low or images are taken in low lighting. Or a speech-to-text system might not be558

used reliably to provide closed captions for online lectures because it fails to handle559

technical jargon.560

• The authors should discuss the computational efficiency of the proposed algorithms561

and how they scale with dataset size.562

• If applicable, the authors should discuss possible limitations of their approach to563

address problems of privacy and fairness.564

• While the authors might fear that complete honesty about limitations might be used by565

reviewers as grounds for rejection, a worse outcome might be that reviewers discover566

limitations that aren’t acknowledged in the paper. The authors should use their best567

judgment and recognize that individual actions in favor of transparency play an impor-568

tant role in developing norms that preserve the integrity of the community. Reviewers569

will be specifically instructed to not penalize honesty concerning limitations.570

3. Theory assumptions and proofs571

Question: For each theoretical result, does the paper provide the full set of assumptions and572

a complete (and correct) proof?573

Answer: [NA]574
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Justification: This paper does not include theoretical results.575

Guidelines:576

• The answer NA means that the paper does not include theoretical results.577

• All the theorems, formulas, and proofs in the paper should be numbered and cross-578

referenced.579

• All assumptions should be clearly stated or referenced in the statement of any theorems.580

• The proofs can either appear in the main paper or the supplemental material, but if581

they appear in the supplemental material, the authors are encouraged to provide a short582

proof sketch to provide intuition.583

• Inversely, any informal proof provided in the core of the paper should be complemented584

by formal proofs provided in appendix or supplemental material.585

• Theorems and Lemmas that the proof relies upon should be properly referenced.586

4. Experimental result reproducibility587

Question: Does the paper fully disclose all the information needed to reproduce the main ex-588

perimental results of the paper to the extent that it affects the main claims and/or conclusions589

of the paper (regardless of whether the code and data are provided or not)?590

Answer: [Yes]591

Justification: All experimental details are disclosed in Section ?? and Section A.592

Guidelines:593

• The answer NA means that the paper does not include experiments.594

• If the paper includes experiments, a No answer to this question will not be perceived595

well by the reviewers: Making the paper reproducible is important, regardless of596

whether the code and data are provided or not.597

• If the contribution is a dataset and/or model, the authors should describe the steps taken598

to make their results reproducible or verifiable.599

• Depending on the contribution, reproducibility can be accomplished in various ways.600

For example, if the contribution is a novel architecture, describing the architecture fully601

might suffice, or if the contribution is a specific model and empirical evaluation, it may602

be necessary to either make it possible for others to replicate the model with the same603

dataset, or provide access to the model. In general. releasing code and data is often604

one good way to accomplish this, but reproducibility can also be provided via detailed605

instructions for how to replicate the results, access to a hosted model (e.g., in the case606

of a large language model), releasing of a model checkpoint, or other means that are607

appropriate to the research performed.608

• While NeurIPS does not require releasing code, the conference does require all submis-609

sions to provide some reasonable avenue for reproducibility, which may depend on the610

nature of the contribution. For example611

(a) If the contribution is primarily a new algorithm, the paper should make it clear how612

to reproduce that algorithm.613

(b) If the contribution is primarily a new model architecture, the paper should describe614

the architecture clearly and fully.615

(c) If the contribution is a new model (e.g., a large language model), then there should616

either be a way to access this model for reproducing the results or a way to reproduce617

the model (e.g., with an open-source dataset or instructions for how to construct618

the dataset).619

(d) We recognize that reproducibility may be tricky in some cases, in which case620

authors are welcome to describe the particular way they provide for reproducibility.621

In the case of closed-source models, it may be that access to the model is limited in622

some way (e.g., to registered users), but it should be possible for other researchers623

to have some path to reproducing or verifying the results.624

5. Open access to data and code625

Question: Does the paper provide open access to the data and code, with sufficient instruc-626

tions to faithfully reproduce the main experimental results, as described in supplemental627

material?628
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Answer: [Yes]629

Justification: We have provided the code implementation of our proposed method here.630

Guidelines:631

• The answer NA means that paper does not include experiments requiring code.632

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/633

public/guides/CodeSubmissionPolicy) for more details.634

• While we encourage the release of code and data, we understand that this might not be635

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not636

including code, unless this is central to the contribution (e.g., for a new open-source637

benchmark).638

• The instructions should contain the exact command and environment needed to run to639

reproduce the results. See the NeurIPS code and data submission guidelines (https:640

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.641

• The authors should provide instructions on data access and preparation, including how642

to access the raw data, preprocessed data, intermediate data, and generated data, etc.643

• The authors should provide scripts to reproduce all experimental results for the new644

proposed method and baselines. If only a subset of experiments are reproducible, they645

should state which ones are omitted from the script and why.646

• At submission time, to preserve anonymity, the authors should release anonymized647

versions (if applicable).648

• Providing as much information as possible in supplemental material (appended to the649

paper) is recommended, but including URLs to data and code is permitted.650

6. Experimental setting/details651

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-652

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the653

results?654

Answer: [Yes]655

Justification: All experimental details are disclosed in Section ?? and Section A.656

Guidelines:657

• The answer NA means that the paper does not include experiments.658

• The experimental setting should be presented in the core of the paper to a level of detail659

that is necessary to appreciate the results and make sense of them.660

• The full details can be provided either with the code, in appendix, or as supplemental661

material.662

7. Experiment statistical significance663

Question: Does the paper report error bars suitably and correctly defined or other appropriate664

information about the statistical significance of the experiments?665

Answer: [Yes]666

Justification: We have provided the standard deviation results as the error bars.667

Guidelines:668

• The answer NA means that the paper does not include experiments.669

• The authors should answer "Yes" if the results are accompanied by error bars, confi-670

dence intervals, or statistical significance tests, at least for the experiments that support671

the main claims of the paper.672

• The factors of variability that the error bars are capturing should be clearly stated (for673

example, train/test split, initialization, random drawing of some parameter, or overall674

run with given experimental conditions).675

• The method for calculating the error bars should be explained (closed form formula,676

call to a library function, bootstrap, etc.)677

• The assumptions made should be given (e.g., Normally distributed errors).678

• It should be clear whether the error bar is the standard deviation or the standard error679

of the mean.680
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• It is OK to report 1-sigma error bars, but one should state it. The authors should681

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis682

of Normality of errors is not verified.683

• For asymmetric distributions, the authors should be careful not to show in tables or684

figures symmetric error bars that would yield results that are out of range (e.g. negative685

error rates).686

• If error bars are reported in tables or plots, The authors should explain in the text how687

they were calculated and reference the corresponding figures or tables in the text.688

8. Experiments compute resources689

Question: For each experiment, does the paper provide sufficient information on the com-690

puter resources (type of compute workers, memory, time of execution) needed to reproduce691

the experiments?692

Answer: [Yes]693

Justification: All experimental details are disclosed in Section ?? and Section A.694

Guidelines:695

• The answer NA means that the paper does not include experiments.696

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,697

or cloud provider, including relevant memory and storage.698

• The paper should provide the amount of compute required for each of the individual699

experimental runs as well as estimate the total compute.700

• The paper should disclose whether the full research project required more compute701

than the experiments reported in the paper (e.g., preliminary or failed experiments that702

didn’t make it into the paper).703

9. Code of ethics704

Question: Does the research conducted in the paper conform, in every respect, with the705

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?706

Answer: [Yes]707

Justification: The research is conducted in the paper conform, in every respect, with the708

NeurIPS Code of Ethics.709

Guidelines:710

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.711

• If the authors answer No, they should explain the special circumstances that require a712

deviation from the Code of Ethics.713

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-714

eration due to laws or regulations in their jurisdiction).715

10. Broader impacts716

Question: Does the paper discuss both potential positive societal impacts and negative717

societal impacts of the work performed?718

Answer: [Yes]719

Justification: The societal impacts of our work is discussed in Section F.720

Guidelines:721

• The answer NA means that there is no societal impact of the work performed.722

• If the authors answer NA or No, they should explain why their work has no societal723

impact or why the paper does not address societal impact.724

• Examples of negative societal impacts include potential malicious or unintended uses725

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations726

(e.g., deployment of technologies that could make decisions that unfairly impact specific727

groups), privacy considerations, and security considerations.728
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• The conference expects that many papers will be foundational research and not tied729

to particular applications, let alone deployments. However, if there is a direct path to730

any negative applications, the authors should point it out. For example, it is legitimate731

to point out that an improvement in the quality of generative models could be used to732

generate deepfakes for disinformation. On the other hand, it is not needed to point out733

that a generic algorithm for optimizing neural networks could enable people to train734

models that generate Deepfakes faster.735

• The authors should consider possible harms that could arise when the technology is736

being used as intended and functioning correctly, harms that could arise when the737

technology is being used as intended but gives incorrect results, and harms following738

from (intentional or unintentional) misuse of the technology.739

• If there are negative societal impacts, the authors could also discuss possible mitigation740

strategies (e.g., gated release of models, providing defenses in addition to attacks,741

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from742

feedback over time, improving the efficiency and accessibility of ML).743

11. Safeguards744

Question: Does the paper describe safeguards that have been put in place for responsible745

release of data or models that have a high risk for misuse (e.g., pretrained language models,746

image generators, or scraped datasets)?747

Answer: [Yes]748

Justification: The safeguard implementation for the code release of our work is discussed in749

Section F.750

Guidelines:751

• The answer NA means that the paper poses no such risks.752

• Released models that have a high risk for misuse or dual-use should be released with753

necessary safeguards to allow for controlled use of the model, for example by requiring754

that users adhere to usage guidelines or restrictions to access the model or implementing755

safety filters.756

• Datasets that have been scraped from the Internet could pose safety risks. The authors757

should describe how they avoided releasing unsafe images.758

• We recognize that providing effective safeguards is challenging, and many papers do759

not require this, but we encourage authors to take this into account and make a best760

faith effort.761

12. Licenses for existing assets762

Question: Are the creators or original owners of assets (e.g., code, data, models), used in763

the paper, properly credited and are the license and terms of use explicitly mentioned and764

properly respected?765

Answer: [Yes]766

Justification: We have cited the dataset used in this paper in Section ?? and Section A.767

Guidelines:768

• The answer NA means that the paper does not use existing assets.769

• The authors should cite the original paper that produced the code package or dataset.770

• The authors should state which version of the asset is used and, if possible, include a771

URL.772

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.773

• For scraped data from a particular source (e.g., website), the copyright and terms of774

service of that source should be provided.775

• If assets are released, the license, copyright information, and terms of use in the776

package should be provided. For popular datasets, paperswithcode.com/datasets777

has curated licenses for some datasets. Their licensing guide can help determine the778

license of a dataset.779

• For existing datasets that are re-packaged, both the original license and the license of780

the derived asset (if it has changed) should be provided.781
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• If this information is not available online, the authors are encouraged to reach out to782

the asset’s creators.783

13. New assets784

Question: Are new assets introduced in the paper well documented and is the documentation785

provided alongside the assets?786

Answer: [Yes]787

Justification: The only new asset we create in this paper is the code implementation of our788

method. We have provided the code implementation of our proposed method here.789

Guidelines:790

• The answer NA means that the paper does not release new assets.791

• Researchers should communicate the details of the dataset/code/model as part of their792

submissions via structured templates. This includes details about training, license,793

limitations, etc.794

• The paper should discuss whether and how consent was obtained from people whose795

asset is used.796

• At submission time, remember to anonymize your assets (if applicable). You can either797

create an anonymized URL or include an anonymized zip file.798

14. Crowdsourcing and research with human subjects799

Question: For crowdsourcing experiments and research with human subjects, does the paper800

include the full text of instructions given to participants and screenshots, if applicable, as801

well as details about compensation (if any)?802

Answer: [NA]803

Justification: This paper does not involve crowdsourcing nor research with human subjects.804

Guidelines:805

• The answer NA means that the paper does not involve crowdsourcing nor research with806

human subjects.807

• Including this information in the supplemental material is fine, but if the main contribu-808

tion of the paper involves human subjects, then as much detail as possible should be809

included in the main paper.810

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,811

or other labor should be paid at least the minimum wage in the country of the data812

collector.813

15. Institutional review board (IRB) approvals or equivalent for research with human814

subjects815

Question: Does the paper describe potential risks incurred by study participants, whether816

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)817

approvals (or an equivalent approval/review based on the requirements of your country or818

institution) were obtained?819

Answer: [NA]820

Justification: This paper does not involve crowdsourcing nor research with human subjects821

Guidelines:822

• The answer NA means that the paper does not involve crowdsourcing nor research with823

human subjects.824

• Depending on the country in which research is conducted, IRB approval (or equivalent)825

may be required for any human subjects research. If you obtained IRB approval, you826

should clearly state this in the paper.827

• We recognize that the procedures for this may vary significantly between institutions828

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the829

guidelines for their institution.830

• For initial submissions, do not include any information that would break anonymity (if831

applicable), such as the institution conducting the review.832
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16. Declaration of LLM usage833

Question: Does the paper describe the usage of LLMs if it is an important, original, or834

non-standard component of the core methods in this research? Note that if the LLM is used835

only for writing, editing, or formatting purposes and does not impact the core methodology,836

scientific rigorousness, or originality of the research, declaration is not required.837

Answer: [NA]838

Justification: The core method development in this research does not involve LLMs as any839

important, original, or non-standard components.840

Guidelines:841

• The answer NA means that the core method development in this research does not842

involve LLMs as any important, original, or non-standard components.843

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)844

for what should or should not be described.845
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