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Abstract

This paper considers blind inverse image restoration, the task of predicting a target
image from a degraded source when the degradation (i.e. the forward operator)
is unknown. Existing solutions typically rely on restrictive assumptions such as
operator linearity, curated training data or narrow image distributions limiting their
practicality. We introduce LADiBI, a training-free method leveraging large-scale
text-to-image diffusion to solve diverse blind inverse problems with minimal as-
sumptions. Within a Bayesian framework, LADiBI uses text prompts to jointly
encode priors for both target images and operators, unlocking unprecedented flexi-
bility compared to existing methods. Additionally, we propose a novel diffusion
posterior sampling algorithm that combines strategic operator initialization with
iterative refinement of image and operator parameters, eliminating the need for
highly constrained operator forms. Experiments show that LADIiBI effectively
handles both linear and challenging nonlinear image restoration problems across
various image distributions, all without task-specific assumptions or retraining.

1 Introduction

Image restoration is a critical problem in many fields such as medical imaging and computational
photography, as it addresses real-world challenges including image decompression, deblurring, and
super-resolution [Yuan et al., 2007, |Greenspan, [2009, [saac and Kulkarni, |2015[. These restoration
tasks can be formulated as inverse problems, where the goal is to recover unknown image data x
from observed measurements y. Formally, these problems can be expressed as y = Ag(x) + n,
where A is an operator representing the forward degradation process parametrized by ¢, and n is
the measurement noise. Being widely applicable, this problem has attracted numerous solutions,
ranging from methods with handcrafted inductive biases to deep learning, especially diffusion-based
techniques [Kawar et al.| 2022, Song et al., 2022, |Bansal et al., 2023} [Yu et al.,[2023| [He et al., 2024].

However, most existing research focuses on the settings where the operator A4 is known. In practice,
the operator is often unknown, leading to what are termed blind inverse problems that present
significant challenges due to their ill-posed nature. Current methods attempt to address this problem
through several restrictive strategies: (1) introducing hand-crafted inductive biases via explicit
formulas or specialized neural architectures [Pan et al.,|2018,[2017, Ren et al., 2020], (2) simplifying
operators with linear assumptions [Chung et al.| 2023a, [Murata et al., [2023]], (3) constraining target
distributions to narrow image classes [Chihaoui et al.| 2024] [Laroche et al.,[2024], or (4) training
task-specific models on curated measurement, operator or image datasets [Zamir et al., 2021} [Kupyn
et al.| 2019]). While effective in specific scenarios, these approaches suffer from limited flexibility
and significant deployment barriers due to costly training and laborious hyperparameter tuning. This
raises a fundamental question: can we develop a more generalizable algorithm capable of handling
diverse degradation operators and image distributions without additional training or data collection?
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Figure 1: Our proposed LADIBI is a training-free blind inverse problem solving algorithm for image
restoration using large pre-trained text-to-image diffusion models. LADIiBI is applicable to a wide
variety of image distribution as well as operators with minimal modeling assumptions imposed.

To tackle this challenge, we reframe the problem via Bayesian inference, where we sample from the
posterior p(x, As|y) x p(y|x, As)p(x, Ag). This formulation naturally decomposes the seemingly
intractable problem into two simpler sub-problems: estimating the prior p(«, A4) and sampling
according to the measurement likelihood p(y|x, A4). This decomposition is particularly well-suited
for diffusion-based frameworks, where we can leverage pre-trained models as the prior and guide the
sampling process via measurement constraints. However, while pre-trained models typically exist for
image, adequate priors or training data for the operators are generally unavailable. Thus, existing
methods further factorize the joint prior into independent distributions and impose simplifying
assumptions such as linearity on the operator, which severely restrict their generality and flexibility.

Instead, our approach is motivated by the key observation that, common restoration tasks can be
intuitively described through natural language (e.g., “high-definition, clear image” for targets, “blurry,
low-quality” for measurements). Moreover, large pre-trained text-to-image diffusion models already
encapsulate rich distributions of both targets and measurements. Although this can, in some way,
seem to render the approach less of a true “blind” solution, in practice we note that all methods for
blind inverse problems require some assumptions over the space of transformations, and using English
text to encode the joint is an extremely flexible and easy-to-use mechanism. Based on these insights,
we propose a simple yet powerful method: using classifier-free guidance [[Ho and Salimans, 2021]], we
can approximate the joint prior’s score across diverse images and operators using a single pre-trained
text-to-image diffusion model, dramatically broadening the flexibility of existing frameworks. Our
approach is particularly advantageous in blind settings, since the appropriate prompts can often be
easily inferred directly from the measurements, and textual descriptions enable us to co-encode
unknown degradations and desired outputs without training or handcrafted priors.

In addition to estimating the prior score, effectively sampling from the posterior distribution is
also crucial for ensuring that restored images satisfy measurement constraints. In blind inverse
problems, achieving this requires accurately estimating both data and operator parameters, ideally
with generalized parameter classes such as neural networks to improve flexibility. However, reliably
initializing these highly unconstrained operator parameters can be challenging. To address this,
we propose a novel co-optimization diffusion posterior sampling algorithm specifically tailored for
blind inverse problems. Our method begins with a new initialization scheme that leverages pseudo-
supervision signals derived from multiple lower-quality target image approximations generated by fast
posterior diffusion sampling. We then iteratively refine both operator parameters and data estimates
through an alternating optimization procedure integrated within the diffusion sampling process. This
strategy eliminates restrictive assumptions about operator forms, thereby enabling nonlinear blind
inverse problem solving with highly flexible operator parametrizations.
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Table 1: A conceptual comparison between our proposed LADiBI and the existing literature.

Method Family Method Prior Type Diverse Image Prior ~ Training-free  Flexible Operator
Obtimization-based Pan-{; [Pan et al.|2017] Inductive bias X v X
P Pan-DCP [Pan et al.|2018] Inductive bias X v X
Self-supervised SelfDeblur [Ren et al.|[2020] Inductive bias X v X
Supervised MPRNet [Zamir et al.|[2021] Discriminative X X v
pervis DeblurGANvV2 [Kupyn et al.[|2019] GAN X X v
BlindDPS [Chung et al.||2023a] Pixel diffusion X X X
BIRD [Chihaoui et al.|[2024] Pixel diffusion X v X
Diffusion-based GibbsDDRM [Murata et al.|[2023]  Pixel diffusion X v X
LADIBI (Ours) Text-to-image v v v

latent diffusion

Combining the text-conditioned prior with our effective posterior sampling, we introduce Language-
Assisted Diffusion for Blind Inverse problems (LADIBI), a training-free method that leverages
large-scale text-to-image diffusion models to solve a broad range of blind image restoration problems
with minimal assumptions. LADiBI can be directly applied across diverse data distributions and
allows for easy specification of task-specific assumptions through simple prompting. Algorithm [I]and
Figure 2] provide an overview of LADiBI, which can be easily adapted from the standard inference
algorithm used in popular text-to-image diffusion models. Unlike existing methods, LADiBI requires
no model retraining or reselection for different data distributions or operator functions. Instead, all
prior parameterization is encoded directly in the prompt, which users can adjust as needed. Notably,
we do not assume linearity of the operator, making LADiBI, to the best of our knowledge, the most
generalizable approach to blind inverse problem solving in image restoration.

We evaluate LADiBI against state-of-the-art baselines on a range blind image restoration tasks,
including linear problem (e.g. motion and Gaussian deblurring) and nonlinear problem(e.g. JPEG
decompression), across various image distributions, as illustrated in Figure[I] In the linear setting, our
method matches the performance of the state-of-the-art approaches while requiring significantly fewer
assumptions. In the nonlinear setting, LADIiBI is the only method tested that can successfully perform
JPEG decompression without any prior information of the task (such as the compression algorithm,
quantization table or quantization factors), relying solely on observations of the compressed images.

2 Background & Related Works

Diffusion for Inverse Problem Solving Diffusion models [Song et al.,|2021b| [Ho et al.| 2020]
generate clean data samples x by iteratively refining noisy samples x; using a time-dependent score
function V, log p¢(x:). This score function is usually parametrized as a noise predictor eg (¢, t)
and can be used to produce the clean data samples through iteratively denoising. Particularly, a
popular sampling algorithm DDIM [Song et al.,[2021a] adopts the update rule

T — V1 — aeg(xy,t / -
i1 = \/O_[t—l < ¢ ﬁt@?( t )> + 1-— a1 — UgGg(iBt,t) + o€ (1)
t

intermediate estimation of o, denoted as @q |+

that consists of an intermediate estimation of the clean data in order to perform fast sampling.

Many efforts attempt to use unconditionally pretrained diffusion for conditional generation [Song et al.}
2021b}, Meng et al., 2022, [Dhariwal and Nichol, [2021]], especially inverse problem solving [Chung
et al., |2023b} [Kawar et al.| 2022} |Song et al.| 2022f], without additional training. Generally, when
sampling from p(x|y), they decompose its score as

Ve, logpi(xi|y) = Vg, logpi(x:) + Vi, log pi(yle:) (2)
Since Vo, logpi(x;) can be obtained from an unconditionally pre-trained diffusion model, these
methods usually aim at deriving an accurate approximation for Vo, log p:(y|x:).

Recent work has also explored text-to-image latent diffusion models for inverse problem-solving
[Saharia et al.| [2022] [Balaji et al., [2023| [Zhang et al.,[2024]]. In particular, MPGD [He et al.,|2024]
addresses inverse problems by leveraging the manifold preserving property of the latent diffusion
models. Specifically, it modifies the intermediate clean latent estimate zqp; with

Zo|t = 20|t — Ctho\tHy - A¢(D(z0|t))||§ 3
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where D(zg|;) represents the decoded intermediate clean image estimation and c; is the step size
hyperparameter. The Lo loss [y — Ag(D(2o)¢))||3 is induced by the additive Gaussian noise
assumption from conventional inverse problem setting. Although these diffusion-based methods
perform well on diverse data distributions and tasks, they all require the operator A to be known.

Blind Inverse Problem Blind inverse problems aim to recover unknown data z € R from
measurements y € R™, typically modeled as:

y=Ay(z) +n “

where A, : R? — R™ is the forward degradation operator parameterized by unknown function ¢,
and n ~ N(0,02I) € R™ represents measurement noise with variance o21. Blind inverse problems
are more difficult due to the joint estimation of & and A, and are inherently ill-posed without further
assumptions. As a result, existing methods typically incorporate different assumptions about the
priors of the target image data as well as the unknown operator.

Conventional methods use hand-crafted functions as image and operator prior constraints [|Chan
and Wong|, [1998| [Pan et al.| 2018} 2017, Krishnan et all 2011} [Levin et al., [2009]. They often
obtain these functional constraints by observing certain characteristics (e.g. clear edges and sparsity)
unique to distributions that are usually considered as the target image (e.g. high definition natural
images) and the operator (e.g. blurring kernels). However, not only are these hand-made functions
not generalizable, they also often require significant manual tuning for each individual image.

With the rise of deep learning, neural network has become a popular choice for parameterizing
priors [[Ulyanov et al., 2018} |Gandelsman et al., 2019, |Ren et al., 2020, Kupyn et al., 2019} [Zamir|
et al.l2021]]. These methods offer significant improvement over traditional approaches. However, their
learning procedures require separate data collection and model training for each image distribution
and task, making them resource-intensive.

Recently, inspired by advances in diffusion models for inverse problem solving, numerous efforts
have incorporated the priors from pre-trained diffusion models. However, most of these methods
still lack generalizability [[Chung et al., [2023al Murata et al., 2023} |Sanghvi et al.| [2023| [Laroche
et al.} 2024} [Tu et al., 2024, WeiminBai et al., 2025||. For instance, /Chung et al.|[2023a], [Sanghvi
et al.| [2023] require training separate operator priors, while Murata et al.| [2023]] remains training-free
but rely on the operator kernel’s SVD for feasible optimization. These approaches generally depend
on linear assumptions about the operator and well-trained diffusion models tailored to specific image
distributions, limiting their ability to generalize across diverse image and operator types.

Table|l| summarizes the conceptual difference between our method and popular approaches in current
literature. By leveraging large-scale pre-trained text-to-image latent diffusion models and our new
posterior sampling algorithm, our method offers the most generalizability across diverse image and
operator distributions with no additional training.

3 Method

In this paper, we aim to tackle the problem of blind inverse problem solving defined in Equation
Our solution has the following desiderata: (1) No additional training: it should not require data
collection or model training, (2) Adaptability to diverse image priors: the same model should
apply to various image distributions, (3) Flexible operators: no assumptions about the operator’s
functional form, such as linearity or task-specific update rules, should be necessary. To make this
problem feasible, we assume access to open-sourced pre-trained models.

To tackle this problem, we first formulate it as a Bayesian inference problem where the optimal
solution is to sample from the posterior

p(x, Aply) o p(ylz, Ag)p(x, Ag). (5)

This formulation allows us to decompose this problem into two parts: obtaining sampling to max-
imizes the measurement likelihood p(y|x, A). This makes diffusion-based framework the ideal
approach as its posterior sampling process naturally separates these two stages.

3.1 Obtaining the prior score

As established in Equation 2] diffusion-based approaches to inverse problems require access to the
score of the prior distribution. For blind inverse problems, this extends to estimating the score of the



155
156
157
158

159
160
161
162
163
164
165

166
167
168
169
170
171
172
173
174
175

176

177
178

179
180
181
182

183

184
185

187

188
189
190
191
192
193
194
195

Initialized operator Update the image z0|t
with MPGD
&V ly— Ay (D(z0))}
+A.LPIPS(D(201), )

Update the operator
with Adam

&= Adam($, L (201 4))
Prompts:
[+ “a clear headshot A AJ)
of a person” - H

blurry pixelated,)

Zi
Figure 2: A schematic overview of LADiBI (Algorithm .

joint distribution V4, log p(x¢, Ag), which presents significant challenges beyond standard image
priors. While strong pre-trained diffusion models usually exist for target image distributions p(x),
appropriate models or even training data for degradation operators .44 are largely unavailable, making
estimations of the joint distribution p(x, A,) particularly difficult.

Therefore, most existing diffusion-based methods further decompose p(x, Ay) ~ p(x)p(A,) and
impose restrictive assumptions, such as linearity constraints, on the operator. To estimate the
operator distribution, they either rely on simulated training data or perform constrained optimization
under fixed operator distributions. In addition, these methods typically require different pre-trained
diffusion models for different image domains (e.g., deblurring human v.s. animal faces necessitate
different prior models). This reliance on domain-specific models and strong operator assumptions
fundamentally limits their generalizability, particularly violating the second and third desiderata.

Motivated by these limitations, we introduce an alternative approach inspired by the following key
insights. First, many image restoration tasks can be intuitively described using natural language.
In addition, large pre-trained text-to-image diffusion models like Stable Diffusion [Rombach et al.|
2021]] already capture rich distributions of both target images and common degradation artifacts that
can be desribed by text. Based on these insights, we propose to approximate the joint prior’s score
using large-scale pre-trained text-to-image diffusion models through classifier-free guidance [Ho and
Salimans} 2021]). In particular, we encode the desired target image characteristics using the positive
prompts, and the unwanted degradation artifacts via negative prompts. For example, when restoring a
Gaussian blurred human face image, a suitable positive prompt can be “a clear headshot of a person”,
and the corresponding negative prompt could be “blurry, low-quality image”.

Formally, denoting the positive prompt as ¢ and the negative prompt as c_,

Va, logp(xs, Ag) = Vg, log p(xi|e_) + v(Va, logp(xi]ct) — Vg, log p(a|c)) 6)

where v > 1 is a weighting hyperparameter. When using latent diffusion models parameterized by 6,
this translates to the empirical noise prediction

€o(zt,t) = €o(zt,t,e—) + y(eo(2t, t, c4) — €a(2e,t,c-)) (7

This straightforward approximation provides access to the otherwise intractable joint prior score,
and enables versatile applications across diverse image and operator distributions. By leveraging
the knowledge encoded in large pre-trained text-to-image models, our method bypasses the need for
task-specific training, operator restriction or model re-selection.

3.2 Sampling from the posterior

In addition to a strong prior score, our output image should also satisfy the measurement constraint.
Given the problem setup in Equation M} the measurements are subject to additive Gaussian noise n,
hence log p(y|x, Ay) = 202 ly — Ay (x)||3. When Ay is known, we can use the MPGD update
rule in Equation 3] for posterior sampling.

However, since A, is unknown, the true parameters ¢ is often approximated by another set of

parameters g?) This approximation is usually addressed by one of the two strategies: an alternating

optimization scheme that jointly approximates a and ¢, or obtaining a reliable gZ; first then solving a
non-blind inverse problem The first approach is well-suited for training-free settings, but it is often

highly sensitive to (b initialization and tuning. The second approach can perform well if a strong ¢ is
obtained, though it usually requires training and additional restrictions. We propose a hybrid strategy:

we first obtain a reliable initial ¢3, and then perform an alternating optimization to iteratively refine
both the operator parameter and data estimations throughout the diffusion process.

5
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Algorithm 1 Our algorithm LADiBI

1: /* Initialize latent with encoded measurement y & SDEdit */

2z, = \/CYT#E(y) + /1 —ag,ep, forep, NN(UIi

Algorithm 2 General Operator Initialization
cforj=1,...,Mdo

1

3: Initialize ¢ with a fixed operator prior or Algorithm s /?}nitialize latent batch with encoded y & SDEdit */
4: fort=T,,...,1do 3: er, ~N(0,1)fori =1,2,...,N

5: /* Use time-traveling for more stable results */ . ) _ = —— (i)

6 forj=1,...,Mdo 4 zr, =VarE@y) + VI-are,

7: /* Use CFG to obtain accurate prior */ 5: /* Use MPGD to obtain latent estimations {z[(]l‘i N,

8: Calculatel é9(21,t) with Eq.[7] 6: for ¢ = Tj,...,1and all i in parallel do

9: 2ot = ﬁ(zz — V1 —aép(z,t)) . oo (i) :
10: if j =0 (mod 2) then 7: C?il)culate eg(z(té) ,t) with Eq.[7 o
11: /% Perform MPGD with the estimated A */ 8: Zo = \/%(z,,/ — V1 —ég(z",1))
12: depdate Zo); with Eq.[8] 9: if j # 1 then
13: end i . () i

" i€, ~ N(0,1) 10: dlhjfdate Zo), with Eq.
15: Zio1 = /120t +\/1 — u_1 — o2€a(zy, t)Fose 11 end i _ ; - i
BV A S LAV T BV e e S RO

' T @t = (i) (i)

17 end for . ave;” for e ~ N(0,1)

18: /* Periodically update ¢ with zq; and Eq.E]*/ 13: end for N ()N

19:  ift =0 (mod 5) then 14: /* Update ¢ with {Z[]\f}q,=1 and EQ-E*/
20: fork=1,...,Kdo 15: fork=1,..., K do

. A AT " In n N i) 7
21: ¢ = Adam(, Ly (zo1, 6)) 16: ¢ = Adam(, £ SN Ly(28",4))
22: end for 17: end for
23: end if
18: end for

24: end for 19: return ¢

25: return o = D(z)

¢ Initialization Sometimes initializing the operator parameters is straightforward — for example,
for a slight blur, an identity function can be a reasonable starting point. Alternatively, reliable operator
priors, such as the pre-trained prior in BlindDPS or the Gaussian prior in GibbsDDRM for linear
operators, can also provide effective initializations for simple kernels. However, for complex operator
estimator like neural networks, obtaining good initializations becomes more challenging.

To address this, we propose a new algorithm for general operator initialization. Since the goal here is
only to initialize qf), the quality of intermediate x estimates is less critical as long as they provide useful
signals. Unlike other diffusion-based methods that alternate optimization targets at each diffusion
step, we use SDEdit [Meng et al.,|2022[] and MPGD [He et al.l 2024] with very few diffusion steps to
quickly obtain a batch of « estimates. We then perform maximum likelihood estimation (MLE) on
these estimates to update (ZS using Adam optimizer. As detailed in Algorithm |2} repeating this process
can leverage the diffusion prior to quickly converge to a reliable starting point for qAﬁ

Notice that we only assume that ¢ can be approximated by differentiable functions, allowing .4 s to

be parameterized by general model families such as neural networks. Moreover, as mentioned earlier,
any well-performing operator priors can be seamlessly integrated into our framework.

Iterative Refinement After ¢3 initialization, we perform another alternating optimization to refine
both the operator and the image. Throughout the diffusion process, we alternate between updating

zo|¢ using MPGD with A ¥ fixed and updating the MLE estimation of ¢ using Adam with z|; fixed.

Since unlike GibbsDDRM, which uses Langevin dynamics to update the operator, we solve for a
local optimum. Therefore, it’s reasonable not to update the operator too frequently. Empirically, we
find that periodic updates to the operator combined with time-traveling [Lugmayr et al., 2022} |Yu
et al.}2023] yield the best results. In addition, since MPGD supports any differentiable loss function,
we can incorporate regularization to further improve the visual quality. In practice, we use

Zojt = Zojt — ¢t Vagy, ([ly — Ag(D(2012))|I3 + ALPIPS(D(201:), y)) ®)
as the MPGD update rule and
Ly (2ojt, ¢) = ly — Az (D(z0p))13 + Aol )]

as the Adam objective. Here LPIPS(-) denotes the LPIPS distance between two images and || - |1
denotes the L regularization term. A, and A4 are adjustable hyperparameters.

Combining large-scale language-conditioned diffusion priors, effective operator initializations and the
iterative refinement process described above, we introduce LADiBI, a new training-free algorithm for
blind inverse problem solving that supports diverse target image distributions and flexible operators.
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Table 2: Quantitative results on blind linear deblurring tasks. “GibbsDDRM” denotes the results from
directly running their open-sourced code and “GibbsDDRM*” denotes the results after adjusting
their code to match with the ground truth kernel padding.
FFHQ AFHQ
Motion Gaussian Motion Gaussian

LPIPS| PSNRT KID] LPIPS| PSNRT KID| LPIPS| PSNRT KID| LPIPS| PSNRT KID |
DPS w/ GT kernel 0.164 22.82 0.0046 0.138 24.48 0.0052 0.367 21.28 0.1120 0.330 2352 0.0813

SelfDeblur 0.732 9.05 0.1088 0.733 8.87 0.0890 0.742 9.04 0.0650 0.736 8.84 0.0352

Method

MPRNet 0.292 2242 0.0467 0.334 23.23 0.0511 0.324 22.09 0.0382 0.379 21.97  0.0461
DeblurGANv2 0.309 2255 0.0411 0.325 26.61 0.0227 0.323 2274 0.0350 0.340 27.12  0.0073
Pan-10 0.389 1410 0.1961 0.265 20.68 0.1012 0.414 14.16  0.1590 0.276 21.04  0.0320
Pan-DCP 0.325 17.64  0.1323 0.235 24.93 0.0490 0.371 17.63 0.1377 0.297 25.11  0.0263
BlindDPS 0.246 20.93 0.0153 0.216 2596  0.0205 0.393 20.14  0.0913 0.330 2479 0.0268
BIRD 0.294 19.23 0.0491 0.212 21.95 0.0414 0.438 1892 0.0286 0.320 21.87  0.0089
GibbsDDRM 0.293 20.52  0.0746 0.216 27.03 0.0430 0.303 19.44  0.0265 0.257 24.01 0.0040
LADIBI (Ours) 0.230 2096  0.0084 0.197 21.08 0.0068 0.262 21.20  0.0132 0.204 2433 0.0065
GibbsDDRM* 0.199 2236 0.0309 0.155 27.65  0.0252 0.278 19.00  0.0180 0.224 21.62  0.0040

Measurement Pan-10 Pan-DCP SelfDeblur  DeblurGANv2 MPRNet BlindDPS GibbsDDRM BIRD LADiBI (Ours) Ground Truth

r‘ .i - .
8 s
A Ty -

e %S

Figure 3: Qualitative results on blind linear deblurring tasks. From top to bottom we showcase
examples from motion deblur on FFHQ, Gaussian deblur on FFHQ, motion deblur on AFHQ, and
Gaussian deblur on AFHQ respectively.

4 Experiments

4.1 Experimental Setup

We empirically verify the performance of our method with two linear deblurring tasks, Gaussian
deblurring and motion deblurring, and a non-linear restoration task, JPEG decompression.

Setup We conduct quantitative comparisons on FFHQ 256 x 256 [Karras et al. 2019] and AFHQ-

dog 256 x 256 2020]. Following [Murata et al.| [2023]], we use 1000 images for FFHQ

and 500 images for AFHQ. We use LPIPS [Zhang et al., 2018], PSNR and KID
2018]| to measure the perceptual similarity, pixel accuracy, and image fidelity respectively.

Baselines We compare our method against other state-of-the-art approaches as baselines. Specifi-
cally, we choose Pan-10 [[Pan et al.| 2017]] and Pan-DCP as the optimization-based
method, SelfDeblur [Ren et al.,[2020] as the self-supervised approach, PRNet
and DeblurGANV2 [Kupyn et al., 2019] as the supervised baselines, and BlindDPS [Chung et al.)
[20234], BIRD [[Chihaoui et al., [2024] and GibbsDDRM [Murata et all,[2023] as the diffusion-based
methods. All baselines are experiments using their open-sourced code and pre-trained models.

4.2 Blind Linear Deblurring

We first conduct experiments on linear deblurring, which is the design space of most baselines. We
evaluate all methods on two blurring kernels: Gaussian blur and motion blur. We apply random motion
blur kernels with intensity 0.5 and Gaussian blur kernels with standard deviation 3. Measurements
are derived by applying a pixel-wise Gaussian noise with 0 = 0.02. We use a 61 x 61 convolutional

matrix as ¢ and initialize it as a Gaussian kernel of intensity 6.0 following |Murata et a1.| [|2023|]

As shown in Table [2] and Figure 3] our method matches the performance of the state-of-the-art
method GibbsDDRM, which is explicitly designed to solve linear problems using SVDs. In fact,
GibbsDDRM'’s highly specialized design makes it so sensitive that even small discrepancies (e.g.
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Table 3: Quantitative results (the mean and standard deviation) on blind JPEG decompression task.

FFHQ AFHQ
Method LPIPS | PSNR T KID | LPIPS | PSNR T KID ]
Pan-10 0.787 £ 0.084 1272 £2.53 02189 0825 L0083 13.15L2.68 02168

Pan-DCP 0710+ 0.067 1491 £2.63 02318 0.673£0.055 1827+1.60 0.2472
SelfDeblur ~ 0.676 £0.054 8.844+1.93 0.1959 0.703+0.052 8.89+172 0.1173
MPRNet  0.785+£0.048 5994+ 1.81 0.8008 0.769 +0.048 5934178  0.6809
DeblurGAN 0473 +0.058 2148+ 1.85 02207 0502 +0.061 2176+ 1.84 0.1527
BlindDPS 0431 £0.079 21.55+1.96 0.1791 0.397 +0.069 20.87 =1.89 0.2108

BIRD 0.406 +0.047 20.68 £1.09 0.0525 0.425+0.068 21.08 £1.50 0.0673
GibbsDDRM  0.841 +0.057 1391 £1.26 0.2915 0.775+£0.059 14594+ 148 0.2915
Ours 0.268 +£0.070 21.40+1.18 0.0172 0.315+0.075 21.12+1.27 0.0216
Measurement Pan-DCP SelfDeblur DeblurGANv2 BlindDPS GibbsDDRM BIRD LADIiBI (Ours)  Ground Truth
-4 [ g 4 ¥V o E [ 4 P EF

2

Figure 4: Qualitative results on the blind JPEG decompression task.

kernel padding) between their modeling assumption and the ground truth operator can result in
significant performance degradation. Moreover, although BlindDPS and GibbsDDRM use diffusion
models that are trained on the exact data distributions tested, our method can still match or outperform
them with the large-scale pre-trained model. While supervised methods obtain higher PSNR, our
method produces the fewest artifacts, validated by LPIPS and KID scores. Overall, our method offers
a competitive performance on linear tasks, even though it is designed for more general applications.

4.3 Blind JPEG Decompression

We further compare all methods on JPEG decompression, a particularly challenging task due to its
non-linear, non-differentiable nature. Unlike traditional settings, our experiments provide no task-
specific knowledge, such as the compression algorithm, quantization table, or factors — algorithms
rely solely on the measurement images. We generate measurements using JPEG compression with a
quantization factor of 2. We use a neural network with a 3-layer U-net to parametrize the operator.
The operator is initialized using Algorithm 2] with M = 8 and N = 4.

Table [3]and Figure [ present the results on the JPEG decompression task. It is evident through both
quantitative and qualitative results that our method is the only one capable of enhancing the fidelity of
the images and maintaining consistency to measurements. Unlike the baselines, which struggle with
this task due to their limited posterior formulations, our flexible framework adapts to approximate
this challenging operator and produces high quality images.

5 Conclusion

In this work, we propose LADiBI, a new training-free algorithm to solving blind inverse problems in
image restoration using large-scale pre-trained text-to-image diffusion models. With unknown degra-
dation operators, our method leverages text prompts as well as posterior guidance on intermediate
diffusion steps to restore desired images based on the measurements. Experiments demonstrate that
LADIBT’s effectiveness on diverse operator and image distributions.
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A Additional Implementation Details

In this section, we offer more detailed information regarding the implementation setup for Algorithms
1 and 2. All experiments are conducted using Stable Diffusion 1.4 [Rombach et al.,[2021]], DDIM
200-step, and T; = 150, M = 4 on an NVIDIA A6000 GPU. In an effort to make our methodology
generalizable and extensible to other inverse problems, we attempt to maintain the same hyper-
parameter values across tasks wherever possible. Each hyper-parameter value has been chosen after
conducting preliminary experiments for a specific range and opting for the value that offers the best
performance. Indicative examples of such experiments are shown in[C]

In particular, we run Algorithm 1 for 75 = 150 timesteps while performing 4 repetitions as part of the
time-traveling strategy. We encode the measurement as 7, by applying the forward diffusion process
up to timestep 800. In parallel with the reverse diffusion process, we update (;AS every 5 timesteps, each
time conducting K = 150 gradient steps. We adjust the ¢; and the Ay parameters of Equations 8 and
9 to 30 and 2 respectively. In terms of the operator initialization process described by Algorithm
2, we make use of a batch of NV = 4 samples and run M = 8 iterations, each comprising T; = 60
timesteps.

We also take into consideration that the targets and measurements reside in the 256 x 256 pixel space,
whereas Stable Diffusion v1 operates on images of pixel size 512 x 512. To address this disparity, we
initially upsample the measurement using bilinear interpolation in order to transformitto a 512 x 512
image, and then downsample the resulting x( to map the final estimate back to the original image
space.

The schematic overviews of Algorithms 1 and 2 are presented in Figures[2]and [5

In addition, there are some parameters in our approach for which employing a task-aware setup
strategy is essential for state-of-the-art performance, including the prompt as well as the architecture

of ¢. Here we provide details with respect to these parameters according to each restoration task:

Motion Deblurring

* Positive prompts: “a clear headshot of a person/animal”

* Negative prompts: “shaken image, motion blur, pixelated, lowres, text, error, cropped,
worst quality, blurry ears, low quality, ugly, duplicate, morbid, mutilated, poorly drawn
face, mutation, deformed, blurry, dehydrated, blurry hair, bad anatomy, bad proportions,
disfigured, gross proportions"

. ¢? architecture: A single 61 x 61 convolutional block with 3 input and 3 output channels.

Gaussian Deblurring

* Positive prompts: “a clear headshot of a person/animal”

* Negative prompts: “blurry, gaussian blur, lowres, text, error, cropped, worst quality, blurry
ears, low quality, ugly, duplicate, morbid, mutilated, text in image, DSLR effect, poorly
drawn face, mutation, deformed, dehydrated, blurry hair, bad anatomy, bad proportions,
disfigured, gross proportions"

. gZ; architecture: A single 61 x 61 convolutional block with 3 input and 3 output channels.

JPEG Decompression

* Positive prompts: “a clear headshot of a person/animal”

* Negative prompts: “pixelated, lowres, text, error, cropped, worst quality, blurry ears,
low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, text in image, DSLR effect,
poorly drawn face, mutation, deformed, blurry, dehydrated, blurry hair, bad anatomy, bad
proportions, disfigured, gross proportions”

. quS architecture: A neural network with a typical 3-layer U-net [Ronneberger et al., [2015]]
architecture. Each layer consists of 2 convolutional blocks of size 3 x 3 with ReLU
activations and number of input and output channels ranging from 32 to 128.
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Figure 5: A schematic overview of general operator initialization (Algorithm .

We conduct quantitative experiments on FFHQ 256 x 256 [Karras et al.,|2019] and AFHQ 256 x
256 [Choi et al., [2020]. Images in FFHQ are publicized under Creative Commons BY 2.0, Creative
Commons BY-NC 2.0, Public Domain Mark 1.0, Public Domain CCO 1.0, or U.S. Government Works
license and AFHQ is publicized under Attribution-NonCommercial 4.0 International license.

The code implementation for LADiBI is linked herel

B Additional Results

In this section, we present additional experimental results on all benchmarks as well as additional
tasks and data distributions. Table @include the standard deviation of the linear benchmark results.
Figures[7] [ and [0] offer more qualitative comparisons against baseline methods on motion deblurring,
gaussian deblurring and JPEG decompression respectively.

In order to show our method’s applicability on a wider range of image and operator distributions,
we present indicative examples of Gaussian and motion deblurring on Monet paintings in Figure[6]
We use the same negative prompts as in the previous experiments and “a portrait of a person as a
Monet style painting" as positive prompts. We notice that, although the images portray human faces,
the baseline method using models trained on realistic human face images cannot accurately solve
the problem, while our method effectively generates images consistent with both the measurement
image and the painting style present in the ground truth image. In Figure[I0} we include additional
comparisons against selected baseline methods on the 3 benchmark tasks using a set of Monet and
Van Gogh portrait paintings as ground truth images.

We also show additional demonstrations of applying LADIiBI to solve colorization and non-linear
deblurring problems. Figures [TT]and [T2] substantiate our claim that our algorithmic scheme is flexible
enough to adapt to various inverse tasks. Additionally, thanks to the broad range of image distributions
encapsulated by the pretrained model, as well as the minimal assumptions imposed by the proposed
methodology, our approach is able to accurately solve inverse problems for a broad range of images.
Figures [I3] and [T4] demonstrate our method’s capability to perform Gaussian deblurring, motion
deblurring as well as JPEG decompression for images depicting cars and landscapes.

Finally, to assess the real-world performance of our method, we test it on samples from the RealBlur
dataset [Rim et al., [2020]], which contains naturally captured blurry images using GoPro in real
life settings. This dataset presents realistic blur patterns that are significantly more complex and
diverse compared to the synthetically generated benchmarks. Figure[T3]presents qualitative demos,
which highlight our method’s ability to recover sharp structures and textures under various real-world
blur conditions. These results demonstrate the applicability of our approach to real inverse problem
solving tasks and support its generalization capability.
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Table 4: Quantitative results on motion and Gaussian deblurring on FFHQ dataset. Mean + standard
deviation shown.

Motion Gaussian

Method

LPIPS | PSNR 1 KID | LPIPS | PSNR 1 KID |
DPS w/ GT kernel 0.164 22.82 0.0046 0.138 24.48 0.0052
SelfDeblur 0.732 +0.147 9.05 £ 2.46 0.1088  0.733 +£0.094 8.87£2.21 0.0890
MPRNet 0.292 +£0.101 2242 +3.21 0.0467 0.334+0.068 23.23+2.19 0.0511
DeblurGANv2 0.309 +£0.111 22.55+3.44 0.0411 0.325+0.145 26.61 £3.28  0.0227
Pan-10 0.389 +£0.090 14.10 £ 2.51 0.1961  0.2654+0.082 20.68 +£3.81 0.1012
Pan-DCP 0.325+0.105 17.64 £ 3.63 0.1323  0.2354+0.066 24.93 £3.60 0.0490
BlindDPS 0.246 +0.077  20.93 £ 2.09 0.0153  0.216 £ 0.076  25.96 +£2.45  0.0205
BIRD 0.294 +0.076  19.23 £1.88 0.0491 0.2124+0.055 21.95+£1.62 0.0414
GibbsDDRM 0.293 +£0.099 20.52 £+ 2.81 0.0746  0.216 +0.046 27.03 +£1.87  0.0430
LADiBI (Ours) 0.230 +£0.076  20.96 £2.34 0.0084 0.197+0.071 21.08+2.71 0.0068
GibbsDDRM* 0.199 £0.110 22.36 +£3.79 0.0309  0.155+0.049 27.65+2.66 0.0252

Table 5: Quantitative results on motion and Gaussian deblurring on AFHQ. Mean =+ standard

deviation shown.

Motion Gaussian
Method
LPIPS | PSNR 1 KID | LPIPS | PSNR 1 KID |
DPS w/ GT kernel 0.367 21.28 0.1120 0.330 23.52 0.0813
SelfDeblur 0.742 £ 0.158 9.04 +1.84 0.0650 0.736 £0.112 8.84 +1.45 0.0352
MPRNet 0.324 +£0.095  22.09 + 3.01 0.0382 0.379 £ 0.081 21.97 £ 2.55 0.0461
DeblurGANv2 0.323 £0.105 22.74+2.89 0.0350 0.340 £0.084 27.12+2.94 0.0073
Pan-10 0.414 +£0.133 14.16 £3.97  0.1590 0.276 £0.079  21.04 £ 3.39 0.0320
Pan-DCP 0.371 £ 0.147 17.63 & 5.94 0.1377 0.297 £ 0.086 25.11 + 3.68 0.0263
BlindDPS 0.393 £0.061  20.14+1.67  0.0913 0.330 £0.057  24.79 £1.76 0.0268
BIRD 0.438 £0.110 18.92 4+ 2.04 0.0286 0.320 £ 0.079 21.87+1.95 0.0089
GibbsDDRM 0.303 +£0.114  19.44 + 3.58 0.0265 0.257 £0.121 24.01 +4.77 0.0040
LADIBI (Ours) 0.262 £0.096 21.204+2.72 0.0132 0.204 +0.066 24.33 +1.73 0.0065
GibbsDDRM* 0.278 £ 0.099 19.00 £ 3.09 0.0180 0.224 £+ 0.091 21.62 £ 3.53 0.0040
Measurement Baseline LADIBI (Ours) Ground Truth
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Figure 6: Qualitative results on blind deblurring Monet paintings.
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Figure 7: Additional qualitative results on motion deblurring task.
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Figure 8: Additional qualitative results on Gaussian deblurring task.
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Figure 9: Additional qualitative results on JPEG decompression task.
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Figure 10: Additional qualitative results on painting restoration.
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Measurement LADiBI (Ours)  Ground Truth Measurement ~ LADIBI (Ours)  Ground Truth

Figure 11: Qualitative results on colorization  Figure 12: Qualitative results on non-linear de-
task. blurring task.
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Figure 13: Demo inverse problem solving on car  Figure 14: Demo inverse problem solving on
images. landscape images.
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Figure 15: Qualitative samples on the RealBlur dataset.
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Table 6: Ablation study on JPEG decompression.

Ablation LPIPS| PSNR?T KID|

W/o text prompts 0.508 1930  0.0319
W/o negative prompts 0.440 19.44  0.0242
Using generic c_ 0.425 19.48  0.0255

Using task-irrelevant c_ 0.406 19.40  0.0237
W/o MPGD guidance 0.403 19.44  0.0274

W/o regularization 0.307 21.35  0.0172
W/o ¢ Initialization 0.289 20.17  0.0170
LADiBI 0.262 21.20 0.0132
0.421 +0.040
+0.07 0.361
0.40
o r0.06 o 10.035
50.38 5 0-34
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Figure 16: Ablation study on diffusion timestep ~ Figure 17: Ablation study on number of time-
for encoding the measurement. traveling steps.

C Ablation Study

To showcase the effectiveness of each part of our algorithm, we conduct ablation study on AFHQ
dataset with JPEG decompression task. In particular, we test the importance of suitable ad-hoc
prompts, the use of MPGD guidance, the MPGD regularization term, and the operator initialization
for neural network A 5 We keep SDEdit in all settings to encode the measurement information for
fair comparisons. As shown in Table[6] each of the aforementioned components plays a significant
role in our scheme and is indispensable for producing high quality results.

To further our ablation, we extend the study on various hyperparameters and components of our
LADIiBI algorithm on the motion deblurring task using the AFHQ dataset.

Figure [I6] presents both the LPIPS and KID score for the value of the timestep T’ at which we encode
the measurement using SDEdit [Meng et al., [2022]]. Our experiments align with the observation
in Meng et al.|[[2022]: If T} is too large most of the information about the measurement has been
replaced by noise which does not allow the sampling process to leverage useful features of the
degraded image. On the other hand, if T is too small, the sampling process is not equipped with
enough scheduled steps to reach the target distribution.

In addition, Figure [I7) presents the effectiveness of taking advantage of the time-traveling strategy.
More time-traveling boosts the overall performance up to a specific value, after which we begin to
notice a trade-off between perceptual clarity of the image and fidelity to the target distribution.

Finally, we evaluate the performance of our algorithm when using a unconstrained configuration
for A b in constrained tasks. In particular, we test the neural network architecture for the operator
in linear inverse problems and we showcase quantitative results for the motion deblurring task in
Table [7] and qualitative samples in Figure[I8] We observe that, although performing worse than
LADIiBI employed with the aligned linear operator architecture, the neural operator is still capable
of producing estimates of decent quality while also preserving a design that allows applicability to
highly unconstrained image restoration task.
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Table 7: Quantitative comparison between linear and deep operator architecture

AFHQ Motion Blur

Method LPIPS| PSNR?T KID|
Panl0 0.414 14.16 0.1590
PanDCP 0.371 17.63 0.1377
SelfDeblur 0.742 9.04 0.0650
MPRNet 0.324 22.09 0.0382
DeblurGANv2 0.323 22.74 0.0350
BlindDPS 0.393 20.14 0.0913
GibbsDDRM 0.303 19.44 0.0265
GibbsDDRM* 0.278 19.00 0.0180

LADIBI (Kernel Operator) 0.262 21.20 0.0132
LADIBI (U-Net Operator) 0.343 18.93 0.0146

Measurement LADIBI w/ linear ¢ LADIiBI w/ deep ¢ Ground Truth

Figure 18: Comparison between linear and deep operator architecture on linear tasks.
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D Prior Coverage of Large Pre-trained Text-to-image Diffusion

In this section we provide an empirical justification for using Stable Diffusion v1.4 as our base model.
To demonstrate this property, Figure [I9] provides qualitative samples of images with Gaussian blur,
motion blur and after JPEG compression. These examples show that Stable Diffusion 1.4 already
capture rich distributions of both target images and common degradation artifacts.

(c) Generated images with JPEG compression effect.

Figure 19: Drawn samples from the posterior distribution using our baseline model.
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E Limitations and Future Works

In this section, we discuss the limitation of LADIiBI and potential future works to address these
problems.

Similar to many training-free diffusion posterior sampling algorithms [Chung et al.} 2023al Murata
et al., 2023} |Chung et al., 2023b| [He et al., [2024]], our method is also sensitive to hyper-parameter
tuning. We have provided details about our hyperparameter choices in the previous sections, and we
will release our code in a public repository upon publication of this paper.

In addition, while generally simple, we do require the users to infer appropriate prompts from the
measurement. An interesting future work direction can include automated prompt tuning similar to
the method proposed in [Chung et al.|[2023c].

Another notable drawback of our method is that LADiBI requires significantly longer inference time
in comparison to the best performing baseline (i.e. GibbsDDRM [Murata et al., 2023]]) in order
to obtain high quality restorations. With the general operator initialization, our algorithm can take
around 5 minutes to complete on a single NVIDIA A6000 GPU while GibbsDDRM only takes
around 30 seconds. Although this is justifiable by the larger optimization space that we operate on,
investigating on how to reduce the inference time requirement is an interesting and critical next step
for our work.

Lastly we would like to note that, while neural networks, as demonstrated in the previous sections,
can serve as a general model family for various operator functional classes and achieve satisfactory
results, obtaining state-of-the-art performance for linear tasks within a reasonable inference time still
requires resorting to a linear kernel as the estimated operator. Exploring neural network architectures
that can easily generalize across different operator functional classes while achieving state-of-the-art
results efficiently remains an exciting direction for future work.

F Impact Statement

Lastly, since our algorithm leverages large pre-trained image generative models, we would like to
address the ethical concerns, societal impact as well as the potential harm that can be caused by our
method when being used inappropriately.

As a consequence of using large pre-trained text-to-image generative models, our method also inherits
potential risks associated with these pre-trained models, including the propagation of biases, copyright
infringement and the possibility of generating harmful content. We recognize the significance of these
ethical challenges and are dedicated to responsible Al research practices that prevent reinforcing these
ethical considerations. Upon the release our code, we are committed to implement and actively update
safeguards in our public repository to ensure safer and more ethical content generation practices.
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s22  NeurIPS Paper Checklist

525 1. Claims

526 Question: Do the main claims made in the abstract and introduction accurately reflect the
527 paper’s contributions and scope?

528 Answer: [Yes]

529 Justification: Our abstract and introduction accurately reflect the paper’s main claims.

530 Guidelines:

531 * The answer NA means that the abstract and introduction do not include the claims
532 made in the paper.

533 * The abstract and/or introduction should clearly state the claims made, including the
534 contributions made in the paper and important assumptions and limitations. A No or
535 NA answer to this question will not be perceived well by the reviewers.

536 * The claims made should match theoretical and experimental results, and reflect how
537 much the results can be expected to generalize to other settings.

538 * It is fine to include aspirational goals as motivation as long as it is clear that these goals
539 are not attained by the paper.

540 2. Limitations

541 Question: Does the paper discuss the limitations of the work performed by the authors?
542 Answer: [Yes]

543 Justification: The limitation is discussed in Section[El

544 Guidelines:

545 * The answer NA means that the paper has no limitation while the answer No means that
546 the paper has limitations, but those are not discussed in the paper.

547  The authors are encouraged to create a separate "Limitations" section in their paper.
548 * The paper should point out any strong assumptions and how robust the results are to
549 violations of these assumptions (e.g., independence assumptions, noiseless settings,
550 model well-specification, asymptotic approximations only holding locally). The authors
551 should reflect on how these assumptions might be violated in practice and what the
552 implications would be.

553 * The authors should reflect on the scope of the claims made, e.g., if the approach was
554 only tested on a few datasets or with a few runs. In general, empirical results often
555 depend on implicit assumptions, which should be articulated.

556 * The authors should reflect on the factors that influence the performance of the approach.
557 For example, a facial recognition algorithm may perform poorly when image resolution
558 is low or images are taken in low lighting. Or a speech-to-text system might not be
559 used reliably to provide closed captions for online lectures because it fails to handle
560 technical jargon.

561 * The authors should discuss the computational efficiency of the proposed algorithms
562 and how they scale with dataset size.

563 « If applicable, the authors should discuss possible limitations of their approach to
564 address problems of privacy and fairness.

565 * While the authors might fear that complete honesty about limitations might be used by
566 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
567 limitations that aren’t acknowledged in the paper. The authors should use their best
568 judgment and recognize that individual actions in favor of transparency play an impor-
569 tant role in developing norms that preserve the integrity of the community. Reviewers
570 will be specifically instructed to not penalize honesty concerning limitations.

571 3. Theory assumptions and proofs

572 Question: For each theoretical result, does the paper provide the full set of assumptions and
573 a complete (and correct) proof?

574 Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: All experimental details are disclosed in Section ?? and Section [A]
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have provided the code implementation of our proposed method here.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All experimental details are disclosed in Section ?? and Section [A]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We have provided the standard deviation results as the error bars.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: All experimental details are disclosed in Section ?? and Section [A]
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research is conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The societal impacts of our work is discussed in Section[F
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The safeguard implementation for the code release of our work is discussed in
Section[H

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited the dataset used in this paper in Section ?? and Section
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The only new asset we create in this paper is the code implementation of our
method. We have provided the code implementation of our proposed method herel

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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833 16. Declaration of LLLM usage

834 Question: Does the paper describe the usage of LLMs if it is an important, original, or
835 non-standard component of the core methods in this research? Note that if the LLM is used
836 only for writing, editing, or formatting purposes and does not impact the core methodology,
837 scientific rigorousness, or originality of the research, declaration is not required.

838 Answer: [NA]

839 Justification: The core method development in this research does not involve LLMs as any
840 important, original, or non-standard components.

84 Guidelines:

842 * The answer NA means that the core method development in this research does not
843 involve LLMs as any important, original, or non-standard components.

844 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
845 for what should or should not be described.
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