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ABSTRACT

We present a comprehensive analysis of how two-layer neural networks learn fea-
tures to solve the modular addition task. Our work provides a full mechanistic
interpretation of the learned model and a theoretical explanation of its training
dynamics. First, we empirically show that trained networks learn a sparse Fourier
representation; each neuron’s parameters form a trigonometric pattern correspond-
ing to a single frequency. We identify two key structural properties: phase align-
ment, where a neuron’s output phase is twice its input phase, and model sym-
metry, where phases are uniformly distributed among neurons sharing the same
frequency, particularly when overparametrized. We prove that these properties al-
low the network to collectively approximate an indicator function on the correct
logic for the modular addition task. While individual neurons produce noisy sig-
nals, the phase symmetry enables a majority-voting scheme that cancels out noise,
allowing the network to robustly identify the correct sum. We then explain how
these features are learned through a “lottery ticket mechanism”. An analysis of the
gradient flow reveals that frequencies compete within each neuron during train-
ing. The winning frequency that ultimately dominates is predictably determined
by its initial magnitude and phase misalignment. Finally, we use these insights
to demystify grokking, characterizing it as a three-stage process involving memo-
rization followed by two generalization phases driven by feature sparsification.

1 INTRODUCTION

A central mystery in deep learning is how neural networks learn to generalize. While these mod-
els are trained to find patterns in data, the precise way they build internal representations through
gradient-based training and make predictions on new, unseen data is not fully understood. The sheer
complexity of modern networks often obscures the fundamental principles at work. To gain a clearer
view, researchers often simplify the problem by studying how networks solve simple but rich tasks
that can be precisely analyzed. By meticulously analyzing the learning process in these controlled
”toy” settings, we can uncover basic mechanisms that may apply more broadly. The modular addi-
tion task, (x, y) 7→ (x+ y) (mod p) has emerged as a canonical problem for this approach, as it is
simple to define yet reveals surprisingly complex and insightful learning dynamics.
Prior work has established that neural networks trained on modular arithmetic discover a Fourier
feature representation, embedding inputs onto a circle to transform addition into geometric rotation
(Nanda et al., 2023; Zhong et al., 2023). These studies have also highlighted the intriguing grokking
phenomenon, where a model suddenly generalizes long after it has memorized the training data
(Power et al., 2022; Liu et al., 2022). While these observations are foundational, prior work has
not yet offered a conclusive, end-to-end explanation of the learning process. Existing theoretical
accounts often rely on mean-field approximations (Tian, 2024; Wang & Wang, 2025) or analyze
non-standard loss functions (Morwani et al., 2023), leaving a gap in our understanding of the finite-
neuron dynamics under standard training. This leaves three fundamental questions unanswered:

(i) Mechanistic Interpretability: How does the trained network leverage its learned Fourier fea-
tures to implement the modular addition algorithm precisely?

(ii) Training Dynamics: How do these specific Fourier features reliably emerge from gradient-
based training with random initialization?
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(iii) Grokking: How do these mechanisms and dynamics explain the full timeline of grokking,
from memorization to delayed generalization?

In this paper, we provide a comprehensive answer to these questions through extensive experiments
and rigorous theoretical analysis of a two-layer neural network. First, we empirically demonstrate
that trained networks learn a sparse Fourier representation characterized by two key structural prop-
erties: phase alignment, where a neuron’s output phase is twice its input phase, and phase symmetry,
where phases are uniformly distributed among neurons sharing the same frequency. Mechanistically,
we prove that these properties enable the network to collectively approximate a indicator function.
While individual neurons produce noisy signals, the phase symmetry facilitates a majority-voting
scheme that cancels out noise, allowing the network to identify the correct sum robustly.
Second, we explain how these features are learned via a lottery ticket mechanism. An analysis of
the gradient flow reveals that different frequencies compete within each neuron during training. We
prove that the winning frequency that ultimately dominates is predictably determined by its initial
conditions: the one with the largest initial magnitude and smallest phase misalignment grows much
faster than its competitors. This gives a complete explanation for the emergence of single-frequency.
Finally, armed with this mechanistic and dynamic understanding, we demystify grokking. We char-
acterize it as a three-stage process: an initial memorization phase, followed by two distinct general-
ization phases driven by feature sparsification and refinement under weight decay. Our analysis also
uncovers a common-to-rare memorization pattern, where the model prioritizes common training ex-
amples over rarer ones. By providing a complete, end-to-end theoretical and empirical account of
this learning problem, our work offers a concrete foundation for understanding the interplay between
feature learning, training dynamics, and generalization in neural networks.

1.1 RELATED WORK

Modular Addition and Grokking. Studying simple tasks like modular addition has revealed deep
insights into neural network mechanisms (e.g., Power et al., 2022). Reverse-engineering has shown
models learn a Fourier feature, converting addition into a geometric rotation by embedding numbers
on a circle (Nanda et al., 2023; Zhong et al., 2023; Gromov, 2023; Doshi et al., 2024; Yip et al., 2024;
McCracken et al., 2025). This discovery is central to understanding grokking, a phenomenon where
generalization suddenly emerges long after overfitting, which these papers study using specific train-
test data splits (e.g., Liu et al., 2022; Doshi et al., 2023; Yip et al., 2024; Mallinar et al., 2024; Wu
et al., 2025). A complete discussion on related works is deferred to §A.2 due to space limit.

2 PRELIMINARIES

Modular Addition. In a modular addition task, we aim to learn the teacher model Zp × Zp 7→
Zp, whose form is given by (x, y) 7→ (x + y) mod p. The complete dataset is given by Dfull =
{(x, y, z) | x, y ∈ Zp, z = (x+y) mod p} which consists of all possible input pairs (x, y) and their
corresponding modular sums z. This dataset is then partitioned into a training set for learning and
a disjoint test set for evaluation. Such a training setup is widely used in the literature (e.g., Nanda
et al., 2023; Morwani et al., 2023) in modular arithmetic tasks.

Two-Layer Neural Network. We consider a two-layer neural network with M hidden neurons
and no bias terms. Each input pair (x, y) is assigned to embedding vectors hx and hy in Rd, where
h : Zp 7→ Rd is an embedding function of dimension d ∈ N. Here, the embedding can be either
the canonical embedding ex ∈ Rp in which case d = p or a trainable one {hx}x∈Zp

⊆ Rd. Let
θ = {θm}m∈[M ] and ξ = {ξm}m∈[M ] denote the parameters, where θm ∈ Rd is the parameter
vector of the m-th hidden neuron and ξm ∈ Rp is its corresponding output-layer weight. The
network output follows

f(x, y; ξ, θ) =

M∑
m=1

ξm · σ(⟨hx + hy, θm⟩) ∈ Rp, (2.1)

where σ(·) is a nonlinear activation. In this paper, we primarily focus on the ReLU activation σ(x) =
max{x, 0} for experiments and the quadratic activation σ(x) = x2 for theoretical interpretations.
Since the modular addition is essentially a classification problem, we apply the softmax function
smax : Rd 7→ Rd to the network output and consider the cross-entropy (CE) loss:

ℓD(ξ, θ) = −
∑

(x,y)∈D

〈
log ◦smax ◦ f(x, y; ξ, θ), e(x+y) mod p

〉
. (2.2)
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Here, log(·) is applied entry-wise and e(x+y) mod p is the one-hot vector that corresponds to the
correct label. Intuitively, each input pair (x, y) is mapped to a hidden representation by σ(⟨hx +
hy, θm⟩) for each neuron m, then linearly combined by ξm’s to produce the logits f(x, y; ξ, θ), and
finally processed via softmax function to yield a categorical distribution for classification.

3 EMPIRICAL FINDINGS

In this section, we set p = 23 and use a two-layer neural network with width M = 512 and ReLU
activation. The network is trained using the AdamW optimizer with a constant step size of η = 10−4.
For stable training, we initialize all parameters using PyTorch’s default method (Paszke et al., 2019),
and then normalize. We use the CE loss averaged over the dataset.
Following prior work (Morwani et al., 2023; Tian, 2024), we primarily focus on training the model
with the complete dataset Dfull (without train-test splitting), as this yields more stable training dy-
namics and enhances model interpretability. While the train-test split setup exhibits the intriguing
grokking phenomenon (e.g., Nanda et al., 2023; Doshi et al., 2023; Gromov, 2023)—wherein mod-
els suddenly achieve generalization after extensive training despite initial overfitting—we defer this
analysis to §3.2, building upon the foundational results presented in subsequent sections.

3.1 EXPERIMENTAL OBSERVATIONS ON LEARNED WEIGHTS

We first summarize the main empirical findings of our experiments using ReLU activation (see Fig-
ures 7 and 1), formalized as four key observations. The first two—trigonometric parameterization
and phase alignment—have been previously explored in the literature (Gromov, 2023; Nanda et al.,
2023; Yip et al., 2024), and are included for completeness. For clarity, we focus on the case where
inputs are one-hot embedded, i.e., hx = ex ∈ Rp and θm, ξm ∈ Rp. We begin with the most
striking observation: a global trigonometric pattern in parameters that consistently emerges across
all training runs with random initialization.

Observation 1 (Fourier Feature). There exists a frequency mapping φ : [M ] → [p−1
2 ], along

with magnitudes αm, βm ∈ R+ and phases ϕm, ψm ∈ [−π, π), such that
θm[j] = αm · cos(ωφ(m)j+ϕm), ξm[j] = βm · cos(ωφ(m)j+ψm), ∀(m, j) ∈ [M ]× [p], (3.1)

where we denote ωk = 2πk/p for all k ∈ [(p− 1)/2].

This observation shows that the parameter vectors θm and ξm simplify during training into a clean
trigonometric pattern. In the frequency domain, this corresponds to a sparse signal. After applying a
Discrete Fourier Transform (DFT, see §A.3), each neuron is represented by a single active frequency
φ(m). Given this single-frequency structure, we will henceforth refer to αm and ϕm as the input
magnitude and phase, and to βm and ψm the output magnitude and phase for neuron m.
In Figure 15b, we zoom in on the learned parameters of the first three neurons, with each entry corre-
sponding to the input or output value j. The plots show that these parameters are well approximated
by cosine curves, shifted by phases ϕm, ψm, and scaled by magnitudes αm, βm. This suggests that
the trained neural network learns to solve modular addition by embedding a trigonometric structure
into its parameters. We further examine the local structure of individual neurons, and observe a
highly structured phase alignment behavior.

Observation 2 (Doubled Phase). For each neuron m ∈ [M ], the parameter exhibits a doubled
phase relationship, where the output phase is twice the input phase, i.e., (2ϕm−ψm) mod 2π = 0.

We visualize the relationship between ϕm and ψm in Figure 16a. Specifically, the dots represent the
pairs (2ϕm, ψm), which lie precisely on the line y = x, confirming the claim made in Observation
2. This indicates that the first-layer θm and second-layer ξm learns to couple in the feature space,
specifically the Fourier space, through training. Having studied both global and neuron-wise local
parameter patterns, we now examine how neurons coordinate their collective operation. Consider
a network with a sufficiently large number of neurons, then the phases exhibit clear within-group
uniformity and the magnitudes display nearly homogeneous scaling across neurons.
Observation 3 (Model Symmetry). Let Nk be the set of neurons for frequency k, defined as
Nk = {m ∈ [M ] : φ(m) = k}. For large M , (i) phases are approximately uniform over (−π, π)
within frequency group Nk, i.e., ϕm, ψm

i.i.d.∼ Unif(−π, π), (ii) every frequency k is represented
among the neurons, and (iii) the magnitudes αm’s and βm remains close across all neurons.
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(a) Scatter of (2ϕm, ψm).

average value

ι cos(ιϕm) sin(ιϕm)

×1 0.0123 -0.0500
×2 -0.0234 0.0319
×3 -0.0531 -0.0032
×4 -0.0235 -0.0451
×5 -0.0505 -0.0372

(b) Phase Symmetry within Frequency Group Nk. (c) Distribution of αm, βm.

Figure 1: Visualizations of learned phases with M = 512 neurons. Figure (a) plots the relationship
between the normalized 2ϕm and ψm, with all points lying around y = x. Figure (b) shows the
uniformity of the learned phases within Nk. The right panel quantifies this symmetry by computing
the averages of cos(ιϕm) and sin(ιϕm), all of which are close to zero. Figure (c) presents violin
plots of the magnitudes αm and βm, suggesting that the neurons learn nearly identical magnitudes.

(a) Evolution of misalignment level Dk
m and magnitude βk

m of a specific
neuron under gradient flow under small random initialization.

(b) Leaned magnitude βk
m under

different initializations.

Figure 2: Illustration of the lottery-ticket mechanism. Figure (a) plots the dynamics of every fre-
quency k for a specific neuron, with the red curve tracing the trajectory of the frequency that even-
tually dominates. In the left-hand plot, misalignment levels Dk

m are rescaled to [−π, π) for clarity.
Figure (b) plots the contour of the magnitude βk

m with various (βk
m(0),Dk

m(0)) after 10, 000 steps.

Figure 16b illustrates the uniformity of phases within a specific frequency group Nk by examining
the higher-order symmetry. In addition, the learned magnitudes are close to each other for the major-
ity of the neurons, and no single neuron dominates (see Figure 16c). While previous work, notably
Kumar et al. (2024), has introduced the concept of phase uniformity to provide a constructive model
that solves modular addition, our findings significantly refine the understanding. Through empirical
validation, we show that this phase uniformity is a consistent when M is large. Furthermore, in §4,
we derive and utilize a substantially weaker condition than strict uniformity to enable a more pre-
cise, joint analysis of noise cancellation across a diversified, finite set of neurons. Finally, we report
a surprising adaptivity in the learned parametrization: the network continues to perform perfectly
when ReLU is replaced with a broad class of alternative activations.

Observation 4 (Robustness to Activation Swapping). A model trained with ReLU is robust to
changes of activation function at inference time. This is because learning a good solution only
relies on the activation’s dominant even-order components. Consequently, functions with strong
even components, such as the absolute value and quadratic, can be used interchangeably after
training, all while maintaining perfect accuracy with a negligible change in loss.

Table 1 provides the empirical support. Hence, we can analyze the mechanism of the learned model
or, furthermore, the training dynamics using more analytically tractable activations.

3.1.1 DYNAMICAL PERSPECTIVE: PHASE ALIGNMENT AND FEATURE EMERGENCE

We conduct an analysis of training dynamics in an analytically tractable setting, using quadratic
activation with small random initialization, and focus on the early stages of training. Motivated by
Observation 1, our analysis hinges on studying the training dynamics within the frequency domain.
To do this, we use the Discrete Fourier Transform (DFT), which is formally discussed in §A.3,
to decompose the model’s parameters. Without loss of generality, any random initial parameter
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vector can be exactly represented by its frequency components—magnitudes (αk
m, β

k
m)’s and phases

(ϕkm, ψ
k
m)’s. This allows us to express the parameters as

θm[j] = α0
m+

(p−1)/2∑
k=1

αk
m ·cos(ωkj+ϕ

k
m), ξm[j] = β0

m+

(p−1)/2∑
k=1

βk
m ·cos(ωkj+ψ

k
m), ∀j ∈ [p], (3.2)

Note that, under small initialization, the neurons and frequencies are fully decoupled. This results
in the parallel growth of the magnitudes and phases for each neuron-frequency pair (m, k). The
central question is how the training process evolves this complex, multi-frequency initial state
into the simple, single-frequency pattern observed at the end of training. Our finding is surprising:

The final, dominant frequency learned by each neuron is entirely predictable from
a small subset of Fourier components in its initial parameters.

It arises from a competitive dynamics among frequencies, as illustrated in Figure 2a. A frequency’s
success is determined by its initial conditions, primarily two key factors: its initial magnitudes and
its initial phase misalignment level. To gain a more detailed understanding of the dynamics, we begin
by tracking the evolution of phases. Motivated by the double phase phenomenon in Observation 2,
we monitor the normalized phase difference Dk

m, defined as Dk
m = (2ϕkm−ψk

m) mod 2π ∈ [0, 2π).
In the left-hand side of Figure 2a, we plot the dynamics of this phase difference, rescaling its range
to (−π, π] for visual clarity. This analysis leads to the following observation.

Observation 5 (Phase-Aligning Dynamics). The phase difference Dk
m(t) for each frequency

converges monotonically to “zero” without crossing the axis. Generally, frequencies that start
with an initial phase difference Dk

m(0) closer to zero converge faster.

To formalize the closeness of phase difference to zero, we define the phase misalignment D̃k
m as

D̃k
m = max{Dk

m, 2π − Dk
m}. In the following, we outline the core dynamics of the training pro-

cess. It reveals that the single-frequency pattern in Observation 1 is the direct result of a frequency
competition, a process governed by the interplay of phase misalignment and magnitude.

Observation 6 (Lottery Ticket Mechanism). Under small initialization, neurons are decoupled.
Each frequency k draws a “lottery ticket” specified by its initial magnitudes αk

m(0), βk
m(0) and

its misalignment level D̃k
m(0). All frequencies grow in parallel, and the one with the largest

αk
m(0) and βk

m(0) and the smallest D̃k
m(0) ultimately wins—dominating the feature of specific

neuron—due to the rapid acceleration once magnitudes become larger and D̃k
m(t) reaches zero.

Figure 2a provides a clear empirical illustration of the mechanism. The winning frequency, high-
lighted in red, begins with a highly advantageous initialization—a competitively large magnitude
and a misalignment value close to zero. While other frequencies exhibit slow growth, the holder of
this winning ticket undergoes a distinct phase of rapid, exponential acceleration in its magnitude.
Figure 2b plots the magnitude under different initializations after a fixed time t = 10, verifying that
frequencies with a larger magnitude and a smaller misalignment take advantage.

3.2 GROKKING: FROM MEMORIZATION TO GENERALIZATION

In this section, we provide empirical insights into grokking by analyzing the model’s training dy-
namics using a progress measure designed based on our prior observations. Prior work, such as
Nanda et al. (2023), identifies two key factors for inducing grokking: a distinct train-test data split
and the application of weight decay. We randomly partition the entire dataset of p2 points, using a
training fraction of 0.75, and apply a weight decay of 1.0. As shown in Figure 3a, this elicits a clear
grokking: the training loss drops quickly to zero. In contrast, the test loss initially remains high be-
fore gradually decreasing, signaling a delayed generalization. We track four key progress measures:
(i) train-test loss and accuracy, to measure memorization and generalization; (ii) phase difference
| sin(D⋆

m)|, where D⋆
m := 2ϕ⋆m−ψ⋆

m mod 2π, to track layer-wise phase alignment; (iii) frequency
sparsity, measured by inverse participation ratio (IPR), defined as IPR(ν) = (∥ν∥2r/∥ν∥2)2r with
r = 2, to capture the single-frequency emergence of Fourier coefficients; and (iv) ℓ2-norm of pa-
rameter, which serves as a proxy for the effect of weight decay.
Building upon Figure 3, we identify two primary driving forces of the dynamics: loss minimization
and weight decay. These forces guide the training process through an initial memorization phase
followed by two generalization stages.
The memorization phase is dominated by loss minimization, causing the model to fit the training
data with its parameter norms increasing rapidly. As a result, the model achieves perfect accuracy
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(a) Train-test Loss. (b) Train-test Accuracy. (c) Phase Difference. (d) Norm & Freq. Sparsity.

Figure 3: Progress measure of grokking behavior. The shaded regions mark three distinct phases:
an initial memorization phase. Figures (a) and (b) plot the train-test loss and accuracy curve, where
the network first overfits the training data while the test loss remains high. Figure (c) visualizes the
dynamics of phase alignment level, measured by 1

m

∑M
m=1 | sin(D⋆

m)|. Figure (d) tracks the evolu-
tion of the average neuron-wise frequency sparsity level, as measured by the inverse participation
ratio (IPR) of the Fourier coefficients, alongside the ℓ2-norm of the parameter.

on the training data and their symmetric counterparts in the test set (due to the exchangability of the
two input numbers), but completely fails to generalize to truly “unseen” test points (see Figure 9).
At this phase, all the frequency components in one neuron keep growing but at different pace similar
to the lottery ticket mechanism described previously. Next, the model enters the first generalization
stage, which is characterized by a precise interplay between the two forces. We conclude that both
forces are active because the parameter norms continue to grow, which is a clear indicator of ongoing
loss minimization. At the same time, weight decay induces a sparsification effect in the frequency
domain. Specifically, the one frequency component that dominates in the lottery ticket mechanism
continues growing, while weight decay refines the learned sparse features by pruning the remaining
components, making it closer to the clean single-frequency solution for each neuron and causing
the test loss to drop sharply. This dynamic culminates in a turning point around step 10,000, which
marks the onset of the second and final generalization stage. From this point, weight decay becomes
the dominant force, slowly pushing the test accuracy toward a perfect score.

Common-to-Rare Memorization. Early in training, as training accuracy rises, test accuracy falls
from an initial 5% (due to small random initialization) to 0% (see Figure 3b). By Step 1000, when
training accuracy peaks, the first phase is evident: the model prioritizes memorizing common data,
specifically symmetric pairs where both (i, j) and its counterpart (j, i) are in the training set. This
intense focus comes at a cost, as the model actively suppresses performance on rare examples within
the same training set, driving their accuracy to zero. Only after mastering the common data does the
model shift its focus to the second phase: memorizing these rare examples that appear only once.
Please refer to §E.1 for a more detailed interpretation of grokking dynamics.

4 MECHANISTIC INTERPRETATION OF LEARNED MODEL

In this section, we first tackle the interpretability question in a slightly idealized setting, leveraging
the trigonometric patterns in Observations 1-3 and, motivated by Observation 4, adopting a quadratic
activation for analytical convenience. We show that the trained model effectively approximates an
indicator function via a majority-voting scheme within the Fourier space.

Single-Neuron Contribution and Majority Voting. Under the parametrization of (3.1) in Obser-
vation 1 and the phase-alignment condition 2ϕm − ψm = 0 mod 2π for all m in Observation 2, the
contribution of each neuron to the logit at dimension j ∈ [p] can be expressed as:

f [m](x, y; ξ, θ)[j] ∝ cos(ωφ(m)(x− y)/2)2 · {cos(ωφ(m)(x+ y − j))︸ ︷︷ ︸
primary signal

+ 2 cos(ωφ(m)j + 2ϕm) + cos(ωφ(m)(x+ y + j) + 4ϕm)}. (4.1)

Here, cos(ωk(x+ y− j)) provides the primary signal—its value peaks exactly at j = (x+ y) mod
p—while the remaining terms act as residual noise whose amplitude and sign depend on the chosen
frequency k, phase ϕm, and input pair (x, y). Similar results have also been reported in Gromov
(2023); Zhong et al. (2023); Nanda et al. (2023); Doshi et al. (2023).
Although each neuron’s contribution is biased by its own frequency-phase “view”, the network as a
whole can attain perfect accuracy via a majority-voting mechanism: every neuron votes based on its
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individual view, the model then aggregates these biased yet diverse votes to distill the correct answer.
Despite this intuitive diversification argument, two questions remain unanswered: (a) How should
we define “diversification”? (b) To what extent can the residual noise be canceled by aggregating
over a diverse set of frequency-phase pairs (φ(m), ϕm)?

Figure 4: Heatmap of the output logits
with quadratic activation.

Majority-Voting Approximates Indicator via Overpa-
rameterization. Motivated by Observation 3, when M is
sufficiently large, the model naturally learns completely di-
versified neurons: every frequency k is represented, and the
phases exhibit uniform symmetry. We formalize this below.
Definition 4.1. The neurons is called fully diversified if the
frequency-phase pairs {(φ(m), ϕm)}m∈[M ] satisfy the fol-
lowing properties: (i) for every frequency k ∈ [p−1

2 ], there
are exactly N neurons m with φ(m) = k, (ii) there exists a
constant a > 0 such that αmβ

2
m = a for all m ∈ [M ], and

(iii) for each k and ι ∈ {2, 4}, exp
(
i · ι

∑
m∈Nk

ϕm
)
= 0.

Definition 4.1 is primarily a formal restatement of Observa-
tion 3. In particular, condition (ii) follows from the homo-
geneous scaling of magnitudes, and condition (iii) captures
the high-order phase symmetry implied by the uniformity
within the frequency group. Condition (i) assumes an exact frequency balance—an idealization that
holds approximately under random initialization. We are now ready to present the interpretation of
learned model.
Proposition 4.2. Suppose that the neurons are completely diversified as per Definition 4.1. Under
the parametrization in (3.1) and the phase-alignment condition 2ϕm − ψm = 0 mod 2π for all
m ∈ [M ], the output logit at dimension j ∈ [p] takes the form:
f(x, y; ξ, θ)[j] =aN

2

{
−1 + p

21(x+ y mod p = j)︸ ︷︷ ︸
signal term

+p
4 (1(2x mod p = j)+1(2y mod p = j))︸ ︷︷ ︸

noise terms

}
.

For any ϵ ∈ (0, 1), by taking a ≳ (Np)−1 ·log(p/ϵ), we have ∥smax◦f(·, ·; ξ, θ)−emp(·,·)∥1,∞ ≤ ϵ.
Please refer to §F.1 for a detailed proof of Proposition 4.2. The proposition states that although
each neuron individually implements a trigonometric mechanism as shown in (4.1), the diversified
neurons indeed collectively approximate the indicator function 1(x + y mod p = j). As noted in
Zhong et al. (2023), the cos(ωφ(m)(x−y)/2)2 term in (4.1) is the Achilles’ heel of this strategy. We
show that even under complete diversification, it would still introduce spurious peaks at 2x mod p
and 2y mod p. However, from the above equation, we see that the true signal peak exceeds these
noise peaks by aNp/8. Hence, after the softmax operation, the model’s output would concentrate
on the correct sum x+ y mod p as long as the magnitude grows large enough during the training.

5 TRAINING DYNAMICS FOR FEATURE EMERGENCE

In this section, we provide a theoretical understanding of how features emerge during standard
gradient-based training. Unlike previous theoretical works that focused on loss landscape analysis
(e.g., Morwani et al., 2023), we offer a more complete view from the perspective of training dynam-
ics. To achieve this, we track the evolution of the model’s parameters directly in Fourier space.

5.1 A DYNAMICAL PERSPECTIVE ON FEATURE EMERGENCE

In the following, we provide a theoretical understanding of how the features—single-frequency and
phase alignment patterns, i.e, Observation 1 and 2, emerge during training. For theoretical con-
venience, we adopt the quadratic activation (Arous et al., 2025) and focus on the training over a
complete dataset Dfull, a familiar setting in prior work (e.g., Morwani et al., 2023; Tian, 2024).

Gradient Flow. Consider training a two-layer neural network as defined in (2.1) with one-hot
input embeddings, i.e., hx = ex ∈ Rp, parameterized by Θ = {ξ, θ}, and the loss ℓ is given by the
cross-entropy (CE) loss in (2.2), evaluated over the full dataset Dfull. When training the parameter Θ
using the gradient flow, the dynamics are governed by ∂tΘt = ∇ℓ(Θt). We consider gradient flow
under an initialization that satisfies the following conditions.
Assumption 5.1 (Initialization). For each neuron m ∈ [M ], the network parameters (ξm, θm) are
initialized as θm ∼ κinit ·

√
p/2 · (ϱ1[1] · b2k + ϱ1[2] · b2k+1) and ξm ∼ κinit ·

√
p/2 · (ϱ2[1] · b2k +

ϱ2[2] · b2k+1) where ϱ1, ϱ2
i.i.d.∼ Unif(S1), k ∼ Unif([p−1

2 ]) and κinit is sufficiently small.
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Assumption 5.1 posits that each neuron is initialized randomly but contains a single-frequency com-
ponent, all at the same small scale.This specialized initialization is adopted for theoretical conve-
nience, allowing us to sidestep the chaotic frequency competition and study the evolution of one
specific frequency. Specifically, the single-frequency pattern is sufficient to capture the overall
behavior as each frequency component evolves within its own orthogonal subspace. In §D.1, we
will extend to the case where each neuron is initialized with multiple frequencies.

Section Roadmap. With a slight abuse of notation, we let k⋆ denote the initial frequency of each
neuron (see Assumption 5.1) and use the superscript ⋆ instead of k⋆ to simplify the notation further.
In the following, we aim to show that (i) the single-frequency pattern, i.e., gm[j] = rm[j] = 0 for
all j ̸= 2k⋆, 2k⋆ + 1, is preserved throughout the gradient flow (see §5.1.1), and (ii) the phases of
the first and second layers will align such that 2ϕ⋆m(t)−ψ⋆

m(t) mod 2π converges to 0 (see §5.1.2).

5.1.1 PRESERVATION OF SINGLE-FREQUENCY PATTERN

Recall that the dynamics of the parameters are approximately given by ODEs in (A.2a) and (A.2b).
Note the constant frequency, i.e., gm[1] and rm[1], remains almost 0 due to the centralized essence:

∂tθm[j](t), ∂tξm[j](t) ∈ span({bτ}pτ=2), ∀j ∈ [p]. (5.1)

By definition, we can show that ∂tgm[1](t) = ⟨b1, ∂tθm(t)⟩ and ∂trm[1](t) = ⟨b1, ∂tξm(t)⟩. Given
the zero-initialization gm[1] = rm[1] = 0 (see Assumption 5.1), and utilizing (5.1), it follows that

∂tgm[1](t) ≈ ∂trm[1](t) ≈ 0 s.t. gm[1](t) ≈ rm[1](t) ≈ 0, (5.2)

throughout the first stage. Moreover, to establish frequency preservation, we track the magnitudes
of each frequency, i.e., {αk

m}k∈[(p−1)/2] and {βk
m}k∈[(p−1)/2]. Thanks to the orthogonality of the

Fourier basis, by applying the chain rule, for each frequency k, it holds that

∂tα
k
m(t) ≈ 2p · αk

m(t)βk
m(t) · cos

(
2ϕkm(t)− ψk

m(t)
)
, ∂tβ

k
m(t) ≈ p · αk

m(t)2 · cos
(
2ϕkm(t)− ψk

m(t)
)
,

where the evolution of the magnitudes for frequency k only depends on (αk
m, β

k
m, ϕ

k
m, ψ

k
m). Given

the initial value αk
m(0) = βk

m(0) = 0 for k ̸= k⋆ (see Assumption 5.1), we have

αk
m(t) ≈ βk

m(t) ≈ 0, ∀k ̸= k⋆. (5.3)

Recall that we define αk
m =

√
2/p·∥gkm∥ and βk

m =
√
2/p·∥rkm∥. By combining (5.2) and (5.3), we

can establish the preservation of single-frequency pattern (see Figure 13 for experimental results):

gm[j](t) ≈ rm[j](t) ≈ 0, ∀j ̸= 2k⋆, 2k⋆ + 1. (5.4)

Based on (5.4), by simple calculations, we have
∂tθm[j](t) ≈ 2p · α⋆

m(t) · β⋆
m(t) · cos(ω⋆j + ψ⋆

m(t)− ϕ⋆m(t)),

∂tξm[j](t) ≈ p · α⋆
m(t)2 · cos(ω⋆j + 2ϕ⋆m(t)).

(5.5)

For each neuron, its evolution can be approximately characterized by a four-particle dynamical
system consisting of magnitudes α⋆

m(t) and β⋆
m(t) and phases ϕ⋆m(t) and ψ⋆

m(t). We formalize the
result in (5.4) and the approximate arguments above into the following theorem.
Theorem 5.2 (Informal). Under the initialization in Assumption 5.1, for a given thresholdCend > 0,
we define the initial stage as (0, tinit], where tinit := inf{t : maxm∈[M ] ∥θm(t)∥∞ ∨ ∥ξm(t)∥∞ ≤
Cend}. Suppose that logM/M ≲ c−1/2 · (1 + o(1)), κinit = o(M−1/3) and Cend ≍ κinit, given
sufficiently small κinit, we have maxk ̸=k⋆ inft∈(0,tinit] α

k
m(t) ∨ βk

m(t) = o(κinit).

The formal statement and proof of Theorem 5.2 is provided in §F.4. The theorem states that under a
small random initialization, during the initial training stage, the non-feature frequencies, which are
initialized at zero, will not grow beyond o(κinit).

5.1.2 NEURON-WISE PHASE ALIGNMENT

We proceed to investigate the emergence of the phase alignment phenomenon. To build intuition,
we first consider a special stationary point ψ⋆

m = 2ϕ⋆m. According to the dynamics given by (5.5), it
is straightforward to observe the stationarity, as: ∂tθm[j](t) ∝ cos(ω⋆j + ϕ⋆m(t)) and ∂tξm[j](t) ∝
cos(ω⋆j + 2ϕ⋆m(t)). This implies that at the double-phase stationary point, θm[j](t) and ξm[j](t)
evolve in the same direction as themselves and cease to rotate. By applying the chain rule over (5.5),

∂t exp(iϕ
⋆
m(t)) ≈ 2p · β⋆

m(t) · sin
(
2ϕ⋆m(t)− ψ⋆

m(t)
)
· exp (i {ϕ⋆m(t)− π/2}) ,

∂t exp(iψ
⋆
m(t)) ≈ p · α⋆

m(t)2/β⋆
m(t) · sin

(
2ϕ⋆m(t)− ψ⋆

m(t)
)
· exp (i {ψ⋆

m(t) + π/2}) .
(5.6)
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π 0

sin(D⋆
m) ≥ 0

sin(D⋆
m) < 0

D⋆
m(t)

+(D⋆
m(t)− π

2
)

D⋆
m(t)

−(D⋆
m(t)− π

2
)

(a) Illustration of Phase Alignment Behavior. (b) Dynamics of Magnitudes and Phases for Neuronm.

Figure 5: Visualizations of the alignment behavior and neuron dynamics. Figure (a) illustrates the
dynamics of the normalized phase difference D⋆

m(t) given by (5.7). Initialized randomly on the unit
circle, the gradient flow will always drive D⋆

m(t) to 0, regardless of the initial half-space. Figure (b)
plots the dynamics of magnitudes and phases of the feature frequency for a specific neuron m.

Thus, phases ϕ⋆m and ψ⋆
m evolve in the opposite directions, with rotation speed primarily determined

by the magnitudes and misalignment level, quantified by | sin(2ϕ⋆m(t)−ψ⋆
m(t))|. This suggests that

2ϕ⋆m will eventually “meet” ψ⋆
m. To understand the dynamics of the alignment behavior, we track

D⋆
m(t) = 2ϕ⋆m(t)− ψ⋆

m(t) mod 2π ∈ [0, 2π). Using (5.6), the chain rule gives that

∂t exp(iD
⋆
m(t)) ≈

(
4β⋆

m(t)− α⋆
m(t)2/β⋆

m(t)
)
· p · sin

(
D⋆

m(t)
)
· exp (i{D⋆

m(t)− π/2}) . (5.7)

Notably, though {0, π, 2π} are all stationary points of (5.7), the evolution of D⋆
m(t) is consistently

directed toward 0. This is due to the sign of sin(D⋆
m(t)), which adaptively ensures ∂t exp(iD⋆

m(t))
converges only to zero (see Figure 5a). Thus, we can establish the phase alignment behavior below:

2ϕ⋆m(t)− ψ⋆
m(t) mod 2π → 0 when t→ ∞.

Magnitude Remains Small after Alignment. Note the above analysis hinges on the parameter
scale being sufficiently small.To complete the argument, it remains to show that α⋆

m(t) and β⋆
m(t)

remain small even after the phase is well-aligned.
Under the initialization specified in Assumption 5.1, we can establish the following relationship:

sin(D⋆
m(t)) = sin(D⋆

m(0)) · {R⋆
m(t) · (2R⋆

m(t)2 − 1)}−1, where R⋆
m(t) := β⋆

m(t)/κinit.

This implies that when misalignment level sin(D⋆
m(t)) reaches a small threshold δ > 0, the ra-

tio R⋆
m(t) is bounded by {sin(D⋆

m(0))/δ}1/3. Thus, since α⋆
m(t) ≍ β⋆

m(t), when the neuron is
well-aligned, the parameter scales remain on the same order as at initialization. This aligns with
experimental results in Figure 5b. We summarize these findings in the theorem below.
Theorem 5.3 (Informal). Consider the main flow dynamics under the initialization in Assumption
5.1. For any initial misalignment D⋆

m(0) ∈ [0, 2π) and small tolerance level δ ∈ (0, 1), the minimal
time tδ required for the phase to align such that |D⋆

m(t)| ≤ δ satisfies that

tδ ≍ (pκinit)
−1 ·

(
1− {sin(D⋆

m(0))/δ}−1/3 +max{π/2− |D⋆
m(0)− π|, 0}

)
,

and the magnitude at this time is given by β⋆
m(tδ) ≍ κinit · {sin(D⋆

m(0))/δ}1/3. Moreover, in the
mean-field regime m → ∞, let ρt = Law

(
ϕ⋆m(t), ψ⋆

m(t)
)

for all t ∈ R+ and let λ denote the
uniform law on (0, 2π]. Then, ρ0 = λ⊗ λ and ρ∞ = T#λ, where T : φ 7→ (φ, 2φ) mod 2π.

Theorem 5.3 provides two key insights. First, it establishes that the convergence time depends on (i)
the initial misalignment level, (ii) the extent to which D⋆

m(0) deviates from the intermediate stage
for D⋆

m(0) ∈
(
π
2 ,

3π
2

)
, and (iii) the initialization scale κinit and modulus p. Second, the theorem

provides a theoretical justification for phase symmetry (Observation 3) in the mean-field regime.
For the formal theorem, a proof sketch, and the complete proof, see Theorem F.7, §F.3.1, and §F.5.

Theoretical Extensions. In §D, we extend the results from §5 to two more general scenarios: lot-
tery mechanism under multi-frequency initialization in §D.1 and the dynamics with ReLU activation
in §D.2 based on the preliminary result above.
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A BACKGROUNDS AND SUPPLEMENTARY RESULTS

A.1 ADDITIONAL FIGURES AND TABLES
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Figure 6: An illustration of the primary analytical technique and results. Discrete Fourier Transform
(DFT) is utilized to quantitatively interpret the mechanism of learned models within the feature
space, revealing the training dynamics that provably result in consistent feature learning.

(a) Heatmap of Learned Parameters. (b) Actual Learned and Fitted Parameters of Each Neuron.

Figure 7: Learned parameters under the full random initialization with p = 23 and ReLU activation
using AdamW. Figure (a) plots a heatmap of the learned parameters for the top 10 neurons after
Discrete Fourier Transform (DFT, see §A.3). Each row in the heatmap corresponds to the Fourier
components of a single neuron’s parameters. The plot clearly reveals a single-frequency pattern:
each neuron exhibits a large, non-zero value focused on only one specific frequency component,
confirming a highly sparse and specialized frequency encoding. Figure (b) further examines the
periodicity by plotting line plots of the learned parameters for three neurons, each overlaid with a
trigonometric curve fitted via DFT. The fitted curve aligns almost perfectly with the actual one.

σ(x) max{x, 0} |x| x2 x4 x8 log(1 + e2x) ex x x3 x5 x7

Loss 1.194× 10−8 0.000 0.000 3.1× 10−5 0.051 1.2× 10−3 6.5× 10−4 4.246 3.891 3.611 3.413
Acc. 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.041 0.036 0.032 0.026

Table 1: loss and accuracy of a model trained with ReLU activation, then tested the same architec-
ture with different activation functions replacing ReLU. As shown in the table, activations such as
absolute function, even-order polynomials, and exponential function achieve perfect accuracy.
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A.2 NOTATION AND FURTHER RELATED WORKS

Notation. For n ∈ N+, let [n] = {i ∈ Z : 1 ≤ i ≤ n}. Let Zp denote the set of integers modulo
p. The ℓp-norm is denoted by ∥ · ∥p. For a vector ν ∈ Rd, its i-th entry is denoted by υ[i] The
softmax operator, smax(·), maps a vector to a probability distribution, where the i-th component is
given by smax(υ)i = exp(υi)/

∑
j exp(υj). For two non-negative functions f(x) and g(x) defined

on x ∈ R+, we write f(x) ≲ g(x) or f(x) as O(g(x)) if there exists two constants c > 0 such
that f(x) ≤ c · g(x), and write f(x) ≳ g(x) or f(x) if there exists two constants c > 0 such that
f(x) ≥ c · g(x). We write f(x) ≍ g(x) or f(x) = Θ(g(x)) if f(x) ≲ g(x) and g(x) ≲ f(x).
In the following, we discuss the additional related works in detail, which complements the discussion
in §1.1.

Training Dynamics of Neural Networks. To understand how neural networks perform feature
learning, a significant body of work has analyzed the training dynamics of neural networks under
gradient-based optimization. This research typically focuses on settings where the target function
exhibits a low-dimensional structure, such as single-index (Ba et al., 2022; Lee et al., 2024; Berthier
et al., 2024; Chen et al., 2025) and multi-index models (Damian et al., 2022; Arnaboldi et al., 2024;
Ren et al., 2025). Furthermore, Allen-Zhu & Li (2019); Shi et al. (2022; 2023) have considered
more general cases, analyzing function classes that encode latent features.

Theoretical Interpretation of Modular Addition. Theoretical understanding of this modular ad-
dition task, however, remains incomplete. Morwani et al. (2023) characterized the loss landscape
under the max-margin framework using a non-standard ℓ2,3-regularization. Tian (2024) further ana-
lyzed the landscape of a modified ℓ2-loss within the Fourier space, generalized these results to data
with semi-ring structures on Abelian groups, and provided a heuristic derivation for the mean-field
dynamics of frequencies. Recently, Wang & Wang (2025) formalized and extended these mean-field
results by analyzing the Wasserstein gradient flow under a geometric equivariance constraint. While
Tian (2024) and Wang & Wang (2025) provide a characterization of a simpler, mean-field dynamics,
a full analytical result explaining the alignment and competition dynamics at the finite, neuron-wise
level remains an open problem. A different approach studies grokking modular arithmetic via the
average gradient outer product for backpropagation-free models (Mallinar et al., 2024). Another line
of research focuses on grokking dynamics and frames it as a two-phase process, transitioning from
an initial lazy (kernel) regime to a later rich (feature) regime (Kumar et al., 2024; Lyu et al., 2023;
Mohamadi et al., 2024; ?), which are broadly related to our work.
Furthermore, to compare with the existing results in depth, we further compare with the closely
related works at a technical level in §B.

A.3 TECHNICAL BACKGROUND: DISCRETE FOURIER TRANSFORM AND NOTATIONS

Motivated by empirical observations in §3, it is natural to apply the Fourier transform to model
parameters and to track the evolution of the Fourier coefficients throughout the training process.
This allows us to investigate how these Fourier features are learned. We begin by defining the
Fourier basis matrix over Zp by Bp = [b1, . . . , bp] ∈ Rp×p, where each column is given by

b1 =
1p√
p
, b2k =

√
2

p
· [cos(ωk), . . . , cos(ωkp)], b2k+1 =

√
2

p
· [sin(ωk), . . . , sin(ωkp)],

where wk = 2kπ/p for all k ∈ [p−1
2 ]1. We then project the model parameters, ξm’s and θm’s,

onto this basis. This change of basis is equivalent to applying the Discrete Fourier Transform (DFT,
Sundararajan, 2001), yielding the Fourier coefficients:

gm = B⊤
p θm, rm = B⊤

p ξm, ∀m ∈ [M ].

To better interpret these coefficients, we group the sine and cosine components for each frequency
k and reparameterize them by their magnitude and phase. Let gkm = (gm[2k], gm[2k + 1]) and
rkm = (rm[2k], rm[2k + 1]) denote the coefficient vector in correspondence to frequency k. Their
magnitudes (αk

m, β
k
m) and phases (ϕkm, ψ

k
m) are defined as

αk
m =

√
2

p
· ∥gkm∥, ϕkm = atan(gkm), βk

m =

√
2

p
· ∥rkm∥, ψk

m = atan(rkm).

Here, atan(x) = atan2(−x[2], x[1]) where atan2 : R × R 7→ (−π, π] is the 2-argument arc-
tangent. This polar representation is intuitive, as it directly relates the coefficients to a phase-shifted
cosine, e.g., gm[2k] · b2k[j] + gm[2k + 1] · b2k+1[j] = αk

m · cos(wkj + ϕkm). By setting constant
coefficients as α0

m = gm[1]/
√
p and β0

m = rm[1]/
√
p, we can recover the expanded form in (3.2).

1We choose p as a prime number greater than 2 to simplify the analysis.
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A.4 PROPERTIES AT THE INITIAL STAGE

Given a sufficiently small initialization in Assumption 5.1, a key property at the initial stage is that
the parameter magnitudes remain small, resulting in the softmax output being nearly uniform over.
Formally, ∥θm∥∞ and ∥ξm∥∞ are small such that the following equality holds approximately:

smax ◦ f(x, y; ξ, θ) ≈ 1

p
· 1p. (A.1)

While (A.1) suggests that the neural network behaves as a poorly performing uniform predictor at
the initial stage due to the small parameter magnitudes, this does not imply that the model learns
nothing. Instead, the model can learn the ”feature direction” of the data under the guidance of the
gradient. In what follows, we examine the key components of the gradient and define the time
threshold tinit to ensure all parameters remain within a small scale.

Neuron Decoupling. We first show that the neurons are decoupled at the initial stage, meaning
the evolution of parameters θm and ξm depends solely on (θm, ξm)—the parameters of neuron m
itself—by using the approximation in (A.1). To establish this, we compute the gradient and simplify
it using periodicity. We derive that the gradient flow for each neuron m ∈ [M ] at the initial stage
admits the following simplified form: for each entry j ∈ [p], we have

∂tθm[j](t) ≈ 2p ·
(p−1)/2∑

k=1

αk
m(t) · βk

m(t) · cos(ωkj + ψk
m(t)− ϕkm(t))

+ 2p · β0
m(t) ·

(p−1)/2∑
k=1

αk
m · cos(ωkj + ϕkm(t)), (A.2a)

∂tξm[j](t) ≈ p ·
(p−1)/2∑

k=1

αk
m(t)2 · cos(ωkj + 2ϕkm(t)). (A.2b)

Here, we use the Fourier expansion of parameters θm(t) and ξm(t) as given in (3.2). Fol-
lowing this, we can see that the dynamics, i.e., ∂tθm(t) and ∂tξm(t), only depends on
{(αk

m, β
k
m, ϕ

k
m, ψ

k
m)}k∈[(p−1)/2] and rm[1] that corresponds to neuron m. This demonstrates a de-

coupled evolution among neurons. Hence, in the remaining section, we can focus on a fixed neuron
m. Similar decoupling technique with a similar small output scale is also seen in Lee et al. (2024);
Chen et al. (2025) for ℓ2-loss.

Remark A.1 (Equivalence to Margin Maximization under Small Initialization). Notice that the
module task is a multi-class classification problem. To understand the feature emergence, Mor-
wani et al. (2023) considers an average margin maximization problem, where the margin is defined
by

max
ξ,θ

ℓAM(ξ, θ) with ℓAM(ξ, θ) =
∑
x∈Zp

∑
y∈Zp

{
f(x, y; ξ, θ)[(x+ y) mod p]− 1

p

∑
j∈Zp

f(x, y; ξ, θ)[j]

}
.

In comparison, given the small scale of parameters during the initial stage, we can show that, similar
to the approximation in (A.1), the loss takes the approximate form:

ℓ(ξ, θ) = −
∑
x∈Zp

∑
y∈Zp

f(x, y; ξ, θ)[(x+ y) mod p] +
∑
x∈Zp

∑
y∈Zp

log

( p∑
j=1

exp(f(x, y; ξ, θ)[j])

)

≈ −
∑
x∈Zp

∑
y∈Zp

f(x, y; ξ, θ)[(x+ y) mod p] +
1

p

∑
x∈Zp

∑
y∈Zp

p∑
j=1

f(x, y; ξ, θ)[j]

︸ ︷︷ ︸
= −ℓAM(ξ, θ)

+p2 log p,

where we use the first-order approximations exp(x) ≈ 1 + x and log(1 + x) ≈ x for small x.
Following this, we observe that during the initial stage, minimizing the loss in (2.2) is equivalent to
optimizing the average margin. This connection underpins the theoretical insights in Morwani et al.
(2023), which links the margin maximization problem to empirical observations.
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B COMPARISON WITH EXISTING RESULTS

Our work is closely related to that of Tian (2024) and Wang & Wang (2025), who studied a two-
layer network for learning group multiplication on an Abelian group, which is a generalization of
the standard modular addition task. For theoretical convenience, they adopt a modified ℓ2-loss to
mitigate noisy interactions induced by the constant frequency. Let P⊥

1 = I − 1
p11

⊤ denote the
mean-zero projection, then the loss is defined as

ℓ̃(ξ, θ) = −
∑
x∈Zp

∑
y∈Zp

∥∥∥P⊥
1

(
1/2p · f(x, y; ξ, θ)− e(x+y) mod p

)∥∥∥2, (B.1)

where the output of the network is normalized by 1/2p within loss calculation. Unlike (B.1), we
show that minimizing a standard CE loss with a small initialization naturally decouples the dynamics
of each frequency (see Theorem 5.2), with the constant frequency having a zero gradient throughout
training and therefore remaining zero under zero-constant initialization (see Corollary D.1).

Notation Clarifications. We begin by explaining the notation used in Tian (2024). In their anal-
ysis, the (modified) complex Fourier coefficients of the weights are given by zqkm ∈ C, where the
indices q ∈ {ξ, θ}, m ∈ [M ] and k ∈ [p− 1] ∪ {0} correspond to the layer, neuron, and frequency,
respectively. This complex representation is equivalent to the real-valued cosine-sine pairs used in
our DFT definition in §A.3. Specifically, for all k ≤ (p− 1)/2, we can show that

zθkm = αk
m/

√
2 · exp(iϕkm), zξkm = βk

m/
√
2 · exp(−iψk

m).

By the conjugate symmetry of the DFT coefficients, our single real component at frequency k
determines the complex coefficients for both k and p − k. Therefore, for the higher frequencies
(p+ 1)/2 ≤ k ≤ p, the relationship is given by

zθkm = z̄θ(p−k)m = αk
m/

√
2 · exp(−iϕkm), zξkm = z̄ξ(p−k)m = βk

m/
√
2 · exp(iψk

m),

which completes the one-to-one correspondence between our basis and the one used by Tian (2024).

Loss Landscape within Fourier Domain. Tian (2024) expresses the loss ℓ̃ from (B.1) in the
Fourier domain using {zqkm}. In Theorem 1, they show that the loss ℓ̃ decouples into per-frequency
terms ℓ̃ = p−1 ·

∑
k ̸=0 ℓ̃k + (p − 1)/p, where ℓ̃k is a quadratic polynomial whose variables

{ρk1k2k}k1,k2∈[p−1] are third-order monomials of the Fourier coefficients. Formally, we have

ℓ̃k = poly
(
{ρk1k2k}k1,k2∈[p−1]

)
, where ρk1k2k =

M∑
m=1

zθk1mzθk2mzξkm. (B.2)

Mean-Field Gradient Dynamics. Building on their analysis of the loss, Theorem 7 in Tian (2024)
presents a heuristic result for the gradient dynamics. By considering a simplified setting with a
truncated loss polynomial from (B.2), a symmetric Gaussian initialization, and the mean-field limit
M → ∞, they show that

∂tρk1k2k(t) = 2 · ζk1k2k(t) · {1(k1 = k2 = k)− ρk1k2k(t)}, (B.3)

where ζk1k2k(t) is a term of constant order along the training. The solution to the ODE in (B.3)
provides a more high-level theoretical basis for the emergence of the key structural properties we
identified in our work. Consider the case k1 = k2 = k, we have

ρkkk(t) =

M∑
m=1

z2θkm(t) · zξkm(t) ∝
M∑

m=1

αk
m(t)2 · βk

m(t) · exp(i{ψk
m(t)− 2ϕkm(t)}) t→∞−→ 1.

For this to hold, the imaginary part of ρkkk(t) should converge to 0:

ℑ(ρkkk(t)) ∝
M∑

m=1

αk
m(t)2 · βk

m(t) · sin(ψk
m(t)− 2ϕkm(t))

t→∞−→ 0.

This convergence is a direct consequence of the phase alignment dynamic (2ϕkm(t) − ψk
m(t)) mod

2π → 0 as revealed in §5.1.2. Moreover, if we consider k1, k2 ̸= k, then we have

ρk1k2k(t) ∝
M∑

m=1

αk1
m (t) · αk2

m (t) · βk
m(t) · exp(i{ψk

m(t)− ϕk1
m (t)− ϕk2

m (t)}) t→∞−→ 0.
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A sufficient condition for this is that the product of amplitudes αk1
m (t) · αk2

m (t) · βk
m(t) goes to zero

for all m ∈ [M ]. This corresponds precisely to the single-frequency sparsity we observed in §D.1.
Beyond these, Tian (2024) also discussed data with a general algebraic structure and its relationship
with properties of global optimizers. Recently, Wang & Wang (2025) formalized these mean-field
dynamics by modeling the network’s parameters as a continuous distribution. This approach allows
the training process to be rigorously described as a Wasserstein gradient flow on the measure space.

C CONCLUSION

In this paper, we provide an end-to-end reverse engineering of how two-layer neural networks learn
modular addition, from training dynamics to the final learned model. First, we show that trained
networks implement a majority-voting algorithm in the Fourier domain through phase alignment
and model symmetry. Second, we explain how these features emerge from a lottery-like mechanism
where frequencies compete within each neuron, with the winner determined by initial magnitude
and phase misalignment. Third, we characterize grokking as a three-stage process where weight
decay prunes non-feature frequencies, transforming a perturbed Fourier representation into a clean,
generalizable solution. These findings offer insights into the dynamics of feature learning in neural
networks, a mechanism that may extend to more general tasks.

D THEORETICAL EXTENSIONS

In this section, we extend the results from §5 to two more general scenarios: lottery mechanism
under multi-frequency initialization in §D.1 and the dynamics with ReLU activation in §D.2.

D.1 THEORETICAL UNDERPINNING OF LOTTERY TICKET MECHANISM

To understand why a single frequency pattern emerges from a random, multi-frequency initialization
(Observation 1), we can analyze the training dynamics for each frequency within a specific neuron.
The ODEs capture the dynamics of competition in (D.1), which are fully derived in §5.1.

∂tα
0
m(t) ≈ ∂tβ

0
m(t) ≈ 0,

∂tα
k
m(t) ≈ 2p · αk

m(t) · βk
m(t) · cos(Dk

m(t)), ∂tβ
k
m(t) ≈ p · αk

m(t)2 · cos(Dk
m(t)),

∂tD
k
m(t) ≈ −

(
4βk

m(t)− αk
m(t)2/βk

m(t)
)
· p · sin(Dk

m(t)), ∀k ̸= 0.

(D.1)

A key insight from these equations is that the dynamics are fully decoupled. The evolution of
each frequency is self-contained, proceeding orthogonally without cross-frequency interaction. This
structural independence establishes the competitive environment required for the lottery ticket mech-
anism. The ODEs also reveal a powerful reinforcing dynamic: the growth rate, proportional to the
alignment term cos(Dk

m(t)), is amplified by the magnitudes This creates a ”larger-grows-faster”
positive feedback loop that drives the winner’s dominance.
As introduced in §3.1.1, this process is not chaotic but is instead a predictable competition governed
by a ”Lottery Ticket Mechanism”. Applying an ODE comparison lemma (Smith, 1995), we can
compare the evolution of frequency magnitudes based on their initial conditions. This allows us
to formally prove that the ”lottery ticket” drawn at initialization determines which frequency will
ultimately dominate. We formalize the results into the following corollary.
Corollary D.1 (Informal). Consider a multi-frequency initialization akin to Assumption 5.1. For a
given dominance level ε ∈ (0, 1) and fixed neuron m, let tε be the minimal time required for the
winning frequency k⋆ to dominate all others, such that maxk ̸=k⋆ βk

m(t)/β⋆
m(t) ≤ ε. Then, we have

k⋆ = min
k

D̃k
m(0), tε ≲

π2p−(2c+3)

κinit
+

(c+ 1) log p+ log 1
1−ε

pκinit · {1− 2c2π2 · (log p/p)2}
,

where the bound holds under mild conditions and with a high probability of at least 1− Θ̃(p−c).

The proof is deferred to §G.1. Corollary D.1 formalizes our Lottery Ticket Mechanism in Obser-
vation 6. It states that under a multi-frequency random initialization where all frequencies start
with identical magnitudes, the frequency with the smallest initial misalignment D̃⋆

m will inevitably
dominate. This dominance occurs rapidly, on a timescale of Õ

(
log p
pκinit

)
.

D.2 DYNAMICS BEYOND QUADRATIC ACTIVATION

Thus far, we have focused on quadratic activation for more precise interpretation. However, ex-
perimental results indicate that quadratic activation is not essential or can be even problematic. In
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(a) Heatmaps of parameters after discrete Fourier transform for the
first 20 neurons with ReLU activation at the intial stage.

(b) Dynamics of magnitude and phase
for Neuron m with ReLU activation.

Figure 8: Learned feature and dynamics of parameters initialized at Assumption 5.1 with p = 23
and ReLU activation. Figure (a) shows heatmaps of the parameters after DFT at initialization and at
the end of the initial stage. Similar to the quadratic activation (see Figure 13), the single-frequency
pattern is approximately maintained, with small values emerging at frequencies “3k⋆”, “5k⋆” for
θm, and “2k⋆”, “3k⋆” for ξm. Figure (b) plots the dynamics of a specific neuron m. Here, the phase
quickly aligns, i.e., ψ⋆

m ≈ 2ϕ⋆m, and the magnitudes α⋆
m and β⋆

m grow rapidly and synchronously.

practice, quadratic activation often leads to unstable training and inconsistent feature learning when
training from scratch.2 In contrast, ReLU activation consistently leads to the emergence of desired
features, as shown in §3. In this section, we investigate the training dynamics of ReLU activation.

Training Dynamics of ReLU Activation. In parallel, we adopt an experimental setup identical to
that of Figure 13 using the single-frequency initialization specified in Assumption 5.1, with the only
modification being the replacement of quadratic activation with ReLU activation. The experimental
results are shown in Figure 8, and the key observation is summarized below.

Observation 7 (ReLU Leakage). For ReLU activation, although each neuron is initialized with
a single frequency k⋆, such a pattern is preserved approximately with small leakage, with small
values emerging at other frequencies. For θm, the values emerges at frequencies “3k⋆”, “5k⋆” and
higher odd multiples, with magnitudes decaying gradually. For ξm, these appear at “2k⋆”, “3k⋆”,
and others, which also exhibit decay with increasing multiplicative factors.

As shown in Observation 5, ReLU mostly preserves the single-frequency pattern but still exhibits
small leakage at other frequencies. For instance, in Figure 8a, Neuron 3 is initialized with dominant
frequency 1. After 30,000 training steps, small values emerge at frequencies 3 and 5 in θm, and at 2
and 3 in ξm. In what follows, we first formalize the multiplicative relationship among frequencies.

Definition D.2. Given k, τ ∈ [p−1
2 ], we say frequency τ is r-fold multiple of k under modulo p if

τ = rk mod p or p− τ = rk mod p for some r ∈ [p−1
2 ], denoted by τ

p
= rk.

Now we are ready to present the main proposition for training dynamics of ReLU activation.
Proposition D.3. Consider gradient update with respect to the decoupled loss ℓm and assume that
(θm, ξm) satisfying (3.1). Let ∆k

υ =
√

⟨∇υℓm, b2k⟩2 + ⟨∇υℓm, b2k+1⟩2 denote the incremental
scale for frequency k ∈ [p−1

2 ]. Under the asymptotic regime where p→ ∞, it holds that

(i) ∆k
θm
/∆⋆

θm
= Θ(r−2

k ) and ∆k
ξm
/∆⋆

ξm
= Θ(r−2

k ) · 1(r is odd), where k
p
= rkk

⋆;
(ii) P

∥
k⋆∇υℓm ∝ υ for υ ∈ {θm, ξm} when ψm = 2ϕm mod p, P

∥
k = I −

∑
j≥1,j ̸=2k⋆,2k⋆+1 bjb

⊤
j .

See §G.2 for a detailed proof. Proposition D.3 indicates that, starting from a single-frequency point,
the dynamics with respect to ReLU dynamics approximately preserve such a pattern. Specifically,

2The failure of the quadratic activation stems from the significant disparity in growth rates among neurons
due to the nature of the quadratic function. Specifically, a few neurons with more well-aligned initial phases
grow faster in magnitude and come to dominate the output, leaving an insufficient number of neurons to support
diversification (see §4). This issue can be mitigated using techniques such as normalized GD (Cortés, 2006).
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the gradient components at non-feature frequencies k decay at a rate of Θ(r−2
k ) compared with

k⋆. If we exclude the small gradient components at other frequencies k ̸= k⋆—by projecting ∇υℓm
onto the subspace spanned by b2k⋆ , and b2k⋆+1—the resulting stationary point of the ReLU dynamic
system remains ψm = 2ϕm mod p, thereby explaining the convergence of aligned phases.

E ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

E.1 DETAILED INTERPRETATION OF GROKKING DYNAMICS IN SECTION 3.2

Inverse Participation Ratio (IPR). To quantitatively characterize the concentration of Fourier
coefficients at a specific frequency k, or equivalently, the sparsity level of the learned parameters in
the Fourier domain, we introduce the inverse participation ratio (IPR). This metric, originally used
in physics as a localization measure (Kramer & MacKinnon, 1993), was recently adopted in Doshi
et al. (2023) as a progress measure to understand the generalization behavior in machine learning.
Specifically, given ν ∈ Rd, the IPR is defined as IPR(ν) = (∥ν∥2r/∥ν∥2)2r for some integer r > 1.
We calculate the IPR for all {θm}m∈[M ] and {ξm}m∈[M ], and take the average.

Definition of Progress Measure. Here, we provide a formal definition of the progress measure for
grokking used in Figure 3, which is defined over the model output and parameters θm’s and ξm’s.

- Loss : ℓD = −
∑

(x,y)∈D

〈
log ◦smax ◦ f(x, y; ξ, θ), e(x+y) mod p

〉
- Accuracy : AccD =

1

|D|
∑

(x,y)∈D

1
{
argmax

(
smax ◦ f(x, y; ξ, θ)

)
= (x+ y) mod p

}

- IPR : IPRθ,ξ =
1

2M

M∑
m=1

(
∥B⊤

p θm∥4
∥B⊤

p θm∥2

)4

+
1

2M

M∑
m=1

(
∥B⊤

p ξm∥4
∥B⊤

p ξm∥2

)4

- ℓ2-norm : ℓ2-normθ,ξ =
1

2M

M∑
m=1

(∥θm∥2 + ∥ξm∥2)

Three-Phase Dynamics of Grokking. As discussed in §3.2, the grokking process is governed by
the interplay between two primary forces: loss minimization and weight decay. The dynamics unfold
across three major phases: an initial memorization stage dominated by the loss gradient, followed by
two distinct generalization stages where the balance between these forces shifts. Below, we provide
a more detailed account of each phase by examining our key progress measures.

Figure 9: Heatmaps of trained model from Figure 3 at the end of the memorization stage. The left
panel displays the data distribution: dark blue entries represent training data, light blue entries are
test data whose symmetric counterparts are in the training set, and white entries (outlined in red)
are the remaining held-out test data. The middle panel shows the model’s accuracy, demonstrating
that it has perfectly memorized all training data and their symmetric variants but completely fails to
generalize to the held-out data. Finally, the right panel visualizes the model’s post-softmax output
on the correct answer for each data point, further confirming the accuracy results.

- Phase I: Memorization. Initially, the network quickly memorizes the training data, reaching
100% accuracy. Test accuracy also improves to around 70%, aided by the model’s symmetric
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Figure 10: Data distribution during the memorization stage. The first panel illustrates the data
partitioning, which, unlike in Figure 9, uses the following scheme: white entries denote test data,
dark blue entries represent common (symmetric) training data, and light blue entries (outlined in
red) denote rare (asymmetric) training data. The remaining three plots track the model’s accuracy,
demonstrating a two-stage memorization scheme. At initialization, the model performs at a low,
chance-level accuracy. However, after approximately 1000 steps, it masters the common symmetric
training data, but its performance on rare asymmetric data drops to zero, overwriting any initially
correct random predictions. By the end of the memorization stage, the model finally memorizes
these rare data points, achieving 100% training accuracy

Figure 11: Heatmaps of parameters after applying discrete Fourier transform along training epoches
for the first 20 neurons with p = 23 under train-test split setup. At the end of the memorization stage
(step 2200), a single-frequency pattern has started to emerge, accompanied by noisy perturbations in
other frequencies. This initial ”perturbed Fourier solution” is subsequently refined, as weight decay
prunes the noisy, non-feature frequencies to reveal the final, clean pattern.

architecture. Figure 9 provide clear empirical evidence for this perfect memorization. The model
achieves flawless accuracy and high confidence on the training data (dark blue entries) and test
data whose symmetric counterparts were part of the training set (light blue entries). Note that
the model completely fails on the truly ”unseen” held-out test data (white entries outlined in red),
confirming it has learned to exploit symmetry rather than achieving true generalization at this
stage. During this time, feature frequencies become roughly aligned (see Figure 3c) and their
sparsity increases significantly (see Figure 3d). While these dynamics resemble a full-data setup,
the incomplete data yields a perturbed Fourier solution that overfits the training set.

- Phase II: Loss-Driven Norm Growth with Rapid Feature Cleanup. After reaching perfect
training accuracy, the model’s parameters continue evolving to further reduce the loss. Instead of
naively amplifying parameter magnitudes, weight decay actively steers their direction. As shown
in Figure 3d, the dynamic is thus a balancing act: the loss gradient pushes to scale up parameters,
while weight decay prunes unnecessary frequencies to decelerate the growth of norm.
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- Phase III: Slow Cleanup Driven Solely by Weight Decay. By the end of Phase II, training loss
is near-zero and test accuracy approaches 100%. Thus, in the final stage, the diminished loss
gradient allows weight decay to dominate, causing the parameter norm to decrease (see Figure
3d). Without the main driving force of the loss, this final “cleanup” phase is extremely slow (see
Figure 3b), during which test accuracy gradually converges to 100%.

E.2 ABLATIONS STUDIES FOR FULLY-DIVERSIFIED PARAMETRIZATION

In this section, we present comprehensive ablation studies investigating the efficiency of the fully
diversified parametrization as defined in Definition 4.1. We evaluate the models based on the CE
loss defined in Equation 2.2 while maintaining a fixed, equivalent computational budget.

PART I: FREQUENCY DIVERSITY ABLATION.

Loss 1 Freqs 2 Freqs 4 Freqs 8 Freqs Full Freqs

Avg. 1.64 6.02× 10−1 2.88× 10−2 2.99× 10−8 7.41× 10−15

Std. 2.01× 10−2 8.79× 10−2 1.55× 10−2 1.07× 10−7 −
PART II: PHASE DIVERSITY ABLATION.

[0, 0.4π) [0, 0.8π) [0, 1.2π) [0, 1.6π) [0, 2π)

Loss 4.82 2.00× 10−3 1.19× 10−9 3.54× 10−7 7.41× 10−15

Table 2: Performance of the predictor under different ablation configurations. For the frequency ab-
lation study, the average and standard deviation of the loss are reported across all possible combina-
tions of frequencies of the specified size |K|. The results show that the fully diversified parametriza-
tion achieves the lowest CE loss, confirming its maximum efficiency under the fixed constraints of
model scale αmβ

2
m = 1 and neuron budget M = 128.

All predictors share a fixed neuron constraint M = 128 and scale αmβ
2
m = 1 for all m ∈ [M ]. The

ablation is performed across two distinct dimensions of the diversification strategy:

• Ablation of Frequency Diversification. We examine the impact of restricting the number of
learned frequencies. We use only a subset of frequencies K ⊆ [p−1

2 ] with |K| = {1, 2, 4, 8}. The
phases for each selected frequency k are kept uniformly distributed over [0, 2π).

• Ablation of Phase Uniformity. We investigate the effect of restricting the range of the phase
distribution. The model utilizes the full set of frequencies, but the phase for each frequency is
uniformly distributed over a restricted interval [0, ιπ) with ι ∈ {0.4, 0.8, 1.2, 1.6}.

The ablation study results in Table 2 confirm that full frequency and phase diversification is essential
for maximizing parametrization efficiency under fixed constraints. Part I shows that the CE loss
decreases rapidly as the number of frequencies increases, dropping from 1.64 at |K| = 1 to 7.41 ×
10−15 for the full frequency set, underscoring the critical role of spectral richness. Part II reveals
that restricting the phase distribution range significantly degrades performance. For instance, the
loss is 4.82 for [0, 0.4π) but achieves the minimum of 7.41× 10−15 only when the phases span the
full [0, 2π) interval. These findings collectively validate that the fully diversified parametrization
achieves the maximum efficiency. Visually, this maximum efficiency is confirmed in Figure 12,
where the fully diversified parametrization generates the highest confidence prediction by creating
the largest logit gap between the ground truth label and all incorrect alternatives. Please refer to
Figure 12 for visualizations of model outputs under different ablation configurations.

E.3 TRAINING DYNAMICS WITH QUADRATIC ACTIVATION

To under the training dynamics with quadratic activation, we set p = 23 and use a two-layer neural
network with widthM = 512. The network is trained using SGD optimizer with step size η = 10−4,
initialized under Assumption 5.1 with initial scale κinit = 0.02.
As shown in Figure 13, a single-frequency pattern is preserved throughout the training process.
This empirical result aligns with our theoretical findings in Theorem 5.2, which states that under a
sufficiently small initialization, the single-frequency structure will remain stable during the initial
stage of training. In other words, the neurons are fully decoupled and the main flow dominates.
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Figure 12: Output logits for the predictor under different ablation configurations, evaluated across
four distinct query points (x, y). The true prediction label is indicated by the dashed vertical line
in each panel. The fully diversified parametrization yields the largest logit gap between the ground
truth and incorrect labels, signifying maximal prediction confidence.

Figure 13: Heatmaps of parameters after applying discrete Fourier transform along training epoches
for the first 20 neurons initialized under Assumption 5.1 with p = 23 and quadratic activation. At
the initial stage, these neurons preserve the single-frequency pattern by evolving only the Fourier
coefficients corresponding to the initial frequency k⋆, while keeping the others 0 throughout.

F PROOF OF RESULTS IN SECTION 4 AND 5

F.1 PROOF OF PROPOSITION 4.2

We first introduce a useful lemma about the softmax operation.
Lemma F.1. Let ν ∈ Rd. If i∗ = argmaxi νi and νi∗ − νi ≥ τ for all i ̸= i∗, then

∥smax(ν)− ei∗∥1 ≤ d− 1

exp(τ) + (d− 1)
.

Proof of Lemma F.1. See Lemma 3.6 in Chen & Li (2024) for a detailed proof.

Now we are ready to present the proof of Proposition 4.2.
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Proof of Proposition 4.2. Let f [m] be the logit contributed by neuron m, and fix j ∈ [p]. Under the
parametrization in (3.1) and the phase-alignment condition 2ϕm − ψm = 0 mod 2π, we have

f [m](x, y; ξ, θ)[j]

= αmβ
2
m · cos(ωφ(m)j + 2ϕm) ·

(
cos(ωφ(m)x+ ϕm) + cos(ωφ(m)y + ϕm)

)2
= 2a · cos(ωφ(m)(x− y)/2)2 · cos(ωφ(m)j + 2ϕm) · {1 + cos(ωφ(m)(x+ y) + 2ϕm)}
= a · cos(ωφ(m)(x− y)/2)2 · {2 cos(ωφ(m)j + 2ϕm)

+ cos(ωφ(m)(x+ y − j)) + cos(ωφ(m)(x+ y + j) + 4ϕm)},
where the second equality uses the homogeneous scaling, i.e., condition (ii) in Definition 4.1. Next,
summing over all neurons in the frequency-group Nk, gives∑

m∈Nk

f [m](x, y; ξ, θ)[j]

= a · cos(ωk(x− y)/2)2 ·N · cos(ωk(x+ y − j))︸ ︷︷ ︸
condition (i): |Nk| = N

+ a · cos(ωk(x− y)/2)2 ·
∑

m∈Nk

{
2 cos(ωkj + 2ϕm) + cos(ωk(x+ y + j) + 4ϕm)

}
︸ ︷︷ ︸

= 0 due to condition (iii)
= aN/2 · cos(ωk(x+ y − j)) + aN/4 · {cos(ωk(2x− j)) + cos(ωk(2y − j))}, (F.1)

where the second equality follows from the balanced-frequency and the high-order phase-symmetry
conditions (i) and (iii) in Definition 4.1. Summing (F.1) over all frequency k yields

f(x, y; ξ, θ)[j] =

(p−1)/2∑
k=1

∑
m∈Nk

f [m](x, y; ξ, θ)[j]

= aN/2 ·
(p−1)/2∑

k=1

cos(ωk(x+ y − j))

+ aN/4 ·
{ (p−1)/2∑

k=1

cos(ωk(2x− j)) +

(p−1)/2∑
k=1

cos(ωk(2y − j))

}
. (F.2)

By symmetry, for any fixed z ∈ N,
∑(p−1)/2

k=1 cos(ωkz) = (p − 1)/2 if z = 0 mod p else −1/2.
Then,

(p−1)/2∑
k=1

cos(ωkz) = −1

2
+
p

2
· 1(z mod p = 0). (F.3)

Thus, by combining (F.2) and (F.3), we can conclude that

f(x, y; ξ, θ)[j] = aN/2 ·
{
− 1 + p/2 · 1(x+ y mod p = j) + p/4 ·

∑
z∈{x,y}

1(2z mod p = j)
}
, ∀j ∈ [p].

Note that when x ̸= y, the true-signal logit at j = (x+ y) mod p exceeds all others by aNp/8, and
when x = y, the margin is even larger. Applying Lemma F.1 yields

∥smax ◦ f(x, y; ξ, θ)− e(x+y) mod p∥1 ≤ p− 1

exp(aNp/8) + p− 1
≤ p · exp(−aNp/8).

Hence, to achieve error ϵ, it suffices to choose a ≳ (Np)−1 · log(p/ϵ), which completes the proof.

F.2 PRELIMINARY: GRADIENT COMPUTATION

Recall the logit of the two-layer neural network in (2.1) takes the form:

f(x, y) := f(x, y; ξ, θ) =

M∑
m=1

ξm · σ(⟨ex + ey, θm⟩) ∈ Rp. (F.4)
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For theoretical analysis, we consider the training dynamics over the full dataset Dfull = {(x, y, z) |
x, y ∈ Zp, z = (x+ y) mod p} and the corresponding CE loss, defined in (2.2), can be written as

ℓ := ℓ(ξ, θ;D∗) = −
∑
x∈Zp

∑
y∈Zp

〈
log ◦smax ◦ f(x, y; ξ, θ), e(x+y) mod p

〉
= −

∑
x∈Zp

∑
y∈Zp

log

(
exp(f(x, y)[(x+ y) mod p])∑p

j=1 exp(f(x, y)[j])

)

= −
∑
x∈Zp

∑
y∈Zp

f(x, y)[(x+ y) mod p]

︸ ︷︷ ︸
:= ℓ̃

+
∑
x∈Zp

∑
y∈Zp

log

( p∑
j=1

exp(f(x, y)[j])

)
︸ ︷︷ ︸

:= ℓ̄

.

(F.5)

Following the loss decomposition in (F.5), we compute the gradients of these two parts respectively.
Recall that the two-layer neural network is parametrized by ξ = {ξm}m∈[M ] and θ = {θm}m∈[M ]

with ξm, θm ∈ Rp. By substituting the form of f in (F.4) into ℓ̃ and ℓ̄, we have

ℓ̃ = −
∑
x∈Zp

∑
y∈Zp

M∑
m=1

ξm[(x+ y) mod p] · σ(⟨ex + ey, θm⟩),

ℓ̄ =
∑
x∈Zp

∑
y∈Zp

log

(
p∑

j=1

exp

( M∑
m=1

ξm[j] · σ(⟨ex + ey, θm⟩)
))

.

Fix a neuron m ∈ [M ]. First, we calculate the gradients for ℓ̃. By direct calculation, we have

∇ξm ℓ̃ = −
∑
x∈Zp

∑
y∈Zp

e(x+y) mod p · σ(⟨ex + ey, θm⟩).

Following this, the entry-wise derivative with respect to ξm[j] satisfies that

∂ℓ̃

∂ξm[j]
= −

∑
x,y∈Zp:(x+y) mod p=j

σ(⟨ex + ey, θm⟩) := −
∑

(x,y)∈Sp
j

σ(⟨ex + ey, θm⟩). (F.6)

Here, we define Sp
j = {x, y ∈ Zp : (x+ y) mod p = j} for notational simplicity. Similarly, we can

compute the gradient with respect to θm, following that

∇θm ℓ̃ = −
∑
x∈Zp

∑
y∈Zp

ξm[(x+ y) mod p] · (ex + ey) · σ′(⟨ex + ey, θm⟩)

= −2
∑
x∈Zp

ex ·
∑
y∈Zp

ξm[(x+ y) mod p] · σ′(⟨ex + ey, θm⟩),

where the last equality uses the symmetry of x and y. Hence, the entry-wise derivative follows

∂ℓ̃

∂θm[j]
= −2

∑
x∈Zp

ξm[mp(x, j)] · σ′(⟨ex + ej , θm⟩), (F.7)

where we re-index x = j and y → x to simplify the form. Next, we compute the gradients for ℓ̄.
Following a similar argument in (F.7) and (F.6), based on the chain rule, it holds that

∂ℓ̄

∂ξm[j]
=
∑
x∈Zp

∑
y∈Zp

exp
(∑M

m=1 ξm[j] · σ(⟨ex + ey, θm⟩)
)∑p

i=1 exp
(∑M

m=1 ξm[i] · σ(⟨ex + ey, θm⟩)
) · σ(⟨ex + ey, θm⟩). (F.8)

In addition, by direct calculation, we can obtain that

∂ℓ̄

∂θm[j]
= 2

∑
x∈Zp

p∑
τ=1

exp
(∑M

m=1 ξm[τ ] · σ(⟨ex + ej , θm⟩)
)∑p

i=1 exp
(∑M

m=1 ξm[i] · σ(⟨ex + ej , θm⟩)
) · ξm[τ ]

· σ′(⟨ex + ej , θm⟩), (F.9)

where the last equality results from re-indexing x = j, y → x, and j → i. Throughout the section,
we consider quadratic activation σ(x) = x2 for theoretical convenience.
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F.3 MAIN FLOW APPROXIMATION UNDER SMALL PARAMETER SCALING

The key property used in Stage I is that the scale of parameters is relatively small due to the small
initialization and sufficiently small constant a. Following this, we have the approximation below:(
smax◦f(x, y; ξ, θ)

)
[j] =

exp
(∑M

m=1 ξm[j] · ⟨ex + ey, θm⟩2
)∑p

i=1 exp
(∑M

m=1 ξm[i] · ⟨ex + ey, θm⟩2
) ≈ 1

p
, ∀j ∈ [p]. (F.10)

To formalize the approximation above, we introduce the following approximation error terms:

Err
(1)
m,j =

∑
x∈Zp

∑
y∈Zp

(
exp

(∑M
m=1 ξm[j] · ⟨ex + ey, θm⟩2

)∑p
i=1 exp

(∑M
m=1 ξm[i] · ⟨ex + ey, θm⟩2

) − 1

p

)
· ⟨ex + ey, θm⟩2,

Err
(2)
m,j = 2

∑
x∈Zp

p∑
τ=1

(
exp

(∑M
m=1 ξm[τ ] · ⟨ex + ej , θm⟩2

)∑p
i=1 exp

(∑M
m=1 ξm[i] · ⟨ex + ej , θm⟩2

) − 1

p

)
· ξm[τ ] · ⟨ex + ey, θm⟩,

for all (j,m) ∈ [p]× [M ]. The approximation result is formalized in the following lemma.
Lemma F.2. Denote ∥θ∥∞ = maxm ∥θm∥∞ and ∥ξ∥∞ = maxm] ∥ξm∥∞. For all (j,m) ∈ [p] ×
[M ], the approximation error is upper bounded by

|Err(1)m,j | ∨ |Err(2)m,j | ≤ 8p · ∥θm∥∞ ·max{∥ξm∥∞, ∥θm∥∞} · (exp(8M · ∥ξ∥∞ · ∥θ∥2∞)− 1).

Proof of Lemma F.2. Let sj(x, y) =
∑M

m=1 ξm[j] · ⟨ex + ey, θm⟩2 denote the score given by the
neural network for the j-th entry. Then, for fixed (x, y), the softmax vector for j-th entry is given by
p(x, y)[j] = exp(s(x, y)[j])/

∑p
i=1 exp(s(x, y)[i]). Note that, for any (m, j) ∈ [M ]× [p], we have

|Err(1)m,j | =
∑
x∈Zp

∑
y∈Zp

(
p(x, y)[j]− 1

p

)
·⟨ex + ey, θm⟩2

≤ 4p2 · max
(x,y)∈Z2

p

∣∣∣∣p(x, y)[j]− 1

p

∣∣∣∣ · ∥θm∥2∞. (F.11)

Let ∆x,y = maxj∈[p] s(x, y)[j]−minj∈[p] s(x, y)[j] > 0 for any (x, y) ∈ Z2
p. It is straightforward

to see that ∆x,y can be effectively bounded by the scales of θm’s and ξm’s, following that

∆x,y ≤ 2

∥∥∥∥∥
M∑

m=1

ξm[j] · ⟨ex + ey, θm⟩2
∥∥∥∥∥
∞

≤ 8M · ∥ξ∥∞ · ∥θ∥2∞, ∀(x, y) ∈ Z2
p. (F.12)

Following this, we upper bound the difference between the softmax-induced distribution and the
uniform distribution using the small-scale score vector. By simple algebra, we can show that

max
j∈[p]

∣∣∣∣p(x, y)[j]− 1

p

∣∣∣∣ ≤ max
j∈[p]

∣∣∣∣p(x, y)[j]− 1

p

∣∣∣∣∨min
j∈[p]

∣∣∣∣p(x, y)[j]− 1

p

∣∣∣∣
≤
∣∣∣∣ 1

1 + (p− 1) · exp(−∆x,y)
− 1

p

∣∣∣∣∨ ∣∣∣∣ 1

1 + (p− 1) · exp(∆x,y)
− 1

p

∣∣∣∣
=
p− 1

p
·
{

exp(∆x,y)− 1

exp(∆x,y) + p− 1

∨ 1− exp(−∆x,y)

exp(−∆x,y) + p− 1

}
≤ 1

p
· (exp(∆x,y)− 1) ·max {exp(−∆x,y), 1}

≤ 1

p
· (exp(∆x,y)− 1). (F.13)

By combining (F.11), (F.12) and (F.13), we can reach the conclusion that

|Err(1)m,j | ≤ 4p · ∥θm∥2∞ · (exp(8M · ∥ξ∥∞ · ∥θ∥2∞)− 1).

Building upon a similar argument, it holds that

|Err(2)m,j | = 2
∑
x∈Zp

p∑
τ=1

∣∣∣∣p(x, j)[τ ]− 1

p

∣∣∣∣ · ξm[τ ] · ⟨ex + ey, θm⟩

≤ 8p · ∥θm∥∞ · ∥ξm∥∞ · (exp(8M · ∥ξ∥∞ · ∥θ∥2∞)− 1).

Hence, we complete the proof of bounded approximation error.
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Lemma F.2 formalizes a key technical tool for analyzing the dynamics during the initial stage: given
small-scale parameters θm’s and ξm’s, and a specified small constant a ∈ R (introduced for technical
convenience), the softmax components in the gradient can be effectively approximated by a uniform
vector, with a controllable and small approximation error.
In the following sections, we denote Err(1)m = (Err

(1)
m,j)j∈[p] ∈ Rp and Err(2)m = (Err

(2)
m,j)j∈[p] ∈ Rp

for notational simplicity and we remark that the error vectors would vary along the grdient flow.

F.3.1 PROOF OVERVIEW: SIMPLIFIED DYNAMICS UNDER APPROXIMATION

Before delving into the technical details, we provide a brief summary of the approximate dynamics
of parameters and their transformations along gradient flow in Table 3. This overview characterizes
the training during the initial phase, when parameter magnitudes are small. We use ≈ to highlight
the central flow, omitting the perturbations introduced by approximation errors as defined in (F.10).
The simplification of the approximate dynamics leverages two key features that arise under the
specialized initialization in Assumption 5.1: neuron-wise decoupled loss landscape—meaning the
evolution of each neuron depends only on itself—and preservation of a single-frequency structure—
i.e., the parameters exhibit only one frequency component in the Fourier domain. These properties
hold during the early stage of training. Refer to §5.1 for a detailed illustration and proof sketch.
With slight abuse of notation, we let k⋆ denote the initial frequency of each neuron and we use the
superscript ⋆ instead of k⋆ to simplify the notation in Table 3.

Roadmap. In Part I, we present the dynamics of parameters—{θm}m∈[M ] and {ξm}m∈[M ] with
calculation details provided in §F.3.2 and §F.4. In Part II, building on the results from §F.4, we shift
focus to the dynamics of the discrete Fourier coefficients, defined in §A.3, to better understand the
evolution of parameters in the Fourier domain. Finally, based on the results in Part I and Part II, we
analyze the dynamics of the magnitudes and phases of the Fourier signals (see §A.3 for definitions),
to interpret the alignment behavior between θm and ξm, and the detailed derivations are provided in
§F.5. The auxiliary equalities naturally arise from the definition of discrete Fourier coefficients and
their transformations.

PART I: DYNAMICS OF ORIGINAL PARAMETERS.

θm[j](t) ∂tθm[j](t) ≈ 2p · α⋆
m(t) · β⋆

m(t) · cos(ωkj + ψ⋆
m(t)− ϕ⋆

m(t))

ξm[j](t) ∂tξm[j](t) ≈ p · α⋆
m(t)2 · cos(ωk⋆j + 2ϕ⋆

m(t))

PART II: DYNAMICS OF DICRETE FOURIER COEFFICIENTS.

gm[2k⋆](t) ∂tgm[2k⋆](t) ≈
√
2 · p3/2 · α⋆

m(t) · β⋆
m(t) · cos

(
ψ⋆

m(t)− ϕ⋆
m(t)

)
gm[2k⋆ + 1](t) ∂tgm[2k⋆ + 1](t) ≈ −

√
2 · p3/2 · α⋆

m(t) · β⋆
m(t) · sin

(
ψ⋆

m(t)− ϕ⋆
m(t)

)
rm[2k⋆](t) ∂trm[2k⋆](t) ≈ p3/2/

√
2 · α⋆

m(t)2 · cos
(
2ϕ⋆

m(t)
)

rm[2k⋆ + 1](t) ∂trm[2k⋆ + 1](t) ≈ −p3/2/
√
2 · α⋆

m(t)2 · sin
(
2ϕ⋆

m(t)
)

PART III: DYNAMICS OF MAGNITUDES AND PHASES.

α⋆
m(t) ∂tα

⋆
m(t) ≈ 2p · α⋆

m(t) · β⋆
m(t) · cos

(
2ϕ⋆

m(t)− ψ⋆
m(t)

)
β⋆
m(t) ∂tβ

⋆
m(t) ≈ p · α⋆

m(t)2 · cos
(
2ϕ⋆

m(t)− ψ⋆
m(t)

)
ϕ⋆
m(t) ∂t exp(iϕ

⋆
m(t)) ≈ 2p · β⋆

m(t) · sin
(
2ϕ⋆

m(t)− ψ⋆
m(t)

)
· exp (i {ϕ⋆

m(t)− π/2})

ψ⋆
m(t) ∂t exp(iψ

⋆
m(t)) ≈ p · α⋆

m(t)2

β⋆
m(t)

· sin
(
2ϕ⋆

m(t)− ψ⋆
m(t)

)
· exp (i {ψ⋆

m(t) + π/2})

D⋆
m(t)1 ∂t exp(iD

⋆
m(t)) ≈ p ·

(
4β⋆

m(t) +
α⋆
m(t)2

β⋆
m(t)

)
· sin(D⋆

m(t)) · exp (i {D⋆
m(t)− π/2})

PART IV: AUXILIARY EQUALITIES.

cos(ϕ⋆
m(t)) =

√
2/p · gm[2k⋆](t)/α∗

m(t), sin(ϕ⋆
m(t)) = −

√
2/p · gm[2k⋆ + 1](t)/α∗

m(t),

cos(ψ⋆
m(t)) =

√
2/p · rm[2k⋆](t)/β∗

m(t), sin(ψ⋆
m(t)) = −

√
2/p · rm[2k⋆ + 1](t)/β∗

m(t).

1 We use D⋆
m(t) denote the phase misalignment level defined as D⋆

m(t) = 2ϕ⋆
m(t)− ψ⋆

m(t) mod 2π.

Table 3: Summarization of the approximate dynamics during the initial stage. Please refer to §F.3.2,
§F.4 and §F.5 for formalized arguments and detailed derivations.
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F.3.2 PROOF OF LEMMA F.3: MAIN FLOW OF DECOUPLED NEURONS

Lemma F.3 (Main Flow). Consider the discrete Fourier coefficients, as well as the signal magni-
tudes and phases, defined over {θm}m∈[M ] and {ξm}m∈[M ] (see §A.3 for definitions). Then, at each
time t ∈ R+ and m ∈ [M ], the gradient dynamics takes the following form:

∂tξm[j](t) = p ·
(p−1)/2∑

k=1

αk
m(t)2 · cos(ωkj + 2ϕkm(t))− Err

(1)
m,j(t),

∂tθm[j](t) = 2p ·
(p−1)/2∑

k=1

αk
m(t) · βk

m(t) · cos(ωkj + ψk
m(t)− ϕkm(t))

+ 2p · β0
m(t) ·

(p−1)/2∑
k=1

αk
m · cos(ωkj + ϕkm(t))− Err

(2)
m,j(t),

where the approximation errors Err(1)m,j(t) and Err
(2)
m,j(t) are defined in §F.3

Lemma F.3 indicates that the dynamics of θm(t)’s and ξm(t)’s only depend on θm(t) and ξm(t) such
that the neurons are almost fully decoupled with small approximation errors.

Proof of Lemma F.3. Consider a fixed neuron m. By combining the gradient computations in (F.6)
and (F.8), we can write the complete form of derivative of loss ℓ with respect to ξm[j] as

∂ℓ

∂ξm[j]
=

∂ℓ̃

∂ξm[j]
+

∂ℓ̄

∂ξm[j]

= −
∑

(x,y)∈Sp
j

σ(⟨ex + ey, θm⟩) + 1

p
·
∑
x∈Zp

∑
y∈Zp

σ(⟨ex + ey, θm⟩) + Err
(1)
m,j . (F.14)

Similarly, by combining (F.7) and (F.9), we have the derivative of ℓ with respect to θm[j]:

∂ℓ

∂θm[j]
=

∂ℓ̃

∂θm[j]
+

∂ℓ̄

∂θm[j]
= −2

∑
x∈Zp

ξm[mp(x, j)] · σ′(⟨ex + ej , θm⟩)

+
2

p
·
∑
x∈Zp

p∑
τ=1

ξm[τ ] · σ′(⟨ex + ej , θm⟩) + Err
(2)
m,j . (F.15)

Motivated by Lemma F.3, we focus on the dominant terms of the gradient and carefully manage the
error terms to characterize the central flow that determines the main dynamics in the initial stage.

Step 1: Deriving Gradient of ξm. By switching from the standard canonical basis to the Fourier
basis, we can write θm using a form of discrete Fourier expansion, as shown in (3.2). Then, we have∑

(x,y)∈Sp
j

σ(⟨ex + ey, θm⟩) =
∑

(x,y)∈Sp
j

(
2α0

m +

(p−1)/2∑
k=1

αk
m

∑
z∈{x,y}

cos(ωkz + ϕkm)

)2

= 4p · (α0
m)2 +

(p−1)/2∑
k=1

(αk
m)2 · (i) +

∑
1≤k ̸=τ≤(p−1)/2

αk
mα

τ
m · (ii)

+ 2α0
m ·

(p−1)/2∑
k=1

αk
m · (iii). (F.16)

where we denote each term as

(i) =
∑

(x,y)∈Sp
j

( ∑
z∈{x,y}

cos(ωkz + ϕkm)

)2

,

(ii) =
∑

(x,y)∈Sp
j

∑
z∈{x,y}

cos(ωkz + ϕkm) ·
∑

z∈{x,y}

cos(ωτz + ϕτm),

(iii) =
∑

(x,y)∈Sp
j

∑
z∈{x,y}

cos(ωkz + ϕkm).
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In the following, we compute (i), (ii) and (iii) respectively using trigonometric identities and the
periodicity of the module addition task over the full space Z2

p. First, note that

(i) = 2
∑
x∈Zp

cos(ωkx+ ϕkm)2 + 2
∑

(x,y)∈Sp
j

cos(ωkx+ ϕkm) · cos(ωky + ϕkm)

= p+
∑
x∈Zp

cos(ω2kx+ 2ϕkm) +
∑

(x,y)∈Sp
j

cos(ωk(x+ y) + 2ϕkm) +
∑

(x,y)∈Sp
j

cos(ωk(x− y))

= p · (1 + cos(ωkj + 2ϕkm)), (F.17)

where the last equality uses the fact that
∑

(x,y)∈Sp
j
cos(ωk(x − y)) =

∑
x∈Zp

cos(ωkx) = 0 and

cos(ωk(x+ y) + 2ϕkm) = cos(ωkj + 2ϕkm) for all (x, y) ∈ Sp
j . Similarly, we have

(ii) = 2
∑
x∈Zp

cos(ωkx+ ϕkm) · cos(ωτx+ ϕτm) + 2
∑

(x,y)∈Sp
j

cos(ωkx+ ϕkm) · cos(ωτy + ϕτm)

=
∑

(x,y)∈Sp
j

cos((ωkx+ ωτy) + ϕkm + ϕτm) +
∑

(x,y)∈Sp
j

cos((ωkx− ωτy) + ϕkm − ϕτm)

+
∑
x∈Zp

cos((ωk + ωτ )x+ ϕkm + ϕτm) +
∑
x∈Zp

cos((ωk − ωτ )x+ ϕkm − ϕτm) = 0, (F.18)

where we use
∑

(x,y)∈Sp
j
cos((ωkx+ωτy)+ϕ

k
m+ϕτm) =

∑
x∈Zp

cos((ωk−ωτ )+ωτ j+ϕ
k
m+ϕτm)

in the last inequality for the first term and a similar arguent for the second one. In addition, it is easy
to show that (iii) = 2

∑
x∈Zp

cos(ωkx+ ϕkm) = 0. By combining (F.16), (F.17), (F.18), we have

∑
(x,y)∈Sp

j

σ(⟨ex + ey, θm⟩) = 4p · (α0
m)2 + p ·

(p−1)/2∑
k=1

(αk
m)2 · (1 + cos(ωkj + 2ϕkm)).

Following this, based on (F.14), the simplified derivative of each entry takes the form

∂ℓ

∂ξm[j]
− Err

(1)
m,j = −

∑
(x,y)∈Sp

j

σ(⟨ex + ey, θm⟩) + 1

p
·

p∑
j=1

∑
(x,y)∈Sp

j

σ(⟨ex + ey, θm⟩)

= −p ·
(p−1)/2∑

k=1

(αk
m)2 · cos(ωkj + 2ϕkm), ∀j ∈ [p].

Step 2: Deriving Gradient of θm. Next, we calculate the gradient of θm, following a procedure
analogous to the one in Step 1. To begin, we consider the expression:∑

x∈Zp

ξm[mp(x, j)] · σ′(⟨ex + ej , θm⟩) = 2
∑
x∈Zp

ξm[mp(x, j)] · θm[x]

︸ ︷︷ ︸
(iv)

+2 θm[j] ·
∑
x∈Zp

ξm[x]

︸ ︷︷ ︸
(v)

.

(F.19)

Term (iv) can be decomposed and simplified using the fourier expansions of ξm and θm in (3.2). By
carefully applying cosine product identities and rearranging the terms, we have

(iv) =
∑
x∈Zp

(
β0
m +

(p−1)/2∑
k=1

βk
m · cos(ωk ·mp(x, j) + ψk

m)

)
·

(
α0
m +

(p−1)/2∑
k=1

αk
m · cos(ωkx+ ϕkm)

)

= p · α0
m · β0

m +

(p−1)/2∑
k=1

αk
mβ

k
m · (iv.1) + α0

m ·
(p−1)/2∑

k=1

βk
m · (iv.2)

+
∑

1≤k ̸=τ≤(p−1)/2

αk
mβ

τ
m · (iv.3) + β0

m ·
(p−1)/2∑

k=1

αk
m · (iv.4).
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where we denote each term as

(iv.1) =
∑
x∈Zp

cos(ωk ·mp(x, j) + ψk
m) · cos(ωkx+ ϕkm), (iv.2) =

∑
x∈Zp

cos(ωk ·mp(x, j) + ψk
m),

(iv.3) =
∑
x∈Zp

cos(ωτ ·mp(x, j) + ϕτm) · cos(ωkx+ ψk
m), (iv.4) =

∑
x∈Zp

cos(ωk ·mp(x, j) + ϕkm).

Analogous to (F.17) and (F.18), using the trigonometric identities and periodicity of the module
addition task, we have (iv.2) = (iv.3) = (iv.4) = 0, and for the first term we can show that

(iv.1) =
∑
x∈Zp

cos(ωk ·mp(x, j) + ψk
m) · cos(ωkx+ ϕkm) = p · cos(ωkj + ψk

m − ϕkm).

By combining the arguments above, we can conclude that

(iv) = p · α0
m · β0

m + p

(p−1)/2∑
k=1

αk
mβ

k
m · cos(ωkj + ψk

m − ϕkm). (F.20)

Besides, by substituting the fourier expansions of ξm into (v), it holds that

(v) = θm[j] ·
∑
x∈Zp

(
β0
m +

(p−1)/2∑
k=1

βk
m · cos(ωkx+ ψk

m)

)

= p · θm[j] · β0
m = p · β0

m ·

(
α0
m +

(p−1)/2∑
k=1

αk
m · cos(ωkj + ϕkm)

)
. (F.21)

By combining (F.19), (F.20), (F.21) and substituting them back into (F.15), by simple calculation,
we can show that constant frequencies are canceled and we have

∂ℓ

∂θm[j]
− Err

(2)
m,j = −2

∑
x∈Zp

ξm[mp(x, j)] · σ′(⟨ex + ej , θm⟩) + 2

p
·
∑
x∈Zp

p∑
τ=1

ξm[τ ] · σ′(⟨ex + ej , θm⟩)

= −2p ·
(p−1)/2∑

k=1

αk
mβ

k
m · cos(ωkj + ψk

m − ϕkm)

− 2p · β0
m ·

(p−1)/2∑
k=1

αk
m · cos(ωkj + ϕkm), ∀j ∈ [p].

Recall that the gradient flow is defined as ∂tΘ(t) = −∇ℓ(Θ(t)). Following this, we have ∂tθm(t) =
−∇θmℓ and ∂tξm(t) = −∇ξmℓ for all m ∈ [M ]. Then, by combining Step 1 and Step 2 and using
the definition of gradient flow, we complete the proof.

F.4 PROOF OF THEOREM 5.2: SINGLE-FREQUENCY PRESERVATION

Theorem F.4 (Formal Statement of Theorem 5.2). Let the model be initialized according to As-
sumption 5.1 with a scale κinit > 0. For a given threshold Cend > 0, we define the initial stage as
the time interval (0, tinit], where tinit is the first hit time:

tinit := inf{t ∈ R+ : max
m∈[M ]

∥θm(t)∥∞ ∨ ∥ξm(t)∥∞ ≤ Cend}. (F.22)

Suppose the following conditions hold: (i) logM/M ≲ c−1/2 · (1 + o(1)), κinit = o(M−1/3)
and Cend = Θ(κinit), and (ii) scale κinit is sufficiently small such that the event Ephase = {∃m ∈
[M ] s.t. cos(2ϕ⋆m(t)−ψ⋆

m(t)) ≥ 1−c·(M−1 logM)2, ∀t ∈ (0, tinit]} holds with probability greater
than 1 − M−c for some constant c > 0. Then, we have maxk ̸=k⋆ inft∈(0,tinit] α

k
m(t) ∨ βk

m(t) =
o(κinit).

In Theorem F.4, the initial time interval (0, tinit) is defined by imposing that the parameters remain
substantially small, upper bounded by Cend as stated in (F.22). Ephase assumes during the initial
stage, there exists at least one well-aligned neuron whose phase difference 2ϕ⋆m(t) − ψ⋆

m(t) has a
uniformly lower-bounded cosine value. This should hold with high probability under the random
initialization in Assumption 5.1, jointly resulting from the concentration (see Lemma F.6) and the
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consistent decrease of phase difference for well-initialized neurons when κinit 7→ 0 (see Lemma
F.9). Since the difference between the real dynamics for θm(t), ξm(t) and the central flow can be
bounded by some error uniformly over t ∈ (0, tinit], where the error is a monotone function with
respect to κinit, and the real dynamics for ϕ⋆m(t), ψ⋆

m(t) is a continuous function of the real dynamics
for θm(t), ξm(t), this claim holds.

Proof of Theorem F.4. Based on Lemma F.2 and (F.22), throughout the training, we can uniformly
upper bound the approximation errors by

sup
t∈(0,tinit)

max
m,j

|Err(1)m,j(t)| ∨ |Err(2)m,j(t)|

≤ 8p · sup
t∈(0,tinit)

max
m

∥θm(t)∥∞ ·max{∥ξm(t)∥∞, ∥θm(t)∥∞} · (exp(8M · ∥ξ(t)∥∞ · ∥θ(t)∥2∞)− 1)

≲Mp · C5
end, (F.23)

where the last inequality uses exp(x) − 1 ≲ x for x ∈ [0, 1] and (F.22) implies 8M · ∥ξ(t)∥∞ ·
∥θ(t)∥2∞ ≤ 1 for all t ∈ (0, tinit) under the scaling that MC3

end ≍Mκ3init ≪ 1. In the following, we
show that the evolution of non-feature frequencies is governed by the bounded error terms, and the
feature coefficient can grow rapidly even when perturbed by noise.

Step 1: Derive the Dynamics with Approximation Errors. Consider a fixed neuron m. By
applying the chain rule, we have ∂tgm(t) = B⊤

p ∂tθm(t) and ∂trm(t) = B⊤
p ∂tξm(t) such that

∂tgm[j](t) = ⟨bj , ∂tθm(t)⟩, ∂trm[j](t) = ⟨bj , ∂tξm(t)⟩, ∀j ∈ [p].

Hence, the time derivatives of constant frequency, based on Lemma F.3, satisfy that

∂trm[1](t) = −⟨Err(1)m (t), b1⟩, ∂tgm[1](t) = −⟨Err(2)m (t), b1⟩, (F.24)

where the the RHS of (F.24) can be controlled by

|⟨Err(1)m (t), b1⟩| ≤ ∥Err(1)m (t)∥2 · ∥b1∥2 ≤ √
p · ∥Err(1)m (t)∥∞, |⟨Err(2)m (t), b1⟩| ≤

√
p · ∥Err(2)m (t)∥∞.

Based on Lemma F.3 and the orthogonality of the Fourier basis, by simple calculation, it holds that

∂trm[2k](t) = p ·
p∑

j=1

√
2

p
· cos(ωkj) ·

(p−1)/2∑
k=1

αk
m(t)2 · cos(ωkj + 2ϕkm(t))−

p∑
j=1

b2k[j] · Err(1)m,j(t)

=
√
2p · αk

m(t)2 ·
p∑

j=1

· cos(ωkj) · cos(ωkj + 2ϕkm(t))− ⟨Err(1)m (t), b2k⟩

=
p3/2√

2
· αk

m(t)2 · cos
(
2ϕ⋆m(t)

)
− ⟨Err(1)m (t), b2k⟩,

and similarly, we have

∂trm[2k + 1](t) = −p
3/2

√
2

· αk
m(t)2 · sin(2ϕkm(t))− ⟨Err(1)m (t), b2k+1⟩.

Following this, by applying the chain rule, we have

∂tβ
k
m(t) =

√
2

p
· ∂t
√
rm[2k](t)2 + rm[2k + 1](t)2

=
2

p
·
{
rm[2k](t)

βk
m(t)

· ∂trm[2k](t) +
rm[2k + 1](t)

βk
m(t)

· ∂trm[2k + 1](t)

}
=

2

p
· p

3/2

√
2

·
√
p

2
· αk

m(t)2 ·
{
cos(ψk

m(t)) · cos(2ϕkm(t)) + sin(ψk
m(t)) · sin(2ϕkm(t))

}
+ Ẽrr

(1)

m (t)

= p · αk
m(t)2 · cos

(
2ϕkm(t)− ψk

m(t)
)
+ Ẽrr

(1)

m (t), (F.25)

where we define the approximation-induced error term as:

Ẽrr
(1)

m (t) := −2

p
·
{
rm[2k](t)

βk
m(t)

· ⟨Err(1)m (t), b2k⟩ −
rm[2k + 1](t)

βk
m(t)

· ⟨Err(1)m (t), b2k+1⟩
}
.
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Here, notice that the error terms can be upper bounded by

|Ẽrr
(1)

m (t)| ≤
√

2

p
·
√
⟨Err(1)m (t), b2k⟩2 + ⟨Err(1)m (t), b2k+1⟩2

≤
√

2

p
· ∥Err(1)m (t)∥2 ·

√
∥b2k∥22 + ∥b2k+1∥22 ≤ 2∥Err(1)m (t)∥∞,

where the first inequality uses the Cauchy-Schwarz inequality and the fact that rm[2k](t)2+rm[2k+
1](t)2 = p/2 · βk

m(t)2 by definition. Moreover, following a similar argument above, we have

∂tgm[2k](t) =
√
2p3/2 · αk

m(t) · βk
m(t) · cos(ψk

m(t)− ϕkm(t))

+
√
2p3/2 · β0

m(t) · αk
m(t) · cos(ϕkm(t)) + ⟨Err(2)m (t), b2k⟩,

and also
∂tgm[2k + 1](t) = −

√
2p3/2 · αk

m(t) · βk
m(t) · sin(ψk

m(t)− ϕkm(t))

−
√
2p3/2 · β0

m(t) · αk
m(t) · sin(ϕkm(t)) + ⟨Err(2)m (t), b2k+1⟩.

Thus, by applying the chain rule, we can reach that

∂tα
k
m(t) =

√
2

p
· ∂t
√
gm[2k](t)2 + gm[2k + 1](t)2

= 2p · αk
m(t) · βk

m(t) · cos
(
2ϕkm(t)− ψk

m(t)
)
+ 2p · β0

m(t) · αk
m(t) + Ẽrr

(2)

m (t), (F.26)
where the approximation error satisfies that

|Ẽrr
(2)

m (t)| = 2

p
·
∣∣∣∣gm[2k](t)

αk
m(t)

· ⟨Err(2)m (t), b2k⟩ −
gm[2k + 1](t)

αk
m(t)

· ⟨Err(2)m (t), b2k+1⟩
∣∣∣∣ ≤ 2∥Err(2)m (t)∥∞.

Step 2.1: Bound the Growth of Non-feature Frequency. By combining (F.24), (F.25) and (F.26),
since cos

(
2ϕkm(t)− ψk

m(t)
)
, we can upper bound the growth of non-feature frequencies as

∂tα
k
m(t) ≤ 2p · αk

m(t) · βk
m(t) + 2p · β0

m(t) · αk
m(t) + Ẽrr

(2)

m (t), (F.27a)

∂tβ
k
m(t) ≤ p · αk

m(t)2 + Ẽrr
(1)

m (t), (F.27b)

∂trm[1](t) ≤ √
p · ∥Err(1)m (t)∥∞, ∂tgm[1](t) ≤ √

p · ∥Err(2)m (t)∥∞, (F.27c)

|Ẽrr
(i)

m (t)| ≲ ∥Err(i)m (t)∥∞, ∀i ∈ {0, 1}. (F.27d)
for all k ̸= k⋆ and m ∈ [M ]. For the growth of constant coefficients, (F.27c) indicates that

|α0
m(t)| ∨ |β0

m(t)| = 1/
√
p · |gm[1](t)| ∨ |rm[1](t)|

≤ max
t∈(0,tinit]

∥Err(1)m (t)∥∞ ∨ ∥Err(2)m (t)∥∞ · t ≲Mp · C5
end · t, (F.28)

where the inequality results from (F.23). Following this, by combining (F.27a), (F.27b), (F.27c) and
(F.27d), it holds that

∂t{αk
m(t)/

√
2 + βk

m(t)} ≤ p · αk
m(t) · {αk

m(t) +
√
2βk

m(t)}

+
√
2p · αk

m(t) · β0
m(t) + Ẽrr

(1)

m (t) + Ẽrr
(2)

m (t)/
√
2

≤
√
2p · Cend · {αk

m(t) +
√
2βk

m(t)}

+ 2p · Cend · |β0
m(t)|+ Ẽrr

(1)

m (t) + Ẽrr
(2)

m (t)/
√
2,

where the last inequality uses (F.22) and ∥θm(t)∥22 = p · α0
m(t)2 + p

2 ·
∑(p−1)/2

k=1 αk
m(t)2 such that

αk
m(t) ≤

√
2/p · ∥θm(t)∥2 ≤

√
2 · ∥θm(t)∥∞ ≤

√
2 · Cend, ∀t ∈ (0, tinit), (F.29)

for all frequency k and similarly we have βk
m(t) ≤

√
2 · Cend. For k ̸= k⋆, Lemma F.5 shows that

αk
m(t)/

√
2 + βk

m(t) ≤ {αk
m(0)/

√
2 + βk

m(0)} · exp(
√
2p · Cend · t)

+ 2p · Cend ·
∫ t

0

|β0
m(s)| · exp(

√
2p · Cend · (t− s))ds︸ ︷︷ ︸

(i)

+

∫ t

0

{Ẽrr
(1)

m (s) + Ẽrr
(2)

m (s)/
√
2} · exp(

√
2p · Cend · (t− s))ds︸ ︷︷ ︸

(ii)

, (F.30)
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where the first term can be eliminated due to the zero initialization for non-feature frequencies as
specified in Assumption 5.1. To upper bound (F.30), based on (F.28) and (F.29), we can show that

(i) ≲Mp2 · C6
end ·

∫ t

0

s · exp(
√
2p · Cend · (t− s))ds

≲ C4
end · {exp(

√
2p · Cend · t)−

√
2p · Cend · t− 1} ≲Mp2 · C6

end · t2, (F.31)

for time t ≤ (
√
2p ·Cend)

−1 ∧ tinit using exp(x)−x− 1 ≤ x2 for x ∈ (0, 1). Similarly, it holds that

(ii) ≤
∫ t

0

{2∥Err(1)m (s)∥∞ +
√
2∥Err(1)m (s)∥∞} · exp(

√
2p · Cend · (t− s))ds

≤ 4 sup
t∈(0,tinit)

max
m

∥Err(1)m (t)∥∞ ∨ ∥Err(2)m (t)∥∞ ·
∫ t

0

exp(
√
2p · Cend · (t− s))ds

≲Mp · C5
end ·

∫ t

0

exp(
√
2p · Cend · (t− s))ds ≲Mp · C5

end · t, (F.32)

where the first inequality follows (F.27d) and the last inequality results from exp(x) − 1 ≤ 2x for
x ∈ (0, 1). By combining (F.30), (F.31) and (F.32), we can conclude that

αk
m(t) ∨ βk

m(t) ≲Mp · C5
end · t ·max{p · Cend · t, 1} ≤Mp · C5

end · t, (F.33)

for all non-feature frequencies k ̸= k⋆ if we consider time t ≤ (
√
2p · Cend)

−1 ∧ tinit. For the
remainder of this analysis, we will adhere to this interval, and we will later show tinit ≲ (p ·Cend)

−1.

Step 2.2: Bound the Time of Initial Stage. Based on (F.25) and (F.26), we first show that during
the initial stage, the change in the quantity α⋆

m(t)2 − 2β⋆
m(t)2 remains small. Note that

∂t{α⋆
m(t)2 − 2β⋆

m(t)2} = 2α⋆
m(t) · ∂tα⋆

m(t)− 4β⋆
m(t) · ∂tβ⋆

m(t)

= 4p · α⋆
m(t)2 · β⋆

m(t) · cos
(
2ϕ⋆m(t)− ψ⋆

m(t)
)

+ 4p · β0
m(t) · α⋆

m(t)2 + 2α⋆
m(t) · Ẽrr

(2)

m (t)

− 4p · α⋆
m(t)2 · β⋆

m(t) · cos
(
2ϕ⋆m(t)− ψ⋆

m(t)
)
− 4β⋆

m(t) · Ẽrr
(1)

m (t)

= 4p · β0
m(t) · α⋆

m(t)2 + 2α⋆
m(t) · Ẽrr

(2)

m (t)− 4β⋆
m(t) · Ẽrr

(1)

m (t).

Following this, by integrating on both sides, we can show that

α⋆
m(t)2 − 2β⋆

m(t)2

≥ α⋆
m(0)2 − 2β⋆

m(0)2 −
∫ t

0

|∂t{α⋆
m(s)2 − 2β⋆

m(s)2}|ds

≥ −κ2init − 8p · C2
end ·

∫ t

0

|β0
m(s)|ds− 6

√
2 · Cend · sup

t∈(0,tinit)

|Ẽrr
(1)

m (t)| ∨ |Ẽrr
(2)

m (t)| · t

≥ −κ2init −O(Mp · C6
end) · t, (F.34)

where the second inequality uses (F.29). Recall that we choose a sufficiently small κinit such that
Ephase holds. Thus, there exists a neuron m such that inft∈(0,tinit) cos(2ϕ

⋆
m(t) − ψ⋆

m(t)) ≥ CD.
Leveraging this result along with (F.25) and (F.34), it follows that:

∂tβ
⋆
m(t) ≥ p · CD · α⋆

m(t)2 + Ẽrr
(1)

m (t)

= 2p · CD · β⋆
m(t)2 + p · CD · {α⋆

m(t)2 − 2β⋆
m(t)2}+ Ẽrr

(1)

m (t)

≥ 2p · CD · β⋆
m(t)2 − p · CD · κ2init −O(Mp2 · C6

end) · CD · t−O(Mp · C5
end)

≥ 2p · CD · β⋆
m(t)2 − p · {κ2init +O(M · C5

end)}
≥ 2p · CD · β⋆

m(t)2 − p · (1 + o(1)) · κ2init, (F.35)

where the second inequality results from (F.27d), the third is guaranteed by the time interval con-
straint t ≤ (

√
2p · Cend)

−1 ∧ tinit, and the last one uses Mκ3init = o(1) and Cend = Θ(κinit).
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Given the Riccati ODE in (F.35) and the initialization β⋆
m(0) = κinit, β⋆

m(t) is monotone increasing
as long as 2CD ≥ 1 + o(1), which can be guaranteed by choosing a sufficiently large M such that
logM/M ≲ c−1/2 · (1 + o(1)). Following this, we can further show that

∂tβ
⋆
m(t) ≥ 2pκinit · CD · β⋆

m(t)− p · (1 + o(1)) · κ2init, ∀t ≤ (
√
2p · Cend)

−1 ∧ tinit. (F.36)
By combining (F.36) and Lemma F.5, we can get
β⋆
m(t) ≥ κinit · exp(2pκinit · CD · t)− (1 + o(1)) · κinit/(2CD) · {exp(2pκinit · CD · t)− 1}.

By definition β⋆
m(tinit) ≲ Cend ≍ κinit. Thus, we can upper bound the hitting time tinit by

tinit ≲
1

2pκinit · CD
· log

(
Cend/κinit − (1 + o(1))/(2CD)

1− (1 + o(1))/(2CD)

)
≲ (pκinit)

−1. (F.37)

Step 3: Conclude the Proof. Based on (F.28), (F.33) and (F.37), it holds that

max
k ̸=k⋆

inf
t∈(0,tinit]

αk
m(t) ∨ βk

m(t) ≲Mp · C5
end · tinit ≤ o(κinit),

which completes the proof.

F.4.1 PROOF OF AUXILIARY LEMMA F.5
Lemma F.5. Let ι ̸= 0 denote a non-zero constant and ζ : [0,∞) 7→ Rn denote a continuous
function. For any initial x(0) ∈ Rn, the unique solution of ∂tx(t) = ιx(t) + ζ(t) is given by

x(t) = x(0) · exp(ιt) +
∫ t

0

ζ(s) · exp(ι(t− s))ds.

In particular, if ζ(t) ≡ ζ ∈ R is constant, then x(t) = x(0) · exp(ιt) + ζ/ι · (exp(ιt)− 1).

Proof of Lemma F.5. Note that, by chain rule, we have
∂t{xt · exp(−ιt)} = −ιx(t) · exp(−ιt) + ∂tx(t) · exp(−ιt) = ζ(t) · exp(−ιt).

By integrating both sides from 0 to t, we can obtain the desired result.

Lemma F.6. Under the initialization in Assumption 5.1, with probability greater that 1 −M−c, it
holds that maxm∈[M ] cos(D

⋆
m) > 1− c2π2 ·M−2(logM)2, where c > 0 is a constant.

Proof of Lemma F.6. Throughout the proof, we drop the initial time (0) for simplicity. Recall that,
as specified in Assumption 5.1, the parameters are initialized as below

θm ∼ κinit ·
√
p/2 ·(ϱ1[1] ·b2k⋆ +ϱ1[2] ·b2k⋆+1), ξm ∼ κinit ·

√
p/2 ·(ϱ2[1] ·b2k⋆ +ϱ2[2] ·b2k⋆+1).

By definition, we have cos(ϕ⋆m) = ϱ1[1] and sin(ϕ⋆m) = −ϱ1[2]. Thus, it holds that

(cos(ϕ⋆m), sin(ϕ⋆m)) = (ϱ1[1],−ϱ1[2])
d
= (ϱ1[1], ϱ1[2]),

following the symmetry of the uniform distribution on the unit circle. Hence, ϕ⋆m(0) ∼
Unif(−π, π). Similarly, we have ψ⋆

m ∼ Unif(−π, π) such that D⋆
m = 2ϕ⋆m − ψ⋆

m mod 2π ∼
Unif(0, 2π). Following this, the tail probability takes the form:

P
(

max
m∈[M ]

cos(D⋆
m) > 1− c2π2 ·M−2(logM)2

)
= 1− P

(
∀m ∈ [M ], cos(D⋆

m) ≤ 1− c2π2 ·M−2(logM)2
)

= 1−
(
1− arccos

(
1− c2π2 ·M−2(logM)2

)
/π
)M

. (F.38)

Suppose M > cπ logM such that cπ ·M−1 logM ∈ (0, 1), then we have

arccos
(
1− c2π2 ·M−2(logM)2)

)
≥ arccos

(
cos(cπ ·M−1 logM)

)
= cπ ·M−1 logM,

(F.39)

where the inequality follows from cos(x) ≥ 1 − x2 for all x ∈ R and fact that arccos(·) is mono-
tonely decreasing on [−1, 1]. By combining (F.38) and (F.39), we obtain

P
(

max
m∈[M ]

cos(D⋆
m) > 1− c2π2 ·M−2(logM)2

)
≥ 1−

(
1− c ·M−1 logM

)M ≥ 1− exp(−c logM) = 1−M−c.

Here, we use (1− x)M ≤ exp(−xM) for all x ∈ [0, 1] and then complete the proof.
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F.5 PROOF OF THEOREM 5.3: PHASE ALIGNMENT

In this section, due to the inherent difficulty of tracking a multi-particle dynamical system with
error terms—even when the approximation errors are provably small—we focus on the central flow
dynamics presented in Lemma F.3, directly omitting the error terms caused by unpredictable drift.
In summary, the resulting dynamical system can be described by the following ODEs:

∂tθm[j](t) = −2p ·
(p−1)/2∑

k=1

αk
m(t) · βk

m(t) · cos(ωkj + ψk
m(t)− ϕkm(t))

− 2p · βm[1](t) ·
(p−1)/2∑

k=1

αk
m · cos(ωkj + ϕkm(t)), (F.40a)

∂tξm[j](t) = p ·
(p−1)/2∑

k=1

αk
m(t)2 · cos(ωkj + 2ϕkm(t)), (F.40b)

for a fixed neuron m and all j ∈ [p]. We formalize the phase alignment in the following theorem.
Theorem F.7 (Formal Statement of Theorem 5.3). Consider the main flow dynamics defined in
(F.40a) and (F.40b), under the initialization in Assumption 5.1. Let δ = o(1) be a sufficiently small
tolerance. For any D⋆

m(0) ∈ (0, 2π], define the convergence time tδ = inf{t ∈ R+ : |D⋆
m(t)| ≤ δ}.

Then, tδ satisfies

tδ ≍ (pκinit)
−1 ·

{
1− (sin(D⋆

m(0))/δ}−1/3 +max{π/2− |D⋆
m(0)− π|, 0}

)
,

Furthermore, the magnitude at this time is given by β⋆
m(tδ) ≍ κinit · {sin(D⋆

m(0))/δ}1/3. Moreover,
in the mean-field regime m→ ∞, let ρt = Law

(
ϕ⋆m(t), ψ⋆

m(t)
)

for all t ∈ R+ and let λ denote the
uniform law on (−π, π]. Then, ρ0 = λ⊗ λ and ρ∞ = T#λ, where T : φ 7→ (φ, 2φ) mod 2π.

Before presenting the proof of Theorem F.7, we first introduce several key intermediate results that
help elucidate the dynamics. We begin with a lemma that characterizes the simplified dynamics of
the system, leveraging the Fourier domain and the single-frequency initialization.
Lemma F.8 (Main Flow under Fourier Domain). Under the initialization in Assumption 5.1, let k⋆
denote the initial frequency of each neuron, and we use the superscript ⋆ for notational simplicity.
We define D⋆

m(t) = 2ϕ⋆m(t)−ψ⋆
m(t) mod 2π, then the main flow can be equivalently described as

∂tα
⋆
m(t) = 2p · α⋆

m(t) · β⋆
m(t) · cos(D⋆

m(t)), ∂tβ
⋆
m(t) = p · α⋆

m(t)2 · cos(D⋆
m(t)),

∂t exp(iD
⋆
m(t)) = p ·

(
4β⋆

m(t) +
α⋆
m(t)2

β⋆
m(t)

)
· sin

(
D⋆

m(t)
)
· exp (i{D⋆

m(t)− π/2}) .
(F.41)

This lemma allows us to largely simplify the analysis, reducing it from tracking a 2p-dimensional
system to a three-particle dynamical system of α⋆

m(t), β⋆
m(t) and D⋆

m(t)). Building on this, the next
two lemmas further show that the dynamics is indeed one-dimensional, and the trajectory exhibits a
symmetry property that aids in understanding the evolutions under different initializations.
Lemma F.9. Consider the ODE in (F.41), the following quantities remain constant:

α⋆
m(t)2 − 2β⋆

m(t)2 = Cdiff , sin(D⋆
m(t)) · β⋆

m(t) · α⋆
m(t)2 = Cprod, ∀t ∈ R+.

Building upon this, we can further simplify the dynamics of D⋆
m(t)) in as

∂tD
⋆
m(t) = −p ·

(
4β⋆

m(t) + α⋆
m(t)2/β⋆

m(t)
)
· sin (D⋆

m(t)) , (F.42)

due to its well-regularized behavior ensured by the constant relationship.

We highlight that (F.42) is not a direct corollary from (F.41) due to the potential jump from 0 to 2π
in the discontinuous definition of mod 2π. However, thanks to the constant relationship revealed
in Lemma F.9, we can show that D⋆

m(t) is “well-behaved” by staying in the half-space where it is
initialized, and consistently approaching zero throughout the gradient flow.
Lemma F.10. Consider the ODE given in (F.41) with initial condition D⋆

m(0) ∈ (π/2, π). Let tπ/2
denote the hit time that D⋆

m(tπ/2) = π/2, then for any ∆t ∈ (0, tπ/2), we have

β⋆
m(tπ/2 −∆t) = β⋆

m(tπ/2 +∆t), D⋆
m(tπ/2 −∆t) +D⋆

m(tπ/2 +∆t) = π.

Proof of Lemma F.8, F.9 and F.10. Please refer to §F.5.1 for a detailed proof.
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(a) Simplified Dynamics with D⋆
m(0) ∈ (π/2, π). (b) Simplified Dynamics with D⋆

m(0) ∈ (0, π/2).

Figure 14: Training dynamics of a specific decoupled neuron characterized by (F.48a) and (F.48b)
with identical initial scales α⋆

m(0) = β⋆
m(0) and different phase difference D⋆

m(0). Figure (a)
plots the dynamics of phases, phase difference, and the magnitudes with D⋆

m(0) ∈ (π/2, π), whose
behavior is detailedly characterized in Theorem F.7. The difference decreases monotonically to 0,
while the magnitudes first decay slightly when D⋆

m(t) ∈ (π/2, π) and then increase rapidly when
D⋆

m(t) falls below π/2. Figure (b) plots the dynamics under D⋆
m(0) ∈ (0, π/2) where D⋆

m is
initialized closer to the convergence point, resulting in a shorter convergence time compared to the
case in Figure (a). Moreover, the simplified dynamics shown in Figure (b) align well with the full
dynamics in Figure 5a with the same initialization, indicating the effectiveness of the approximation.

Now we are ready to present the proof of Theorem F.7.

Proof of Theorem F.7. Without loss of generality, we focus on the case where D⋆
m(0) ∈ (0, π). The

case D⋆
m(0) ∈ (−π, 0) can be extended identically owing to the symmetry of dynamics in (F.41) as

established in Lemmas F.8 and F.9. Specifically, the trajectories of α⋆
m(t) and β⋆

m(t) are invariant
under a sign flip of D⋆

m(t) such that the entire dynamics evolves symmetrically, with D⋆
m(t) mirrored

from (0, π) to (−π, 0) at each time t.

Roadmap. In the following, we establish the convergence time by further dividing into two
cases—D⋆

m(0) ∈ (0, π/2) and D⋆
m(0) ∈ (π/2, π). Notably, thanks to the symmetry established

in Lemma F.10, we only need to characterize two time intervals (i) the travelling time from D⋆
m(0)

to π/2 for any D⋆
m(0) ∈ (π/2, π), denoted by ∆t�π/2, both initialized at β⋆

m(0) = κinit, (ii) the
convergence time from D⋆

m(0) to 0 for an arbitrary initial phase D⋆
m(0) ∈ (0, π/2), denoted by

∆t�δ This is because,

• For D⋆
m(0) ∈ (0, π/2), the convergence time can be captured by ∆t�δ

• For D⋆
m(0) ∈ (π/2, π), the time is given by 2∆t�π/2 + ∆t�δ , where with slight abuse of

notation we let ∆t�δ denote the time travelling from π − D⋆
m(0) to 0. Such argument is

supported by Lemma F.10, as it takes equal time for D⋆
m(t) to travel from π − D⋆

m(0)
to π/2 and from π/2 to π − D⋆

m(0). Also, when D⋆
m(t) reaches π − D⋆

m(0), we have
β⋆
m(t) = κinit due to the symmetry, such that the remaining convergence time is equal to

∆t�δ .

Below are some useful properties. Under the initialization in Assumption 5.1, Lemma F.9 ensures

α⋆
m(t)2 = 2β⋆

m(t)2 − κ2init, ∀t ∈ R+. (F.43)
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Following this, we can characterize the dynamics as follows:

∂tβ
⋆
m(t) = p · (2β⋆

m(t)2 − κ2init) · cos(D⋆
m(t)), (F.44a)

∂tD
⋆
m(t) = −p ·

(
6β⋆

m(t)− κ2init/β
⋆
m(t)

)
· sin (D⋆

m(t)) . (F.44b)

Hence, we have D⋆
m(t) is monotonely decreasing, and β⋆

m(t) first decreases when D⋆
m(t) ∈ (π/2, π)

and increases thereafter. Besides, it follows from (F.43) that β⋆
m(t) ≥ κinit/

√
2 for all t ∈ R+.

Part I: Travelling time from D⋆
m(0) to π/2 with D⋆

m(0) ∈ (π/2, π). We consider t ∈ (0,∆t�π/2]

where we define ∆t�π/2 = min{t ∈ R+ : D⋆
m(t) ≤ π/2}. Based on (F.44b), by definition, we have

∂tD
⋆
m(t) ≥ −p ·

(
6β⋆

m(t)− κ2init/β
⋆
m(t)

)
≥ −5p · κinit,

where the last inequality uses 6β⋆
m(t)−κ2init/β⋆

m(t) is monotonically increasing on R+ and β⋆
m(t) ∈

[κinit/
√
2, κinit] since β⋆

m(t) is monotonically decreasing throughout the stage. Following this, we
can lower bound D⋆

m(t) by D⋆
m(t) ≥ D⋆

m(0)− 5p · κinit · t for all t ≤ tϵ1. Thus, we have

∆t�π/2 ≥
D⋆

m(0)−D⋆
m(∆t�π/2)

5p · κinit
=

D⋆
m(0)− π/2

5p · κinit
,

On the other side, (F.44b) implies that ∂tD⋆
m(t) ≤ 0 such that D⋆

m(t) ≤ D⋆
m(0). Then, we have

∂tD
⋆
m(t) ≤ −p ·

(
6β⋆

m(t)− κ2init/β
⋆
m(t)

)
· sin(D⋆

m(0)) ≤ −2
√
2p · κinit · sin(D⋆

m(0)).

Similarly, we can upper bound ∆t�π/2. By combining the arguments above, we can reach the con-
clusion that

∆t�π/2 ≍ (p · κinit)−1 · {D⋆
m(0)− π/2}.

Part II: Convergence time from D⋆
m(0) to 0 with D⋆

m(0) ∈ (0, π/2). Consider a small error
level δ > 0, and the convergence time is formalized as ∆t�δ = min{t ∈ R+ : sin(D⋆

m(t)) ≤ δ}.
Note that D⋆

m(t) is monotonically decreasing and β⋆
m(t) is monotonically increasing in this stage.

Also,

sin(D⋆
m(t)) · β⋆

m(t) · α⋆
m(t)2 = sin(D⋆

m(t)) · β⋆
m(t) · (2β⋆

m(t)2 − κ2init) = sin(D⋆
m(0)) · κ3init,

following (F.43), Lemma F.9 and β⋆
m(0) = κinit as specified in Assumption 5.1. By definition,

sin(D⋆
m(0))/δ · κ3init = β⋆

m(∆t�δ ) · (2β⋆
m(∆t�δ )

2 − κ2init) ≍ β⋆
m(∆t�δ )

3.

Hence, we have β⋆
m(∆t�δ )/κinit ≍ 3

√
sin(D⋆

m(0))/δ. Following (F.44a), it holds that

∂t log

(
β⋆
m(t)− κinit/

√
2

β⋆
m(t) + κinit/

√
2

)
=

2
√
2 · κinit · ∂tβ⋆

m(t)

2β⋆
m(t)2 − κ2init

= 2
√
2 · κinit · p · cos(D⋆

m(t)) ≍ κinit · p,

since cos(D⋆
m(t)) ∈ [cos(D⋆

m(0)), 1]. Hence, by integrating over time (0,∆t�δ ], we can show that

log

(
β⋆
m(∆t�δ )− κinit/

√
2

β⋆
m(∆t�δ ) + κinit/

√
2

)
+ log(3 + 2

√
2) ≍ κinit · p ·∆t�δ . (F.45)

Next, we bound the scale of the term within the logarithm. For a small tolerance δ = o(1), we have

β⋆
m(∆t�δ )− κinit/

√
2

β⋆
m(∆t�δ ) + κinit/

√
2
= 1− 2

(√
2 · β⋆

m(∆t�δ )/κinit + 1
)−1

= 1−Θ
(

3
√
δ/ sin(D⋆

m(0))
)
.

(F.46)

Thus, by combing the arguments in (F.45) and (F.46), we can conclude that

∆t�δ ≍ (p · κinit)−1 ·
{
1− 3

√
δ/ sin(D⋆

m(0))
}
,

where we use the fact that log(1− x) ≍ x for small x > 0.
Based on the results in Part I and Part II, for any initial phase difference D⋆

m(0) ∈ (0, π) and
sufficiently small error tolerance δ ∈ (0, 1), by symmetry, the convergence time is of level

tδ ≍ (pκinit)
−1 ·

{
1− (sin(D⋆

m(0))/δ}−1/3 +max{π/2− |D⋆
m(0)− π|, 0}

)
,

where we let (x)+ = max{x, 0} denote the ReLU function.
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Part III: Preservation of Uniform Phase Distribution and Double-Phase Convergence. Recall
that Lemma F.9 gives there exists constant Cprod ∈ R such that

sin(D⋆
m(t)) · β⋆

m(t) · α⋆
m(t)2 = Cprod.

Following this, we can write the dynamics of ϕ⋆m(t) and ψ⋆
m(t) as

∂t exp(iϕ
⋆
m(t)) = 2p · Cprod/α

⋆
m(t)2 · exp (i {ϕ⋆m(t)− π/2}) ,

∂t exp(iψ
⋆
m(t)) = p · Cprod/β

⋆
m(t)2 · exp (i {ψ⋆

m(t) + π/2}) .
(F.47)

As established previously, the magnitudes of the learned parameters, α⋆
m(t) and β⋆

m(t), tend to
infinity as t → ∞. This divergence drives the convergence of the corresponding phases to fixed
values, ϕ⋆m(∞) and ψ⋆

m(∞), which are determined by the initialization. Furthermore, Theorem 5.3
proves that the misalignment term D⋆

m(t) converges to zero. This directly implies that the limiting
phases must satisfy the phase alignment condition: 2ϕ⋆m(∞) = ψ⋆

m(∞).
Denote exp(iϕ⋆m(t)) = z(t), then by (F.47), z(t) is continuously differentiable with respect to t.
Consider

Φ⋆
m(t) = ϕ⋆m(0) +

∫ t

0

ℑ(z̄(s)z′(s))ds,

then we can check that Φ⋆
m(t) is continuously differentiable, and by differentiating both sides, we

can also check that it satisfies exp(iΦ⋆
m(t)) = z(t). Therefore, ϕ⋆m(t) = Φ⋆

m(t) mod 2π. By direct
calculation,

∂tΦ
⋆
m(t) = −2p · Cprod · α⋆

m(t)−2,

which shows

Φ⋆
m(t) = ϕ⋆m(0)− 2p

∫ t

0

Cprod · α⋆
m(s)−2ds.

Since α⋆
m(t) only depends on (F.43),(F.44a) and (F.44b), so once given (α⋆

m(0), β⋆
m(0),D⋆

m(0)),
α⋆
m(t) is independent of ϕ⋆m(0) for all t. In this case, conditional on (α⋆

m(0), β⋆
m(0),D⋆

m(0)), ϕ⋆m(t)
equals to ϕ⋆m(0) plus some deterministic function up to mod2π. Since the map

(ϕ⋆m(0), ϕ⋆m(0)) → (ϕ⋆m(0),D⋆
m(0) = 2ϕ⋆m(0)− ψ⋆

m(0))

has determinant −1, ϕ⋆m(0) and D⋆
m(0) are i.i.d. Uniformly distributed on (−π, π]. Combining the

above two arguments, we establish that ϕ⋆m(t) is uniformly distributed on (−π, π].
For ψ⋆

m(t), we can establish the proof in an almost identical way that ψ⋆
m(t) is uniformly distributed

on [0, 2π) for all t; due to the space limit, we omit the full proof here. As a result, ϕ⋆m(∞) and
ψ⋆
m(∞) are both uniformly distributed over [0, 2π).

Combining with the fact that 2ϕ⋆m(∞) = ψ⋆
m(∞) for any given initialization, we know the joint

measure of (ϕ⋆m(∞), ψ⋆
m(∞)) is degenerated on the (periodic) line 2ϕ = ψ inside the region

(ϕ, ψ) ∈ (−π, π]2. Since the marginals of them are both uniform, the joint limiting measure is
then given by ρ∞ = T#λ, where T : φ 7→ (φ, 2φ) mod 2π. Summarizing all the above, we finish
the proof.

F.5.1 PROOF OF AUXILIARY LEMMA F.8, F.9 AND F.10
Proof of Lemma F.8. Following the same argument in the proof of Theorem 5.2, by pushing the
approximation error to 0, we can show an exact single-frequency pattern:

αk
m(t) = βk

m(t) ≡ 0, ∀t ∈ R+, k ̸= k⋆.

Formally, this result holds under the initialization in Assumption 5.1, which can be justified using a
matrix ODE argument over ukm(t) = (αk

m(t), βk
m(t))⊤ with zero initial value. Then, the dynamics

of the original parameter can be simplified to a coefficient only related to k⋆. For all j ∈ [p], we
have

∂tθm[j](t) = 2p · α⋆
m(t) · β⋆

m(t) · cos(ωkj + ψ⋆
m(t)− ϕ⋆m(t)), (F.48a)

∂tξm[j](t) = p · α⋆
m(t)2 · cos(ωk⋆j + 2ϕ⋆m(t)). (F.48b)

Recall ∂tgm[j](t) = ⟨bj , ∂tθm(t)⟩, by simple calculation, it holds that

∂tgm[2k⋆](t) =
√
2 · p3/2 · α⋆

m(t) · β⋆
m(t) · cos

(
ψ⋆
m(t)− ϕ⋆m(t)

)
,

∂tgm[2k⋆ + 1](t) = −
√
2 · p3/2 · α⋆

m(t) · β⋆
m(t) · sin

(
ψ⋆
m(t)− ϕ⋆m(t)

)
,
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and similarly, by using ∂trm[j](t) = ⟨bj , ∂tξm(t)⟩, we can obtain that

∂trm[2k⋆](t) = p3/2/
√
2 · α⋆

m(t)2 · cos
(
2ϕ⋆m(t)

)
,

∂trm[2k⋆ + 1](t) = −p3/2/
√
2 · α⋆

m(t)2 · sin
(
2ϕ⋆m(t)

)
,

where the additional
√

2/p arises from the normalization factor in bj’s (see §A.3). Since the mag-
nitudes follows α⋆

m =
√
2/p · ∥g⋆m∥ and β⋆

m =
√
2/p · ∥r⋆m∥, by applying the chain rule, then

∂tα
⋆
m(t) = 2p · α⋆

m(t) · β⋆
m(t) · cos

(
2ϕ⋆m(t)− ψ⋆

m(t)
)
, (F.49a)

∂tβ
⋆
m(t) = p · α⋆

m(t)2 · cos
(
2ϕ⋆m(t)− ψ⋆

m(t)
)
. (F.49b)

Next, we understand the evolution of phases by tracking the dynamics of exp(iϕ⋆m(t)) and
exp(iψ⋆

m(t)) via Euler’s formula. Note that ϕ⋆m(t) and ψ⋆
m(t) cannot be directly tracked via ODEs

due to abrupt jumps from −π to π, which arise from the use of atan2(·) function in definitions (see
§A.3). By definition and the chain rule, it follows that

∂t cos(ϕ
⋆
m(t)) =

√
2

p
· ∂t
(
gm[2k⋆](t)

α∗
m(t)

)
=

√
2

p
·
{
∂tgm[2k⋆](t)

α∗
m(t)

− ∂tα
∗
m(t)

α∗
m(t)

· gm[2k⋆](t)

α∗
m(t)

}
= 2p · β⋆

m(t) · cos
(
ψ⋆
m(t)− ϕ⋆m(t)

)
− 2p · β⋆

m(t) · cos(ϕ⋆m(t)) · cos
(
2ϕ⋆m(t)− ψ⋆

m(t)
)

= 2p · β⋆
m(t) · sin(ϕ⋆m(t)) · sin

(
2ϕ⋆m(t)− ψ⋆

m(t)
)
,

where the second equality uses cos(ϕ⋆m(t)) =
√
2/p · gm[2k⋆](t)/α∗

m(t) and the last one results
from the trigonometric indentity. Similarly, we have

∂t sin(ϕ
⋆
m(t)) = −2p · β⋆

m(t) · cos(ϕ⋆m(t)) · sin
(
2ϕ⋆m(t)− ψ⋆

m(t)
)
,

which gives that

∂t exp(iϕ
⋆
m(t)) = 2p · β⋆

m(t) · sin
(
2ϕ⋆m(t)− ψ⋆

m(t)
)
· exp (i {ϕ⋆m(t)− π/2}) . (F.50)

Following a similar argument, we can show that

∂t exp(iψ
⋆
m(t)) = p · α

⋆
m(t)2

β⋆
m(t)

· sin
(
2ϕ⋆m(t)− ψ⋆

m(t)
)
· exp (i {ψ⋆

m(t) + π/2}) . (F.51)

Thanks to the initialization and preservation of the single-frequency, the 2p-dimensional dynamical
system can be tracked via a four-particle system with α⋆

m, β⋆
m, ϕ⋆m, and ψ⋆

m, whose dynamics are
given by (F.49a), (F.49b), (F.50) and (F.51). Furthermore, note that

∂t exp(2iϕ
⋆
m(t)) = 2 exp(iϕ⋆m(t)) · ∂t exp(iϕ⋆m(t))

= 4p · β⋆
m(t) · sin

(
2ϕ⋆m(t)− ψ⋆

m(t)
)
· exp (i {2ϕ⋆m(t)− π/2}) . (F.52)

Based on (F.51) and (F.52), by denoting D⋆
m(t) = 2ϕ⋆m(t)− ψ⋆

m(t) mod 2π, we obtain that

∂t exp(iD
⋆
m(t)) =

∂t exp(2iϕ
⋆
m(t))

exp(iψ⋆
m(t))

− exp(2iϕ⋆m(t)) · ∂t exp(iψ⋆
m(t))

exp(2iψ⋆
m(t))

= 4p · β⋆
m(t) · sin

(
D⋆

m(t)
)
· exp (i {D⋆

m(t)− π/2})

− p · α
⋆
m(t)2

β⋆
m(t)

· sin
(
D⋆

m(t)
)
· exp (i {D⋆

m(t) + π/2})

= p ·
(
4β⋆

m(t) +
α⋆
m(t)2

β⋆
m(t)

)
· sin

(
D⋆

m(t)
)
· exp (i{D⋆

m(t)− π/2}) . (F.53)

By combining (F.49a), (F.49b) and (F.53), we complete the proof.

Proof of Lemma F.9. Following the simplified main flow in the Fourier domain (see Lemma F.8), it
is easy to show that α⋆

m(t)2 − 2β⋆
m(t) is a constant throughout the gradient flow since

∂t{α⋆
m(t)2 − 2β⋆

m(t)2} = 2α⋆
m(t) · ∂tα⋆

m(t)− 4β⋆
m(t) · ∂tβ⋆

m(t) = 0.
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Hence, there exists an initialization-dependent constant Cdiff such that

α⋆
m(t)2 = 2β⋆

m(t)2 + Cdiff , ∀t ∈ R+.

Moreover, by applying the chain rule, we can deduce that

∂t{α⋆
m(t)2 · β⋆

m(t)} = α⋆
m(t)2 · ∂tβ⋆

m(t) + ∂t{α⋆
m(t)2} · β⋆

m(t)

= α⋆
m(t)2 · ∂tβ⋆

m(t) + 2∂t{β⋆
m(t)2} · β⋆

m(t)

= p · α⋆
m(t)4 · cos(D⋆

m(t)) + 4β⋆
m(t)2 · p · α⋆

m(t)2 · cos(D⋆
m(t))

= p · α⋆
m(t)2 · {α⋆

m(t)2 + 4β⋆
m(t)2} · cos(D⋆

m(t)).

Following this, we can compute the time derivative of sin(D⋆
m(t)) · β⋆

m(t) · α⋆
m(t)2, following that

∂t{sin(D⋆
m(t)) · β⋆

m(t) · α⋆
m(t)2}

= ∂t sin(D
⋆
m(t)) · β⋆

m(t) · α⋆
m(t)2 + sin(D⋆

m(t)) · ∂t{α⋆
m(t)2 · β⋆

m(t)}
= − cos(D⋆

m(t)) · α⋆
m(t)2 · p ·

(
4β⋆

m(t)2 + α⋆
m(t)2

)
· sin (D⋆

m(t))

+ sin(D⋆
m(t)) · p · α⋆

m(t)2 · {α⋆
m(t)2 + 4β⋆

m(t)2} · cos(D⋆
m(t)) = 0,

where the second equality uses (F.41) in Lemma F.8. Therefore, there exists constant Cprod such that
sin(D⋆

m(t)) · β⋆
m(t) · α⋆

m(t)2 = Cprod for all t ∈ R+.
Finally, we show that D⋆

m(t) remains within the half-space where it is initialized, which means
D⋆

m(t) ∈ (ιπ, (ι+ 1)π) for ι ∈ {−1, 0} determined by the initial state D⋆
m(0) ∈ (ιπ, (ι+ 1)π). By

Lemma F.9, we always have sin(D⋆
m(t)) ̸= 0, so D⋆

m(t) will never reach ιπ for any ι. This ensures
no jump behavior occurs for D⋆

m(t), allowing us to directly track its dynamics. Following this, by
applying chain rule over (F.53), we can reach that

∂tD
⋆
m(t) = −p ·

(
4β⋆

m(t) + α⋆
m(t)2/β⋆

m(t)
)
· sin (D⋆

m(t)) ,

which completes the proof.

Proof of Lemma F.10. Based on the results in Lemma F.8 and F.9, we reduce the main flow into a
one-dimensional dynamical system characterized by β⋆

m(t). Specifically, we have

∂tβ
⋆
m(t) = p · α⋆

m(t)2 · cos(D⋆
m(t))

= p · (2β⋆
m(t)2 + Cdiff) · sign{cos(D⋆

m(t))} ·

√
1−

C2
prod

β⋆
m(t)2 · (2β⋆

m(t)2 + Cdiff)2

:= ς(β⋆
m(t)) · sign{cos(D⋆

m(t))}.

As given in (F.42), due to the nonnegativity of the magnitudes, we can show that D⋆
m(t) is mono-

tonely decreasing if D⋆
m(0) ∈ (π/2, π). We consider s = t − tπ/2 for t ∈ [tπ/2, 2tπ/2) and

r = tπ/2 − t for t ∈ (0, tπ/2], where tπ/2 denote the hit time that D⋆
m(tπ/2) = π/2. Following this,

we have

∂sβ
⋆
m(s) = ∂tβ

⋆
m(t− tπ/2) = −ς(β⋆

m(s)), ∂rβ
⋆
m(r) = −∂tβ⋆

m(tπ/2 − t) = −ς(β⋆
m(r)).

Here, we decompose ∂tβ⋆
m(t) within time [0, 2tπ/2] into a backward process within time (0, tπ/2]

and a forward process within time [tπ/2, 2tπ/2] respectively. Starting from time s = r = 0, where
the initial value is both given by β⋆

m(tπ/2), since ς is locally Lipschitz, by the uniqueness of the
ODE solution, for s = r, we have β⋆

m(s) = β⋆
m(r), i.e., β⋆

m(tπ/2 + ∆t) = β⋆
m(tπ/2 − ∆t) for

all ∆t ∈ [0, tπ/2). Furthermore, by combining Lemma F.9, the monotonicity of D⋆
m(t) and the

arguments above, we can show that D⋆
m(tπ/2 −∆t) +D⋆

m(tπ/2 + ∆t) = π, which completes the
proof.

G PROOF OF RESULTS FOR THEORETICAL EXTENSIONS IN SECTION D

G.1 PROOF OF COROLLARY D.1: PHASE LOTTERY TICKET

We first formalize the random multiple frequency initialization as follows.
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Assumption G.1. For each neuron m ∈ [M ], the parameters (ξm, θm) are initialized as

θm(0) ∼ κinit ·
√
p/2 ·

(p−1)/2∑
k=1

(ϱ1,k[1] · b2k + ϱ1,k[2] · b2k+1) ,

ξm(0) ∼ κinit ·
√
p/2 ·

(p−1)/2∑
k=1

(ϱ2,k[1] · b2k + ϱ2,k[2] · b2k+1) ,

where ϱr,k
i.i.d.∼ Unif(S1) for all k and r ∈ {1, 2}, and κinit > 0 denotes a small initialization scale.

This is the natural extension of Assumption 5.1 to multiple frequencies, and the arguments in §F,
i.e., Lemma F.8, F.9 and F.10, go through with only routine modifications thanks to the neuron
decoupling and the orthogonality of frequencies. We first state the formal version of Corollary G.2.

Corollary G.2 (Formal Statement of Corollary D.1). Consider a random initialization following
Assumption G.1, and let k⋆ denote the winning frequency given by k⋆ = mink D̃

k
m(0). For a given

ε ∈ (0, 1), define the dominance time tε as

tε := inf{t ∈ R+ : max
k ̸=k⋆

βk
m(t)/β⋆

m(t) ≤ ε}.

Then, with probability at least 1− Θ̃(p−c), where c > 0 satisfying p ≳ c4π2e−2(1−c), it holds that

tε ≲
π2p−(2c+3)

κinit
+

(c+ 1) log p+ log 1
1−ε

pκinit · {1− 2c2π2 · (log p/p)2}
.

Before delving into the proof, we first establish a key property of the decoupled dynamics under this
initialization—order preservation—under the initialization specified in G.1.

Lemma G.3. Let σ be the permutation that sorts the initial phase differences in non-decreasing
order:

D̃σ(1)
m (0) ≤ D̃σ(2)

m (0) ≤ · · · ≤ D̃
σ( p−1

2 )
m (0),

where D̃k
m(0) = min{Dk

m(0), 2π −Dk
m(0)} represents the shortest circular distance for the initial

phase. Under the initialization in Assumption G.1, the rank-ordering of the corresponding magni-
tudes βk

m(t) is inverted and preserved for all time t ≥ 0:

βσ(1)
m (t) ≥ βσ(2)

m (t) ≥ · · · ≥ β
σ( p−1

2 )
m (t).

Proof of Lemma G.3. Please refer to §G.1 for a detailed proof.

Lemma G.3 states that, when neurons are decoupled and each frequency is initialized at the same
scale κinit > 0, the ordering of frequencies by magnitude βk

m’s within each neuron remains fixed
throughout the gradient flow, with larger magnitudes corresponding to smaller initial phase differ-
ence. Now we are ready to present the proof of Corollary G.2.

Proof of Corollary G.2. As specified in Assumption G.1, for all m ∈ [M ], we initialize ϱr,k
i.i.d.∼

Unif(S1) for all r ∈ {1, 2} and k ∈ [p−1
2 ]. Thanks to the orthogonality among frequencies, each

frequency evolves independently, so Lemmas F.8, F.9 and F.10 apply to every frequency k, not just
the feature frequency k⋆. For fixed neuron m, by defining D̃k

m(0) = min{Dk
m(0), 2π − Dk

m(0)},
we have

∂tβ
k
m(t) = p · (2βk

m(t)2 − κ2init) · cos(D̃k
m(t)), (G.1a)

∂tD̃
k
m(t) = −p ·

(
6βk

m(t)− κ2init/β
k
m(t)

)
· sin

(
D̃k

m(t)
)
. (G.1b)

Step 1: Deriving Winning Frequency and Initial Phase Gap. By Lemma G.3, the dynamics
preserves the ordering of D̃k

m’s and βk
m’s throughout the gradient flow. Specifically, at any time

t ∈ R+, the ordering remains unchanged. Thus, the lottery ticket winner, i.e., frequency k such that
βk
m(t) ≥ βτ

m(t) for all τ ̸= k, is given by k⋆ = argmink D̃
k
m(0).

To demystify the dominance phenomenon, it suffices to focus on the growth of the magnitude of
the winning frequency k⋆ and the second-dominant frequency k♯ = argmink ̸=k⋆ D̃k

m(0). Under the
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initialization as specified in Assumption G.1, with probability greater than 1 − Θ̃(p−c) for some
constant c ∈ (0, 1), we have the following good initialization:

Einit = E1
init ∩ E2

init ∩ E3
init

:=
{
D̃♯

m(0) < π/2
}
∩
{
cos(D̃⋆

m(0)) ≥ cos(D̃♯
m(0)) + π2p−2(c+1)}

∩ {cos(D̃⋆
m(0)) ≤ 1− 2c2π2 · (log p/p)2}. (G.2)

This is because D̃k
m(0)

i.i.d.∼ Unif(0, π) based on a similar argument in Lemma F.6, and thus
D̃⋆

m(0) and D̃♯
m(0) are respectively the first- and the second- order statistics of p−1

2 i.i.d copies
of Unif(0, π), denoted by U(i)’s. Notice that

P
(
E1,c
init

)
= P

(
∀i, U(i) ≥ π/2

)
+ P

(
∀i > 1, U(i) ≥ π/2, U(1) ≤ π/2

)
= (p+ 1) · 2−

p+1
2 ≲ p−c.

(G.3)

Furthermore, if p ≳ c4π2e−2(1−c), it holds that

P
(
E2,c
init

)
≤ P

(
{cos(U(1)) ≤ cos(U(2)) + π2p−2(c+1)} ∩ E1

init

)
+ P

(
E1,c
init

)
≲ P

(
{U2

(2) − U2
(1) − U4

(2)/12 ≤ 2π2p−2(c+1)} ∩ E1
init

)
+ p−c

≤ P
(
{U2

(2) − U2
(1) ≤ 2π2p−2(c+1) + 2(cπ/p · log p)4} ∩ E1

init

)
+ P

(
{U4

(2) ≥ 24 · (cπ/p · log p)4} ∩ E1
init

)
+ p−c

≤ P(U2
(2) − U2

(1) ≤ 8π2p−2(c+1)) + P(U(2) ≥ 2cπ/p · log p) + p−c, (G.4)

where the second inequality uses 1 − x2/2 ≤ cos(x) ≤ 1 − x2/2 + x4/24 for x ∈ (0, π/2).
Moreover, to bound the RHS of (G.4), we can show that

P(U2
(2) − U2

(1) ≤ 8π2p−2(c+1)) ≤ P(U(1) · (U(2) − U(1)) ≤ 4π2p−2(c+1))

≤ P(U(1) ≤ 2πp−(c+1)) + P(U(2) − U(1) ≤ 2πp−(c+1))

= 2− 2(1− 2p−(c+1))
p−1
2 ≲ p−c, (G.5)

where the second inequality follows U(1)
d
= U(2) − U(1). Furthermore, it holds that

P(U(2) ≥ 2cπ/p · log p) = (1− 2c/p · log p)
p−1
2 + c(p− 1)/p · log p · (1− 2c/p · log p)

p−3
2

≤ (1 + c log p) · (1− 2c/p · log p)
p−3
2 ≲ p−c log p. (G.6)

By combining (G.4), (G.5) and (G.6), we have P
(
E2,c
init

)
≲ p−c log p. Similarly, we can derive that

P
(
E3,c
init

)
= P

(
cos(U(1)) ≤ 1− 2c2π2 · (log p/p)2

)
≤ P(U(1) ≥ 2cπ/p · log p) = (1− 2c/p · log p)

p−1
2 ≲ p−c, (G.7)

where the inequality also uses cos(x) ≥ 1 − x2/2 for x ∈ (0, π/2) Based on (G.3),(G.4) and
(G.7), the good initialization event Einit holds with a probability of at least 1−Θ(p−c log p). In the
subsequent analysis, we assume that this event occurs.

Step 2: Growth of Gap between Winning Frequency and Others. Based on (G.1a), the dynam-
ics for the log-magnitude follows

∂t log β
k
m(t) =

∂tβ
k
m(t)

βk
m(t)

= p · (2βk
m(t)− κ2init/β

k
m(t)) · cos(D̃k

m(t)).

To track the relative growth of two magnitudes, β⋆
m(t) and β♯

m(t), we now examine the dynamics of
their log-ratio ∂t log

β⋆
m(t)

β♯
m(t)

, whose evolution is given by:

∂t log
β⋆
m(t)

β♯
m(t)

= p · (2β⋆
m(t)− κ2init/β

⋆
m(t)) · cos(D̃⋆

m(t))− p · (2β♯
m(t)− κ2init/β

♯
m(t)) · cos(D̃♯

m(t))

= p · (β⋆
m(t)− β♯

m(t)) · {2 + κ2init/(β
⋆
m(t) · β♯

m(t))} · cos(D̃⋆
m(t))

+ p · (2β♯
m(t)− κ2init/β

♯
m(t)) · {cos(D̃⋆

m(t))− cos(D̃♯
m(t))}

≥ 2p · cos((D̃⋆
m(0)) · (β⋆

m(t)− β♯
m(t)) + p · κinit · {cos(D̃⋆

m(t))− cos(D̃♯
m(t))}.

(G.8)
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Here, we use (i) β⋆
m(t) ≥ β♯

m(t) and D̃⋆
m(t) ≤ D̃♯

m(t) for all t ∈ R+ based on the order preservation
property in Lemma G.3, and (ii) under the good initialization Einit where D̃⋆

m(0), D̃♯
m(0) ≤ π

2 , we
have ∂tD̃⋄

m(t) < 0 and ∂tβ⋄
m(t) > 0 for all (⋄, t) ∈ {⋆, ♯}∪R+. Therefore, we have cos(D̃⋆

m(t)) ≥
cos(D̃⋆

m(0)), β♯
m(t) ≥ β♯

m(0) = κinit and 2β♯
m(t) − κ2init/β

♯
m(t) ≥ 2β♯

m(0) − κ2init/β
♯
m(0) = κinit

under the initialization in Assumption G.1. Let ρm(t) = β⋆
m(t)/β♯

m(t). Following (G.8), we have

∂t log ρm(t) ≥ 2p · κinit · cos(D̃⋆
m(0)) · (ρm(t)− 1) ∨ p · κinit · {cos(D̃⋆

m(t))− cos(D̃♯
m(t))},

Based on the first term in the right-hand side, a simple calculation shows that the dynamics satisfy:

∂t log

(
ρm(t)− 1

ρm(t)

)
≥ 2p · κinit · cos(D̃⋆

m(0)) > 0.

Given ρm(0) = 1, we can integrate this result over any interval [s, t] to obtain a lower bound:

ρm(t) ≥ {1 + (1/ρm(s)− 1) · exp(2p · cos(D̃⋆
m(0)) · κinit · (t− s))}−1, ∀s ∈ (0, t]. (G.9)

Following this, once the ratio ρm(t) is larger than 1, the ratio ρm(t) surpasses 1, it begins to grow
super-exponentially, accelerating rapidly towards infinity. Motivated by this dynamics, our analysis
proceeds in two stages: first, we show that ρm(t) does not get stuck at the initial stationary point
ρm(t) ≡ 1, and second, we quantify its rate of growth using (G.9).

Step 2.1. Initial Growth of the Ratio Beyond Unity. Consider a short initial time interval (0, t1],
during which the model parameters remain close to their initial values while the ratio ρm(t) quickly
exceeds 1. Based on (G.1b), we have

| cos(D̃⋆
m(t))− cos(D̃♯

m(t))− cos(D̃⋆
m(0)) + cos(D̃♯

m(0))|

≤ 2 max
⋄∈{⋆,♯}

| cos(D̃⋄
m(t))− cos(D̃⋄

m(0))|

≤ 2 max
⋄∈{⋆,♯}

cos(D̃⋄
m(t)) = 2 max

⋄∈{⋆,♯}

∫ t

0

∂s cos(D̃
⋄
m(s))ds

= 2p · max
⋄∈{⋆,♯}

∫ t

0

(
6β⋄

m(s)− κ2init/β
⋄
m(s)

)
· sin(D̃⋄

m(s))2ds

≤ 6p · max
⋄∈{⋆,♯}

∫ t

0

β⋄
m(s)ds ≤ 6pt · max

⋄∈{⋆,♯}
max
0≤s≤t

β⋄
m(s) = 6pt · β⋆

m(t), (G.10)

where the last inequality results from β⋆
m(s) ≤ β⋆

m(t) for all s ∈ (0, t] and the rank preservation
property, i.e., β⋄

m(t) ≤ β⋆
m(t) at any time t, as shown in Lemma G.3. Following (G.1a), we get

∂tβ
⋆
m(t) ≤ p · (2β⋆

m(t)2 − κ2init) =⇒ β⋆
m(t) ≤ κinit/

√
2 · coth(−

√
2pκinit · t− ι1), ∀t ∈ R+,

(G.11)

where we denote ι1 = arccoth(
√
2). By choosing cg ∈ (0, 1), we define

t1 := inf
{
s ∈ (0, t] : 3

√
2pκinit · s · coth(−

√
2pκinit · s− ι1) > cg · π2p−2(c+1)

}
.

Here, we choose a sufficiently small cg to ensure that t1 is well-defined and finite before the system
explodes. This choice makes t1 correspondingly small and the following asymptotic result holds:

coth(−
√
2pκinit · t1 − ι1) ≍

√
2 + pκinit · t1 =⇒ t1 ≍ cg · π2p−(2c+3)/κinit. (G.12)

Recall from (G.2) that under the good initialization Einit, the initial cosine gap cos(D⋆
m(0)) −

cos(D♯
m(0)) is lower bounded by π2p−2(c+1). By combining (G.10), (G.11) and definition of t1, we

have
cos(D̃⋆

m(t))− cos(D̃♯
m(t))

≥ cos(D̃⋆
m(0))− cos(D̃♯

m(0))− | cos(D̃⋆
m(t))− cos(D̃♯

m(t))− cos(D̃⋆
m(0)) + cos(D̃♯

m(0))|
≥ π2p−2(c+1) − 6p · sup

t∈(0,t1]

t · β⋆
m(t) ≥ (1− cg) · π2p−2(c+1), (G.13)

for all t ∈ (0, t1]. Building upon (G.12) and (G.13), we can show that

log ρm(t1) = log ρm(0) +

∫ t1

0

cos(D⋆
m(s))− cos(D♯

m(s))ds

≳ cg(1− cg) · pκinit · t1 · π2p−2(c+1) ≍ π4p−4(c+1),

and thus ρm(t1) ≳ exp(1 + π4p−4(c+1)) ≍ 1 + π4p−4(c+1) for sufficiently large p.
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Step 2.2. Super-exponential Growth. Let ε > 0 be the dominance threshold. We now derive the
time t2 required for the lower bound of the ratio to exceed this threshold, i.e., ρm(t2) > 1/ε, such
that tε ≤ t2b. Our starting point is the state at time t1, after which we have ρm(t1) ≍ 1+π4p−4(c+1).
Following (G.9), we have

ρm(t)−1 ≤ 1 + (1/ρm(t1)− 1) · exp(2p · cos(D̃⋆
m(0)) · κinit · (t− t1))

≲ 1− π4p−4(c+1) · exp(2p · {1− 2c2π2 · (log p/p)2} · κinit · (t− t1)),

where the last inequality results from 1/ρm(t1) − 1 ≍ 1 − ρm(t1) given ρm(t1) is close to 1, and
the good initialization cos(D̃⋆

m(0)) ≥ 1− 2c2π2 · (log p/p)2 in (G.2). By choosing

t2 = t1 +
4(c+ 1) log p+ log 1

1−ε − 4 log π

2pκinit · {1− 2c2π2 · (log p/p)2}
≍ π2p−(2c+3)

κinit
+

(c+ 1) log p+ log 1
1−ε

pκinit · {1− 2c2π2 · (log p/p)2}
,

we can guarantee that ρm(tε)
−1 < ε, which completes the proof.

G.1.1 PROOF OF AUXILIARY LEMMA G.3
We begin by recalling the foundational results for a celebrated class of dynamical systems–known
as cooperative systems–which enjoy a useful rank-preservation property (e.g., Smith, 1995). Before
stating this formally, let us give a precise definition.
Definition G.4 (Cooperative System). Consider a p-convex set S ⊂ Rd such that tx+ (1− t)xy ∈
S for all t ∈ [0, 1] whenever x, y ∈ S and x− ≤ x+. Suppose f : S 7→ S is continuously
differentiable. The dynamical system, defined by ∂txt = f(xt), is called cooperative if ∂fi

∂xj
(x) ≥ 0

for all i ̸= j.
In other words, a cooperative system’s Jacobian has nonnegative off-diagonal entries, so increasing
any coordinate of the state cannot decrease another in the next iteration. With this definition in hand,
we can now state the key monotonicity property of cooperative systems.
Lemma G.5. Consider a cooperative system ∂txt = f(xt), and write x ≤ y for x, y ∈ Rd if
xi ≤ yi for all i ∈ Rd. Given two initial values x10 ≤ x20, then we have x1t ≤ x2t at all times t ∈ R+.

Proof of Lemma G.5. Please refer to Kamke (1932); Hirsch (1982) for a detailed proof.

In what follows, we prove Lemma G.3, which is a direct application of Lemma G.5.

Proof of Lemma G.3. Recall that, by Lemmas F.9 and F.10, together with the orthogonality of the
frequency basis, for every k ∈ [p−1

2 ], the dynamical system is given by (G.1a) and (G.1b) with initial
condition βk

m(0) = κinit for every frequency k.
We first show that the evolution of Dk

m(t) consistently shares the symmetric trajectory at any time
t if initialized symmetrically. Let x(t) = (βk

m(t),Dk
m(t)) and denote by ς(x(t)) right-hand side of

(G.1a), (G.1b), such that ∂tx(t) = ς(x(t)). Define the involution I(β,D) = (β, 2π −D) with its
Jacobian following dI ≡ diag(1,−1). A direct calculation shows that

ς ◦ I(βk
m(t),Dk

m(t))− dI · ς(βk
m(t),Dk

m(t)) ≡ 0,

i.e., the system is equivariant under I . By uniqueness of solutions, the solution with initial x(0) =
(βk

m(0), 2π −Dk
m(0)) satisfies x(t) = I

(
βk
m(t),Dk

m(t)
)
, so the two trajectories remain symmetric.

Hence, it suffices to consider the dynamics with standardized initialization min{Dk
m(0), 2π −

Dk
m(0)} ∈ (0, π]. Following a similar argument in Lemma F.9, under the standardized initial-

ization, we have Dk
m(t) ∈ (0, π) at all time t. To verify cooperativeness, we introduce β̃k

m = −βk
m

and rewrite the dynamics in the new coordinates (β̄k
m,D

k
m). From (G.1a) and (G.1b) one obtains

∂tβ̃
k
m(t) = −p · (2β̃k

m(t)2 − κ2init) · cos(Dk
m(t)) := ς1(β

k
m(t),Dk

m(t)),

∂tD
k
m(t) = p ·

(
6β̃k

m(t)− κ2init/β̃
k
m(t)

)
· sin

(
Dk

m(t)
)
:= ς2(β

k
m(t),Dk

m(t)),

and it is easy to check that the vector field is cooperative by
∂ς1
∂Dk

m

= sin(Dk
m(t)) > 0, − ∂ς2

∂β̃k
m

= p ·
(
6 + κ2init/β̃

k
m(t)2

)
> 0.

Thus, (−βk
m,D

k
m) is cooperative, and by Lemma G.5, it preserves the initial ordering. Since

βk
m(0) = κinit for all k and phase difference Dk

m(0)’s are distinct, it follows that

Dk
m(0) ≤ Dτ

m(0) =⇒ ∀t ∈ R+, β̃k
m(t) ≤ β̃τ

m(t) =⇒ ∀t ∈ R+, βk
m(t) ≥ βτ

m(t),

for every pair k, τ ∈ [p−1
2 ], which completes the proof.
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G.2 PROOF OF PROPOSITION D.3: DYNAMICS OF RELU ACTIVATION

Proof of Proposition D.3. We begin by recalling from §F.2 that, for each fixed indexm, the gradient
with respect to the decoupled loss ℓm takes the form

∂ℓ

∂θm[j]
= −2

∑
x∈Zp

ξm[mp(x, j)] · 1(⟨ex + ej , θm⟩ ≥ 0)

+
2

p

∑
x∈Zp

p∑
τ=1

ξm[τ ] · 1(⟨ex + ej , θm⟩ ≥ 0), (G.14a)

∂ℓm
∂ξm[j]

= −
∑

(x,y)∈Sp
j

max{⟨ex + ey, θm⟩, 0}+ 1

p

p∑
j=1

∑
(x,y)∈Sp

j

max{⟨ex + ey, θm⟩, 0}, (G.14b)

for all j ∈ [p]. We first evaluate these gradients at the single-frequency θm[j] = α⋆
m ·cos(ωk⋆j+ϕ⋆m)

and ξm[j] = β⋆
m · cos(ωk⋆j + ψ⋆

m) for all j, and then to extract the DFT coefficients.

Step 1: Gradient of ξm. First observe that max{x, 0} = (x+ |x|)/2. Then, we have∑
(x,y)∈Sp

j

σ(⟨ex + ey, θm⟩) = 1

2

∑
(x,y)∈Sp

j

⟨ex + ey, θm⟩+ 1

2

∑
(x,y)∈Sp

j

|⟨ex + ey, θm⟩|

=
α∗
m

2

∑
(x,y)∈Sp

j

| cos(ωk⋆x+ ϕ⋆m) + cos(ωk⋆y + ϕ⋆m)|, (G.15)

Moreover, by applying the sum-to-product trigonometric identities, we can show that
1

2

∑
(x,y)∈Sp

j

| cos(ωk⋆x+ ϕ⋆m) + cos(ωk⋆y + ϕ⋆m)|

=
∑

(x,y)∈Sp
j

| cos(ωk(x+ y)/2 + ϕ⋆m)| · | cos(ωk(x− y)/2)|

= | cos(ωkj/2 + ϕ⋆m)| ·
∑
x∈Zp

| cos(ωkx/2)|
p→∞
=

2p

π
· | cos(ωkj/2 + ϕ⋆m)|. (G.16)

The last inequality uses the fact that for an odd prime p, {ωkx}x∈Zp
= {2kxπ/p}x∈Zp

=
{2πx/p}x∈Zp

, which is a uniform sample of [0, 1]. Thus, in the limit p→ ∞, we have

1

p

∑
x∈Zp

| cos(ωkx/2)|
p→∞
=

∫ 1

0

| cos(πx)|dx =
1

π

∫ π

0

| cos(u)|du =
2

π
.

By putting these two asymptotic expressions (G.15) and (G.16) into(G.14b), we obtain that

∂ℓm
∂ξm[j]

= −pα
⋆
m

π
·
(
| cos(ωkj/2 + ϕ⋆m)| − 1

p

p∑
i=1

| cos(ωki/2 + ϕ⋆m)|
)
, ∀j ∈ [p].

Next, we apply DFT with respect to ∇ξmℓm in the asymptotic regime p → ∞. Let rk ∈ [p] denote
the multiplication factor in Definition D.2, i.e., rkk⋆ = k mod p for k, k⋆ ∈ [p−1

2 ]. Then, we have

1

2p

p∑
j=1

| cos(ωk⋆j/2 + ϕ⋆m)| · exp(i · ωkj)
p→∞
=

(−1)rk+1

π(4r2k − 1)︸ ︷︷ ︸
:= ςrk

· exp(−2rkϕ
⋆
m · i). (G.17)

A cosine derivation of (G.17) proceeds as follows:

1

p

p∑
j=1

| cos(ωk⋆j/2 + ϕ⋆m)| · cos(ωkj)
p→∞
=

∫ 1

0

| cos(πk⋆x+ ϕ⋆m)| · cos(2rkπk⋆x)dx

=
1

π

∫ π

0

| cos(u)| · cos(2rk · (u− ϕ⋆m))du =
cos(2rkϕ

⋆
m)

π
·
∫ π

0

| cos(u)| · cos(2rku)du

=
cos(2rkϕ

⋆
m)

π
·

(∫ π
2

0

cos((2rk + 1)u)du+

∫ π
2

0

cos((2rk − 1)u)du

)
=

2(−1)rk+1

π(4r2k − 1)
· cos(2rkϕ⋆m),
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where the third equality follows from trigonometric identities, evenness of sin(2ru), and periodicity.
A similar calculation applies to the sine, and combining both real and imaginary parts yields (G.17).
Therefore, we have

⟨∇ξmℓm, b2k⟩ = 2
√
2 · α⋆

m/π · p3/2 · ςrk · cos(2rkϕ⋆m),

⟨∇ξmℓm, b2k+1⟩ = −2
√
2 · α⋆

m/π · p3/2 · ςrk · sin(2rkϕ⋆m),

and thus ∆k
ξm
/∆⋆

ξm
= |ςrk |/|ςrk⋆ | = Θ(r−2

k ). Moreover, it follows by simple calculation

(P
∥
k⋆∇ξmℓm)[j] = ⟨∇ξmℓm, b2k⋆⟩ · b2k⋆ [j] + ⟨∇ξmℓm, b2k⋆+1⟩ · b2k⋆+1[j] ∝ cos(2k⋆j + 2ϕ⋆m),

for all j ∈ [p] such that we have P
∥
k⋆∇ξmℓm ∝ ξm.

Step 2: Gradient of θm. Following (G.14a), first notice that∑
x∈Zp

ξm[mp(x, j)] · 1(⟨ex + ej , θm⟩)

= β⋆
m ·

∑
x∈Zp

cos(ωk⋆(x+ j) + ψ⋆
m) · 1(cos(ωk⋆x+ ϕ⋆m) + cos(ωk⋆j + ϕ⋆m) ≥ 0)

p→∞
=

pβ⋆
m

π
· | sin(ωk⋆j + ϕ⋆m)| · cos(ωk⋆j + ψ⋆

m − ϕ⋆m),

where the last equality results from the following calculation under the asymptotic regime:
1

p

∑
x∈Zp

cos(ωk⋆(x+ j) + ψ⋆
m) · 1(cos(ωk⋆x+ ϕ⋆m) + cos(ωk⋆j + ϕ⋆m) ≥ 0)

p→∞
=

∫ 1

0

cos(2πx+ ωk⋆j + ψ⋆
m) · 1(cos(2πx+ ϕ⋆m) + cos(ωk⋆j + ϕ⋆m))dx

=
1

2π

∫
ϕ⋆
m≤u≤ϕ⋆

m+2π
cos(u)≥− cos(ωk⋆ j+ϕ⋆

m)

cos(u+ ωk⋆j + ψ⋆
m − ϕ⋆m)du

=
1

2π
· cos(ωk⋆j + ψ⋆

m − ϕ⋆m) ·
∫

0≤u≤2π
cos(u)≥− cos(ωk⋆ j+ϕ⋆

m)

cos(u)du

=
1

π
· sin(arccos(− cos(ωk⋆j + ϕ⋆m)))︸ ︷︷ ︸

= | sin(ωk⋆j + ϕ⋆m)|

· cos(ωk⋆j + ψ⋆
m − ϕ⋆m).

By applying DFT over ∇θmℓm in the asymptotic regime p→ ∞, we can show that

1

p

p∑
j=1

| sin(ωk⋆j + ϕ⋆m)| · cos(ωk⋆j + ψ⋆
m − ϕ⋆m) · exp(i · ωkj)

p→∞
= − 1

π
·
{
exp({ψ∗

m − (rk + 2)ϕ∗m} · i)
rk(rk + 2)

+
exp(−{ψ∗

m + (rk − 2)ϕ∗m} · i)
rk(rk − 2)

}
· 1(rk is odd),

(G.18)

where rkk⋆ = k mod p. The above results follow the calculation below:

1

p

p∑
j=1

| sin(ωk⋆j + ϕ⋆m)| · cos(ωk⋆j + ψ⋆
m − ϕ⋆m) · cos(ωkj)

p→∞
=

∫ 1

0

| sin(2πk⋆x+ ϕ⋆m)| · cos(2πk⋆x+ ψ⋆
m − ϕ⋆m) · cos(2πrkk⋆x)dx

=
1

2π

∫ 2π−ϕ⋆
m

−ϕ⋆
m

| sin(u)| · cos(u+ ψ⋆
m − 2ϕ⋆m) · cos(rk(u− ϕ⋆m))du

=
1

4π

∫ 2π

0

| sin(u)| · cos((rk + 1)u+ ψ⋆
m − (rk + 2)ϕ⋆m)du

+
1

4π

∫ 2π

0

| sin(u)| · cos((rk − 1)u− ψ⋆
m − (rk − 2)ϕ⋆m)du, (G.19)
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where for h1 = rk±1 and h2 = ψ⋆
m− (rk+2)ϕ⋆m/−ψ⋆

m− (rk−2)ϕ⋆m, we can further show show∫ 2π

0

| sin(u)| · cos(h1u+ h2)du = cos(h2) ·
∫ 2π

0

| sin(u)| · cos(h1u)du

= (1 + (−1)h1) · cos(h2) ·
∫ π

0

sin(u) cos(h1u)du =
4

1− h21
· cos(h2) · 1(h1 is even).

(G.20)

By combining (G.19) and (G.20), and performing a similar calculation for the sine component, we
obtain the result in (G.18) This implies that for even rk, we have

⟨∇θmℓm, b2k⟩ = −
√
2β⋆

m/π · p3/2 ·
{cos(ψ∗

m − (rk + 2)ϕ∗m)

rk(rk + 2)
+

cos(ψ∗
m + (rk − 2)ϕ∗m)

rk(rk − 2)

}
,

⟨∇θmℓm, b2k+1⟩ = −
√
2β⋆

m/π · p3/2 ·
{ sin(ψ∗

m − (rk + 2)ϕ∗m)

rk(rk + 2)
− sin(ψ∗

m + (rk − 2)ϕ∗m)

rk(rk − 2)

}
,

Hence, ∆k(θm)/∆⋆(θm) = Θ(r−2
k ) · 1(rk is even) and for all j ∈ [p]

(P
∥
k⋆∇θmℓm)[j] = ⟨∇θmℓm, b2k⋆⟩ · b2k⋆ [j] + ⟨∇θmℓm, b2k⋆+1⟩ · b2k⋆+1[j] ∝ cos(wk⋆j + ϕ⋆m),

which gives that P
∥
k⋆∇θmℓm ∝ θm and completes the proof.
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To ensure the reproducibility of our findings, we have made comprehensive efforts. The synthetic
nature of the modular addition dataset, as detailed in Section 2 (Preliminaries), allows for exact
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I ADDITIONAL EXPERIMENTAL RESULTS FOR DIFFERENT MODULO p

In this section, we replicate the key experimental findings presented in §3, but using an increased
modulus p = 47 and a network width of M = 1024.
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(a) Heatmap of Learned Parameters after DFT. (b) Actual Learned and Fitted Parameters.

Figure 15: Learned parameters under the full random initialization with p = 47 and ReLU activation
using AdamW. Figure (a) plots a heatmap of the learned parameters for the top 10 neurons after
Discrete Fourier Transform (DFT, see §A.3). Each row in the heatmap corresponds to the Fourier
components of a single neuron’s parameters. The plot clearly reveals a single-frequency pattern:
each neuron exhibits a large, non-zero value focused on only one specific frequency component,
confirming a highly sparse and specialized frequency encoding. Figure (b) further examines the
periodicity by plotting line plots of the learned parameters for three neurons, each overlaid with a
trigonometric curve fitted via DFT. The fitted curve aligns almost perfectly with the actual one.

(a) Scatter of (2ϕm, ψm).

average value

ι cos(ιϕm) sin(ιϕm)

×1 -0.1456 0.0066
×2 -0.0742 0.0686
×3 0.0271 -0.0444
×4 0.0472 0.0948
×5 0.0512 0.0838

(b) Phase Symmetry within Frequency Group Nk. (c) Distribution of αm, βm.

Figure 16: Visualizations of learned phases with p = 47 and M = 1024 neurons. Figure (a)
plots the relationship between the normalized 2ϕm and ψm, with all points lying around y = x.
Figure (b) shows the uniformity of the learned phases within Nk. The right panel quantifies this
symmetry by computing the averages of cos(ιϕm) and sin(ιϕm), all of which are close to zero.
Figure (c) presents violin plots of the magnitudes αm and βm, suggesting that the neurons learn
nearly identical magnitudes.
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