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ABSTRACT

We present a comprehensive analysis of how two-layer neural networks learn fea-
tures to solve the modular addition task. Our work provides a full mechanistic
interpretation of the learned model and a theoretical explanation of its training
dynamics. First, we empirically show that trained networks learn a sparse Fourier
representation; each neuron’s parameters form a trigonometric pattern correspond-
ing to a single frequency. We identify two key structural properties: phase align-
ment, where a neuron’s output phase is twice its input phase, and model sym-
metry, where phases are uniformly distributed among neurons sharing the same
frequency, particularly when overparametrized. We prove that these properties al-
low the network to collectively approximate an indicator function on the correct
logic for the modular addition task. While individual neurons produce noisy sig-
nals, the phase symmetry enables a majority-voting scheme that cancels out noise,
allowing the network to robustly identify the correct sum. We then explain how
these features are learned through a “lottery ticket mechanism”. An analysis of the
gradient flow reveals that frequencies compete within each neuron during train-
ing. The winning frequency that ultimately dominates is predictably determined
by its initial magnitude and phase misalignment. Finally, we use these insights
to demystify grokking, characterizing it as a three-stage process involving memo-
rization followed by two generalization phases driven by feature sparsification.

1 INTRODUCTION

A central mystery in deep learning is how neural networks learn to generalize. While these mod-
els are trained to find patterns in data, the precise way they build internal representations through
gradient-based training and make predictions on new, unseen data is not fully understood. The sheer
complexity of modern networks often obscures the fundamental principles at work. To gain a clearer
view, researchers often simplify the problem by studying how networks solve simple but rich tasks
that can be precisely analyzed. By meticulously analyzing the learning process in these controlled
“toy” settings, we can uncover basic mechanisms that may apply more broadly. The modular addi-
tion task, (x,y) — (« +y) (mod p) has emerged as a canonical problem for this approach, as it is
simple to define yet reveals surprisingly complex and insightful learning dynamics.

Prior work has established that neural networks trained on modular arithmetic discover a Fourier
feature representation, embedding inputs onto a circle to transform addition into geometric rotation
(Nanda et al., 2023; Zhong et al., 2023). These studies have also highlighted the intriguing grokking
phenomenon, where a model suddenly generalizes long after it has memorized the training data
(Power et al., 2022; Liu et al., 2022). While these observations are foundational, prior work has
not yet offered a conclusive, end-to-end explanation of the learning process. Existing theoretical
accounts often rely on mean-field approximations (Tian, 2024; Wang & Wang, 2025) or analyze
non-standard loss functions (Morwani et al., 2023), leaving a gap in our understanding of the finite-
neuron dynamics under standard training. This leaves three fundamental questions unanswered:

(1) Mechanistic Interpretability: How does the trained network leverage its learned Fourier fea-
tures to implement the modular addition algorithm precisely?

(ii) Training Dynamics: How do these specific Fourier features reliably emerge from gradient-
based training with random initialization?
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(iii) Grokking: How do these mechanisms and dynamics explain the full timeline of grokking,
from memorization to delayed generalization?

In this paper, we provide a comprehensive answer to these questions through extensive experiments
and rigorous theoretical analysis of a two-layer neural network. First, we empirically demonstrate
that trained networks learn a sparse Fourier representation characterized by two key structural prop-
erties: phase alignment, where a neuron’s output phase is twice its input phase, and phase symmetry,
where phases are uniformly distributed among neurons sharing the same frequency. Mechanistically,
we prove that these properties enable the network to collectively approximate a indicator function.
While individual neurons produce noisy signals, the phase symmetry facilitates a majority-voting
scheme that cancels out noise, allowing the network to identify the correct sum robustly.

Second, we explain how these features are learned via a lottery ticket mechanism. An analysis of
the gradient flow reveals that different frequencies compete within each neuron during training. We
prove that the winning frequency that ultimately dominates is predictably determined by its initial
conditions: the one with the largest initial magnitude and smallest phase misalignment grows much
faster than its competitors. This gives a complete explanation for the emergence of single-frequency.
Finally, armed with this mechanistic and dynamic understanding, we demystify grokking. We char-
acterize it as a three-stage process: an initial memorization phase, followed by two distinct general-
ization phases driven by feature sparsification and refinement under weight decay. Our analysis also
uncovers a common-to-rare memorization pattern, where the model prioritizes common training ex-
amples over rarer ones. By providing a complete, end-to-end theoretical and empirical account of
this learning problem, our work offers a concrete foundation for understanding the interplay between
feature learning, training dynamics, and generalization in neural networks.

1.1 RELATED WORK

Modular Addition and Grokking. Studying simple tasks like modular addition has revealed deep
insights into neural network mechanisms (e.g., Power et al., 2022). Reverse-engineering has shown
models learn a Fourier feature, converting addition into a geometric rotation by embedding numbers
on a circle (Nanda et al., 2023; Zhong et al., 2023; Gromov, 2023; Doshi et al., 2024; Yip et al., 2024;
McCracken et al., 2025). This discovery is central to understanding grokking, a phenomenon where
generalization suddenly emerges long after overfitting, which these papers study using specific train-
test data splits (e.g., Liu et al., 2022; Doshi et al., 2023; Yip et al., 2024; Mallinar et al., 2024; Wu
etal., 2025). A complete discussion on related works is deferred to §A.2 due to space limit.

2 PRELIMINARIES

Modular Addition. In a modular addition task, we aim to learn the teacher model Z,, x Z,, —
Z,, whose form is given by (z,y) — (= + y) mod p. The complete dataset is given by Dgy =
{(z,y,2) | z,y € Zp,z = (x+y) mod p} which consists of all possible input pairs (z, y) and their
corresponding modular sums z. This dataset is then partitioned into a training set for learning and
a disjoint test set for evaluation. Such a training setup is widely used in the literature (e.g., Nanda
et al., 2023; Morwani et al., 2023) in modular arithmetic tasks.

Two-Layer Neural Network. We consider a two-layer neural network with M hidden neurons
and no bias terms. Each input pair (z,y) is assigned to embedding vectors h, and h,, in R?, where
h:Zp R? is an embedding function of dimension d € N. Here, the embedding can be either
the canonical embedding e, € RP? in which case d = p or a trainable one {h, }mezp C Re. Let
0 = {Om}men) and & = {&n}me(ar denote the parameters, where 6,, € R? is the parameter
vector of the m-th hidden neuron and &, € RP is its corresponding output-layer weight. The
network output follows

M
F@,4:6,0) = > - 0((hy + hy,0m)) € R, Q.1
m=1

where o(+) is a nonlinear activation. In this paper, we primarily focus on the ReLU activation o (x) =
max{x,0} for experiments and the quadratic activation o(x) = 2 for theoretical interpretations.
Since the modular addition is essentially a classification problem, we apply the softmax function
smax : R? - R? to the network output and consider the cross-entropy (CE) loss:

éD(gao) = - Z <logosmaxof(a:,y;{,@),e(w_,_y) mod p>' (2.2)

(z,y)€D
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Here, log(-) is applied entry-wise and €(;4.y) mod p i the one-hot vector that corresponds to the
correct label. Intuitively, each input pair (z,y) is mapped to a hidden representation by o ((h, +
hy, 0,,)) for each neuron m, then linearly combined by &,,,’s to produce the logits f(z,y; &, ), and
finally processed via softmax function to yield a categorical distribution for classification.

3 EMPIRICAL FINDINGS

In this section, we set p = 23 and use a two-layer neural network with width M = 512 and ReLU
activation. The network is trained using the AdamW optimizer with a constant step size of n = 107
For stable training, we initialize all parameters using PyTorch’s default method (Paszke et al., 2019),
and then normalize. We use the CE loss averaged over the dataset.

Following prior work (Morwani et al., 2023; Tian, 2024), we primarily focus on training the model
with the complete dataset Dy, (without train-test splitting), as this yields more stable training dy-
namics and enhances model interpretability. While the train-test split setup exhibits the intriguing
grokking phenomenon (e.g., Nanda et al., 2023; Doshi et al., 2023; Gromov, 2023)—wherein mod-
els suddenly achieve generalization after extensive training despite initial overfitting—we defer this
analysis to §3.2, building upon the foundational results presented in subsequent sections.

3.1 EXPERIMENTAL OBSERVATIONS ON LEARNED WEIGHTS

We first summarize the main empirical findings of our experiments using ReLU activation (see Fig-
ures 7 and 1), formalized as four key observations. The first two—trigonometric parameterization
and phase alignment—have been previously explored in the literature (Gromov, 2023; Nanda et al.,
2023; Yip et al., 2024), and are included for completeness. For clarity, we focus on the case where
inputs are one-hot embedded, i.e., h, = e, € RP and 0,,,&,, € RP. We begin with the most
striking observation: a global trigonometric pattern in parameters that consistently emerges across
all training runs with random initialization.

Observation 1 (Fourier Feature). There exists a frequency mapping ¢ : [M] — [%1] along
with magnitudes a,,, 3,, € R* and phases ¢y, ¥, € [—, ), such that

9m[]} = Qnm 'COS(W¢(m)j+¢m)v fm[.ﬂ = ﬁm 'COS(WLp(m)j"_wm)v V(ma]) € [M] X [p]a (3.1
where we denote wy, = 2k /p forall k € [(p — 1)/2].

This observation shows that the parameter vectors 6,,, and &, simplify during training into a clean
trigonometric pattern. In the frequency domain, this corresponds to a sparse signal. After applying a
Discrete Fourier Transform (DFT, see §A.3), each neuron is represented by a single active frequency
©(m). Given this single-frequency structure, we will henceforth refer to v, and ¢,, as the input
magnitude and phase, and to 3,, and ,,, the output magnitude and phase for neuron m.

In Figure 15b, we zoom in on the learned parameters of the first three neurons, with each entry corre-
sponding to the input or output value j. The plots show that these parameters are well approximated
by cosine curves, shifted by phases ¢,,, ¥,,, and scaled by magnitudes v, 3,,,. This suggests that
the trained neural network learns to solve modular addition by embedding a trigonometric structure
into its parameters. We further examine the local structure of individual neurons, and observe a
highly structured phase alignment behavior.

Observation 2 (Doubled Phase). For each neuron m € [M], the parameter exhibits a doubled
phase relationship, where the output phase is twice the input phase, i.e., (2¢,, — %, ) mod 27 = 0.

We visualize the relationship between ¢,,, and v,,, in Figure 16a. Specifically, the dots represent the
pairs (2¢,,, ¥y, ), which lie precisely on the line y = x, confirming the claim made in Observation
2. This indicates that the first-layer 6,, and second-layer &, learns to couple in the feature space,
specifically the Fourier space, through training. Having studied both global and neuron-wise local
parameter patterns, we now examine how neurons coordinate their collective operation. Consider
a network with a sufficiently large number of neurons, then the phases exhibit clear within-group
uniformity and the magnitudes display nearly homogeneous scaling across neurons.

Observation 3 (Model Symmetry). Let A, be the set of neurons for frequency k, defined as
N ={m € [M] : ¢(m) = k}. For large M, (i) phases are approximately uniform over (—, )
within frequency group Ny, i.e., dm, ¥m "X Unif (—m, ), (i) every frequency k is represented
among the neurons, and (iii) the magnitudes «a,,’s and (,,, remains close across all neurons.
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Figure 1: Visualizations of learned phases with M = 512 neurons. Figure (a) plots the relationship
between the normalized 2¢,, and ,,, with all points lying around y = x. Figure (b) shows the
uniformity of the learned phases within A,. The right panel quantifies this symmetry by computing
the averages of cos(t¢,,) and sin(t¢,, ), all of which are close to zero. Figure (c) presents violin
plots of the magnitudes «,,, and f3,,, suggesting that the neurons learn nearly identical magnitudes.
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Figure 2: Illustration of the lottery-ticket mechanism. Figure (a) plots the dynamics of every fre-
quency k for a specific neuron, with the red curve tracing the trajectory of the frequency that even-
tually dominates. In the left-hand plot, misalignment levels D, are rescaled to [—, 7) for clarity.
Figure (b) plots the contour of the magnitude 3%, with various (3%, (0), D¥ (0)) after 10,000 steps.

Figure 16b illustrates the uniformity of phases within a specific frequency group A/, by examining
the higher-order symmetry. In addition, the learned magnitudes are close to each other for the major-
ity of the neurons, and no single neuron dominates (see Figure 16c). While previous work, notably
Kumar et al. (2024), has introduced the concept of phase uniformity to provide a constructive model
that solves modular addition, our findings significantly refine the understanding. Through empirical
validation, we show that this phase uniformity is a consistent when M is large. Furthermore, in §4,
we derive and utilize a substantially weaker condition than strict uniformity to enable a more pre-
cise, joint analysis of noise cancellation across a diversified, finite set of neurons. Finally, we report
a surprising adaptivity in the learned parametrization: the network continues to perform perfectly
when ReLU is replaced with a broad class of alternative activations.

Observation 4 (Robustness to Activation Swapping). A model trained with ReLU is robust to
changes of activation function at inference time. This is because learning a good solution only
relies on the activation’s dominant even-order components. Consequently, functions with strong
even components, such as the absolute value and quadratic, can be used interchangeably after
training, all while maintaining perfect accuracy with a negligible change in loss.

Table 1 provides the empirical support. Hence, we can analyze the mechanism of the learned model
or, furthermore, the training dynamics using more analytically tractable activations.

3.1.1

We conduct an analysis of training dynamics in an analytically tractable setting, using quadratic
activation with small random initialization, and focus on the early stages of training. Motivated by
Observation 1, our analysis hinges on studying the training dynamics within the frequency domain.
To do this, we use the Discrete Fourier Transform (DFT), which is formally discussed in §A.3,
to decompose the model’s parameters. Without loss of generality, any random initial parameter

DYNAMICAL PERSPECTIVE: PHASE ALIGNMENT AND FEATURE EMERGENCE
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vector can be exactly represented by its frequency components—magnitudes (o*,, 3% )’s and phases
(¢k,, 1k )’s. This allows us to express the parameters as

(p—1)/2 (r—1)/2
O[] = 2, + Z ok cos(wrj+ok,), Enli] = B+ Z B -cos(wrj+vk), Vi € [p], 3.2)
k=1 k=1

Note that, under small initialization, the neurons and frequencies are fully decoupled. This results
in the parallel growth of the magnitudes and phases for each neuron-frequency pair (m, k). The
central question is how the training process evolves this complex, multi-frequency initial state
into the simple, single-frequency pattern observed at the end of training. Our finding is surprising:

The final, dominant frequency learned by each neuron is entirely predictable from
a small subset of Fourier components in its initial parameters.

It arises from a competitive dynamics among frequencies, as illustrated in Figure 2a. A frequency’s
success is determined by its initial conditions, primarily two key factors: its initial magnitudes and
its initial phase misalignment level. To gain a more detailed understanding of the dynamics, we begin
by tracking the evolution of phases. Motivated by the double phase phenomenon in Observation 2,
we monitor the normalized phase difference D, defined as D, = (29X, — 1k ) mod 27 € [0, 27).
In the left-hand side of Figure 2a, we plot the dynamics of this phase difference, rescaling its range

to (—r, ] for visual clarity. This analysis leads to the following observation.

Observation 5 (Phase-Aligning Dynamics). The phase difference D, (t) for each frequency
converges monotonically to “zero” without crossing the axis. Generally, frequencies that start
with an initial phase difference D¥, (0) closer to zero converge faster.

To formalize the closeness of phase difference to zero, we define the phase misalignment @ﬁq as

@fn = max{DF 2 — DF 1. In the following, we outline the core dynamics of the training pro-
cess. It reveals that the single-frequency pattern in Observation 1 is the direct result of a frequency

competition, a process governed by the interplay of phase misalignment and magnitude.

Observation 6 (Lottery Ticket Mechanism). Under small initialization, neurons are decoupled.
Each frequency k draws a “lottery ticket” specified by its initial magnitudes o, (0), 8% (0) and

its misalignment level D¥ (0). All frequencies grow in parallel, and the one with the largest
ok (0) and B (0) and the smallest D¥

m

(0) ultimately wins—dominating the feature of specific
neuron—due to the rapid acceleration once magnitudes become larger and DE, (¢) reaches zero.

Figure 2a provides a clear empirical illustration of the mechanism. The winning frequency, high-
lighted in red, begins with a highly advantageous initialization—a competitively large magnitude
and a misalignment value close to zero. While other frequencies exhibit slow growth, the holder of
this winning ticket undergoes a distinct phase of rapid, exponential acceleration in its magnitude.
Figure 2b plots the magnitude under different initializations after a fixed time ¢ = 10, verifying that
frequencies with a larger magnitude and a smaller misalignment take advantage.

3.2 GROKKING: FROM MEMORIZATION TO GENERALIZATION

In this section, we provide empirical insights into grokking by analyzing the model’s training dy-
namics using a progress measure designed based on our prior observations. Prior work, such as
Nanda et al. (2023), identifies two key factors for inducing grokking: a distinct train-test data split
and the application of weight decay. We randomly partition the entire dataset of p? points, using a
training fraction of 0.75, and apply a weight decay of 1.0. As shown in Figure 3a, this elicits a clear
grokking: the training loss drops quickly to zero. In contrast, the test loss initially remains high be-
fore gradually decreasing, signaling a delayed generalization. We track four key progress measures:
(1) train-test loss and accuracy, to measure memorization and generalization; (ii) phase difference
| sin(D7,)], where D, := 2¢%, — 1, mod 2, to track layer-wise phase alignment; (iii) frequency
sparsity, measured by inverse participation ratio (IPR), defined as IPR(v) = (||v||2,-/||v[|2)?" with
r = 2, to capture the single-frequency emergence of Fourier coefficients; and (iv) ¢2-norm of pa-
rameter, which serves as a proxy for the effect of weight decay.

Building upon Figure 3, we identify two primary driving forces of the dynamics: loss minimization
and weight decay. These forces guide the training process through an initial memorization phase
followed by two generalization stages.

The memorization phase is dominated by loss minimization, causing the model to fit the training
data with its parameter norms increasing rapidly. As a result, the model achieves perfect accuracy
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Figure 3: Progress measure of grokking behavior. The shaded regions mark three distinct phases:
an initial memorization phase. Figures (a) and (b) plot the train-test loss and accuracy curve, where
the network first overfits the training data while the test loss remains high. Figure (c) visualizes the

dynamics of phase alignment level, measured by - Zi\f:l | sin(D2,)|. Figure (d) tracks the evolu-
tion of the average neuron-wise frequency sparsity level, as measured by the inverse participation
ratio (IPR) of the Fourier coefficients, alongside the /5-norm of the parameter.

on the training data and their symmetric counterparts in the test set (due to the exchangability of the
two input numbers), but completely fails to generalize to truly “unseen” test points (see Figure 9).
At this phase, all the frequency components in one neuron keep growing but at different pace similar
to the lottery ticket mechanism described previously. Next, the model enters the first generalization
stage, which is characterized by a precise interplay between the two forces. We conclude that both
forces are active because the parameter norms continue to grow, which is a clear indicator of ongoing
loss minimization. At the same time, weight decay induces a sparsification effect in the frequency
domain. Specifically, the one frequency component that dominates in the lottery ticket mechanism
continues growing, while weight decay refines the learned sparse features by pruning the remaining
components, making it closer to the clean single-frequency solution for each neuron and causing
the test loss to drop sharply. This dynamic culminates in a turning point around step 10,000, which
marks the onset of the second and final generalization stage. From this point, weight decay becomes
the dominant force, slowly pushing the test accuracy toward a perfect score.

Common-to-Rare Memorization. Early in training, as training accuracy rises, test accuracy falls
from an initial 5% (due to small random initialization) to 0% (see Figure 3b). By Step 1000, when
training accuracy peaks, the first phase is evident: the model prioritizes memorizing common data,
specifically symmetric pairs where both (i, j) and its counterpart (j,4) are in the training set. This
intense focus comes at a cost, as the model actively suppresses performance on rare examples within
the same training set, driving their accuracy to zero. Only after mastering the common data does the
model shift its focus to the second phase: memorizing these rare examples that appear only once.
Please refer to §E.1 for a more detailed interpretation of grokking dynamics.

4 MECHANISTIC INTERPRETATION OF LEARNED MODEL

In this section, we first tackle the interpretability question in a slightly idealized setting, leveraging
the trigonometric patterns in Observations 1-3 and, motivated by Observation 4, adopting a quadratic
activation for analytical convenience. We show that the trained model effectively approximates an
indicator function via a majority-voting scheme within the Fourier space.

Single-Neuron Contribution and Majority Voting. Under the parametrization of (3.1) in Obser-
vation 1 and the phase-alignment condition 2¢,,, — ¥, = 0 mod 27 for all m in Observation 2, the
contribution of each neuron to the logit at dimension j € [p] can be expressed as:

FI(, y; €, 0)[j] o cos(Wpmy (& = 9)/2) - {cos(we(m) (@ + y — 5))
primary signal
+2c08(Wy(m)J + 20m) + cos(We(m) (T +y + j) +4¢m)}. (4.1)
Here, cos(wg(z + y — 7)) provides the primary signal—its value peaks exactly at j = (x + y) mod
p—while the remaining terms act as residual noise whose amplitude and sign depend on the chosen
frequency k, phase ¢,,, and input pair (x,y). Similar results have also been reported in Gromov
(2023); Zhong et al. (2023); Nanda et al. (2023); Doshi et al. (2023).

Although each neuron’s contribution is biased by its own frequency-phase “view”, the network as a
whole can attain perfect accuracy via a majority-voting mechanism: every neuron votes based on its




Under review as a conference paper at ICLR 2026

individual view, the model then aggregates these biased yet diverse votes to distill the correct answer.
Despite this intuitive diversification argument, two questions remain unanswered: (a) How should
we define “diversification”? (b) To what extent can the residual noise be canceled by aggregating
over a diverse set of frequency-phase pairs (¢(m), ¢m)?

Majority-Voting Approximates Indicator via Overpa-
rameterization. Motivated by Observation 3, when M is
sufficiently large, the model naturally learns completely di-
versified neurons: every frequency k is represented, and the
phases exhibit uniform symmetry. We formalize this below.

HCC W AOC RO W
]

NHOLONOUAWNFO

Definition 4.1. The neurons is called fully diversified if the ~ 3} 0
frequency-phase pairs {(¢(m), dm) yme[ar) satisfy the fol- s iz

lowing properties: (i) for every frequency k € [%] there ig *
are exactly N neurons m with o(m) = k, (ii) there exists a 18

constant a > 0 such that o, 32, = a for allm € [M], and % -
(iii) for each k and ¢ € {2,4}, exp (z L EmeNk ¢m) =0. zzqdmwwwoﬁgmMwmm

Definition 4.1 is primarily a formal restatement of Observa- Input Pair

tion 3. In particular, condition (ii) follows from the homo- )
geneous scaling of magnitudes, and condition (iii) captures Figure 4: Heatmap of the output logits
the high-order phase symmetry implied by the uniformity With quadratic activation.

within the frequency group. Condition (i) assumes an exact frequency balance—an idealization that
holds approximately under random initialization. We are now ready to present the interpretation of
learned model.

Proposition 4.2. Suppose that the neurons are completely diversified as per Definition 4.1. Under
the parametrization in (3.1) and the phase-alignment condition 2¢,, — 1, = 0 mod 27 for all
m € [M)], the output logit at dimension j € [p| takes the form:

Fla,y;€,0)[j] =% {~1 +51(z + y mod p = j)+5§ (1(2x mod p = j)+1(2y mod p = j))}.
signal term noise terms

Forany e € (0,1), by taking a 2, (Np)~"-log(p/e), we have ||smaxo f(-,-;&,0) —ep, (.

1,00 <e

Please refer to §F.1 for a detailed proof of Proposition 4.2. The proposition states that although
each neuron individually implements a trigonometric mechanism as shown in (4.1), the diversified
neurons indeed collectively approximate the indicator function 1(x + y mod p = j). As noted in
Zhong et al. (2023), the cos(wy(m) (z —y)/2)? term in (4.1) is the Achilles’ heel of this strategy. We
show that even under complete diversification, it would still introduce spurious peaks at 2x mod p
and 2y mod p. However, from the above equation, we see that the true signal peak exceeds these
noise peaks by alNp/8. Hence, after the softmax operation, the model’s output would concentrate
on the correct sum = + y mod p as long as the magnitude grows large enough during the training.

5 TRAINING DYNAMICS FOR FEATURE EMERGENCE

In this section, we provide a theoretical understanding of how features emerge during standard
gradient-based training. Unlike previous theoretical works that focused on loss landscape analysis
(e.g., Morwani et al., 2023), we offer a more complete view from the perspective of training dynam-
ics. To achieve this, we track the evolution of the model’s parameters directly in Fourier space.

5.1 A DYNAMICAL PERSPECTIVE ON FEATURE EMERGENCE

In the following, we provide a theoretical understanding of how the features—single-frequency and
phase alignment patterns, i.e, Observation 1 and 2, emerge during training. For theoretical con-
venience, we adopt the quadratic activation (Arous et al., 2025) and focus on the training over a
complete dataset Dy, a familiar setting in prior work (e.g., Morwani et al., 2023; Tian, 2024).

Gradient Flow. Consider training a two-layer neural network as defined in (2.1) with one-hot
input embeddings, i.e., h, = e, € RP, parameterized by © = {, 0}, and the loss ¢ is given by the
cross-entropy (CE) loss in (2.2), evaluated over the full dataset Dy,;;. When training the parameter ©
using the gradient flow, the dynamics are governed by 9,0; = V£(©,). We consider gradient flow
under an initialization that satisfies the following conditions.

Assumption 5.1 (Initialization). For each neuron m € [M], the network parameters (&, 6., are
initialized as 0., ~ Kinit - \/P/2 - (01[1] - bar + 01[2] - bary1) and § ~ Kinit - A/D/2 - (02[1] - bag +
02[2] - baky1) where 01, 02 ) Unif (SY), k ~ Unif([%]) and Kinit is sufficiently small.
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Assumption 5.1 posits that each neuron is initialized randomly but contains a single-frequency com-
ponent, all at the same small scale.This specialized initialization is adopted for theoretical conve-
nience, allowing us to sidestep the chaotic frequency competition and study the evolution of one
specific frequency. Specifically, the single-frequency pattern is sufficient to capture the overall
behavior as each frequency component evolves within its own orthogonal subspace. In §D.1, we
will extend to the case where each neuron is initialized with multiple frequencies.

Section Roadmap. With a slight abuse of notation, we let £* denote the initial frequency of each
neuron (see Assumption 5.1) and use the superscript x instead of £* to simplify the notation further.
In the following, we aim to show that (i) the single-frequency pattern, i.e., g,,[j] = rm[j] = 0 for
all j # 2k*,2k* + 1, is preserved throughout the gradient flow (see §5.1.1), and (ii) the phases of
the first and second layers will align such that 2¢%, (¢) — 1%, (t) mod 27 converges to 0 (see §5.1.2).

5.1.1 PRESERVATION OF SINGLE-FREQUENCY PATTERN

Recall that the dynamics of the parameters are approximately given by ODEs in (A.2a) and (A.2b).
Note the constant frequency, i.e., g, [1] and 7, [1], remains almost 0 due to the centralized essence:

D0 4](t), Oelmlil(t) € span({b,}/_y),  Vj € [p]. (5.1

By definition, we can show that 0;g,,, [1](t) = (b1, 00, (t)) and Osrp, [1](¢) = (b1, 0:&m (t)). Given
the zero-initialization g,,[1] = r,,[1] = 0 (see Assumption 5.1), and utilizing (5.1), it follows that

Orgml1](1) = D [1)() 2 0 st gm[1)(8) ~ 1 [1)(1) 0, (52)
throughout the first stage. Moreover, to establish frequency preservation, we track the magnitudes

of each frequency, i.e., {af }reip—1)/2] and {85 }re((p—1)/2)- Thanks to the orthogonality of the
Fourier basis, by applying the chain rule, for each frequency k, it holds that

Decryy (1) = 2p - o, (8) By, (2) - cos (200, (8) — ¥y, (1)), Qe (8) = p - gy (8)* - cos (260, (1) — ¥y (1)),
where the evolution of the magnitudes for frequency & only depends on (X, 8% ¢k k). Given
the initial value o, (0) = 3% (0) = 0 for k # k* (see Assumption 5.1), we have

ap ()~ B, (t) ~ 0,  Vk#K". (5.3)
Recall that we define o, = \/2/p-||g% || and B, = \/2/p-||rE,||. By combining (5.2) and (5.3), we
can establish the preservation of single-frequency pattern (see Figure 13 for experimental results):

gmljl(t) = rm[f](t) = 0, Vj # 2k%, 2K + L. (5.4)

Based on (5.4), by simple calculations, we have
00m [j](t) m 2p - ap, () - B, (1) - cos(wif + 1, (1) — dr, (),
8t£m []](t) ~p- a:rL(t)2 : cos(w*j + 2¢:L(t))

For each neuron, its evolution can be approximately characterized by a four-particle dynamical
system consisting of magnitudes o, (¢) and 5}, (t) and phases ¢, (¢) and ¢, (t). We formalize the

m
result in (5.4) and the approximate arguments above into the following theorem.

(5.5)

Theorem 5.2 (Informal). Under the initialization in Assumption 5.1, for a given threshold Ceng > 0,
we define the initial stage as (0, tinit], where tinit := inf{t : max,ciar [|0m () |loo V [[Em (t)]loo <
Cend}. Suppose that log M /M < /2. (14 0(1)), Kinit = 0(M‘1/3) and Ceng = Kinit, given
sufficiently small Kinir, we have maxyp+ inf e (o 1] ok () Vv BE (1) = o(Kinit)-

The formal statement and proof of Theorem 5.2 is provided in §F.4. The theorem states that under a
small random initialization, during the initial training stage, the non-feature frequencies, which are
initialized at zero, will not grow beyond o(Kinit)-

5.1.2 NEURON-WISE PHASE ALIGNMENT

We proceed to investigate the emergence of the phase alignment phenomenon. To build intuition,
we first consider a special stationary point v, = 2¢7,. According to the dynamics given by (5.5), it
is straightforward to observe the stationarity, as: 9;0,,,[j](t) o cos(wxj + ¢%,(t)) and 0:&,, [4](t) x
cos(wyj + 2¢7,(t)). This implies that at the double-phase stationary point, 6., [7](t) and &, [](t)
evolve in the same direction as themselves and cease to rotate. By applying the chain rule over (5.5),

Or expl(idy, (1) & 2p - By, (1) - sin (207, () — ¥7, (1)) - exp (i {¢}, (t) — 7/2}),

5 . , (5.6)
By exp(ithr, (1)) = p - g, (1) /By, (t) - sin (207, (1) — ¢, (1)) - exp (i {¢, () +7/2}) .
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Phase Alignment of Neuron m

sin(Dy,) >0 M__ o
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— 2,
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*
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(a) [ustration of Phase Alignment Behavior. (b) Dynamics of Magnitudes and Phases for Neuron m.

Figure 5: Visualizations of the alignment behavior and neuron dynamics. Figure (a) illustrates the
dynamics of the normalized phase difference D, (¢) given by (5.7). Initialized randomly on the unit
circle, the gradient flow will always drive D}, (¢) to 0, regardless of the initial half-space. Figure (b)
plots the dynamics of magnitudes and phases of the feature frequency for a specific neuron m.

Thus, phases ¢}, and ¢, evolve in the opposite directions, with rotation speed primarily determined
by the magnitudes and misalignment level, quantified by | sin(2¢3, (t) — 1%, (¢))|. This suggests that
2¢y, will eventually “meet” v,. To understand the dynamics of the alignment behavior, we track
Dr.(t) = 2¢%, (t) — ¥r,(t) mod 27 € [0,27). Using (5.6), the chain rule gives that

Or exp(iD} (1)) & (483,(1) — ol (D2/ B (D) - p - sin (D3 (1)) - exp (D3 (1) — 7/2}) . (5.7)

Notably, though {0, 7, 27} are all stationary points of (5.7), the evolution of D7, (¢) is consistently
directed toward 0. This is due to the sign of sin(D}, (¢)), which adaptively ensures d; exp(iD}, (t))
converges only to zero (see Figure 5a). Thus, we can establish the phase alignment behavior below:

267, () — ¢y, (t) mod 2w — 0 when ¢ — oo.

Magnitude Remains Small after Alignment. Note the above analysis hinges on the parameter
scale being sufficiently small.To complete the argument, it remains to show that o, (¢) and 8%, (t)
remain small even after the phase is well-aligned.

Under the initialization specified in Assumption 5.1, we can establish the following relationship:

sin(D%, (£)) = sin(D% (0)) - {R%, (£) - (2R%, ()2 — 1)}, where RX,(t) := B2, (t)/sinie.

m m m m

This implies that when misalignment level sin(D}, (¢)) reaches a small threshold 6 > 0, the ra-
tio R*,(t) is bounded by {sin(Dz,(0))/8}'/3. Thus, since a,(t) < 3% (t), when the neuron is
well-aligned, the parameter scales remain on the same order as at initialization. This aligns with
experimental results in Figure 5b. We summarize these findings in the theorem below.

Theorem 5.3 (Informal). Consider the main flow dynamics under the initialization in Assumption
5.1. For any initial misalignment D}, (0) € [0, 27) and small tolerance level 6 € (0,1), the minimal
time ts required for the phase to align such that | D}, (t)| < § satisfies that

ts = (prinie) " - (1 — {sin(D},(0))/6}/* + max{x/2 — |D, (0) — x|,0}),

and the magnitude at this time is given by B, (ts) < Kinit - {sin(D%,(0))/8}/3. Moreover; in the
mean-field regime m — oo, let p, = Law (¢35, (t),v5,(t)) for all t € RT and let \ denote the
uniform law on (0,2x]. Then, pg = A ®@ X and poo = Typ\, where T : ¢ — (¢, 2¢) mod 2.

Theorem 5.3 provides two key insights. First, it establishes that the convergence time depends on (i)
the initial misalignment level, (ii) the extent to which D7, (0) deviates from the intermediate stage
for D7, (0) € (g, 37”), and (iii) the initialization scale k;n;; and modulus p. Second, the theorem
provides a theoretical justification for phase symmetry (Observation 3) in the mean-field regime.

For the formal theorem, a proof sketch, and the complete proof, see Theorem F.7, §F.3.1, and §F.5.

Theoretical Extensions. In §D, we extend the results from §5 to two more general scenarios: lot-
tery mechanism under multi-frequency initialization in §D.1 and the dynamics with ReLU activation
in §D.2 based on the preliminary result above.
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A BACKGROUNDS AND SUPPLEMENTARY RESULTS

A.1 ADDITIONAL FIGURES AND TABLES
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Figure 6: An illustration of the primary analytical technique and results. Discrete Fourier Transform
(DFT) is utilized to quantitatively interpret the mechanism of learned models within the feature
space, revealing the training dynamics that provably result in consistent feature learning.
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Figure 7: Learned parameters under the full random initialization with p = 23 and ReLU activation
using AdamW. Figure (a) plots a heatmap of the learned parameters for the top 10 neurons after
Discrete Fourier Transform (DFT, see §A.3). Each row in the heatmap corresponds to the Fourier
components of a single neuron’s parameters. The plot clearly reveals a single-frequency pattern:
each neuron exhibits a large, non-zero value focused on only one specific frequency component,
confirming a highly sparse and specialized frequency encoding. Figure (b) further examines the
periodicity by plotting line plots of the learned parameters for three neurons, each overlaid with a
trigonometric curve fitted via DFT. The fitted curve aligns almost perfectly with the actual one.

o(z) | max{z,0} | |a] x? ! 8 log(1 + €2*) e” | = 3 x° z7
Loss | 1.194 x 10~% | 0.000 0.000 3.1 x107° 0.051 1.2x1073  6.5x107% | 4.246 3.891 3.611 3413
Acc. | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.041 0.036 0.032 0.026

Table 1: loss and accuracy of a model trained with ReLU activation, then tested the same architec-
ture with different activation functions replacing ReLU. As shown in the table, activations such as
absolute function, even-order polynomials, and exponential function achieve perfect accuracy.
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A.2 NOTATION AND FURTHER RELATED WORKS

Notation. Forn € N*,let [n] = {i € Z: 1 < i < n}. Let Z, denote the set of integers modulo
p. The £,-norm is denoted by || - ||,. For a vector v € R, its i-th entry is denoted by v[i] The
softmax operator smax(-), maps a vector to a probability distribution, where the i-th component is
given by smax(v); = exp(v;)/ >_; exp(v;). For two non-negative functions f(z) and g(x) defined

onz € RY, we write f(x) < g(z) or f(x) as O(g(z)) if there exists two constants ¢ > 0 such
that f(z) < ¢- g(x), and write f(z) 2 g(x) or f(z) if there exists two constants ¢ > 0 such that
J() > ¢ gl(a). We write f(z) = g(a) or f(z) = ©(g(2)) if f(z) S g(x) and g(x) S ().

In the following, we discuss the additional related works in detail, which complements the discussion
in §1.1.

Training Dynamics of Neural Networks. To understand how neural networks perform feature
learning, a significant body of work has analyzed the training dynamics of neural networks under
gradient-based optimization. This research typically focuses on settings where the target function
exhibits a low-dimensional structure, such as single-index (Ba et al., 2022; Lee et al., 2024; Berthier
et al., 2024; Chen et al., 2025) and multi-index models (Damian et al., 2022; Arnaboldi et al., 2024;
Ren et al., 2025). Furthermore, Allen-Zhu & Li (2019); Shi et al. (2022; 2023) have considered
more general cases, analyzing function classes that encode latent features.

Theoretical Interpretation of Modular Addition. Theoretical understanding of this modular ad-
dition task, however, remains incomplete. Morwani et al. (2023) characterized the loss landscape
under the max-margin framework using a non-standard {5 3-regularization. Tian (2024) further ana-
lyzed the landscape of a modified ¢5-loss within the Fourier space, generalized these results to data
with semi-ring structures on Abelian groups, and provided a heuristic derivation for the mean-field
dynamics of frequencies. Recently, Wang & Wang (2025) formalized and extended these mean-field
results by analyzing the Wasserstein gradient flow under a geometric equivariance constraint. While
Tian (2024) and Wang & Wang (2025) provide a characterization of a simpler, mean-field dynamics,
a full analytical result explaining the alignment and competition dynamics at the finite, neuron-wise
level remains an open problem. A different approach studies grokking modular arithmetic via the
average gradient outer product for backpropagation-free models (Mallinar et al., 2024). Another line
of research focuses on grokking dynamics and frames it as a two-phase process, transitioning from
an initial lazy (kernel) regime to a later rich (feature) regime (Kumar et al., 2024; Lyu et al., 2023;
Mohamadi et al., 2024; ?), which are broadly related to our work.

Furthermore, to compare with the existing results in depth, we further compare with the closely
related works at a technical level in §B.

A.3 TECHNICAL BACKGROUND: DISCRETE FOURIER TRANSFORM AND NOTATIONS

Motivated by empirical observations in §3, it is natural to apply the Fourier transform to model
parameters and to track the evolution of the Fourier coefficients throughout the training process.
This allows us to investigate how these Fourier features are learned. We begin by defining the
Fourier basis matrix over Z, by B, = [b1,...,by] € RP*P, where each column is given by

1 2 2
b =L, bgk:[-coswk,...,coswkp , bok 1:\/>~sin(wk,...,sinwkp),
N 5 " leos(wr) (wep)] + . ) (wep)]
where wy, = 2km/p for all k € [712;1]'. We then project the model parameters, &,,,’s and 6,,’s,
onto this basis. This change of basis is equivalent to applying the Discrete Fourier Transform (DFT,
Sundararajan, 2001), yielding the Fourier coefficients:

gm = B, O, Tm =B &m,  ¥me€[M].
To better interpret these coefficients, we group the sine and cosine components for each frequency
k and reparameterize them by their magnitude and phase. Let g* = (g,,[2k], gm[2k + 1]) and

k= (1, [2k:] rm[2k + 1]) denote the coefficient vector in correspondence to frequency k. Their
magnitudes (a¥,, 8% ) and phases (¢%,, 1)) are defined as

k k k
\/> ||gm m = atan(gm m \/> Hr'm ¢m = a‘ta‘n(rm)'

Here, atan(z) = atan2(—z[2], z[1]) where atan2 : R x R — (—m, ] is the 2-argument arc-
tangent. ThlS polar representation is intuitive, as it directly relates the coefficients to a phase-shifted
cosine, e.g., g [2k] - bar[j] + gm[2k + 1] - bog11[j] = ok, - cos(wrj + #%)). By setting constant
coefficients as o), = g, [1]/1/p and B9, = ., [1]//D, We can recover the expanded form in (3.2).

"We choose p as a prime number greater than 2 to simplify the analysis.
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A.4 PROPERTIES AT THE INITIAL STAGE

Given a sufficiently small initialization in Assumption 5.1, a key property at the initial stage is that
the parameter magnitudes remain small, resulting in the softmax output being nearly uniform over.
Formally, ||0,,||c and ||, || are small such that the following equality holds approximately:

1
smaxof(x,y;f,&)mgip. (A.1)

While (A.1) suggests that the neural network behaves as a poorly performing uniform predictor at
the initial stage due to the small parameter magnitudes, this does not imply that the model learns
nothing. Instead, the model can learn the “feature direction” of the data under the guidance of the
gradient. In what follows, we examine the key components of the gradient and define the time
threshold ¢;,;: to ensure all parameters remain within a small scale.

Neuron Decoupling. We first show that the neurons are decoupled at the initial stage, meaning
the evolution of parameters 6,, and &,, depends solely on (6,,, &, )—the parameters of neuron m
itself—by using the approximation in (A.1). To establish this, we compute the gradient and simplify
it using periodicity. We derive that the gradient flow for each neuron m € [M] at the initial stage
admits the following simplified form: for each entry j € [p], we have

(p—1)/2
Obmjl(t) m2p- > ak () - BE (1) - cos(wrj + U, () — ok, (1)
k=1
(p—1)/2
+2p- B,(1) - ab, - cos(wrj + o, (1)), (A.22)
k=1
(p—1)/2
D)) ~p- D ak,(8)? - cos(wrj + 205, (1)). (A.2b)
k=1

Here, we use the Fourier expansion of parameters 6,,(t) and &,,(t) as given in (3.2). Fol-
lowing this, we can see that the dynamics, i.e., 0:0,,(t) and 0;§,(t), only depends on
{(ak,, BE, ¢k k) Ykej(p—1)/2) and 74, [1] that corresponds to neuron m. This demonstrates a de-
coupled evolutlon among neurons. Hence, in the remaining section, we can focus on a fixed neuron
m. Similar decoupling technique with a similar small output scale is also seen in Lee et al. (2024);
Chen et al. (2025) for £5-loss.

Remark A.1 (Equivalence to Margin Maximization under Small Initialization). Notice that the
module task is a multi-class classification problem. To understand the feature emergence, Mor-
wani et al. (2023) considers an average margin maximization problem, where the margin is defined
by

max bam(€,0) with Lam(€,0) =) Z{ 2,36 0)[(z +y) mod pl -~ 3 Flay3€.0)]; ]}
& T€ZLp YELy JEZLy

In comparison, given the small scale of parameters during the initial stage, we can show that, similar
to the approximation in (A.1), the loss takes the approximate form:

(0 =-3 3 fuen@+ymodg+ 33 1og(2exp iy
TELy YELy TELyp YELy
A=Y > [y 0)[(x +y) mod p| + Z Zfoy£9 ] +p° logp,
TELp YELyp TEZ YELp j=1
= —lam(§,0)

where we use the first-order approximations exp(z) ~ 1 + x and log(1 + x) =~ x for small x.
Following this, we observe that during the initial stage, minimizing the loss in (2.2) is equivalent to
optimizing the average margin. This connection underpins the theoretical insights in Morwani et al.
(2023), which links the margin maximization problem to empirical observations.
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B COMPARISON WITH EXISTING RESULTS

Our work is closely related to that of Tian (2024) and Wang & Wang (2025), who studied a two-
layer network for learning group multiplication on an Abelian group, which is a generalization of
the standard modular addition task. For theoretical convenience, they adopt a modified ¢5-loss to
mitigate noisy interactions induced by the constant frequency. Let i = I — %11T denote the
mean-zero projection, then the loss is defined as

_ Z Z Hggli_ (l/gp.f(x,y;fﬂ) — €(z+y) mod p)

TELp YELy

2
. (B.1)

where the output of the network is normalized by 1/2p within loss calculation. Unlike (B.1), we
show that minimizing a standard CE loss with a small initialization naturally decouples the dynamics
of each frequency (see Theorem 5.2), with the constant frequency having a zero gradient throughout
training and therefore remaining zero under zero-constant initialization (see Corollary D.1).

Notation Clarifications. We begin by explaining the notation used in Tian (2024). In their anal-
ysis, the (modified) complex Fourier coefficients of the weights are given by z4r,, € C, where the
indices ¢ € {¢,0}, m € [M] and k € [p — 1] U {0} correspond to the layer, neuron, and frequency,
respectively. This complex representation is equivalent to the real-valued cosine-sine pairs used in
our DFT definition in §A.3. Specifically, for all kK < (p — 1)/2, we can show that

Zorm = Qo [V2 - exp(idy,),  Zekm = B/ V2 exp(—ivy,).
By the conjugate symmetry of the DFT coefficients, our single real component at frequency k
determines the complex coefficients for both k and p — k. Therefore, for the higher frequencies
(p+1)/2 < k < p, the relationship is given by
Z0km = ze(p—k)m = O[;Ifn/\/5 : eXP(—i¢fn)7 Zekm = Z5(;[)—If)m = /Bfrkr:L/\/Q : EXP(ZZZJ?I;)»
which completes the one-to-one correspondence between our basis and the one used by Tian (2024).

Loss Landscape within Fourier Domain. Tian (2024) expresses the loss ¢ from (B.1) in the
Fourier domain usmg {zqkm} In Theorem 1, they show that the loss 0 decouples into per-frequency

terms { = © D k0 0 + (p — 1)/p. where f} is a quadratic polynomial whose variables
{Pk1kak } iy ko e[p—1) are third-order monomials of the Fourier coefficients. Formally, we have
_ M
;= poly ({Pkykok by kacp—1]),  Where pr i,k = Z 20k, m Z0kam Zekm - (B.2)
m=1

Mean-Field Gradient Dynamics. Building on their analysis of the loss, Theorem 7 in Tian (2024)
presents a heuristic result for the gradient dynamics. By considering a simplified setting with a
truncated loss polynomial from (B.2), a symmetric Gaussian initialization, and the mean-field limit
M — oo, they show that

OtPrrkak (1) = 2+ Chykeok () - {1(k1 = k2 = k) — pryioie (1)}, (B.3)

where (i, k,k(t) is a term of constant order along the training. The solution to the ODE in (B.3)
provides a more high-level theoretical basis for the emergence of the key structural properties we
identified in our work. Consider the case k:1 = ko = k, we have

M
()= 3 Sn®) s 0)x 3 0 - 350) - exp(i A 0) ~ 208, 0) 25 1.

m=1

For this to hold, the imaginary part of pjx(¢) should converge to 0:

S(prrr (t Z U, ¥ () - sin(yh, (1) — 205, (1) =5 0.

This convergence is a direct consequence of the phase alignment dynamic (2¢F, (t) — ¥ (t)) mod
2m — 0 as revealed in §5.1.2. Moreover, if we consider k1, ko # k, then we have

Ph ko (t Z aFr(t) - af2 () - BE (1) - exp(i{wk (1) — ¢F1 (1) — ¢F2 (1)}) =5 0.
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A sufficient condition for this is that the product of amplitudes ¥ (¢) - a2 (t) - BF (t) goes to zero
for all m € [M]. This corresponds precisely to the single-frequency sparsity we observed in §D.1.
Beyond these, Tian (2024) also discussed data with a general algebraic structure and its relationship
with properties of global optimizers. Recently, Wang & Wang (2025) formalized these mean-field
dynamics by modeling the network’s parameters as a continuous distribution. This approach allows
the training process to be rigorously described as a Wasserstein gradient flow on the measure space.

C CONCLUSION

In this paper, we provide an end-to-end reverse engineering of how two-layer neural networks learn
modular addition, from training dynamics to the final learned model. First, we show that trained
networks implement a majority-voting algorithm in the Fourier domain through phase alignment
and model symmetry. Second, we explain how these features emerge from a lottery-like mechanism
where frequencies compete within each neuron, with the winner determined by initial magnitude
and phase misalignment. Third, we characterize grokking as a three-stage process where weight
decay prunes non-feature frequencies, transforming a perturbed Fourier representation into a clean,
generalizable solution. These findings offer insights into the dynamics of feature learning in neural
networks, a mechanism that may extend to more general tasks.

D THEORETICAL EXTENSIONS

In this section, we extend the results from §5 to two more general scenarios: lottery mechanism
under multi-frequency initialization in §D.1 and the dynamics with ReL U activation in §D.2.

D.1 THEORETICAL UNDERPINNING OF LOTTERY TICKET MECHANISM

To understand why a single frequency pattern emerges from a random, multi-frequency initialization
(Observation 1), we can analyze the training dynamics for each frequency within a specific neuron.
The ODEs capture the dynamics of competition in (D.1), which are fully derived in §5.1.

8t049n(t) ] 61552“@) ~ 07
Ohak (t) ~ 2p- ok (t) - BE(t) - cos(DE, (1), 0uBE(t) ~p-ak (t)? cos(DE,(t),  (D.D)
OyDE (1) = —(4B%,(t) — ok, ()% /B5,(1)) - p - sin(DE, (1)),  VEk #0.

A key insight from these equations is that the dynamics are fully decoupled. The evolution of
each frequency is self-contained, proceeding orthogonally without cross-frequency interaction. This
structural independence establishes the competitive environment required for the lottery ticket mech-
anism. The ODEs also reveal a powerful reinforcing dynamic: the growth rate, proportional to the
alignment term cos(D¥ (t)), is amplified by the magnitudes This creates a “larger-grows-faster”
positive feedback loop that drives the winner’s dominance.

As introduced in §3.1.1, this process is not chaotic but is instead a predictable competition governed
by a “Lottery Ticket Mechanism”. Applying an ODE comparison lemma (Smith, 1995), we can
compare the evolution of frequency magnitudes based on their initial conditions. This allows us
to formally prove that the “lottery ticket” drawn at initialization determines which frequency will
ultimately dominate. We formalize the results into the following corollary.

Corollary D.1 (Informal). Consider a multi-frequency initialization akin to Assumption 5.1. For a
given dominance level ¢ € (0, 1) and fixed neuron m, let t. be the minimal time required for the
winning frequency k* to dominate all others, such that maxy_x+ 8% (t)/ 8%, (t) < e. Then, we have

- m2p~(2e+3) (c+1)logp+ log %_E
~ it Phinit - {1 — 2¢?72 - (log p/p)?}’

k* = mkin D (0), t.

where the bound holds under mild conditions and with a high probability of at least 1 — ©(p~¢).

The proof is deferred to §G.1. Corollary D.1 formalizes our Lottery Ticket Mechanism in Obser-
vation 6. It states that under a multi-frequency random initialization where all frequencies start
with identical magnitudes, the frequency with the smallest initial misalignment D7, will inevitably

dominate. This dominance occurs rapidly, on a timescale of O (%).

D.2 DYNAMICS BEYOND QUADRATIC ACTIVATION

Thus far, we have focused on quadratic activation for more precise interpretation. However, ex-
perimental results indicate that quadratic activation is not essential or can be even problematic. In
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(a) Heatmaps of parameters after discrete Fourier transform for the (b) Dynamics of magnitude and phase
first 20 neurons with ReLU activation at the intial stage. for Neuron m with ReLU activation.

Figure 8: Learned feature and dynamics of parameters initialized at Assumption 5.1 with p = 23
and ReL.U activation. Figure (a) shows heatmaps of the parameters after DFT at initialization and at
the end of the initial stage. Similar to the quadratic activation (see Figure 13), the single-frequency
pattern is approximately maintained, with small values emerging at frequencies “3k*”, “6k*” for
O, and “2k*”, “3k*” for &,,. Figure (b) plots the dynamics of a specific neuron m. Here, the phase
quickly aligns, i.e., ¥, =~ 2¢7,, and the magnitudes o, and 3, grow rapidly and synchronously.

practice, quadratic activation often leads to unstable training and inconsistent feature learning when
training from scratch.” In contrast, ReLU activation consistently leads to the emergence of desired
features, as shown in §3. In this section, we investigate the training dynamics of ReLU activation.

Training Dynamics of ReLU Activation. In parallel, we adopt an experimental setup identical to
that of Figure 13 using the single-frequency initialization specified in Assumption 5.1, with the only
modification being the replacement of quadratic activation with ReLU activation. The experimental
results are shown in Figure 8, and the key observation is summarized below.

Observation 7 (ReLU Leakage). For ReLU activation, although each neuron is initialized with
a single frequency k*, such a pattern is preserved approximately with small leakage, with small
values emerging at other frequencies. For 6,,, the values emerges at frequencies “3k*”, “5k*” and
higher odd multiples, with magnitudes decaying gradually. For &,,,, these appear at “2k*”, “3k*”,
and others, which also exhibit decay with increasing multiplicative factors.

As shown in Observation 5, ReLU mostly preserves the single-frequency pattern but still exhibits
small leakage at other frequencies. For instance, in Figure 8a, Neuron 3 is initialized with dominant
frequency 1. After 30,000 training steps, small values emerge at frequencies 3 and 5 in 6,,,, and at 2
and 3 in &,,. In what follows, we first formalize the multiplicative relationship among frequencies.

Definition D.2. Given k,7 € [%] we say frequency T is r-fold multiple of k under modulo p if
7 =rk mod p or p — 7 = rk mod p for some r € [L;l] denoted by T £ rk.
Now we are ready to present the main proposition for training dynamics of ReLU activation.
Proposition D.3. Consider gradient update with respect to the decoupled loss {,, and assume that
(O, &m) satisfying (3.1). Let AF = \/(Vvém, bar)? + (Volim, ba11)? denote the incremental
scale for frequency k € [%1] Under the asymptotic regime where p — 00, it holds that

(i) Af /A5 =0O(r;%) and Af JAE = 0O(r;?) 1(ris odd), where k £ rk*;

(ii) PVl x v forv e {00, &m} when v, = 26, mod p, 9,! =1 =3 51 ok 2kt bsb .

See §G.2 for a detailed proof. Proposition D.3 indicates that, starting from a single-frequency point,
the dynamics with respect to ReLU dynamics approximately preserve such a pattern. Specifically,

2The failure of the quadratic activation stems from the significant disparity in growth rates among neurons
due to the nature of the quadratic function. Specifically, a few neurons with more well-aligned initial phases
grow faster in magnitude and come to dominate the output, leaving an insufficient number of neurons to support
diversification (see §4). This issue can be mitigated using techniques such as normalized GD (Cortés, 2006).
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the gradient components at non-feature frequencies & decay at a rate of @(r,;Q) compared with
k*. If we exclude the small gradient components at other frequencies k # k*—Dby projecting V,,¢,,,
onto the subspace spanned by baj+, and baj« 41—the resulting stationary point of the ReLU dynamic
system remains v, = 2¢,, mod p, thereby explaining the convergence of aligned phases.

E ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

E.1 DETAILED INTERPRETATION OF GROKKING DYNAMICS IN SECTION 3.2

Inverse Participation Ratio (IPR). To quantitatively characterize the concentration of Fourier
coefficients at a specific frequency k, or equivalently, the sparsity level of the learned parameters in
the Fourier domain, we introduce the inverse participation ratio (IPR). This metric, originally used
in physics as a localization measure (Kramer & MacKinnon, 1993), was recently adopted in Doshi
et al. (2023) as a progress measure to understand the generalization behavior in machine learning.
Specifically, given v € R?, the IPR is defined as IPR(v) = (||v||2,-/||v||2)?" for some integer r > 1.
We calculate the IPR for all {6, },,c(ns) and {&m } e[ and take the average.

Definition of Progress Measure. Here, we provide a formal definition of the progress measure for
grokking used in Figure 3, which is defined over the model output and parameters 6,,,’s and &,,,’s.

- Loss : eD = - Z < lOg osmax o f('T’a Y 57 G)a e(m-i—y) mod p>
(z,y)eD
1
- Accuracy :  Accp = D] Z 1 {argmax(smax o f(z,y;£,6)) = (z + y) mod p}
(z,y)€D
IPR : IPR, 1 i/l: ||B;z—)r‘9mH4 Z ||BT£m||4
- . 97 = — —
¢ 2M = \ B0l 2 \IBJ &l
M
- fo-norm : lo-normy ¢ = Z 10mll2 + 1€mll2)

Three-Phase Dynamics of Grokking. As discussed in §3.2, the grokking process is governed by
the interplay between two primary forces: loss minimization and weight decay. The dynamics unfold
across three major phases: an initial memorization stage dominated by the loss gradient, followed by
two distinct generalization stages where the balance between these forces shifts. Below, we provide
a more detailed account of each phase by examining our key progress measures.

Training Data under Symmetry Accuracy before Grokking

Softmax Weight at Ground-Truth

First Input

012345678 910111213141516171819202122
Second Input

012345678 910111213141516171819202122
Second Input

012345678 910111213141516171819202122
Second Input

Figure 9: Heatmaps of trained model from Figure 3 at the end of the memorization stage. The left
panel displays the data distribution: dark blue entries represent training data, light blue entries are
test data whose symmetric counterparts are in the training set, and white entries (outlined in red)
are the remaining held-out test data. The middle panel shows the model’s accuracy, demonstrating
that it has perfectly memorized all training data and their symmetric variants but completely fails to
generalize to the held-out data. Finally, the right panel visualizes the model’s post-softmax output
on the correct answer for each data point, further confirming the accuracy results.

- Phase I: Memorization. Initially, the network quickly memorizes the training data, reaching
100% accuracy. Test accuracy also improves to around 70%, aided by the model’s symmetric
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Figure 10: Data distribution during the memorization stage. The first panel illustrates the data
partitioning, which, unlike in Figure 9, uses the following scheme: white entries denote test data,
dark blue entries represent common (symmetric) training data, and light blue entries (outlined in
red) denote rare (asymmetric) training data. The remaining three plots track the model’s accuracy,
demonstrating a two-stage memorization scheme. At initialization, the model performs at a low,
chance-level accuracy. However, after approximately 1000 steps, it masters the common symmetric
training data, but its performance on rare asymmetric data drops to zero, overwriting any initially
correct random predictions. By the end of the memorization stage, the model finally memorizes
these rare data points, achieving 100% training accuracy
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Figure 11: Heatmaps of parameters after applying discrete Fourier transform along training epoches
for the first 20 neurons with p = 23 under train-test split setup. At the end of the memorization stage
(step 2200), a single-frequency pattern has started to emerge, accompanied by noisy perturbations in
other frequencies. This initial "perturbed Fourier solution” is subsequently refined, as weight decay
prunes the noisy, non-feature frequencies to reveal the final, clean pattern.

architecture. Figure 9 provide clear empirical evidence for this perfect memorization. The model
achieves flawless accuracy and high confidence on the training data (dark blue entries) and test
data whose symmetric counterparts were part of the training set (light blue entries). Note that
the model completely fails on the truly “unseen” held-out test data (white entries outlined in red),
confirming it has learned to exploit symmetry rather than achieving true generalization at this
stage. During this time, feature frequencies become roughly aligned (see Figure 3c) and their
sparsity increases significantly (see Figure 3d). While these dynamics resemble a full-data setup,
the incomplete data yields a perturbed Fourier solution that overfits the training set.

- Phase II: Loss-Driven Norm Growth with Rapid Feature Cleanup. After reaching perfect
training accuracy, the model’s parameters continue evolving to further reduce the loss. Instead of
naively amplifying parameter magnitudes, weight decay actively steers their direction. As shown
in Figure 3d, the dynamic is thus a balancing act: the loss gradient pushes to scale up parameters,
while weight decay prunes unnecessary frequencies to decelerate the growth of norm.
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- Phase III: Slow Cleanup Driven Solely by Weight Decay. By the end of Phase II, training loss
is near-zero and test accuracy approaches 100%. Thus, in the final stage, the diminished loss
gradient allows weight decay to dominate, causing the parameter norm to decrease (see Figure
3d). Without the main driving force of the loss, this final “cleanup” phase is extremely slow (see
Figure 3b), during which test accuracy gradually converges to 100%.

E.2 ABLATIONS STUDIES FOR FULLY-DIVERSIFIED PARAMETRIZATION

In this section, we present comprehensive ablation studies investigating the efficiency of the fully
diversified parametrization as defined in Definition 4.1. We evaluate the models based on the CE
loss defined in Equation 2.2 while maintaining a fixed, equivalent computational budget.

PART I: FREQUENCY DIVERSITY ABLATION.

Loss 1 Freqgs 2 Freqs 4 Freqs 8 Freqs Full Freqgs
Avg. 1.64 6.02 x 107! 2.88 x 1072 2.99 x 1078 7.41 x 1071°
Std.  2.01 x1072 879 x 1072 1.55x 1072 1.07 x 10~7 —
PART II: PHASE DIVERSITY ABLATION.

[0,0.47) [0,0.87) [0,1.27) [0,1.67) [0, 27)
Loss 4.82 2.00 x 1073 1.19 x 1072 3.54 x 10~7 7.41 x 1071°

Table 2: Performance of the predictor under different ablation configurations. For the frequency ab-
lation study, the average and standard deviation of the loss are reported across all possible combina-
tions of frequencies of the specified size |K|. The results show that the fully diversified parametriza-
tion achieves the lowest CE loss, confirming its maximum efficiency under the fixed constraints of
model scale o, 32, = 1 and neuron budget M = 128.

All predictors share a fixed neuron constraint M = 128 and scale «,,, 32, = 1 for all m € [M]. The

ablation is performed across two distinct dimensions of the diversification strategy:

» Ablation of Frequency Diversification. We examine the impact of restricting the number of
learned frequencies. We use only a subset of frequencies K C [%1] with || = {1,2,4,8}. The
phases for each selected frequency k are kept uniformly distributed over [0, 27).

* Ablation of Phase Uniformity. We investigate the effect of restricting the range of the phase
distribution. The model utilizes the full set of frequencies, but the phase for each frequency is
uniformly distributed over a restricted interval [0, c7) with ¢ € {0.4,0.8,1.2,1.6}.

The ablation study results in Table 2 confirm that full frequency and phase diversification is essential
for maximizing parametrization efficiency under fixed constraints. Part I shows that the CE loss
decreases rapidly as the number of frequencies increases, dropping from 1.64 at || = 1 to 7.41 x
10~ for the full frequency set, underscoring the critical role of spectral richness. Part II reveals
that restricting the phase distribution range significantly degrades performance. For instance, the
loss is 4.82 for [0, 0.47) but achieves the minimum of 7.41 x 10~ only when the phases span the
full [0, 27) interval. These findings collectively validate that the fully diversified parametrization
achieves the maximum efficiency. Visually, this maximum efficiency is confirmed in Figure 12,
where the fully diversified parametrization generates the highest confidence prediction by creating
the largest logit gap between the ground truth label and all incorrect alternatives. Please refer to
Figure 12 for visualizations of model outputs under different ablation configurations.

E.3 TRAINING DYNAMICS WITH QUADRATIC ACTIVATION

To under the training dynamics with quadratic activation, we set p = 23 and use a two-layer neural
network with width M = 512. The network is trained using SGD optimizer with step size n = 1074,
initialized under Assumption 5.1 with initial scale xj,iy = 0.02.

As shown in Figure 13, a single-frequency pattern is preserved throughout the training process.
This empirical result aligns with our theoretical findings in Theorem 5.2, which states that under a
sufficiently small initialization, the single-frequency structure will remain stable during the initial
stage of training. In other words, the neurons are fully decoupled and the main flow dominates.
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Figure 12: Output logits for the predictor under different ablation configurations, evaluated across
four distinct query points (x,y). The true prediction label is indicated by the dashed vertical line
in each panel. The fully diversified parametrization yields the largest logit gap between the ground
truth and incorrect labels, signifying maximal prediction confidence.
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Figure 13: Heatmaps of parameters after applying discrete Fourier transform along training epoches
for the first 20 neurons initialized under Assumption 5.1 with p = 23 and quadratic activation. At
the initial stage, these neurons preserve the single-frequency pattern by evolving only the Fourier
coefficients corresponding to the initial frequency £*, while keeping the others 0 throughout.

F PROOF OF RESULTS IN SECTION 4 AND 5

F.1 PROOF OF PROPOSITION 4.2
We first introduce a useful lemma about the softmax operation.

Lemma F.1. Let v € RY Ifi* = argmax; v; and vy~ — v; > 7 for all i # i, then

Jsmax(v) — e[y < — 0
smax(v) —epx||1 L ——————.
! exp(7) + (d — 1)
Proof of Lemma F.1. See Lemma 3.6 in Chen & Li (2024) for a detailed proof. O

Now we are ready to present the proof of Proposition 4.2.
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Proof of Proposition 4.2. Let fI™ be the logit contributed by neuron 7, and fix j € [p]. Under the
parametrization in (3.1) and the phase-alignment condition 2¢,, — 1,, = 0 mod 2, we have

Fr (€, 0)]j]
= anf? - co8(We(m)J + 20m) - (cos(ww )T 4 ) + cos(Wem)Y + qu))
= 2a - co8(Wy(m) (T — Y)/2)? - co8(Wy(m)d + 20m) - {1 + cos(Wy(m) (z + y) + 26 )}
= a - cos(Wy(m)(z — y)/2)%- {2 co8(Wy(m)J + 2¢m)
+ cos(We(m) (& + Y — 7)) + cos(Wy(m) (T +y + 1) + 4om)},

where the second equality uses the homogeneous scaling, i.e., condition (ii) in Definition 4.1. Next,
summing over all neurons in the frequency-group N, gives

> iy, 0)l]

mENk
=a - cos(wr(z —y)/2)*- N - cos(wp(z +y — j))
condition (i): |Ng| = N

+a - cos(wr(z —y)/2)*- Z {2 cos(wrj + 2¢m) + cos(wi(z +y +j) + 4dm) }
mENk

= 0 due to condition (iii)
=aN/2 - cos(wg(z+y— 7)) +aN/4- {cos(wg(2x — j)) + cos(wk(2y — 7))}, (F.1)

where the second equality follows from the balanced-frequency and the high-order phase-symmetry
conditions (i) and (iii) in Definition 4.1. Summing (F.1) over all frequency k yields

(r—1)/2
fla,y:&0h = > > fmi@,y:¢ 0]
k=1 meN;
(r=1)/2
=aN/2- Z cos(wg(x +y — 7))
k=1
(p—1)/2 (p—1)/2
+aN/4-{ Z cos(wg(2z — 7)) + Z cos(wg 2y]))} (F2)
k=1 =1

By symmetry, for any fixed z € N, Z(p v/ cos(wkz) = (p—1)/2if z = 0mod p else —1/2.
Then,

(p—1)/2

Z cos(wyz) = —5 + g 1(z mod p = 0). (E3)
k=1

Thus, by combining (F.2) and (F.3), we can conclude that
fa,y;€,0)j] = aN/2- { =1+p/2-1(x+ymodp=j) +p/4- > 1(2zmodp=j)}, Vje .
z€{z,y}

Note that when = # v, the true-signal logit at j = (x + y) mod p exceeds all others by aNp/8, and
when z = y, the margin is even larger. Applying Lemma F.1 yields

b
exp(aNp/8) +p

Hence, to achieve error e, it suffices to choose a = (Np)~*! - log(p/e), which completes the proof.

||smax o f(l‘ Y; g 9) €(z+y) mod p”l = 1 < p- exp(—aNp/S).

O
F.2 PRELIMINARY: GRADIENT COMPUTATION
Recall the logit of the two-layer neural network in (2.1) takes the form:
M
Fa,y) = f(2,4:6,0) = > &m-0((ex + €y, 0m)) € R. (F4)

m=1
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For theoretical analysis, we consider the training dynamics over the full dataset Dgy = {(z,y, 2) |
x,y € Ly, z = (x +y) mod p} and the corresponding CE loss, defined in (2.2), can be written as

0= 0(€,0:D.) = = 30 3 (logosmaxo f(z,:€,0), oty mod p)

TELyp YELy

. exp(f (2, y)[(z + y) mod p))

P ( ST )

:72 Zf(:p,y T +y) moderZ Zlog<zexp )>
TE€Lp YELyp TELyp YELy

=0 =10
(E5)

Following the loss decomposition in (F.5), we compute the gradients of these two parts respectively.
Recall that the two-layer neural network is parametrized by § = {&mn }menr) and 0 = {0 e

with &,,, 0,, € RP. By substituting the form of f in (F.4) into ¢ and 7, we have

=30 3T enllw+y) mod pl - o((ex + €y, Om)),

rE€Ly YELy m=1
= Z Z log(Zexp(Z Sm . €x +€y79m>)>>'
TE Ly YELy

Fix a neuron m € [M]. First, we calculate the gradients for /. By direct calculation, we have
Ve, b= — Z Z €(z+y) mod p o({ex + €y, Om))-
TE€ Ly YELy

Following this, the entry-wise derivative with respect to &, [7] satisfies that

‘%, =— > o((ex + ey, 0m) i=— Y o{extey,0m). (6

Om]] ©,y€Lyp:(z+y) mod p=j (@,y)€S7

Here, we define S} = {z,y € Z, : (v +y) mod p = j} for notational simplicity. Similarly, we can
compute the gradient with respect to 6,,,, following that

Vo [ =— Z Z Eml(x+y) mod p] - (ex + €y) - o' ({€x + €y, Om))

TELyp YELy
= -2 Z ey - Z Eml(z +y) mod p] - o’ ({ex + €y, Om)),
TELyp YELy

where the last equality uses the symmetry of x and y. Hence, the entry-wise derivative follows

or
90,171

=2 &nlmy(x, )] -0 ((ea + €5, 0m)), (F7)

TEZLyp

where we re-index = j and y — x to simplify the form. Next, we compute the gradients for /.
Fo]lowing a similar argument in (F.7) and (F.6), based on the chain rule, it holds that

eXp TA;{ 1§m["] co({ex + ey79m>))
co(({ex +ey,0m)). (ES8)
8§m Tg yg i1 ex P(fo 1€mli] - o((ex + ey, 0m))) ( ( )

In addition, by direct calculation, we can obtain that

az exp (S émlT] - o ({ew + €5,0m)))
-9 CEnlT
Tg TZI i= 1eXp (Zr]gzl gm[l] : 0(<e$ + e,j>9m>)) 6 [ ]
"o (<€I + ej,em>)a (F.9)

where the last equality results from re-indexing * = j, y — x, and j — ¢. Throughout the section,
we consider quadratic activation o(x) = 2 for theoretical convenience.
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F.3 MAIN FLOW APPROXIMATION UNDER SMALL PARAMETER SCALING

The key property used in Stage I is that the scale of parameters is relatively small due to the small
initialization and sufficiently small constant a. Following this, we have the approximation below:

M . 2
P ey ] (2 £ Bl) L) e
1 exp (e Smli] - (eo + ey, 0m)?) P

To formalize the approximation above, we introduce the following approximation error terms:

M - 2
(1) Z Z < — Zm:l gm[ﬂ . <ez i ey’9m> ) - 1) . <€;c + €y797n>27

TELyp YELyp i=1 €XP (E%:l 5771[2] ' <ew + €y, 9m>2) P
(2) eXp m 1 gTTL[T} : <em + ej79m>2) 1)
B o gm - (ex + ,9m s
% Zl ( i=1&XP (Zﬁf:l Emlil - (ex +€7.0m)2) D [7] - (ec + ey, 0m)

for all (j,m) € [p] x [M]. The approximation result is formalized in the following lemma.
Lemma F.2. Denote ||0||occ = maxy, [|0m|co and ||€|loc = maxy, [[Em|loo. For all (j,m) € [p] x
[M], the approximation error is upper bounded by

[Ere; 1V B2 < 8p- [[0ml|oc - max{[|&m oo, [10mlloc} - (exp(8M - [|€]|oc - 16]12,) — 1).

(smaxOf(LE, Y 57 0)) U] -

Proof of Lemma F.2. Let sj(x,y) = Z%zl &mlj] - (ex + €y, 0:m)? denote the score given by the
neural network for the j-th entry. Then, for fixed (x, y), the softmax vector for j-th entry is given by

p(a,y)[j] = exp(s(z, y)[7])/ 37— exp(s(x, y)[i]). Note that, for any (m, j) € [M] x [p], we have

SCON e il — 2 e 4o 2
B =3 Z(m U p) (ea + ey20m)

TELy YELy

< 4p2 - max
(z,y)€Z3

1
pe,y)lj] — p\ omll2. E11)

Let A,y = max; ey (2, y)[j] — minjep) s(z, y)[j] > 0 for any (x,y) € Z2. Itis straightforward
to see that A, , can be effectively bounded by the scales of 6,,,’s and &,,’s, following that

ng ext ey Om)?|| <BM - [[€]loo- 1013,  V(z,y) €Zy  (F12)

o0
Following this, we upper bound the difference between the softmax-induced distribution and the
uniform distribution using the small-scale score vector. By simple algebra, we can show that

1 1
max (p(z,y)|j] — —| < max |p(z,y)|j] — — min |p(x,y)|j] — —
max p(z,y)[J] 5| S max p(z,y)[j] LV min p(z,y)[J] ,
M VM
I+ (p—1)-exp(=Azy) p 1+ (p—1)-exp(Azy) p
_p-1 { exp(Ag,y) — 1 \/ 1 —exp(—Agy) }
p exp(Agy) +p—1 V exp(—Azy) +p—1
1
< ;; - (exp(Agy) — 1) - max {exp(—Ay ), 1}
1
< ;; - (exp(Agy) — 1). (F.13)

By combining (F.11), (F.12) and (F.13), we can reach the conclusion that
1
Err) | < dp - 0% - (exp(8M - [|€]|o - 6]12,) — 1)

Building upon a similar argument, it holds that

|Err(2) | =2 Z Z

] Enlr] - (e + e, Oun)

mEZ =1
<8 [|0mlloo - [1Emlloo - (exp(8M - [|€]loo - [16]I5) — 1)-
Hence, we complete the proof of bounded approximation error. [
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Lemma F.2 formalizes a key technical tool for analyzing the dynamics during the initial stage: given
small-scale parameters 6,,,’s and &,,,’s, and a specified small constant a € R (introduced for technical
convenience), the softmax components in the gradient can be effectively approximated by a uniform
vector, with a controllable and small approximation error.

In the following sections, we denote Err(!) = (Errgb)j)je[p] € R? and Err?) = (Errfi?j)je[p] € RP

for notational simplicity and we remark that the error vectors would vary along the grdient flow.

F.3.1 PROOF OVERVIEW: SIMPLIFIED DYNAMICS UNDER APPROXIMATION

Before delving into the technical details, we provide a brief summary of the approximate dynamics
of parameters and their transformations along gradient flow in Table 3. This overview characterizes
the training during the initial phase, when parameter magnitudes are small. We use ~ to highlight
the central flow, omitting the perturbations introduced by approximation errors as defined in (F.10).
The simplification of the approximate dynamics leverages two key features that arise under the
specialized initialization in Assumption 5.1: neuron-wise decoupled loss landscape—meaning the
evolution of each neuron depends only on itself—and preservation of a single-frequency structure—
i.e., the parameters exhibit only one frequency component in the Fourier domain. These properties
hold during the early stage of training. Refer to §5.1 for a detailed illustration and proof sketch.
With slight abuse of notation, we let k* denote the initial frequency of each neuron and we use the
superscript * instead of £* to simplify the notation in Table 3.

Roadmap. In Part I, we present the dynamics of parameters—{0, }me[ar] and {§m frme[as) With
calculation details provided in §F.3.2 and §F.4. In Part II, building on the results from §F.4, we shift
focus to the dynamics of the discrete Fourier coefficients, defined in §A.3, to better understand the
evolution of parameters in the Fourier domain. Finally, based on the results in Part I and Part II, we
analyze the dynamics of the magnitudes and phases of the Fourier signals (see §A.3 for definitions),
to interpret the alignment behavior between 6,,, and ,,,, and the detailed derivations are provided in
§E.5. The auxiliary equalities naturally arise from the definition of discrete Fourier coefficients and
their transformations.

PART I: DYNAMICS OF ORIGINAL PARAMETERS.

Oml5](2) OO 1)(8) 2 2p - () - B (1) - cOs(wig + P (1) — B (1)
& i1 (1) Be&mlj)(1) = p - sy (8) - cos(wrrj + 207, (1))
PART II: DYNAMICS OF DICRETE FOURIER COEFFICIENTS.
gm[2k°](2) Dugm [2k7)(8) ~ V2 M2 (1) - Bra(t) - cos (¥ () — S (D))
gm[2k" +1](2) Dugm (25" + 1](t) & —V/2 - P2 - () - Bru(t) - sin (3 (1) — 6 (2)
rm [2k7] () Derm [2k*](t) ~ p*2 V2 - a, (t)? - cos (207, (1))
rm[2k* + 1]() Oerm [2k* +1)(t) = —p*/? /V/2 - oy, (t)* - sin (207, (1))
PART III: DYNAMICS OF MAGNITUDES AND PHASES.
amt) Qe (t) 2 2p - (1) - B (t) - cos (207, (£) — 7 (1))
B (t) O (t) = p - (1) - cos (2¢:n () — (1))
¢m< ) Dy exp(ih (1)) ~ 2p - B () - sin (207, (£) — 7 (1)) - exp (i {g7 (1) — 7/2})
n(t) Br exp(iti (1)) ~ p- S - sin (207, (1) — 5, (1) - exp (i {0 (1) + 7/2})
m )! 01 exp(iD(t) = p- (481(8) + 02 s (@Mt)) cexp (i {Din (1) — 7/2})

PART IV: AUXILIARY EQUALITIES.
c0s(¢r (1)) = /2/p - gm 2K (1) /0 (), sin(rn(t)) = =/2/p - gm[2K* +1](1) /i (1),
cos (¢, (¢ )) = V2/p rm[2K](6) /B0 (), sin(¥r(t) = *\/%'T’m[%* + 1(8)/Bm ().
! We use D}, (t) denote the phase misalignment level defined as D}, () = 2%, (t) — 5, (t) mod 2.

Table 3: Summarization of the approximate dynamics during the initial stage. Please refer to §F.3.2,
§F.4 and §F.5 for formalized arguments and detailed derivations.
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F.3.2 PROOF OF LEMMA F.3: MAIN FLOW OF DECOUPLED NEURONS

Lemma F.3 (Main Flow). Consider the discrete Fourier coefficients, as well as the signal magni-
tudes and phases, defined over {0 } e (nr) and {Em }menr) (see §A.3 for definitions). Then, at each
time t € R and m € [M], the gradient dynamics takes the following form.:

(p—1)/2

Emli)(t) =p- Y ok () - cos(wrg + 20, (1) — By (2),
k=1
(p—1)/2

D010 = 2p- S ok (1) - B (1) - cos(ewns + U (1) — 0k (1)
k=1
(p—1)/2
+2p - B (¢ Z ak - cos(wij + ok, () — Errg?j(t),

where the approximation errors Errfn?j(t) and Errgn?j(t) are defined in §F.3

Lemma F.3 indicates that the dynamics of 6,,, (t)’s and &, (¢)’s only depend on 0,,(t) and &, (t) such
that the neurons are almost fully decoupled with small approximation errors.

Proof of Lemma F.3. Consider a fixed neuron m. By combining the gradient computations in (F.6)
and (F.8), we can write the complete form of derivative of loss ¢ with respect to &,,[j] as

o ol Lo
Emls] — Omls]  O&mlJ]

=— Z o((ex + €y, Om Z Z (ex + ey, 0m)) + Errg?j. (F.14)

(z,y)€Sy 2€ZLyp YELy

Similarly, by combining (F.7) and (F.9), we have the derivative of ¢ with respect to 6,,[j]:

or ol or . , |
0,lj] ~ 90,05 " 90l _2223 Emlmy (. )] 0" ({ex + ¢5.0m))

+* ZZém 20/ ({ex + €5,6,)) + Errl . (F15)

€Ly T=1

Motivated by Lemma F.3, we focus on the dominant terms of the gradient and carefully manage the
error terms to characterize the central flow that determines the main dynamics in the initial stage.

Step 1: Deriving Gradient of &,,,. By switching from the standard canonical basis to the Fourier
basis, we can write 6,, using a form of discrete Fourier expansion, as shown in (3.2). Then, we have

(r=1)/2
Z o((ex + €y, 0m)) = Z (2a + Z Z cos(wpz 4 ¢F, ))

(z,y)€Sy (z,y)€SY ze{x y}
(p=1)/2
—dp-(a9)*+ Y (ap)’- 0+ > ok al - (i)
k=1 1<k#T<(p—1)/2
(p—1)/2
+2a9, - > ab, - i) (F.16)
k=1

where we denote each term as

= > ( > cos(wkZ+¢fn)>7

(z,y)€S] \ze{z,y}
(i) = Z Z cos(wpz 4+ ¢F) - Z cos(wrz + &7,),
(z,y)€ST ze{z,y} ze{z,y}

(iii) = Z Z cos(wrz 4 ¢F).

(2.9)€S? 2€{z.)
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In the following, we compute (i), (i) and (iii) respectively using trigonometric identities and the
periodicity of the module addition task over the full space Zi. First, note that

=2 Z cos(wgx + qﬁ’fn)Z +2 Z cos(wgx + gblfn) - cos(wry + gbfn)

LEEZP (a:,y)ES;D

=p+ Y cos(wnr +205)+ Y cos(w(r +y)+205) + Y cos(wil(z —y))
2€Zp (z.y)eSy (z,y)esS?

=p- (14 cos(wrj + 2¢5,)), (E.17)

where the last equality uses the fact that } -, csr cos(wi(z — y)) = >_, 7 cos(wpz) = 0 and
’ J D
cos(wi(z + y) + 2¢%)) = cos(wyj + 2¢F,) for all (x,y) € S?. Similarly, we have

(i) = 2 Z cos(wipx + @F ) - cos(wrz + ¢7) + 2 Z cos(wipz + @) - cos(wry + ¢7)

TE€Lp (av,y)esg7
= k T k T
= > cos((wrr+wy)+ ok + o)+ D> cos((wer — wry) + of, — ¢7,)
(z,y)€Sy (z,y)€SY
+ Y cos((wi +wr)z + @, + ¢n,) + D cos((wk — wr)z + df, — ¢7,) =0, (F18)
TELy TELyp

where we use 37, e gp COS((wiz +wry) + o, +67,) = X, cos((wi —wr) +wrj+ il +¢7,)
’ ki P

in the last inequality for the first term and a similar arguent for the second one. In addition, it is easy

to show that (iii) = 2 Zmezp cos(wyx + ¢k ) = 0. By combining (F.16), (F.17), (F.18), we have

(p—1)/2
> olleat+ey ) =4p-(a)> +p- > (ah)?- (14 cos(wr + 205,)).
(z,y)€S] k=1

Following this, based on (F.14), the simplified derivative of each entry takes the form

ol (1)
ge, ) Ermi == 2. ollesteybn Z > olles +ey,0m))
(z,y)€Sy J=1 (z,y)€SY
(p—1)/2
=—p- Y ()’ cos(wki+26r,), Vi€ p
k=1

Step 2: Deriving Gradient of 6,,,. Next, we calculate the gradient of ,,,, following a procedure
analogous to the one in Step 1. To begin, we consider the expression:

Z Emlmp(z,7)] -0’ ({ex + €j,0m)) =2 Z Emmp(z, 7)) - Om[x] +2 00, Z Emlz

TELp TE€Lp TEZLy

(iv) )
(F.19)

Term (iv) can be decomposed and simplified using the fourier expansions of &,,, and 6,,, in (3.2). By
carefully applying cosine product identities and rearranging the terms, we have

(p—1)/2 (p—1)/2
(iv) = Z( Z BE - cos(wy - myp(x, §)+ k) ) <a + Z ok coswkx+¢k)>

TEZLy
(p=1)/2 (p=1)/2
a8+ D kBl G +ad, o Y BE v
k=1 k=1
(p—1)/2
D T AR () I AR SRy ()
1<kAT<(p—1)/2 k=1
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where we denote each term as

(ivl) = Z cos(wy - my(, ) + PF) - cos(wrz + @),  (v2) = Z cos(wy - my(, 7) + Pk,

TELp TELp
(iv.3) = Z cos(wr - my(w, 7) + ¢7,) - cos(wra + ), (ivd) = Z cos(wy, - my(, 7) + o).
TELyp TE€Lyp

Analogous to (F.17) and (F.18), using the trigonometric identities and periodicity of the module
addition task, we have (iv.2) = (iv.3) = (iv.4) = 0, and for the first term we can show that

(v = Z COS((Uk- ’ mp(I7j) + quicn) ! COS(wk-l’ + ¢er) =p- COS(wkj + 7/}i€n - f:n)
TELyp

By combining the arguments above, we can conclude that

(p—1)/2
) =p-ad, B +p Y kB -cos(wri+ vk, — ok, (F.20)
k=1

Besides, by substituting the fourier expansions of £, into (v), it holds that

(p—1)/2
) = 0[] - Z( Z ,8 - COS wkx—Fw ))

TE€Lp
(p—1)/2
=p-0nli]- B =p-B° - (a% + Z ak - cos(wpj + ¢fn)> (F21)
k=1

By combining (F.19), (F.20), (F.21) and substituting them back into (F.15), by simple calculation,
we can show that constant frequencies are canceled and we have

or )
ST~ = =2 Y €nlma(e )] 0'(fea g 0m)) 2+ 3 S lr] - ((ex + 1. 0m)
m[‘]] TELyp T€ELy T=1
(r=1)/2
Z ak /Bk Cos(wkj + wm - 'HL)
k=1
(r=1)/2

- 2p Brn : Z Oé + COS (.Uk] +¢k) vj € [p]

Recall that the gradient flow is defined as 9;0(t) = —V{(O(t)). Following this, we have 0,0, (t) =
—Vo,. L and 0;&,,,(t) = —V¢, ¢ for all m € [M]. Then, by combining Step 1 and Step 2 and using
the definition of gradient flow, we complete the proof. [

F.4 PROOF OF THEOREM 5.2: SINGLE-FREQUENCY PRESERVATION

Theorem F.4 (Formal Statement of Theorem 5.2). Let the model be initialized according to As-
sumption 5.1 with a scale riniy > 0. For a given threshold Cenq > 0, we define the initial stage as
the time interval (0, tinit], where tini, is the first hit time:

tine == inf{t € RT : s 6 (Olloe V [6m(®)lloc < Cena}- (F.22)
me

Suppose the following conditions hold: (i) log M/M < ¢ %2 . (1 4 o(1)), Kinit = o(M~1/3)
and Cend = O(Kinit), and (ii) scale kinit is sufficiently small such that the event Eppase = {IM €
[M] s.z. cos(2¢* ()=, (1) > 1—c-(M~tlog M)?, Vt € (0, tinit] } holds withprobability greater
than 1 — M~¢ for some constant ¢ > 0. Then, we have maxy,+ infre (0,4 O (1) V BE (1) =
o(Kinit)-

In Theorem F.4, the initial time interval (0, tiy;t) is defined by imposing that the parameters remain
substantially small, upper bounded by Ceng as stated in (F.22). Epnase assumes during the initial
stage, there exists at least one well-aligned neuron whose phase difference 2¢7, (t) — ¢, (t) has a
uniformly lower-bounded cosine value. This should hold with high probability under the random
initialization in Assumption 5.1, jointly resulting from the concentration (see Lemma F.6) and the
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consistent decrease of phase difference for well-initialized neurons when xjnir — 0 (see Lemma
F.9). Since the difference between the real dynamics for 6,,,(t), &, (t) and the central flow can be
bounded by some error uniformly over ¢ € (0, ¢;n;:], where the error is a monotone function with
respect to Kinit, and the real dynamics for ¢7, (¢), ¥, (t) is a continuous function of the real dynamics
for 0,,,(t), &m (1), this claim holds.

Proof of Theorem F.4. Based on Lemma F.2 and (F.22), throughout the training, we can uniformly
upper bound the approximation errors by

sup max \Err )|V \Err (t)]
tE(0,tim) ™7
=5 sup )maX||9 (1) [l oo - max{ [ & (t)lloc, 10 () [loc} - (exp(8M - [[€(t)]|oo - 110(1)]13) —
S init
< Mp-C2,, (F.23)

where the last inequality uses exp(x) — 1 < z for z € [0,1] and (F 22) implies 8M - ||€(t)]] oo -
10(t)|[2, < 1 forall ¢ € (0, tiny) under the scaling that MC3 ;< Mg}, < 1. In the following, we
show that the evolution of non-feature frequencies is governed by the bounded error terms, and the
feature coefficient can grow rapidly even when perturbed by noise.

Step 1: Derive the Dynamics with Approximation Errors. Consider a fixed neuron m. By
applying the chain rule, we have 0y, (t) = B, 8;0,,(t) and 8y7p, (t) = B} 8y&m (t) such that

Orgmli](t) = (bj O1Om (1)), Oirml[j](t) = (bj, O&m(t)), Vi € [p].
Hence, the time derivatives of constant frequency, based on Lemma F.3, satisfy that
Orrm[1)(t) = —(Err)(8),01),  Orgm[1)(t) = —(Erri (1), b1), (F.24)
where the the RHS of (F.24) can be controlled by
[(Errf) (0, 00)] < IEr (O)l2 - lballz < VB - [Err) (oo, [EG (), 00)] < /B - [E) ()] o
Based on Lemma F.3 and the orthogonality of the Fourier basis, by simple calculation, it holds that

(p—1)/2

3t7‘m[2k](t)P'Z\/j ccos(wrg) - D () - cos(wrg + 260, ( Zb% ]-Ent) (t)

k=1

P
t)? Z cos(wij) - cos(wrj + 205, (1)) — (ErrD (1), bag)
j=1

3/2
p *
= % ’ Oé’lrcn(l‘:)2 - COS (2¢7n(t)) - <Err$}L) (t)7 b2k>?
and similarly, we have
P3/2 1
Ourm[2h+ 1)(8) = == - ol (1)? - sin(207, (1)) = (Errl)) (1), bow-a).

Following this, by applying the chain rule, we have

2,8, (1) = \/7 O/ T DR T T 2R T 10

_ 2 [rml2K) 5 w2k @) o

= { BE (1) - Oyrm[2K](t) + BE D) O0yrm 2k + 1](t)}

2 p¥? fp 5 ] o . . rr(
= 2B B a0 {costuh () cos(268 () + sin(u (1) -sin208 () + E
— ok ()2 - cos (265, (1) — ¥, (1)) + Evror (1), (F25)

where we define the approximation-induced error term as:

Err) (1) i= _z {T”;[flz]g) (ErrD (1), boy) — W.<Eng>(t),b2m>}.
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Here, notice that the error terms can be upper bounded by

—~ (1 2
BV < \f ERD (05?4 (D), b2
P
2
< \/; NERD O - /Tl + Ibarsrl3 < 21EmD 1),

where the first inequality uses the Cauchy-Schwarz inequality and the fact that r,, [2K](t)2 +7,,, [2k -+
1](t)? = p/2 - B (t)? by definition. Moreover, following a similar argument above, we have

Degm|2K](t) = V2p*2 - g, (1) - By, (¢) - cos(thy, (8) — o, (£)
+ V22 B (1) - (1) - cos(@), (1)) + (Errl3) (¢), ba),

and also
Orgm|[2k + 1](t) = —V2p*/? - ok, (1) - BE, (1) - sin(P, () — ¢F, (1))
—V2pP2 - BY,(8) - af, (t) - sin(f, (1)) + (Err'2) (1), barsa).

Thus, by applying the chain rule, we can reach that
2
Oucl ()= |2 00/ BRI T g 2F 1T
— 2p- ak, (1) - 85 (1) - cos (205, (£) — ¥k, (1)) + 2p- B0, (1) - ok, () + Emmor (2), (F26)

where the approximation error satisfies that

— (2) 2 | gm[2K](2) () gm[2k +1](2) (2) ()
|Err,, ()] = p ok (Erry’ (), b2k) — Tk (Erry (8), bokg1)| < 2/|Err? (£) ] oo
Step 2.1: Bound the Growth of Non-feature Frequency. By combining (F.24), (F.25) and (F.26),
since cos (2¢F, (t) — ¥k, (t)), we can upper bound the growth of non-feature frequencies as

= (2)

Owak,(t) < 2p- ok (t) - BE () + 2p - BY,(t) - ok, (t) + Err,), (2), (E27a)
Q8% (1) < p- ok (1) + Erry (1), (E.27b)
1)) < VB BT O)loes ArgmlD) < VB [ErD B)cs  (F270)
Erry, (O] S IER(0)c, Vi€ {0,1}. (F27d)

for all k& # k* and m € [M]. For the growth of constant coefficients, (F.27¢c) indicates that
o, (] V B (D] =1/ /D lgm L (0)] V [rm [1](2)]

< IglaX}HErr(l)()||OO\/||Err(2()HOO t<Mp-C2 -t (F28)
t tinit

where the inequality results from (F.23). Following this, by combining (F.27a), (F.27b), (F.27c) and
(F.274d), it holds that

Ou{a, (8)/V2 + B, (1)} < p-ag, (1) - {an (1) + V26, (1)}
+V2p-ak (1) - BO(t) + Err)
< \/ip : C'end ' {afn(t) + \/iﬁrljz( )}

= (1)
+ 2p Cend |ﬂ7n( )‘ + Err’r ( ) + Er T)'L ( )/f

where the last inequality uses (F.22) and [|0,,(t)[|3 = p- a0, (t)* + & - ,(f) 11)/2 k (t)? such that
\/ ||9 ||2 < \/> ||0 ( )”oo S \/E Cenda vt € (Oatinit)v (F29)

for all frequency k and similarly we have 3 (t) < /2 - Cepnd. For k # k*, Lemma F.5 shows that

aﬁl(t)/\/i—&- ﬁfn(t) < {afn(O)/\/ﬁ—i— Bfn(O)} . exp(\/ip  Cend - t)
2 Cong / 18(5)] - exp(V2p - Cona - (£ — 5))dls

(t) + Err (£)/V2

(@

+/Ot{é?r( (s )+Err (5)/V2} - exp(vV/2p - Cend - (t — 5))ds, (F30)

(i)
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where the first term can be eliminated due to the zero initialization for non-feature frequencies as
specified in Assumption 5.1. To upper bound (F.30), based on (F.28) and (F.29), we can show that

t
(i) < Mp*-C8 - / s - exp(x@p “ Cend - (t — 8))ds
0
< CVend {exp \/ip “ Cend - t) - \/ip “Cend -t — 1}' S_, Mp CS d- t2 (E31)

for time ¢ < (v/2p- Cend) ™! Atinit using exp(z) —z — 1 < % for x € (0,1). Similarly, it holds that
t
W = / {20Errl) (5)]loo + V2 Er) (5) oo} - exp(V2p - Ceng - (t — 5))ds
0

t
<4 sup max ||Err£,p(t)||Oo Vv ||Err£fb) ()| oo - / exp(\/ip  Cend + (t — 5))ds
te(0,tine) " 0

t
< Mp- Ce5nd . / exp(\/ﬁp “Coend - (t—8))ds < Mp - Cend t, (F.32)
0

where the first inequality follows (F.27d) and the last inequality results from exp(z) — 1 < 2z for
€ (0,1). By combining (F.30), (F.31) and (F.32), we can conclude that

o (VB ) S Mp-C3 -t -max{p- Cepg-t,1} < Mp-C3 , - t, (F.33)

for all non-feature frequencies k # k* if we consider time ¢ < (\f D+ Cend) ™ LA tinit. For the
remainder of this analysis, we will adhere to this interval, and we will later show tiniy < (p+ Cend) ™

Step 2.2: Bound the Time of Initial Stage. Based on (F.25) and (F.26), we first show that during
the initial stage, the change in the quantity %, (t)? — 2/3%,(t)? remains small. Note that
Oif{an, (1) = 28,,(1)*} = 207, (t) - By, (1) — 457, (t) - 0y, (1)
=4p-aj, (£) - B, (1) - cos (207, (1) — ¥}, (1))
— (2
- B3,(0) - @3 (1) + 200, (1) - Er, (1)
* * * = (1)
—dp-an,(t)? - B, (t) - cos (267, () — ¥, (1)) — 455, () - Err,,, (1)
= dp B(0) - @3 (0)? + 203, (1) Erry, () — 455,(0) - By, (1)

Following this, by integrating on both sides, we can show that
an, (t)* = 267, (1)
t
> a5, (0)* = 26;,(0)* — / [0n{ar, (s)* — 285, () }Hds

—~ (1 (2
k2 8p-C2y / 182 (5)]ds — 6v/2 - Ceng - sup  |Erres (8)] v |Erre (8)] - ¢
t€(0,tinit)
mie = O(Mp - Cgrg) - t (F34)
where the second inequality uses (F.29). Recall that we choose a sufficiently small i,z such that
Ephase holds. Thus, there exists a neuron m such that inf,¢ o 4,.) cos(2¢},(t) — ¥}, (t)) > Cp.
Leveraging this result along with (F.25) and (F.34), it follows that:

034 (t) > p- Cp - af(t)? + Error (1)
(1)

=2p-Cp - B (1) +p-Cp - {a,(t)? — 285, (1)} + Err,,, (1)
ZzpCDB:n(t)2_p CD K;Inlt O<Mp2'cend) CD t— (Mpcgnd)
(1)
)2~

Y

—K

v

Z 2]3 : CD : 6:;7, t 2 —D- {Hlnlt + O(M C’end)}
>2p-Cp - ()% —p- (14 0(1)) - Ky, (F.35)

where the second inequality results from (F.27d), the third is guaranteed by the time interval con-
straint ¢ < (v/2p - Cend) ™1 A tinit, and the last one uses M k3. = o(1) and Cend = O (Kinit)-
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Given the Riccati ODE in (F.35) and the initialization 8, (0) = Kinit. S5, (t) is monotone increasing
as long as 2Cp > 1 + o(1), which can be guaranteed by choosing a sufficiently large M such that

log M/M < ¢~ /2. (1 + o(1)). Following this, we can further show that

atﬁ;l(t) > 2p"finit . CVD : B;L(t) —Dp- (1 + 0(1)) : ’%iznitv vt < (\/ip : Cfend)_1 A tinit~ (F36)
By combining (F.36) and Lemma F.5, we can get

B, (t) > Kinit - exp(2pkinit - Cp - t) — (1 4+ 0(1)) - Kinit/(2Cp) - {exp(2pkinit - Cp - t) — 1}.
By definition 87, (tinit) < Cend < Kinit- Thus, we can upper bound the hitting time ¢j,;x by

Cend/Kinit — (1 +0(1))/(2Cp) -

ii<7'1 en n < ini 1. FE.37
" i - C Og( 1— (1+0(1))/(2Cp) S (Prini) 37
Step 3: Conclude the Proof. Based on (F.28), (F.33) and (F.37), it holds that

. k k
]ICI;E}C)E te(lgfinit] am(t) \ Bm,(t) S Mp : C(g)nd - Linit S O(Hinit)’

which completes the proof.

t

O

F.4.1 PROOF OF AUXILIARY LEMMA F.5

Lemma F.5. Let « # 0 denote a non-zero constant and ¢ : |0,
Sunction. For any initial £(0) € R", the unique solution of Oyx(t)

z(t) = x(0) - exp(ut) + /0 C(s) - exp(e(t — s))ds.

In particular, if {(t) = ¢ € R is constant, then x(t) = x(0) - exp(et) + (/¢ - (exp(et) — 1).

o0) +— R™ denote a continuous
= 1x(t) + ((t) is given by

Proof of Lemma F.5. Note that, by chain rule, we have
O{wy - exp(—1t)} = —1x(t) - exp(—ut) + Oz (t) - exp(—ut) = ((t) - exp(—ct).
By integrating both sides from 0 to ¢, we can obtain the desired result. O

Lemma F.6. Under the initialization in Assumption 5.1, with probability greater that 1 — M ™€, it
holds that max,,car cos(Dy,) > 1 — c2n? - M~2(log M)?, where ¢ > 0 is a constant.

Proof of Lemma F.6. Throughout the proof, we drop the initial time (0) for simplicity. Recall that,
as specified in Assumption 5.1, the parameters are initialized as below

Om ~ Kinie - /P/2- (01[1] -bars +01[2] baks+1),  &m ~ Kinit* V/P/2+ (02[1] - bapr + 02[2] - boges 11).
By definition, we have cos(¢},) = e1[1] and sin(¢},) = —1[2]. Thus, it holds that

(cos(95),sin(@7,) = (a1 ~er[2]) < (e [1], er[2),
following the symmetry of the uniform distribution on the unit circle. Hence, ¢;,(0) ~
Unif(—m, 7). Similarly, we have ¢, ~ Unif(—m, ) such that D}, = 2¢7, — ¢, mod 27 ~
Unif(0, 27). Following this, the tail probability takes the form:

IP’( max cos(D*) > 1 — c*r? - M~?(log M)2>
me[M]

m
=1- P(Vm € [M], cos(Dr) <1 —cPn?- M_2(10gM)2)
—1— (1 —arccos (1 — 72 - M~2(log M)?) /m) ™. (F38)

Suppose M > crlog M such that err - M~ 1log M € (0, 1), then we have

arccos (1 — ¢*n® - M~?(log M)?)) > arccos (cos(cm - M~ log M)) = er - M~ log M,
(F.39)

where the inequality follows from cos(x) > 1 — 22 for all € R and fact that arccos(-) is mono-
tonely decreasing on [—1, 1]. By combining (F.38) and (F.39), we obtain

P(Trrlré?ﬁ] cos(Dy,) > 1 —c2x? - M~ (log M)Q)

>1—(1—c- M logM)™ > 1 —exp(—clog M) =1—M~°.
Here, we use (1 — z)™ < exp(—xM) for all z € [0, 1] and then complete the proof. O
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F.5 PROOF OF THEOREM 5.3: PHASE ALIGNMENT

In this section, due to the inherent difficulty of tracking a multi-particle dynamical system with
error terms—even when the approximation errors are provably small—we focus on the central flow
dynamics presented in Lemma F.3, directly omitting the error terms caused by unpredictable drift.
In summary, the resulting dynamical system can be described by the following ODEs:

(p—1)/2
Obm[j](t) = —2p- > ok (t) BE (1) - cos(wr + ¥k, () — o5, (1)
k=1
(p-1)/2
—2p - Bull](t) - D ak, - cos(wr + o, (1), (F40a)
k=1

(p-1)/2

Dulmlg](t) =p- D ak(t)? - cos(wrj + 20, (1)), (F.40D)
k=1

for a fixed neuron m and all j € [p]. We formalize the phase alignment in the following theorem.

Theorem F.7 (Formal Statement of Theorem 5.3). Consider the main flow dynamics defined in
(F.40a) and (F.40b), under the initialization in Assumption 5.1. Let § = o(1) be a sufficiently small
tolerance. For any D%, (0) € (0, 27], define the convergence time ts = inf{t € R : |D* (¢)| < §}.
Then, ts5 satisfies

ts = (pRinit) "+ {1 — (sin(D},(0))/8} /3 + max{n/2 — |D},(0) — 7|, 0}),

Furthermore, the magnitude at this time is given by B;5, (ts) < kinit - {sin(D7,(0))/5}/3. Moreover,
in the mean-field regime m — oo, let p; = Law (¢}, (), ¥5, () for all t € R™ and let X denote the
uniform law on (—m,7]. Then, po = A Q@ X and poo = T\, where T : ¢ — (¢, 2¢) mod 2.

Before presenting the proof of Theorem F.7, we first introduce several key intermediate results that
help elucidate the dynamics. We begin with a lemma that characterizes the simplified dynamics of
the system, leveraging the Fourier domain and the single-frequency initialization.

Lemma F.8 (Main Flow under Fourier Domain). Under the initialization in Assumption 5.1, let k*
denote the initial frequency of each neuron, and we use the superscript x for notational simplicity.
We define DY, (t) = 2¢%,(t) — ¢y, (t) mod 2, then the main flow can be equivalently described as

Duaey, (8) = 2p - oy, (t) - B (1) - cos(D, (1)), OefB(t) = p - o, (8)* - cos(Dy, (1)),

ax, (t)? .
Orexp(iDy,(t)) =p- (45;1(15) + ®) ) -sin (D}, (1)) - exp (i{D},(t) — 7/2}). (4D

B (1)

This lemma allows us to largely simplify the analysis, reducing it from tracking a 2p-dimensional
system to a three-particle dynamical system of %, (¢), 8%, (t) and D, (¢)). Building on this, the next
two lemmas further show that the dynamics is indeed one-dimensional, and the trajectory exhibits a
symmetry property that aids in understanding the evolutions under different initializations.

Lemma F.9. Consider the ODE in (F.41), the following quantities remain constant:
04 (62 = 280,02 = Car,  S(DL(8) - Ba(t) - @ (D)® = Corouy Wt ERT.
Building upon this, we can further simplify the dynamics of D}, (t)) in as
07, (t) = —p - (487, (8) + oy, (8)? /B, (2)) - sin (D}, (1)) , (F42)

due to its well-regularized behavior ensured by the constant relationship.

We highlight that (F.42) is not a direct corollary from (F.41) due to the potential jump from 0 to 27
in the discontinuous definition of mod 27w. However, thanks to the constant relationship revealed
in Lemma F.9, we can show that D%, (¢) is “well-behaved” by staying in the half-space where it is
initialized, and consistently approaching zero throughout the gradient flow.

Lemma F.10. Consider the ODE given in (F.41) with initial condition D, (0) € (7/2, ). Let t, 5
denote the hit time that D}, (t /o) = /2, then for any At € (0,1, /2), we have

5:n(t7r/2 - At) = B:n(tﬂ'/Q + At)a 'D;"L(tﬂ/Z - At) + D:n(t'n'/2 + At) =Tm.
Proof of Lemma F.8, F.9 and F.10. Please refer to §F.5.1 for a detailed proof. [
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Dynamics of Phase Alignment
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(a) Simplified Dynamics with D}, (0) € (7/2, 7). (b) Simplified Dynamics with D7, (0) € (0,7/2).

Figure 14: Training dynamics of a specific decoupled neuron characterized by (F.48a) and (F.48b)
with identical initial scales o, (0) = S%,(0) and different phase difference D%, (0). Figure (a)
plots the dynamics of phases, phase difference, and the magnitudes with D7, (0) € (7/2, ), whose
behavior is detailedly characterized in Theorem F.7. The difference decreases monotonically to 0,
while the magnitudes first decay slightly when D7, (t) € (7/2,7) and then increase rapidly when
Dr.(t) falls below 7/2. Figure (b) plots the dynamics under D}, (0) € (0,7/2) where D, is
initialized closer to the convergence point, resulting in a shorter convergence time compared to the
case in Figure (a). Moreover, the simplified dynamics shown in Figure (b) align well with the full
dynamics in Figure 5a with the same initialization, indicating the effectiveness of the approximation.

Now we are ready to present the proof of Theorem F.7.

Proof of Theorem F.7. Without loss of generality, we focus on the case where D}, (0) € (0, 7). The
case D%, (0) € (—m,0) can be extended identically owing to the symmetry of dynamics in (F.41) as
established in Lemmas F.8 and F.9. Specifically, the trajectories of o, (¢) and 3%, (¢) are invariant
under a sign flip of D, (¢) such that the entire dynamics evolves symmetrically, with D7, (¢) mirrored
from (0, 7) to (—m,0) at each time ¢.

Roadmap. In the following, we establish the convergence time by further dividing into two
cases—Dr (0) € (0,7/2) and D}, (0) € (7/2, 7). Notably, thanks to the symmetry established
in Lemma F.10, we only need to characterize two time intervals (i) the travelling time from D7, (0)
to m/2 for any D7, (0) € (7/2,7), denoted by At ,, both initialized at 35, (0) = Kinie, (ii) the
convergence time from D}, (0) to 0 for an arbitrary initial phase D7, (0) € (0,7/2), denoted by
Aty This is because,

* For D7, (0) € (0,7/2), the convergence time can be captured by Aty

* For D7,(0) € (7/2,m), the time is given by 2At,, + Aty’, where with slight abuse of
notation we let Aty denote the time travelling from = — D7, (0) to 0. Such argument is
supported by Lemma F.10, as it takes equal time for Dj, (¢) to travel from = — D}, (0)
to 7/2 and from 7/2 to m — D% (0). Also, when D7, (t) reaches 7 — D}, (0), we have

Bk, (t) = Kinit due to the symmetry, such that the remaining convergence time is equal to
Aty

Below are some useful properties. Under the initialization in Assumption 5.1, Lemma F.9 ensures

ok () =285 (1) — k2,  VEERT. (F.43)
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Following this, we can characterize the dynamics as follows:
0By (t) = p - (265, (8)° = Kinie) - cos(D3, (1)), (Fd4a)
0Dy () = —p - (687, (1) — Kiwie/ B (1) - sim (D7, (#)) (F:44b)
Hence, we have D}, (¢) is monotonely decreasing, and (7, (¢) first decreases when D7, (t) € (7/2, )

and increases thereafter. Besides, it follows from (F.43) that 3%, (t) > kinit/V/2 forall t € R,

Part I: Travelling time from D7, (0) to /2 with D7, (0) € (7/2,7). We consider ¢ € (0, At ]
where we define At”, = min{t € R* : D} (t) < m/2}. Based on (F.44b), by definition, we have

0eD;,(t) = —p - (685, (1) = Kivie/ B (£) = =5p - it
where the last inequality uses 635, (t) — k2. /3%, (t) is monotonically increasing on R* and 375, (t) €
[Kinit/V/2, Kinit] since (3%, (t) is monotonically decreasing throughout the stage. Following this, we
can lower bound D%, (t) by DX (t) > D;‘n(O) — 5p - Kinit - t for all ¢ < ¢§. Thus, we have
D3 (0) - DL (AtTs) Dy, (0) —7/2
5P - Kinit 5p - Kinit
On the other side, (F.44b) implies that 9, D}, (t) < 0 such that D, (t) < Dy, (0). Then, we have

m

0D, (1) < —p - (687, (1) — ine/ B, (1)) - sin(D},(0)) < —2v/2p - e - sin(D7,, (0)).
Similarly, we can upper bound At /2 By combining the arguments above, we can reach the con-
clusion that

Aty >

At:r/Q = (p ’ ’%inlt) {Dvrz( ) 7T/2}

Part II: Convergence time from D} (0) to 0 with D} (0) € (0,7/2). Consider a small error
level § > 0, and the convergence time is formalized as Aty = min{t € R* : sin(D},(t)) < d}.
Note that D;, (¢) is monotonically decreasing and 5}, (¢) is monotonically increasing in this stage.
Also,

sin(D, (1)) - By, (t) - g, (8)? = sin(D}, (1)) - By, () - (285, (1)* = Kinie) = sin(D},(0)) - Kitie,
following (F.43), Lemma F.9 and /37, (0) = Kinit as specified in Assumption 5.1. By definition,

Sin('D* ( ))/5 K’Inlt ﬂ* (At;) ’ (26* (At;)z - |n|t) B* (Ata ) .

Hence, we have 8}, (Aty)/Kinie < \/W Following (F.44a), it holds that
B* (t) B Kinit/\/i 2\/§ * Rinit * atﬂ* (t)

O lo m — m ) — 22 kit - - cos(D%, (1) = Kinit - D

e (%(t) + Kinie/ V2 28;,(1)2 — K2y, v P cos(Dy, (1) P

since cos(D}, (t)) € [cos(D},(0)), 1]. Hence, by integrating over time (0, Aty’], we can show that
B (Atg) — Kinie/ V2

B (Aty) + Kinit/ V2

Next, we bound the scale of the term within the logarithm. For a small tolerance § = o(1), we have
B (ALg) — Kinie/ V2

B (AL3) + Kinie/ V2

> +log(3 + 2\@) X Kinit - p - Aty (F45)

1

=1-2(V2: B (A7) /kine + 1) =1—0(3/8/sin(D;,(0))).
(F.46)

Thus, by combing the arguments in (F.45) and (F.46), we can conclude that

Até = p K’Ir‘llt {1 v 6/8111(@;:”(0))},

where we use the fact that log(1 — x) =< « for small z > 0.
Based on the results in Part I and Part II, for any initial phase difference D}, (0) € (0,7) and
sufficiently small error tolerance § € (0, 1), by symmetry, the convergence time is of level

ts < (phinit) "+ {1 — (sin(D, ( 0))/6} 7% + max{r/2 — |D%,(0) — |,0}),

7”

where we let (x); = max{z, 0} denote the ReLU function.
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Part III: Preservation of Uniform Phase Distribution and Double-Phase Convergence. Recall
that Lemma F.9 gives there exists constant Crog € R such that

sin(D}, (1)) - B (1) - a5, ()* = Cprou-

Following this, we can write the dynamics of ¢%, (¢) and %, (¢) as

e exp(idy, () = 2p - Cproa /iy, (1)* - exp (i {¢}, (t) — 7/2}),
e exp(ivhy, (1)) = p - Corod /B (1)* - exp (i {15, (1) + 7/2}) .

As established previously, the magnitudes of the learned parameters, o, (t) and 3%, (t), tend to
infinity as ¢ — oo. This divergence drives the convergence of the corresponding phases to fixed
values, ¢}, (0c0) and 97, (c0), which are determined by the initialization. Furthermore, Theorem 5.3
proves that the misalignment term D7, (¢) converges to zero. This directly implies that the limiting
phases must satisfy the phase alignment condition: 2¢*, (00) = ¥, (00).

Denote exp(i¢y,(t)) = z(t), then by (F.47), z(t) is continuously differentiable with respect to ¢.
Consider

(F47)

@2, (1) = ¢4, (0) + / S(2(s)#'(5))ds,

then we can check that ®%, (¢) is continuously differentiable, and by differentiating both sides, we
can also check that it satisfies exp(i®}, (t)) = z(¢). Therefore, ¢%, (t) = @7, (t) mod 27. By direct
calculation,

0, (1) = =2p + Cproa - 0, (1) 2,

which shows .
B, (0) = 63,(0) ~ 2 | Ciroa - (5) s,
0

Since a,(t) only depends on (F.43),(F.44a) and (F.44b), so once given (a,(0)
a2, (t) is independent of ¢, (0) for all £. In this case, conditional on (a7, (0), 55, (0

m ? m

equals to ¢, (0) plus some deterministic function up to mod2z. Since the map

(67,(0), 97,(0)) = (67,,(0), D7,(0) = 2¢7,(0) — ¢7,(0))

has determinant —1, ¢, (0) and D%, (0) are i.i.d. Uniformly distributed on (—, 7]. Combining the
above two arguments, we establish that ¢* (¢) is uniformly distributed on (—, 7].

For ¢, (t), we can establish the proof in an almost identical way that 7, (¢) is uniformly distributed
on [0, 27) for all ¢; due to the space limit, we omit the full proof here. As a result, ¢}, (c0) and
1y, (00) are both uniformly distributed over [0, 27).

Combining with the fact that 2¢%,(c0) = 1%, (c0) for any given initialization, we know the joint
measure of (¢, (c0), ¥k, (00)) is degenerated on the (periodic) line 2¢ = 1) inside the region
(¢,9) € (—m,m]*. Since the marginals of them are both uniform, the joint limiting measure is
then given by poo = Tz A, where T' : ¢ — (p,2¢) mod 27. Summarizing all the above, we finish
the proof.

=3
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F.5.1 PROOF OF AUXILIARY LEMMA F.8, F.9 AND F.10

Proof of Lemma F.8. Following the same argument in the proof of Theorem 5.2, by pushing the
approximation error to 0, we can show an exact single-frequency pattern:

of (t)y=pFt)=0, VteR' k#Kk"

Formally, this result holds under the initialization in Assumption 5.1, which can be justified using a

matrix ODE argument over u” (t) = (aF (t), 8% (t))T with zero initial value. Then, the dynamics

of the original parameter can be simplified to a coefficient only related to k*. For all j € [p], we
have

Or0m[71(t) = 2p - ap, (8) - B1, (1) - cos(wri + 9r, (1) — ¢7,(2)), (F48a)
Onmli)(t) = p- a5, (8)* - cos(wrej + 267, (¢)- (F48b)
Recall 0,g,,[](t) = (bj, 010, (t)), by simple calculation, it holds that
Ougm [2K](8) = V2 p*% -, (8) - B, (1) - cos (¥, (8) — o1 (1),
Ougm[2k* +1)(t) = —V2 - p*2 - a, (8) - B7,(t) - sin (¥, (1) — 9}, (1)),
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and similarly, by using 9,7, [7](t) = (bj, 0:&m (t)), we can obtain that
Derm[2k*](t) = p¥2 /N2 - o, (£)% - cos (297, (1)),
Oyrm[2k* + 1](t) = —p*/2/V2 - al, ()2 - sin (265,(1)),

where the additional /2 /p arises from the normalization factor in b;’s (see §A.3). Since the mag-
nitudes follows o, = /2/p - |lg5, || and B, = /2/p - |75, ||, by applying the chain rule, then

Oro, (t) = 2p - agy, (1) - B, (t) - cos (207, (t) — 17, (1)), (F.49a)
i (t) = p - o, (1)* - cos (207, () — 15, (1)) (F.49b)

Next, we understand the evolution of phases by tracking the dynamics of exp(i¢}, (t)) and
exp(ivr, (t)) via Euler’s formula. Note that ¢, (t) and 1%, (t) cannot be directly tracked via ODEs
due to abrupt jumps from —7 to 7, which arise from the use of atan2(-) function in definitions (see
§A.3). By definition and the chain rule, it follows that

ducos(63, (1) = [ -1 (2=l200)
_ /2. {8t9m[2k*](75) O, (t) gm[2k*](t)}

p a, () az, (t) az, ()
=2p- B, (t) - cos (Y5, (t) — 61,(1))

—2p - B(t) - cos(7, (1)) - cos (267, (¢ ) V(1))
=2p- (1) ‘Sin(eb* (t)) -sin (2(25 ( ) U (1),

where the second equality uses cos(¢7,(t)) = \/2/p - gm[2k*](t) /i, (t) and the last one results
from the trigonometric indentity. S1m11arly, we have

Or sin(¢y, (1)) = —2p - B, (t) - cos(¢y, (1)) - sin (207, (1) — ¥y, (1)),
which gives that
Or exp(iy, (1) = 2p - B, (t) - sin (267, (1) — ¥7, (1)) - exp (i {¢}, (t) — 7/2}). (F.50)
Following a similar argument, we can show that
aX (t)2

m

Opexp(ihy, (1) =p- —= 0

Thanks to the initialization and preservation of the single-frequency, the 2p-dimensional dynamical
system can be tracked via a four-particle system with o,, 8%, ¢r,, and ¢, whose dynamics are
given by (F.49a), (F.49b), (F.50) and (F.51). Furthermore, note that

Oy exp(2idp, (1)) = 2exp(i¢y, (1)) - O exp(idy, (1))
=dp- B,(t) -sin (267, () — ¥}, (1)) - exp (i{26},(t) = 7/2}).  (F52)
Based on (F.51) and (F.52), by denoting D%, (t) = 2¢%,(t) — 7, (t) mod 27, we obtain that
O exp(2i¢y, (1)) exp(2i¢y, (1)) - O exp(ivy, (1))

[\)

-sin (20, (t) — 5, (1)) - exp (i {¢5, (t) +7/2}). (E51)

= TAQ) exp (207, (1)
— 4p- B2y (t) - sin (D7, (1)) - exp (i {D5 (1) — 7/2})
—p-‘;z(() sin (D2, (1)) - exp (i {4y (6) + 7/2})
* ( ) * cexp (i{D* -
(46 0+ W)) sin (D2, (1)) - exp ({{DA (1) — 7/2)).  (B53)
By combining (F.49a), (F.49b) and (F.53), we complete the proof. ]

Proof of Lemma F.9. Following the simplified main flow in the Fourier domain (see Lemma F.8), it
is easy to show that o%, (t)? — 23%,(t) is a constant throughout the gradient flow since

O{an, (t)? = 2685,(8)*} = 205, (t) - Qpay, (t) — 4B, (1) - 053, (t) = 0
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Hence, there exists an initialization-dependent constant Cy;s such that
afn(t)Q = 25;@)2 + Cyifr, vVt e RT.
Moreover, by applying the chain rule, we can deduce that
di{ar, (1) - B, (6)} ()% - ey () + Op{a, (1)} - Br (1)
()2 - 035, (1) + 20:{ 85, ()%} - Br, ()
(D) - cos(DF, (1) + 487,(8)? - p - g, (1)? - cos(D}, (1))
w(8)% - {as, ()% + 485, (8)*} - cos(Dy, (1))

O {sin(D, (1)) - Biu(t) - i (t)?}
= Opsin(Dy,, (1)) - B1,(t) - 4, (1) +sin(D}, (1)) - De{e, () - B, (1)}
= — cos(D}, (1)) - o
+sin(Dy, (1)) - p - g, () {o, (8)* + 48, (1)} - cos(D}, (1)) = 0,

where the second equality uses (F.41) in Lemma E.8. Therefore, there exists constant C,roq such that
sin(Dg, (1)) - B (1) - o, (1)? = Cproq forall t € RT.
Finally, we show that D7, (¢) remains within the half-space where it is initialized, which means
Dr.(t) € (vm, (L + 1)) for . € {—1,0} determined by the initial state D, (0) € (vm, (¢ + 1)7). By
Lemma F.9, we always have sin(D7,(¢)) # 0, so D7, (t) will never reach ¢ for any ¢. This ensures

no jump behavior occurs for D, (¢), allowing us to directly track its dynamics. Following this, by

applying chain rule over (F.53), we can reach that
0D, (1) = —p - (485 (1) + ap, (8)? /B (1)) - sin (D7, (1)) ,

which completes the proof. O

Proof of Lemma F.10. Based on the results in Lemma F.8 and F.9, we reduce the main flow into a
one-dimensional dynamical system characterized by 5}, (t). Specifically, we have

05, (8) = p - o, (8)? - cos(Dy, (1))

02

prod

(285,(t)? + Cairr)?

= 0+ (287,(0)° + Cair) - sign{cos(D, (1))} \/ O

= <(85,()) - sign{cos(Dj (1)) -

As given in (F.42), due to the nonnegativity of the magnitudes, we can show that D7, (¢) is mono-
tonely decreasing if D}, (0) € (m/2,7). We consider s = t — t,)o fort € [t;/5,2t;/5) and
r=tro—tfort € (0,t, /5], where t /5 denote the hit time that D, (t,/2) = m/2. Following this,
we have

05815 (8) = Ouf35, (¢ = try2) = —<(B1(5));  0rBr(r) = =015, (trja — ) = =< (B, ().

Here, we decompose 0; 3y, (t) within time [0, 2¢, /5] into a backward process within time (0,7 /o]
and a forward process within time [t 2, 2t, /5] respectively. Starting from time s = r = 0, where
the initial value is both given by 3 (¢, /2), since ¢ is locally Lipschitz, by the uniqueness of the
ODE solution, for s = r, we have 3 (s) = B;;,(r), i.e., B (tr/2 + Al) = By, (tz/2 — At) for
all At € [0,t,/5). Furthermore, by combining Lemma F.9, the monotonicity of D () and the
arguments above, we can show that D} (t. /o — At) + D (/o + At) = 7, which completes the
proof. O

G PROOF OF RESULTS FOR THEORETICAL EXTENSIONS IN SECTION D

G.1 PROOF OF COROLLARY D.1: PHASE LOTTERY TICKET

We first formalize the random multiple frequency initialization as follows.
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Assumption G.1. For each neuron m € [M)|, the parameters (&, O, are initialized as

(p—1)/2
0m(0) ~ Kinit - v/ P/2 - Z (01,5[1] - bor + 01,%[2] - bag+1)
k=1
(p—1)/2
Em(0) ~ Kinit - V/D/2- Y (02.k[1] - bk + 02.4[2] - bary1)
k=1
where 0, 1, B Unif(Sl)for all k and r € {1,2}, and &inix > 0 denotes a small initialization scale.

This is the natural extension of Assumption 5.1 to multiple frequencies, and the arguments in §F,
i.e., Lemma F.8, F9 and F.10, go through with only routine modifications thanks to the neuron
decoupling and the orthogonality of frequencies. We first state the formal version of Corollary G.2.

Corollary G.2 (Formal Statement of Corollary D.1). Consider a random initialization following

Assumption G.1, and let k* denote the winning frequency given by k* = miny @fn (0). For a given
€ (0, 1), define the dominance time t. as

te == inf{t e RT : kmﬁc)*(ﬁsl(t)/ﬁﬁl(t) <e}.

Then, with probability at least 1 — é(pfc), where ¢ > 0 satisfying p > c¢*r2e=2(1=9) it holds that

. < m2p~(2e43) (c+1)logp+log 7

Y Kinit Phinit - {1 — 2¢272 - (log p/p)?}

Before delving into the proof, we first establish a key property of the decoupled dynamics under this
initialization—order preservation—under the initialization specified in G.1.

Lemma G.3. Let o be the permutation that sorts the initial phase differences in non-decreasing
order:

~ ~ ~ Pzl
By (0) < DP(0) < -+ < Bl o),
where @f% (0) = min{DE (0), 27 — DX (0)} represents the shortest circular distance for the initial

phase. Under the initialization in Assumption G.I, the rank-ordering of the corresponding magni-
tudes B (t) is inverted and preserved for all time t > 0:

—1
B0(0) > B0 > - 2 gl 7o)
Proof of Lemma G.3. Please refer to §G.1 for a detailed proof. O

Lemma G.3 states that, when neurons are decoupled and each frequency is initialized at the same
scale kin; > 0, the ordering of frequencies by magnitude 3¥ s within each neuron remains fixed
throughout the gradient flow, with larger magnitudes corresponding to smaller initial phase differ-
ence. Now we are ready to present the proof of Corollary G.2.

Proof of Corollary G.2. As specified in Assumption G.1, for all m € [M], we initialize o, kS

Unif(S?) for all » € {1,2} and k € [25*]. Thanks to the orthogonality among frequencies, each
frequency evolves independently, so Lemmas F.8, F.9 and F.10 apply to every frequency k, not just

the feature frequency k*. For fixed neuron m, by defining DX (0) = min{D* (0), 2r — D¥ (0)},
we have

0B (t) = p - (285,()* — ki) - cos(DE, (1)), (G.1a)
0Dy, (t) = —p- (685, (t) — kinie/ Bl (1) - sin (D, (1)) (G.1b)

Step 1: Deriving Winning Frequency and Initial Phase Gap. By Lemma G.3, the dynamics

preserves the ordering of 5’fns and % s throughout the gradient flow. Specifically, at any time
t € RT, the ordering remains unchanged. Thus, the lottery ticket winner, i.e., frequency k such that

BE (t) > B7,(t) for all T # k, is given by k* = argmin,, D¥ (0).
To demystify the dominance phenomenon, it suffices to focus on the growth of the magnitude of

the winning frequency k* and the second-dominant frequency kf = argming .. DE (0). Under the
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initialization as specified in Assumption G.1, with probability greater than 1 — (:)(p_c) for some
constant ¢ € (0, 1), we have the following good initialization:

Emit =EL. NEX NES.

= {D},(0) < 7/2} N { cos(D7,(0)) > cos(DE, (0)) + w2p~ 2D}
N {COS(@;L(O)) <1-2c7% - (logp/p)?}. G2)

iid.

This is because D¥ (0) "~ Unif(0,7) based on a similar argument in Lemma F.6, and thus

Dz, (0) and @En( ) are respectively the first- and the second- order statistics of p—;l i.i.d copies

of Unif (0, ), denoted by Uy;y’s. Notice that

P(E50) = P(Vi, Uy > 7/2) +P(Vi > 1, Uy > 7/2, Uy <7/2) = (p+1)-275 Sp°
(G. 3)
Furthermore, if p 2> cAn2e=2(1=9) it holds that
(éﬁ”f) < P({cos(Up1)) < cos(Ugz)) + m°p —2ety1n Emi) + ]P’(éﬁllf)
SP{UR) - Udy — Uy /12 <2n’p 2N gl) +p°
< ]P’({U(zg) U(l) < om?p~ et +2(em/p-logp)*} N mlt)
+P({Ul) > 24 (en/p-logp)*y N &) +p~°
< P(Upy — Ul < 8n°p ) £ P(Ugg) > 2em/p-logp) +p7°  (GA)

where the second inequality uses 1 — 22/2 < cos(z) < 1 — 22/2 + 2*/24 for x € (0,7/2).
Moreover, to bound the RHS of (G.4), we can show that

P(UGy — Upy < 87°p~2tD) <P(Uq) - (Ugg) — Uy) < 4n’p2(etD)
<P(Uyy < 2mp~ D) + P(Uz) ~ Uy < omp(c+D))
=2-2(1-2p )% <pe, (G.5)
where the second inequality follows Uy 4 Ug) — U(l . Furthermore, it holds that

-3
P(Uggy > 2¢m/p-logp) = (1 - 2¢/p-logp) = S e(p— 1)/p logp - (1—2¢/p-logp) =

< (1+clogp) - (1 —2¢/p-logp)" T < p~“logp. (G.6)
By combining (G.4), (G.5) and (G.6), we have P(Elilf) < p~¢log p. Similarly, we can derive that
(glilg) = (COS(U(I)) <1- 2627T2 ’ (10gp/p)2)
< P(Uy > 2en/p-logp) = (1 - 2¢/p-logp)" T <p~, (G.7)

where the inequality also uses cos(z) > 1 — 2%/2 for z € (0,7/2) Based on (G.3),(G.4) and
(G.7), the good initialization event &,;; holds with a probability of at least 1 — ©(p~“log p). In the
subsequent analysis, we assume that this event occurs.

Step 2: Growth of Gap between Winning Frequency and Others. Based on (G.1a), the dynam-
ics for the log-magnitude follows

k ]
P — - (285,0) — R/ B (0) - cos(DE (1)

To track the relative growth of two magnitudes, 37, (t) and 3%, (t), we now examine the dynamics of
Brn ()
Bhn(t)’

P (285,(1) — w2/ B (1)) - cos(DE, (1) — p - (265, (t) — K/ 55, (£)) - cos(DE, (t))

~(ﬁ*(t) BE() {2 + K/ (B (t) - B, (1)} - cos(DE, (1))
- (285, (1) — K/ BE,(8)) - {cos(D, (1)) — cos(DE, ()}
( )

> 2p - cos((D},(0) - (B, (1) = B3 (1)) +p - Ainie - {cos(D, (1)) = cos(D}, (1))}
(G.8)

Oy log Bl (t) =

their log-ratio d; log
Bu(t)
Bh(t)

whose evolution is given by:

0y log
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Here, we use (i) 8%, (¢) > B¢, (t) and D, (t) < D¢ (t) forall t € R+ based on the order preservation
property in Lemma G.3, and (ii) under the good initialization &y where D7, (0), Df, (0 ) < 5,we
have 9, D¢, (t) < 0and 9,42, (t) > 0 forall (o, 1) € {, 1} UR™. Therefore, we have cos(D%, () >

m

cos(D},(0)), B2, (£) > 85,(0) = rinic and 255, (t) — k2. /85, (1) > 2B5,(0) — K2/ B5,(0) = Kini
under the initialization in Assumption G.1. Let p,,,(t) = 3%, (t)/B% (t). Following (G.8), we have
01108 pm (t) > 2p - Kinie - €08(D,(0)) - (pm(t) = 1)V p - Kinie - {cos(D, (1)) — cos(DE, (1))},
Based on the first term in the right-hand side, a simple calculation shows that the dynamics satisfy:
m(t) — 1 ~
O log (p()> > 2p - Kinit - cos(D},(0)) > 0.
pm(t)
Given p,,(0) = 1, we can integrate this result over any interval [s, ] to obtain a lower bound:
pnt) = {1+ (1 p(s) — 1) - exp(2p - cos(D5, (0)) - minie - (t — )}, Vs € (0,1]. (G9)
Following this, once the ratio p,,(t) is larger than 1, the ratio p,,(¢) surpasses 1, it begins to grow
super-exponentially, accelerating rapidly towards infinity. Motivated by this dynamics, our analysis

proceeds in two stages: first, we show that p,,(t) does not get stuck at the initial stationary point
pm(t) = 1, and second, we quantify its rate of growth using (G.9).

Step 2.1. Initial Growth of the Ratio Beyond Unity. Consider a short initial time interval (0, 1],
during which the model parameters remain close to their initial values while the ratio p, (t) quickly
exceeds 1. Based on (G.1b), we have

| cos(D%, (t)) — cos(@fz(t)) - cos(@:f(o)) + cos(DE (0))]
< 202?{% | cos(Dy, (t)) — cos(Dy, (0))]

<2 max cos(DS,(t)) =2 max / 8 cos(DS, (s))ds
oe{x i} oe{x 1}

=2 mas [ (65.06) - /) -sin(D5 )

t
<6 © (s)ds < 6pt - = 6pt - B (1), G.10
p - 02}%}/ B (s)ds < 6p og}gﬁ}orgggtﬂ o (s) = 6pt - B, (t) (G.10)

where the last inequality results from 5%, (s) < 85, (¢) for all s € (0,¢] and the rank preservation
property, i.e., 55, (t) < 5% (t) at any time ¢, as shown in Lemma G.3. Following (G.1a), we get

() < p- (2B5(1)° — Koa) = B (1) < Fine/V2 - coth(—v2prinis -t — 11), Vit € RY,
(G.11)

where we denote ¢; = arccoth(\/ﬁ). By choosing ¢, € (0, 1), we define
= inf {5 € (0,t] : 3V 2pKinis - S - Coth(f\@pnin;t “S—1) > cqg 7r2p72(c+1)}.

Here, we choose a sufficiently small ¢, to ensure that ¢, is well-defined and finite before the system
explodes. This choice makes ¢; correspondingly small and the following asymptotic result holds:

Coth(f\@pninit by — ) X< V2 + pRinit - t1 =t = cg - 7T2p7(26+3)//§init- (G.12)

Recall from (G.2) that under the good initialization &, the initial cosine gap cos(D},(0)) —

cos(D¥, (0)) is lower bounded by 72p~2(¢+1), By combining (G.10), (G.11) and definition of ¢;, we
have

cos(D;, (1) = cos(Di (1)) ~ N N i
> cos(D}, (0)) — cos(DE, (0)) — | cos(D, (1)) — cos(DA, (1)) — cos(D}, (0)) + cos(DE, (0)

2t —6p- sup ¢ B, (1) > (1—cg) - w2 2HY, (G.13)
tG(O,tl]

for all ¢ € (0, ¢1]. Building upon (G.12) and (G.13), we can show that
ty
log pn (1) = 108 pn(0) + [ cos(D5 (1)) — cos(D, (s))ds
0
Z Cg(l _ Cg) - Dinit - tl X 7_(.2p—2(c-',-1) - 4p—4(c+1)
and thus p,, (t1) > exp(1 + wp~4ctD)) < 1 4 74p=4e+D for sufficiently large p.

> 7’p~
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Step 2.2. Super-exponential Growth. Letc > 0 be the dominance threshold. We now derive the
time ¢4 required for the lower bound of the ratio to exceed this threshold, i.e., p,,, (t2) > 1/e, such
that t. < t2b. Our starting point is the state at time ¢1, after which we have p,,, (t1) =< 1+7r4p*4(c+1).
Following (G.9), we have

P < 1+ (1 () — 1) - exp(2p - cos(D2(0) - e - (¢ — 11))
S1—mp D exp(2p - {1 - 2677 - (log p/p)°} - e - (¢ — 11)),
where the last inequality results from 1/p,,(t1) — 1 < 1 — p,,,(¢1) given p,,(¢1) is close to 1, and
the good initialization cos(D%,(0)) > 1 — 2¢2x2 - (log p/p)? in (G.2). By choosing

m

— 4(c+1)logp+log &= —4logm  g2p—(2c+3) (c+1)logp + log -
2= gk {1 — 2277 - (log p/p)} e Phinic - {1 — 2¢27% - (log p/p)*}’
we can guarantee that p,, (t.) ™! < &, which completes the proof. O

G.1.1 PROOF OF AUXILIARY LEMMA G.3

We begin by recalling the foundational results for a celebrated class of dynamical systems—known
as cooperative systems—which enjoy a useful rank-preservation property (e.g., Smith, 1995). Before
stating this formally, let us give a precise definition.

Definition G.4 (Cooperative System). Consider a p-convex set S C R? such that tz + (1 — t)xy €
S for all t € [0,1] whenever v,y € S and x— < xy. Suppose f : S — S is continuously

differentiable. The dynamical system, defined by Oyx+ = f(x), is called cooperative if gif () >0
J

foralli # j.

In other words, a cooperative system’s Jacobian has nonnegative off-diagonal entries, so increasing
any coordinate of the state cannot decrease another in the next iteration. With this definition in hand,
we can now state the key monotonicity property of cooperative systems.

Lemma G.5. Consider a cooperative system Oixy = f(x4), and write x < y for v,y € R? if
x; <y, foralli € R Given two initial values x§ < x3, then we have xt < z? at all timest € R,

Proof of Lemma G.5. Please refer to Kamke (1932); Hirsch (1982) for a detailed proof. O
In what follows, we prove Lemma G.3, which is a direct application of Lemma G.5.

Proof of Lemma G.3. Recall that, by Lemmas F.9 and F.10, together with the orthogonality of the
frequency basis, for every k € [ ;1 ], the dynamical system is given by (G.1a) and (G.1b) with initial
condition 8% (0) = kjp; for every frequency k.

We first show that the evolution of D () consistently shares the symmetric trajectory at any time
t if initialized symmetrically. Let x(t) = (8% (¢), DX, (¢)) and denote by ¢(z(¢)) right-hand side of

(G.1a), (G.1b), such that 9;z(t) = ¢(x(t)). Define the involution I(3, D) = (3, 2w — D) with its
Jacobian following dI = diag(1, —1). A direct calculation shows that

<o I(By,(t), Dy, (1) — dI - <(By, (), Dy, (t)) = 0,
i.e., the system is equivariant under I. By uniqueness of solutions, the solution with initial z(0) =
(BE,(0),2m — DE (0)) satisfies z(t) = I(BE, (t), Dk, (1)), so the two trajectories remain symmetric.

Hence, it suffices to consider the dynamics with standardized initialization min{D¥ (0), 27 —
DE (0)} € (0,7]. Following a similar argument in Lemma F.9, under the standardized initial-

ization, we have DE (t) € (0, 7) at all time ¢. To verify cooperativeness, we introduce 3, = — g8k,
and rewrite the dynamics in the new coordinates (3%, DX ). From (G.1a) and (G.1b) one obtains

ey, (1) = —p - (285, (1)” = Kigge) - cos(D, (1) := <1 (B, (1), DY, (8)),
0Dy (1) = P+ (685, (1) = Kinie/ B (1)) - sin (D, (1)) := <2 (B}, (1), DY, (£)),

and it is easy to check that the vector field is cooperative by

2S] 9% 2 Tk (2
9Dk _337’% =p- (64 ri/B(t)?) > 0.
Thus, (—f3%,DF ) is cooperative, and by Lemma G.5, it preserves the initial ordering. Since
B (0) = Kinit for all k and phase difference D¥, (0)’s are distinct, it follows that
D(0) < D}, (0) = Vt € RF, Bi(t) < B, (1) = Vt € RY, Bi(t) = 67, (0),

for every pair k, 7 € [172;1}, which completes the proof. O

= sin(DF (1)) > 0,
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G.2 PROOF OF PROPOSITION D.3: DYNAMICS OF RELU ACTIVATION

Proof of Proposition D.3. We begin by recalling from §F.2 that, for each fixed index m, the gradient
with respect to the decoupled loss ¢,,, takes the form

o

90mlj] gz:f ol e e b 2
2 p

+ 2573 bl 1lew +€5,6) > 0), (G142

prZp"'Zl

ot Ly

17) = Z max{<em+ey,9m>70}+*z Z max{(es + €y, 0m), 0}, (G.14b)

fm [.7] (:Ly)ESf p j=1 (%ZJ)ES?

forall j € [p]. We first evaluate these gradients at the single-frequency 6,,[j] = a2, -cos(wi-j+¢%,)
and &, [7] = B2, - cos(wi+7 + 1%, for all 7, and then to extract the DFT coefficients.

Step 1: Gradient of ,,,. First observe that max{z,0} = (z + |z|)/2. Then, we have

1 1
Y ol ten b =5 X leatenbu)ty O lewt ey 0
(z,y)€SY (z,y)€Sy (z,y)€Sy
Oé;kn *
== Z | cos(wi+x + ¢,) + cos(wi+y + &5, (G.15)

(zy)esy

Moreover, by applying the sum-to-product trigonometric identities, we can show that
1

5 D0 Jeos(wrem + ) + cos(winy + 07|
(z,y)€Sy
= > lcos(wi(z +9)/2+ ¢} - [ cos(wi(z —y)/2)]
(z,y)€SY
. * S 2 - *
= Jeos(rd/2+ 03)| - 3 eos(ana/2)| P2 2 Jeos/2+ 63 (G16
TELyp
The last inequality uses the fact that for an odd prime p, {wrZ}ecz, = {2kz7/p}ecz,

{272 /p}rez,. which is a uniform sample of [0, 1]. Thus, in the limit p — oo, we have

1 o [ 1" 2
- Z | cos(wpz/2)| "= / | cos(max)|dx = f/ | cos(u)|du = —.
p 0 T™Jo

™
TELyp

By putting these two asymptotic expressions (G.15) and (G.16) into(G.14b), we obtain that

oy, B pac,

‘ N 1< , . ‘
gy =~ (eosend/2 b 000l = DS eosteni/2 400l ). Vi€ b

Next, we apply DFT with respect to V¢, £, in the asymptotic regime p — oco. Let 7, € [p] denote
the multiplication factor in Definition D.2, i.e., rxk* = k mod p for k, k* € [%] Then, we have

1 p . . ) ) oo (71)rk+1 . .
% Z | cos(wi+7/2 + ¢r,)| - exp(i - wij) P m cexp(—2r @, - i). (G.17)
Jj=1 —
=Gy

A cosine derivation of (G.17) proceeds as follows:

12 o
p Z | cos(wie /2 + ¢%,)] - cos(wrj) ¥ = / |cos(mk*x + ¢r,)| - cos(2rpmk™x)dx
j=1 0

= %/0 | cos(u)] - cos(2ry - (u — ¢y,))du = M . /0 | cos(u)| - cos(2rpu)du
x % % _1\re+1
= COS(QWM . (/0 cos((2ry + 1)u)du +/O cos((2ry — 1)u)du> = 73(«4:]23_2) - cos(2rpd?,),
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where the third equality follows from trigonometric identities, evenness of sin(2ru), and periodicity.
A similar calculation applies to the sine, and combining both real and imaginary parts yields (G.17).
Therefore, we have

(Ve lmsboi) = 2V2 - ap, [m - p*/2 - Gy, - cos(2ridy,),
(Ve b baer) = =2V2 - ap fm- p*2 - G - sin(2rigy,),
and thus A’gm JAE =6/ s | = O(r;,?). Moreover, it follows by simple calculation
(21 Ve bm) 1] = (Ve lims bare) - boie [j] + (Vg bons bawe 1) - bage 11 [j] o cos(2k* + 26,),
for all j € [p] such that we have 32,!* Ve lm X Em.
Step 2: Gradient of 6,,,. Following (G.14a), first notice that

Y Cmlmy(z, )] L{ew + €, i)

TELyp
=B Y cos(wie (2 + ) +9h,) - L(cos(wre + ¢},) + cos(wiej + ¢h,) > 0)
TE€Lp
pooo pB,

— | sin(wg=J + ¢r,)| - cos(wi=J + Pr, — @r,),

where the last equality results from the following calculation under the asymptotic regime:

1
, Z cos(wi (x4 7) + ) - L(cos(wix + ¢5,) + cos(wg+j + ¢r,) > 0)

TETLy
— 00 !
P / cos(2mx + wi«j + ) - L(cos(2mx + ¢5,) + cos(wg+j + ¢r,))dx
0
B % ¢;SUS¢:"+27r COS(U + Wi] + wm - ¢m) U

cos(u)>— cos(wg*j+¢r,)

1 . * *
= % : COS(wk*] + ¢m - ¢m) ' / 0<u<2m COS(u)du

cos(u)>— cos(wixj+or,)
1 . . .
= sin(arccos(— cos(wg+j + ér,))) - cos(wiJ + ¥, — Pr,)-

— [sin(wpe + 0},
By applying DFT over Vy,_ ¢, in the asymptotic regime p — 0o, we can show that

1o~ . . o o
= s+ 05| conlened + U = 65) - exp(i - i)
j=1

pooe 1 {exp({w:n — (re +2)¢7,} - 4) i exp(—{y, + (re — 2)¢7,} - 1) } -1 (ry, is 0dd)
™ Tk(Tk + 2) Tk(Tk — 2) ’
(G.18)
where r.k* = k mod p. The above results follow the calculation below:
1~ L Lk g ,
]; Z | Sln(wk’*] + ¢m)‘ ! COS(wk*j + wm - (bm) : COS(wkj)
j=1
. 1
e / |sin(2rk*x + ¢5,)| - cos(2mk*x 4+ ), — ¢F,) - cos(2mripk*x)dx
0
1 2m—¢r,
=5 [sin(u)]| - cos(u + ¥y, — 26%,) - cos(rg(u — ¢5,))du
7¢:n
1 27
= |sin(w)] - cos((ry + Du + ), — (1 + 2)ér,)du
0
1 2m
+ yy |sin(u)| - cos((ry — Du — 4y, — (1 — 2) ¢, )du, (G.19)
0
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where for hy = rp £1and hg = ¢}, — (s +2) ¢k, / — ¥k, — (1 — 2) ¢, we can further show show

27 2
/ | sin(u)| - cos(hiu + he)du = cos(hg) - / | sin(u)| - cos(hyu)du
0 0

= (14 (=1)M) - cos(hs) - / sin(u) cos(hyu)du = ﬁ - cos(hg) - 1(hy is even).
’ ' (G.20)

By combining (G.19) and (G.20), and performing a similar calculation for the sine component, we
obtain the result in (G.18) This implies that for even 7, we have

cos(, — (e 2)6%) | conlv + =205

(Vo, Loy bor) = =285, 7 - p*/2 - {

T’k(Tk + 2) Tk(’l"k — 2)
(Vo bms baks1) = —V28}, /m - p*/* - {Sln(¢7;k(riri;)2)¢m) - Sm(wyﬁktrirk_Q)Q)qsm) }»

Hence, A (0,,)/A*(0,,) = O(r;;2) - 1(ry, is even) and for all j € [p]
(,@,U*Vemﬂm)[j] = <Vt9m€m7 bgk*> . bgk* []] + (V@m&m b2k"+1> . b2k*+1[j:| X cos(wk*j + ¢:n)7

which gives that @,!* Vo, m x 0, and completes the proof. O
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clarity of this manuscript. The LLM was also used to assist with debugging and generating boiler-
plate code snippets, which were reviewed and validated by the authors.

H.2 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we have made comprehensive efforts. The synthetic
nature of the modular addition dataset, as detailed in Section 2 (Preliminaries), allows for exact
replication of our experimental data. Our training methodology, including the use of PyTorch’s de-
fault initialization and the Adam optimizer with specified hyperparameters, is thoroughly described
in Section 3 (Empirical Findings). For full transparency and ease of reproduction, all code, including
model implementations and training scripts, will be publicly released on GitHub upon publication.
Furthermore, an interactive demo showcasing our results will be made available on a dedicated
website.

I ADDITIONAL EXPERIMENTAL RESULTS FOR DIFFERENT MODULO p

In this section, we replicate the key experimental findings presented in §3, but using an increased
modulus p = 47 and a network width of M = 1024.
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(a) Heatmap of Learned Parameters after DFT. (b) Actual Learned and Fitted Parameters.

Figure 15: Learned parameters under the full random initialization with p = 47 and ReL U activation
using AdamW. Figure (a) plots a heatmap of the learned parameters for the top 10 neurons after
Discrete Fourier Transform (DFT, see §A.3). Each row in the heatmap corresponds to the Fourier
components of a single neuron’s parameters. The plot clearly reveals a single-frequency pattern:
each neuron exhibits a large, non-zero value focused on only one specific frequency component,
confirming a highly sparse and specialized frequency encoding. Figure (b) further examines the
periodicity by plotting line plots of the learned parameters for three neurons, each overlaid with a
trigonometric curve fitted via DFT. The fitted curve aligns almost perfectly with the actual one.
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Figure 16: Visualizations of learned phases with p = 47 and M = 1024 neurons. Figure (a)
plots the relationship between the normalized 2¢,,, and v,,, with all points lying around y = =.
Figure (b) shows the uniformity of the learned phases within N}. The right panel quantifies this
symmetry by computing the averages of cos(t¢,,) and sin(t¢,,), all of which are close to zero.
Figure (c) presents violin plots of the magnitudes «,, and 3,,, suggesting that the neurons learn
nearly identical magnitudes.
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