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Abstract

Deep neural networks have been shown to be vulnerable to small perturbations of their inputs,
known as adversarial attacks. In this paper, we investigate the vulnerability of Neural Machine
Translation (NMT) models to adversarial attacks and propose a new attack algorithm called
TransFool. To fool NMT models, TransFool builds on a multi-term optimization problem and
a gradient projection step. By integrating the embedding representation of a language model,
we generate fluent adversarial examples in the source language that maintain a high level
of semantic similarity with the clean samples. Experimental results demonstrate that, for
different translation tasks and NMT architectures, our white-box attack can severely degrade
the translation quality while the semantic similarity between the original and the adversarial
sentences stays high. Moreover, we show that TransFool is transferable to unknown target
models. Finally, TransFool leads to improvement in terms of success rate, semantic similarity,
and fluency compared to the existing attacks both in white-box and black-box settings. Thus,
TransFool permits us to better characterize the vulnerability of NMT models and outlines
the necessity to design strong defense mechanisms and more robust NMT systems for real-life
applications.

1 Introduction

The impressive performance of Deep Neural Networks (DNNs) in different areas such as computer vision
(He et al. [2016) and Natural Language Processing (NLP) (Vaswani et al.| [2017)) has led to their widespread
usage in various applications. With such an extensive usage of these models, it is important to analyze
their robustness and potential vulnerabilities. In particular, it has been shown that the outputs of these
models are susceptible to imperceptible changes in the input, known as adversarial attacks (Szegedy et al.,
2014). Adversarial examples, which differ from the original inputs in an imperceptible manner, cause the
target model to generate incorrect outputs. If these models are not robust enough to these attacks, they
cannot be reliably used in applications with security requirements. To address this issue, many studies
have been recently devoted to the effective generation of adversarial examples, the defense against attacks,
and the analysis of the vulnerabilities of DNN models (Moosavi-Dezfooli et al., [2016; Madry et al., |2018;
Ortiz-Jiménez et al., [2021)).

The dominant methods to craft imperceptible attacks for continuous data, e.g., audio and image data, are
based on gradient computing and various optimization strategies. However, these methods cannot be directly
extended to NLP models due to the discrete nature of the tokens in the corresponding representations (i.e.,
words, subwords, and characters). Another challenge in dealing with textual data is the characterization of
the imperceptibility of the adversarial perturbation. The £,-norm is highly utilized in image data to measure
imperceptibility but it does not apply to textual data where manipulating only one token in a sentence may
significantly change the semantics. Moreover, in gradient-based methods, it is challenging to incorporate
linguistic constraints in a differentiable manner. Hence, optimization-based methods are more difficult and
less investigated for adversarial attacks against NLP models. Currently, most attacks in textual data are
gradient-free and simply based on heuristic word replacement, which may result in sub-optimal performance
(Alzantot et al., |2018; Ren et al.l |2019; |Jin et al., |2020; [Li et al., 2020; Morris et al., [2020; |Zang et al., |2020;
Guo et all 2021; [Sadrizadeh et al.| 2022).
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In the literature, adversarial attacks have been mainly studied for text classifiers, but less for other NLP
tasks such as Neural Machine Translation (NMT) (Zhang et al.| [2020b). In text classifiers, the number of
output labels of the model is limited, and the adversary’s goal is to mislead the target model to classify the
input into any wrong class (untargeted attack) or a wrong predetermined class (targeted attack). However,
in NMT systems, the output of the target model is a sequence of tokens, which is a much larger space than
that of a text classifier (Cheng et all 2020a)), and it is probable that the ground-truth translation changes
after perturbing the input sequence. Hence, adversarial attacks against NMT systems are more complex than
those against classifiers.

In this paper, we propose TransFool to build meaning-preserving and fluent adversarial attacks against NMT
models. We build a new solution to the challenges associated with gradient-based adversarial attacks against
textual data. To find an adversarial sentence that is fluent and semantically similar to the input sentence but
highly degrades the translation quality of the target model, we propose a multi-term optimization problem
over the tokens of the adversarial example. We consider the white-box attack setting, where the adversary
has access to the target model and its parameters. White-box attacks are widely studied since they reveal
the vulnerabilities of the systems and are used in benchmarks. To ensure that the generated adversarial
examples are imperceptibly similar to the original sentences, we incorporate a Language Model (LM) in our
method in two ways. First, we consider the loss of a Causal Language Model (CLM) in our optimization
problem in order to impose the syntactic correctness of the adversarial example. Second, by working with the
embedding representation of an LM, instead of the NMT model, we ensure that similar tokens are close to
each other in the embedding space (Tenney et al. 2019)). This enables the definition of a similarity term
between the respective tokens of the clean and adversarial sequences. Hence, we include a similarity constraint
in the proposed optimization problem, which uses the LM embeddings. Finally, our optimization contains an
adversarial term to maximize the loss of the target NMT model.

The generated adversarial example, i.e., the minimizer of the proposed optimization problem, should consist
of meaningful tokens, and hence, the proposed optimization problem should be solved in a discrete space. By
using a gradient projection technique, we first consider the continuous space of the embedding space and
perform a gradient descent step and then, we project the resultant embedding vectors to the most similar
valid token. In the projection step, we again use the LM embeddings and project the output of the gradient
descent step into the nearest meaningful token in the embedding space (with maximum cosine similarity).
We test our method against different NMT models with transformer structures, which are now widely used
for their exceptional performance. For different NMT architectures and translation tasks, experiments show
that our white-box attack can reduce the BLEU score, a widely-used metric for translation quality evaluation
(Post}, 2018), to half for more than 60% of the sentences while it maintains a high level of semantic similarity
with the clean samples. Furthermore, we extend TransFool to black-box settings and show that it can
fool unknown target models. Overall, in both white-box and black-box settings, TransFool outperforms
the existing heuristic strategies in terms of success rate, semantic similarity, and fluency. In summary, our
contributions are as follows:

e We define a new optimization problem to compute semantic-preserving and fluent attacks against NMT
models. The objective function contains several terms: adversarial loss to maximize the loss of the target
NMT model; a similarity term to ensure that the adversarial example is similar to the original sentence;
and loss of a CLM to generate fluent and natural adversarial examples.

o We propose a new strategy to incorporate linguistic constraints in our attack in a differentiable manner.
Since LM embeddings provide a meaningful representation of the tokens, we use them instead of the NMT
embeddings to compute the similarity between two tokens.

e We design a white-box attack algorithm, TransFool, against NMT models by solving the proposed
optimization problem with gradient projection. Our attack, which operates at the token level, is effective
against state-of-the-art NMT models and outperforms prior works.

o By using the transferability of adversarial attacks to other models, we extend the proposed white-box
attack to the black-box setting. Our attack is highly effective even when the target languages of the target
NMT model and the reference model are different. To our knowledge, this type of attack, cross-lingual,
has not been investigated.
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The rest of the paper is organized as follows. We review the related works in Section [2] In Section [3] we
formulate the problem of adversarial attacks against NMT models, and propose an optimization problem
to generate adversarial examples. We describe our attack algorithm in Section ] In Section [B] we discuss
the experimental results and evaluate TransFool against different transformer models and translation tasks.
Moreover, we evaluate our attack in black-box settings and show that TransFool has very good transfer
properties. Finally, the paper is concluded in Section [6}

2 Related Work

Machine translation, an important task in NLP, is the task of automatically converting a sequence of words
in a source language to a sequence of words in a target language (Bahdanau et al., [2015)). By using DNN
models, NMT systems are reaching exceptional performance, which has resulted in their usage in a wide
variety of areas, especially in safety and security sensitive applications. But any faulty output of NMT
models may result in irreparable incidents in real-world applications. Hence, we need to better understand
the vulnerabilities of NMT models to perturbations of input samples, in particular to adversarial examples,
to ensure security of applications and robustness of such models.

Adversarial attacks against NMT systems have been studied in recent years. First, |[Belinkov & Bisk| (2018)
show that character-level NMT models are highly vulnerable to character manipulations such as typos in
a block-box setting. Similarly, [Ebrahimi et al.| (2018a)) investigate the robustness of character-level NMT
models. They propose a white-box adversarial attack based on HotFlip (Ebrahimi et al.,|2018b) and greedily
change the important characters to decrease the translation quality (untargeted attack) or mute/push a
word in the translation (targeted attack). However, character-level manipulations can be easily detected.
To circumvent this issue, many of the adversarial attacks against NMT models are rather based on word
replacement. |Cheng et al.| (2019) propose a white-box attack where they first select random words of the
input sentence and replace them with a similar word. In particular, in order to limit the search space, they
find some candidates with the help of a language model and choose the token that aligns best with the
gradient of the adversarial loss to cause more damage to the translation. [Michel et al.| (2019)) and |Zhang
et al.| (2021) find important words in the sentence and replace them with a neighbor word in the embedding
space to create adversarial examples. However, these methods use heuristic strategies which may result in
sub-optimal performance. There are also some other types of attacks against NMT models in the literature.
In (Wallace et al. 2020), a new type of attack, i.e., universal adversarial attack, is proposed, which consists
of a single snippet of text that can be added to any input sentence to mislead the NMT model. However,
the added phrase is meaningless, hence easily detectable. |(Cheng et al.| (2020al) propose Seq2Sick, a targeted
white-box attack against NMT models. They introduce an optimization problem and solve it by gradient
projection. The proposed optimization problem contains an adversarial loss and a group lasso term to ensure
that only a few words of the sentence are modified. Although they have a projection step to the nearest
embedding vector, they use the NMT embeddings, which may not preserve semantic similarity.

Other types of attacks against NMT models with different threat models and purposes have also been
investigated in the literature. Some papers focus on making NMT models robust to perturbation to the
inputs (Cheng et al., |2018; 2020b; [Tan et al.l 2021). Some other papers use adversarial attacks to enhance
the NMT models in some aspects, such as word sense disambiguation (Emelin et al.l 2020)), robustness to
subword segmentation (Park et al., 2020), and robustness of unsupervised NMT (Yu et al.; [2021). In (Xu
et al., 2021; [Wang et al. |2021), the data poisoning attacks against NMT models are studied. Another type of
attack whose purpose is to change multiple words while ensuring that the output of the NMT model remains
unchanged is explored in (Chaturvedi et al.l |2019; 2021). Another attack is presented in (Cai et al., |2021)),
where the adversary uses the hardware faults of systems to fool NMT models.

In summary, most of the existing adversarial attacks against NMT models are not undetectable since they
are based on character manipulation, or they use the NMT embedding space to find similar tokens. Also,
heuristic strategies based on word-replacement are likely to have sub-optimal performance. Finally, none of
these attacks study the transferability to black-box settings. We introduce TransFool to craft effective and
fluent adversarial sentences which are similar to the original sentences.
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3 Optimization Problem

In this section, we first present our new formulation for generating adversarial examples against NMT models,
along with different terms that form our optimization problem.

Adversarial Attack. Consider X to be the source language space and ) to be the target language space.
The NMT model f : X — Y generally has an encoder-decoder structure (Bahdanau et al.,|2015; |Vaswani et al.)
2017)) and aims to maximize the translation probability p(yef|x), where x € X is the input sentence in the
source language and y,r € ) is the ground-truth translation in the target language. To process textual data,
each sentence is decomposed into a sequence of tokens. Therefore, the input sentence x = x1xs...x) is split
into a sequence of k tokens, where x; is a token from the vocabulary set Vy of the NMT model, which contains
all the tokens from the source language. For each token in the translated sentence yief = ¥ref1, .-, Yret,i, the
NMT model generates a probability vector over the target language vocabulary set Vy by applying a softmax
function to the decoder output.

The adversary is looking for an adversarial sentence x’, which is tokenized into a sequence of k tokens
x' = x| xh...z), in the source language that fools the target NMT model, i.e., the translation of the adversarial
example f(x’) is far from the true translation. However, the adversarial example x’ and the original sentence
x should be imperceptibly close so that the true translation of the adversarial example stays similar to yyef.

As is common in the NMT models (Vaswani et al., 2017; [Tang et al.| [2020), to feed the discrete sequence of
tokens into the NMT model, each token is converted to a continuous vector, known as an embedding vector,
using a lookup table. In particular, let emb(.) be the embedding function that maps the input token z; to the
continuous embedding vector emb(z;) = e; € R™, where m is the embedding dimension of the target NMT
model. Therefore, the input of the NMT model is a sequence of embedding vectors representing the tokens of
the input sentence, i.e., ex = [e1, ea,...,€] € R**m) In the same manner, for the adversarial example, we
can define e, = [e], €}, ...,e}] € REXm),

To generate an adversarial example for a given input sentence, we introduce an optimization problem with
respect to the embedding vectors of the adversarial sentence ey,. Our optimization problem is composed of
multiple terms: an adversarial loss, a similarity constraint, and the loss of a language model. An adversarial
loss causes the target NMT model to generate faulty translation. Moreover, with a language model loss
and a similarity constraint, we impose the generated adversarial example to be a fluent sentence and also
semantically similar to the original sentence, respectively. The proposed optimization problem, which finds
the adversarial example x’ from its embedding representation e, by using a lookup table, is defined as
follows:

x' ¢+ argmin [Ladv + aLsim + BLLM], (1)

e;ES\;X

where « and § are the hyperparameters that control the relative importance of each term. Moreover, we call
the continuous space of the embedding representations the embedding space and denote it by &, and we show
the discrete subspace of the embedding space £ containing the embedding representation of every token in
the source language vocabulary set by £y, . We now discuss the different terms of the optimization function
in detail.

Adversarial Loss. In order to create an adversarial example whose translation is far away from the
reference translation y,ef, we try to maximize the training loss of the target NMT model. Since the NMT
models are trained to generate the next token of the translation given the translation up until that token, we
are looking for the adversarial example that maximizes the probability of wrong translation (by minimizing
the probability of correct translation) for the i-th token, given that the NMT model has produced the correct
translation up to step (i — 1):

l

1
‘CAdv = 7 Z IOg(pf (yref,i
=1

ex’7{yref,h~~'7yrcf,(i—1)}))7 (2)

where p(Yref,il€x’s {Yref,15 -+s Yref,(i—1) }) 1S the cross entropy between the predicted token distribution by the
NMT model and the delta distribution on the token %cf;, which is one for the correct translated token,
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Yret,i, and zero otherwise. By minimizing log(ps(.)), normalized by the sentence length [, we force the output
probability vector of the NMT model to differ from the delta distribution on the token yef;, which may
cause the predicted translation to be wrong.

Similarity Constraint. To ensure that the generated adversarial example is similar to the original sentence,
we need to add a similarity constraint to our optimization problem. It has been shown that the embedding
representation of a language model captures the semantics of the tokens (Tenney et all 2019; [Shavarani &
Sarkar| |2021)). Suppose that the embedding representation of the original sentence by a language model
(which may differ from the NMT embedding representation ey) is vy = [v1,Va, ..., vi] € RE*™) where n
is the embedding dimension of the LM. Likewise, let vy denote the sequence of LM embedding vectors
regarding the tokens of the adversarial example. We can define the distance between the i-th tokens of the
original and the adversarial sentences by computing the cosine distance between their corresponding LM

embedding vectors:
vV,

Vie{l,..,k}: r=1 AR (3)
The cosine distance is zero if the two tokens are the same and it has larger values for two unrelated tokens.
We want the adversarial sentence to differ from the original sentence in only a few tokens. Therefore, the
cosine distance between most of the tokens in the original and adversarial sentence should be zero, which
causes the cosine distance vector [r1,72,...,7;] to be sparse. To ensure the sparsity of the cosine distance
vector, instead of the £y norm, which is not differentiable, we can define the similarity constraint as the ¢;
norm relaxation of the cosine distance vector normalized to the length of the sentence:

1 k
['Sim:%z

T /

(4)

\Vz||2 ||V 2

Language Model Loss. Causal language models are trained to maximize the probability of a token given
the previous tokens. Hence, we can use the loss of a CLM, i.e., the negative log-probability, as a rough and
differentiable measure for the fluency of the generated adversarial sentence. The loss of a CLM, which is
normalized to the sentence length, is as follows:

k
1
Ly = % E log(pg (V3| VY, s V(i—1)))s (5)
i=1

where g is a CLM, and p,(v|v], ..., V/(iil)) is the cross entropy between the predicted token distribution by
the language model and the delta distribution on the token v}, which is one for the corresponding token in
the adversarial example, v/, and zero otherwise. To generate adversarial examples against a target NMT
model, we propose to solve the optimization problem , which contains an adversarial loss term, a similarity
constraint, and a CLM loss.

4 TransFool Attack Algorithm

We now introduce our algorithm for generating adversarial examples against NMT models. The block diagram
of our proposed attack is presented in Figure[I] We are looking for an adversarial example with tokens in the
vocabulary set Vx and the corresponding embedding vectors in the subspace £y,. Hence, the optimization
problem is discrete. The high-level idea of our algorithm is to use gradient projection to solve in the
discrete subspace &y, .

The objective function of is a function of NMT and LM embedding representations of the adversarial
example, ey and vy, respectively. Since we aim to minimize the optimization problem with respect to
ey, we need to find a transformation between the embedding space of the LM and the target NMT model.
To this aim, as depicted in Figure I} we propose to replace the embedding layer of a pre-trained language
model with a Fully Connected (FC) layer, which gets the embedding vectors of the NMT model as its input.
Then, we train the language model and the FC layer simultaneously with the causal language modeling
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objective. Therefore, we can compute the LM embedding vectors as a function of the NMT embedding
vectors: v; = F'C(e;), where FC' € R™*™ ig the trained FC layer.

The pseudo-code of our attack can be found in Algo-
rithm [I] In more detail, we first convert the discrete
tokens of the sentence to continuous embedding vectors
of the target NMT model, then we use the FC layer
to compute the embedding representations of the to-
kens by the language model. Afterwards, we consider
the continuous relaxation of the optimization problem,
which means that we assume that the embedding vec-
tors are in the continuous embedding space &£ instead of
Ey, . In each iteration of the algorithm, we first update
the sequence of embedding vectors ey in the opposite
direction of the gradient (gradient descent). Let us de-
note the output of the gradient descent step for the i-th
token by eg ;. Then we project the resultant embedding
vectors, which are not necessarily in £y,,, to the nearest
token in the vocabulary set Vy. Since the distance in
the embedding space of the LM model represents the
relationship between the tokens, we use the LM embed-
ding representations with cosine similarity metric in the
projection step to find the most similar token in the
vocabulary. We can apply the trained fully connected
layer F'C to find the LM embedding representations:
vg = F'C(eg). Hence, the projected NMT embedding
vector, ep ;, for the i-th token is:

FC(G)TVg,i
[FC(e)ll-[Ivg,illa®

However, due to the discrete nature of data, by applying
the projection step in every iteration of the algorithm, we
may face an undesirable situation where the algorithm
gets stuck in a loop of previously computed steps. In
order to circumvent this issue, we will only update the
embedding vectors by the output of the projection step
if the projected sentence has not been generated before.

(6)

ep, = argmax
ecéy,

We perform the gradient descent and projection steps
iteratively until a maximum number of iterations is
reached, or the translation quality of the adversarial
example relative to the original translation quality is less
than a threshold. To evaluate the translation quality,
we use the BLEU score, which is a widely used metric
in the literature:

BLEU(f(ex'), Yret))
BLEU(f(ex), Yret))

< (7)

5 Experiments

Output Tokens X' X'y S X!,
D Enbeins N GV O

Vectors f

Gradient Step Projection Step
Ve, (Ladv v,
Iterative Gradient
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+ BLrar) N
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Language Model
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i 2] k
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Figure 1: Block diagram of TransFool.

Algorithm 1 TransFool Adversarial Attack

Input:

f(.): Target NMT model, Vx: Vocabulary set

FC: Fully connected layer, x: Input sentence

Yref: Ground-truth translation of x

A: BLEU score ratio, «, 8: Hyperparameters

K: Maximum No. of iterations, 7: step size
Output:

x': Generated adversarial example
initialization:

Vi€ {1,...,k} egi €p,: < €;, s empty set

itr < 0, thr <~ BLEU(f(ez), Yret)) X A
while itr < K do

itr <—itr 4+ 1

Step 1: Gradient descent in the continuous

embedding space:

ez < eg —7.Ve , (Ladv + aLsim + BLLM)

vg < FC(eg)

Step 2: Projection to the discrete subspace

Ev, and update if the sentence is new:

for i € {1,...,k} do

o FC(e) vg
Cp.i < AIEMAX TEE e, v i T2
eCly

end for
if ep not in set s then
add ep to set s
eg — €p
if BLEU(f(ep), Yret)) < thr then
break (adversarial example is found)
end if
end if
end while
return e, < ep

In this section, we first discuss our experimental setup, and then we evaluate TransFool against different
models and translation tasks, both in white-box and black-box settingsﬂ

10ur source code will be publicly available as soon as possible to help reproduce our results. Appendix [G]also contains the
license information and details of the assets (datasets, codes, and models).
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5.1 Experimental Setup

We conduct experiments on the English-French (En-Fr), English-German (En-De), and English-Chinese
(En-Zh) translation tasks. We use the test set of WMT14 (Bojar et al., [2014]) for En-Fr and En-De tasks,
and the test set of OPUS-100 (Zhang et al., |2020a) for En-Zh task. Some statistics of these datasets are
presented in Appendix [A]

We evaluate TransFool against transformer-based NMT models. To verify that our attack is effective against
various architectures, we attack the HuggingFace implementation of Marian NMT models (Junczys-Dowmunt
et al.l |2018)) and mBART50 multilingual NMT model (Tang et al.l |2020)).

As explained in Section [d] the similarity constraint and the LM loss of the proposed optimization problem
require an FC layer and a CLM. To this aim, for each NMT model, we train an FC layer and a CLM (with
GPT-2 structure (Radford et al.,|2019)) on WikiText-103 dataset. We note that the input of the FC layer is
the target NMT embedding representation of the input sentence.

To find the minimizer of our optimization problem , we use the Adam optimizer (Kingma & Bal, 2014)
with step size v = 0.016. Moreover, we set the maximum number of iterations to 500. Our algorithm has
three parameters: coefficients a and § in the optimization function , and the relative BLEU score ratio A
in the stopping criteria . We set A = 0.4, § =1.8, and o = 20. We chose these parameters experimentally
according to the ablation study available in Appendix [B] to optimize the performance in terms of success
rate, semantic similarity, and fluency.

We compare our attack with (Michel et all [2019]), which is a white-box untargeted attack against NMT
modelsE| We only consider one of their attacks, called kNN, which substitutes some words with their neighbors
in the embedding space; the other attack considers swapping the characters, which is too easy to detect. We
also adapted Seq2Sick (Cheng et al., [2020a), a targeted attack against NMT models, which is based on an
optimization problem in the NMT embedding space, to our untargeted setting.

For evaluation, we report different performance metrics: (1) Attack Success Rate (ASR), which measures
the rate of successful adversarial examples. Similar to (Ebrahimi et al., |2018a), we define the adversarial
example as successful if the BLEU score of its translation is less than half of the BLEU score of the original
translation. (2) Relative decrease of translation quality, by measuring the translation quality in terms
of BLEU scoreﬂ and chrF (Popovié, [2015). We denote these two metrics by RDBLEU and RDchrF,
respectively. We choose to compute the relative decrease in translation quality so that scores are comparable
across different models and datasets (Michel et all 2019)). (3) Semantic Similarity (Sim.), which is
computed between the original and adversarial sentences and commonly approximated by the universal
sentence encoder (Yang et al., [2020). (4) Perplexity score (Perp.), which is a measure of the fluency of
the adversarial example computed by the perplexity score of GPT-2 (large). (5) Token Error Rate (TER),
which measures the imperceptibility by computing the rate of tokens modified by an adversarial attack.

5.2 Results of the White-box Attack

Now we evaluate TransFool in comparison to KNN and Seq2Sick against different NMT models. Table
shows the results in terms of different evaluation metricsﬁ Overall, our attack is able to decrease the BLEU
score of the target model to less than half of the BLEU score of the original translation for more than 60% of
the sentences for all tasks and models (except for the En-Zh mBART50 model, where ASR is 57.50%). Also,
in all cases, semantic similarity is more than 0.83, which shows that our attack can maintain a high level of
semantic similarity with the clean sentences.

In comparison to the baselines, TransFool obtains a higher success rate against different model structures
and translation tasks, and it is able to reduce the translation quality more severely. Since the algorithm
uses the gradients of the proposed optimization problem and is not based on token replacement, TransFool

2Source Codes of (Cheng et al., 2019 2020b)), other untargeted white-box attacks against NMTs, are not publicly available.

3We use case-sensitive SacreBLEU on detokenized sentences.

4Since we build the attacks at token-level, there is a small chance that, when the generated adversarial example is converted
to text, re-tokenization does not produce the same set of tokens. Thus, all results are computed after re-tokenization of the
adversarial examples.
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Table 1: Performance of white-box attack against different NMT models.

Marian NMT mBART50

Task Method
ASRT RDBLEUT RDchrFt Sim.t Perp.] TERJ ASRT RDBLEUtT RDchrFt Sim.t Perp.l TER]
TransFool 69.38 0.57 0.23 0.85 182.45 13.91 60.68 0.53 0.22 0.84 121.12 10.58
En-Fr kNN 36.53 0.36 0.16 0.82 389.78 19.15 30.84 0.29 0.11 0.85 336.47 21.03
Seq2Sick  27.01 0.21 0.16 0.75 175.31 13.97 25.53 0.19 0.13 0.75 151.92 13.55
TransFool 69.49 0.65 0.23 0.84 165.53 13.57 62.87 0.61 0.22 0.83 134.90 11.07
En-De kNN 39.22 0.40 0.17 0.82 441.62 19.42 35.99 0.39 0.12 0.86 375.32 21.22
Seq2Sick  35.60 0.31 0.21 0.67 290.32 18.13 35.59 0.31 0.20 0.66 265.62 18.18
TransFool 73.82 0.74 0.31 0.88 102.49 11.82 57.50 0.67 0.26 0.90 74.75 7.77
En-Zh kNN 31.12 0.33 0.18 0.86 180.27 15.95 27.25 0.32 0.14 0.90 160.27 16.58
Seq2Sick  28.76 0.26 0.25 0.73 161.84 17.48 24.25 0.31 0.18 0.78 105.42 13.58

can highly degrade the translation quality. Furthermore, the perplexity score of the adversarial example
generated by TransFool is much less than the ones of both baselines (except for the En-Fr Marian model,
where it is a little higher than Seq2Sick), which is due to the integration of the LM embeddings and the
LM loss term in the optimization problem. Moreover, the token error rate of our attack is lower than both
baselines, and the semantic similarity is preserved better by TransFool in almost all cases since we use the LM
embeddings instead of the NMT ones for the similarity constraint. While kNN can also maintain semantic
similarity, Seq2Sick does not perform well in this criterion. We also computed similarity by BERTScore
(Zhang et all, 2019) and BLEURT-20 (Sellam et al. [2020) that highly correlate with human judgments
in Appendix [D] which shows that TransFool is better than both baselines in maintaining the semantics.
Moreover, as presented in Appendix [D.2] the successful attacks by the baselines, as opposed to TransFool,
are not semantic-preserving or fluent sentences.

We also compare the runtimes of TransFool and both baselines. In each iteration of our proposed attack,
we need to perform a back-propagation through the target model and the language model to compute the
gradients. Also, in some iterations (27 iterations per sentence on average), a forward pass is required to
compute the output of the target model to check the stopping criteria. For the Marian NMT (En-Fr) model,
on a system equipped with an NVIDIA A100 GPU, it takes 26.45 seconds to generate adversarial examples
by TransFool. On the same system, kNN needs 1.45 seconds, and Seq2Sick needs 38.85 seconds to generate
adversarial examples for less effective adversarial attacks, however.

Table [2| shows an adversarial example against mBART50 (En-De). In comparison to the baselines, TransFool
makes smaller changes to the sentence, and the adversarial example is a correct English sentence similar to
the original one. However, kNN and Seq2Sick generate adversarial sentences that are not necessarily natural
or similar to the original ones. More examples by TransFool, kNN, and Seq2Sick can be found in Appendix
We also provide some adversarial sentences when we do not use the LM embeddings in our algorithm to
show the importance of this component.

Indeed, TransFool outperforms both baselines in terms of success rate. It is able to generate more natural
adversarial examples with a lower number of perturbations (TER) and higher semantic similarity with the
clean samples in almost all cases. A complete study of hyperparameters and the effect of using LM embeddings
instead of NMT embeddings for computing similarity on TransFool performance is presented in Appendix [B]
and [C] respectively.

5.3 Performance in Black-box Attack Settings

In practice, the adversary’s access to the learning system may be limited. Hence, we propose to analyze the
performance of TransFool in a black-box scenario. It has been shown that adversarial attacks often transfer
to another model that has a different architecture and is even trained with different datasets (Szegedy et al.|
2014). By utilizing this property of adversarial attacks, we extend TransFool to the black-box scenario. We
consider that we have complete access to one NMT model (the reference model), including its gradients. We
implement the proposed gradient-based attack in algorithm [I] with this model. However, for the stopping
criteria of the algorithm, we query the black-box target NMT model to compute the BLEU score. We can
also implement the black-box transfer attack in the case where the source languages of the reference model
and the target model are the same, but their target languages are different. Since Marian NMT is faster
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Table 2: Adversarial examples against Marian NMT (En-Fr) by various methods (white-box).

Sentence | Text

Org. The most eager is Oregon, which is enlisting 5,000 drivers in the country’s biggest experiment.

Ref. Trans. Le plus déterminé est I’Oregon, qui a mobilisé 5 000 conducteurs pour mener 1’expérience la plus importante
du pays.

Org. Trans. Le plus avide est I’Oregon, qui recrute 5 000 pilotes dans la plus grande expérience du pays.

Adv. TransFool| The most eager isQuebec, which is enlisting 5,000 drivers in the country’s biggest experiment.

Trans. Le Québec, qui la plus grande expérience du pays, 5 000 pilotes.

Adv. kNN Theve eager is Oregon, C aren enlisting 5,000 drivers in theau’s biggest experiment.

Trans. Theve avide est Oregon, C sont 5 000 pilotes dans la plus grande expérience de Theau.

Adv. Seq2Sick |The most buzz is FREE, which is chooseing Games comments in the country’s great developer.

Trans. Le plus buzz est GRATUIT, qui est de choisir Jeux commentaires dans le grand développeur du pays.

*Perturbed tokens are in red, and in the original sentence, the perturbations by TransFool are in blue. The changes in the translation that
are the direct result of the perturbations are in brown, while the changes that are due to the failure of the target model are in

and lighter than mBART50, we use it as the reference model and evaluate the performance of the black-box
attack against mBART50. We compare the performance of TransFool with WSLS (Zhang et al.| [2021)), a
black-box untargeted attack against NMT models based on word-replacement (the choice of back-translation
model used in WSLS is investigated in Appendix . We also evaluate the performance of kNN and Seq2Sick
in the black-box settings by attacking mBART50 with the adversarial example generated against Marian
NMT (in the white-box settings). The results are reported in Table [3l We also report the performance when
attacking Google Translate, some generated adversarial samples, and similarity performance computed by
BERTScore and BLEURT-20 in Appendix [E]

In all tasks, with a few queries to the tar-  Table 3: Performance of black-box attack against mBART50.
get model, our black-box attack achieves
better performance than the white-box at-

Task Method ASRtT RDBLEUtT RDchrFt Sim.t Perp.l TER] #Queries|

. TransFool 70.1 . 22 0.85 17539 17. 2
tack against the target model (mBART50) NN gg SO e 2; o g
but a little worse performance than the Eobr g psick 25.07  0.21 014  0.75 173.63 21.13 -
white-box attack against the reference WSLS 5621 058  0.27 084 21423 31.30 1423
model (Marian NMT). In all cases, the Tf?(fll\?io‘)l ‘;g;g %’?95 %‘f? % i‘;g'g;‘ 122;*:’ 2
success rate, token error rate, and perplex- En-De g oSick 3217 0.29 020 0.67 286.67 26.59 -
ity of TransFool are better than all base- WSLS ~ 44.33  0.50 019 0.86 219.32 29.12 1262
lines (except for the En-Fr task, where per- TransFool 63.27  0.71 027  0.88 100.14 14.76 36
S . : . KNN 2689 0.3l 0.17  0.86 176.34 17.07 -
plexity is a little higher than Seq2Sick). EnZh g ocick 2365 030 093 073 16267 2517 i
The ability of TransFool and WSLS to WSLS  40.00  0.72 0.52 083 18644 32.35 1782

maintain semantic similarity is compara-

ble and better than both other baselines. However, WSLS has the highest token error rate, which makes the
attack detectable. The effect of TransFool on BLEU score is larger than that of the other methods, and its
effect on chrF comes after WSLS (except for the En-DE task, where TransFool is the best).

Regarding the complexity, TransFool requires only a few queries to the target model for translation, while
WSLS queries the model more than a thousand times, which is costly and may not be feasible in practice.
For the En-Fr task, on a system equipped with an NVIDIA A100 GPU, it takes 43.36 and 1904.98 seconds
to generate adversarial examples by TransFool and WSLS, respectively, which shows that WSLS is very
time-consuming.

We also analyze the cross-lingual transferability of the generated adversarial examples to a black-box NMT
model with the same source language but a different target language. Since we need a dataset with the same
set of sentences for different language pairs, we use the validation set of WMT14 for En-Fr and En-De tasks.
Table [4 shows the results for two cases: Marian NMT or mMBARTS50 as the target model. We use Marian
NMT as the reference model with a different target language than that of the target model. In all settings,
the generated adversarial examples are highly transferable to another NMT model with a different target
language (i.e., they have high attack success rate and large semantic similarity).



Under review as submission to TMLR

Table 4: Performance of black-box attack, when the target language is different.

Task Marian NMT mBART50

ASRT RDBLEUfT RDchrFt Sim.t Perp.l #Queries] ASRt RDBLEU? RDchrFt Sim.? Perp.] #Queries|
En-De — En-Fr 60.53 0.55 0.22 0.84 169.49 24 61.68 0.56 0.22 0.84 169.51 23
En-Fr — En-De 66.22 0.63 0.22 0.84 198.04 23 63.86 0.63 0.21 0.84 195.50 24

To the best of our knowledge this type of transferability have not been studied before. Moreover, the high
transferability of TransFool, even to other languages, shows that it is able to capture the common failure
modes in different NMT models, which can be dangerous in real-world applications.

5.4 Discussion

As opposed to methods based on word replacement, TransFool does not explicitly choose a few tokens
and replace them with other similar tokens. In the gradient step of the algorithm, all the tokens change.
However, in the projection step, most tokens are projected back to the original ones, while some are
replaced with the closest tokens in the embedding space. Since we do not limit the search space from the
beginning and our method is gradient-based, TransFool has a higher success rate. On the other hand, it
is challenging to incorporate linguistic constraints in a differentiable manner with our optimization-based
method. This is particularly important since the embedding space of the NMT model does not necessarily
capture the relationship between tokens, as shown in Appendix [C] TransFool solves this challenge by finding
a transformation between the embedding representations of the NMT model and that of the language model.
This results in lower perplexity and higher similarity of TransFool compared to Seq2Sick.

On another note, as we can see in some of the adversarial examples, due to the nature of the translation task,
some of the adversarial perturbations directly appear in the translation, while some of the changes to the
translation are caused by the failure of the NMT model. Higher semantic similarity in the source language
prevents these direct changes to the translation. As we can see in the adversarial examples in Appendix [D.4]
TransFool can fool the NMT model apart from the direct changes. However, this aspect of adversarial attacks
against NMT systems, i.e., how much of RDBELU/RDchrF are due to the failure of the model, is worth
further investigation in the future.

6 Conclusion

In this paper, we proposed TransFool, a white-box adversarial attack against NMT models, by introducing
a new optimization problem solved by an iterative method based on gradient projection. We utilized the
embedding representation of a language model to impose a similarity constraint on the adversarial examples.
Moreover, by considering the loss of an LM in our optimization problem, the generated adversarial examples
are more fluent. Extensive experiments show that TransFool is highly effective in different translation tasks
and against different NMT models. Our attack is also transferable to black-box settings with different
structures and even different target languages. In both white-box and black-box scenarios, TransFool obtains
improvement over the baselines in terms of success rate, semantic similarity, and fluency. It is important
to analyze adversarial attacks against NMT models such as TransFool to find the vulnerabilities of NMT
models, measure their robustness, and eventually build more robust NMT models.
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Supplementary Material
TransFool: An Adversarial Attack against Neural Machine Translation Models

Abstract

In this supplementary material, we first provide some statistics of the evaluation datasets in
Section [A] The ablation study of the hyperparameters of TransFool is presented in Section
Bl We investigate the effect of the LM embedding representation on TransFool and kNN
in Section [C] More results of the white-box attack are reported in [D} the results of other
similarity metrics (Section [D.I)), performance over successful attacks (Section [D.2)), trade-off
between success rate and similarity /fluency (Section [D.3)), and some generated adversarial
examples (Section . Section |E| provides more experiments on the black-box attack: the
performance of attacking Google Translate (Section , results of other similarity metrics
(Section , and some generated adversarial examples (Section . We discuss the effect
of the back-translation model choice on WSLS in Section [F] Finally, the license information
and more details of the assets (datasets, codes, and models) are provided in Section

A  Some statistics of the Datasets Table 5: Some statistics of the evaluation datasets.

Dataset Average #Test Marian NMT mBART50
Length Samples BLEU chrF BLEU chrF

Some statistics, including the number of samples,

the Average length of the sentences, and the trans- %\l’ll\IF%l 4 27 3003  39.88 64.94  36.17 62.66
lation quality of Marian NMT and mBART50, of EnDo

the evaluation datasets, i.e., OPUS100 (En-Zh) WMT14 2 3003 2172 5850 25.66 57.02
WMT14 (En-FR) and (En-De), are reported in  Buzh == g 2000  33.11 50.98  29.27 41.92

table Bl

B Ablation Study

In this Section, we analyze the effect of different hyperparameters (including the coefficients o and § in our
optimization problem , the step size of the gradient descent 7y, and the relative BLEU score ratio A in the
stopping criteria Eq. ) on the white-box attack performance in terms of success rate, semantic similarity,
and perplexity score.

In all the experiments, we consider English to French Marian NMT model and evaluate over the first 1000
sentences of the test set of WMT14. The default values for the hyperparameters are as follows, except for
the hyperparameter that varies in the different experiments, respectively: a = 20, 8 = 1.8, v = 0.016, and
A=04.

Effect of the similarity coefficient a. This hyperparameter determines the strength of the similarity
term in the optimization problem . Figure |2a) shows the effect of o on the performance of our attack. By
increasing the similarity coefficient of the proposed optimization problem, we are forcing our algorithm to find
adversarial sentences that are more similar to the original sentence. Therefore, as shown in Figure larger
values of a result in higher semantic similarity. However, in this case, it is harder to fool the NMT model, i.e.,
lower attack success rate, RDBLEU, and RDchrF. Moreover, it seems that, since the generated adversarial
examples are more similar to the original sentence, they are more natural, and their perplexity score is lower.

Effect of the language model loss coefficient 5. We analyze the impact of the hyperparameter [,
which controls the importance of the language model loss term in the proposed optimization problem, in
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Figure 2: Effect of different hyperparameters on the performance of TransFool.

Figure By increasing this coefficient, we weaken the effect of the similarity term, i.e., the generated
adversarial examples are less similar to the original sentence. As a result, the success rate and the effect on
translation quality, i.e., RDBLEU and RDchrF, increase.

Effect of the step size 7. The step size of the gradient descent step of the algorithm can impact the
performance of our attack, which is investigated in Figure Increasing the step size results in larger
movement in the embedding space in each iteration of the algorithm. Hence, the generated adversarial
examples are more aggressive, which results in lower semantic similarity and higher perplexity scores. However,
we can find adversarial examples more easily and achieve a higher attack success rate, RDBLEU, and RDchRF.

Effect of the BLEU score ratio A\. This hyperparameter determines the stopping criteria of our iterative
algorithm. Figure studies the effects of this hyperparameter on the performance of our attack. As this
figure shows, a higher BLEU score ratio causes the algorithm to end in earlier iterations. Therefore, the
changes applied to the sentence are less aggressive, and hence, we achieve higher semantic similarity and a
lower perplexity score. However, the attack success rate, RDBLEU, and RDchrF decrease since we make
fewer changes to the sentences.

C Effect of the LM Embedding Representation

Table [ shows the results of TransFool and Lable 6: Performance of white-box attack against Marian
kNN when we use LM embeddings or NMT NMT (En-Fr) with/without language model embeddings.
embeddings for measuring similarity between

two tokensﬂ The LM embeddings result in Method ASRT RDBLEUT RDchrFt Simt Perp.
lower perplexity and higher semantic similar-  TransFool w/ LM Emb.  69.48  0.56 023 085 177.20
ity for both methods, which demonstrates the TransFool w/ NMT Emb. 68.27 0.57 0.26 0.78 193.32
importance of this component in generating kNN w/ LM Emb. 3213 032 0.15  0.85 246.52

kNN w/ NMT Emb. 36.65 0.35 0.16 0.82 375.84

meaning-preserving fluent adversarial examples.

5In order to have a fair comparison, we fine-tuned hyperparameters of Transfool, in the case when we do not use LM
embeddings, to have a similar attack success rate.
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D More Results on the White-box Attack

D.1 Semantic Similarity Computed by Other Metrics

To better assess the ability of adversarial attacks in maintaining semantic similarity, we can compute the
similarity between the original and adversarial sentences using other metrics such as BERTScore (Zhang
et all |2019) and BLEURT-20 (Sellam et al., [2020)). It is shown in (Zhang et al., [2019) that BERTScore
correlates well with human judgments. BLEURT-20 is also shown to correlates better with human judgment
than traditional measures (Freitag et al.. [2021). The results are reported in Table |7} These results indicate
that the TransFool is indeed more capable of preserving the semantics of the input sentence. In the two cases
where kNN has better similarity by using the Universal Sentence Encoder (USE) (Yang et al.| 2020)), the
performance of TransFool is better in terms of BERTScore and BLEURT-20.

Table 7: Similarity performance of white-box attacks.

Marian NMT mBARTS50
Task Method
USEtT BERTScoret BLEURT-20 1t USEfT BERTScoret BLEURT-20 1
TransFool 0.85 0.95 0.65 0.84 0.96 0.70
En-Fr kNN 0.82 0.94 0.61 0.85 0.93 0.67
Seq2Sick  0.75 0.94 0.60 0.75 0.94 0.66
TransFool 0.84 0.96 0.67 0.83 0.95 0.69
En-De kNN 0.82 0.94 0.61 0.86 0.93 0.67
Seq2Sick  0.67 0.93 0.52 0.66 0.92 0.58
TransFool 0.88 0.96 0.67 0.90 0.97 0.76
En-Zh kNN 0.86 0.95 0.66 0.90 0.95 0.72
Seq2Sick  0.73 0.94 0.54 0.78 0.95 0.67

D.2 Performance over Successful Attacks

The evaluation metrics of the successful adversarial examples that strongly affect the translation quality
are also important, and they show the capability of the adversarial attack. Hence, we evaluate TransFool,
kNN, and Seq2Sick only over the successful adversarial examplesﬂ The results for the white-box setting are
presented in Table [§ By comparing this Table and Table [1} which shows the results on the whole dataset,
we can see that TransFool performance is consistent among successful and unsuccessful attacks. Moreover,
successful adversarial examples generated by TransFool are still semantically similar to the original sentences,
and their perplexity score is low. However, the successful adversarial examples generated by Seq2Sick and
kNN do not preserve the semantic similarity and are not fluent sentences; hence, they are not valid adversarial
sentences.

Table 8: Performance of white-box attack over successful adversarial examples.

Marian NMT mBART50
Task Method
ASRt RDBLEUt RDchrF1 Sim.t Perp., TER| ASRt RDBLEUt RDchrF{ Sim.? Perp.l TER]
TransFool 69.38 0.66 0.26 0.83 229.75 15.33 60.68 0.66 0.27 0.82 164.52 12.56
En-Fr kNN 36.53 0.70 0.30 0.76 746.89 24.52 30.84 0.72 0.28 0.77 691.64 28.05
Seq2Sick  27.01 0.72 0.40 0.56 648.92 25.28 25.53 0.74 0.41 0.53 556.61 25.16
TransFool 69.49 0.72 0.25 0.83 191.51 14.54 62.87 0.73 0.26 0.81 169.76 12.66
En-De kNN 39.22 0.75 0.29 0.77 675.01 23.07 35.99 0.75 0.23 0.81 574.68 25.75
Seq2Sick  35.60 0.78 0.40 0.53 659.90 25.67 35.59 0.78 0.40 0.52 612.22 26.67
TransFool 73.82 0.76 0.34 0.87 112.28 12.83 57.50 0.73 0.31 0.88 99.08 9.86
En-Zh kNN 31.12 0.72 0.29 0.80 355.25 22.55 27.25 0.76 0.27 0.85 295.53 23.58
Seq2Sick  28.76 0.72 0.46 0.58 437.49 26.84 24.25 0.79 0.44 0.60 292.55 25.59

6As defined in Section [5] the adversarial example is successful if the BLEU score of its translation is less than half of the
BLEU score of the original translation.
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D.3 Trade-off between Success Rate and Similarity /Fluency

The results in our ablation study [B] show that there is a trade-off between the quality of adversarial example,
in terms of semantic-preservation and fluency, and the attack success rate. As studied in (Morris et al., 2020)),
we can filter adversarial examples with low quality based on hard constraints on semantic similarity and the
number of added grammatical errors caused by adversarial perturbations.

We can analyze the trade-off between success rate and similarity/fluency by setting different thresholds for
filtering adversarial examples. If we evaluate the similarity by the sentence encoder suggested in (Morris
et al.| 2020), the success rate with different threshold values for similarity in the case of Marian (En-Fr) is
depicted in Figure By considering only the adversarial examples with a similarity higher than a threshold,
the success rate decreases as the threshold increases, and the quality of the adversarial examples increases.

Similarly, we can do the same analysis for flu-

ency. As suggested in (Morris et al} [2020), 4 607 IE‘;SFOO' / v 40 e~ TransFool
we count the grammatical errors by Language- & 504 _._ Seq25ick kS | o :ZQNZSick
Tool (Naber et al., 2003) for the original sen- & 20 g 30

tences and the adversarial examples. Figure[3a] > / 3220

depicts the success rate for different thresholds ¢ 307 ¥

of the number of added grammatical errors g 204 // g 107

caused by adversarial perturbations. 104 T

. . 00 05 10 15 20 080 085 0090 0095

These analyses show that with tlghter con- Threshold for Grammar Threshold for Similarity

straints, we can generate better adversarial (a) (b)
examples while the success rate decreases. All

in all, according to these resu}ts7 TransFool Figure 3: Tradeoff between success rate and Similarity /fluency.
outperfo-rm.s t}.le baselines for dl.fferent thresh- - The Jeft figure shows the effect of acceptable number of added
olds of similarity and grammatical errors. grammar errors by adversarial perturbation. The right figure

shows the effect of similarity threshold.
D.4 More Adversarial Examples

In this Section, we present more adversarial

examples generated by TransFool, kNN, and Seq2Sick. In order to show the effect of using LM embeddings
on the performance of TransFool, we also include the generated adversarial examples against English to
French Marian NMT model when we do not use LM embeddings. In all these tables, the tokens modified
by TransFool are written in blue in the original sentence, and the modified tokens by different adversarial
attacks are written in red in their corresponding adversarial sentences. Moreover, the changes made by the
adversarial attack to the translation that are not directly related to the modified tokens are written in ,
while the changes that are the direct result of modified tokens are written in brown.

As can be seen in the examples presented in Table [9] TransFool makes smaller changes to the sentence.
The generated adversarial example is a correct English sentence, and it is similar to the original sentence.
However, kNN, Seq2Sick, and our method with the NMT embeddings make changes that are perceptible, and
the adversarial sentences are not necessarily similar to the original sentence. The higher semantic similarity
of the adversarial sentences generated by TransFool is due to the integration of LM embeddings and the LM
loss in the proposed optimization problem. We should highlight that TransFool is able to make changes to
the adversarial sentence translation that are not directly related to the modifications of the original sentence
but are the result of the NMT model failure.

Other examples against different tasks and models are presented in Tables [I0] to [T4}
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Table 9: Adversarial examples against Marian NMT (En-Fr) by various methods (white-box).

Sentence | Text

Org. The most eager is Oregon, which is enlisting 5,000 drivers in the country’s biggest experiment.

Ref. Trans. Le plus déterminé est 1’Oregon, qui a mobilisé 5 000 conducteurs pour mener ’expérience la plus importante du
pays.

Org. Trans. Le plus avide est I’Oregon, qui recrute 5 000 pilotes dans la plus grande expérience du pays.

Adv. TransFool

Trans.

The most eager isQuebec, which is enlisting 5,000 drivers in the country’s biggest experiment.

Le Québec, qui la plus grande expérience du pays, 5 000 pilotes.

Adv. w/ NMT Emb.

The most eager isCustom, which is enlisting Disk drivers in the country’s editions Licensee.

Trans. Le plus avide estCustom, qui recrute des pilotes de disque dans les éditions du pays Licencié.
Adv. kNN Theve eager is Oregon, C aren enlisting 5,000 drivers in theau’s biggest experiment.
Trans. Theve avide est Oregon, C sont 5 000 pilotes dans la plus grande expérience de Theau.

Adv. Seq2Sick
Trans.

The most buzz is FREE, which is chooseing Games comments in the country’s great developer.

Le plus buzz est GRATUIT, qui est de choisir Jeux commentaires dans le grand développeur du pays.

Table 10: Adversarial examples against Marian NMT (En-De) by various methods (white-box).

Sentence

| Text

Org.

Ref. Trans.

Org. Trans.

The devices, which track every mile a motorist drives and transmit that information to bureaucrats, are at the
center of a controversial attempt in Washington and state planning offices to overhaul the outdated system
for funding America’s major roads.

Die Geréte, die jeden gefahrenen Kilometer aufzeichnen und die Informationen an die Behorden melden, sind
Kernpunkt eines kontroversen Versuchs von Washington und den Planungsbiiros der Bundesstaaten, das veraltete
System zur Finanzierung US-amerikanischer Straflen zu iiberarbeiten.

Die Geriite, die jede Meile ein Autofahrer fihrt und diese Informationen an Biirokraten weiterleitet, stehen im
Zentrum eines umstrittenen Versuchs in Washington und in den staatlichen Planungsbiiros, das veraltete System
zur Finanzierung der grofen StraBen Amerikas zu iiberarbeiten.

Adv. TransFool

The vehicles, which track every mile a motorist drives and transmit that information to bureaucrats, are at the
center of a unjustified attempt in Washington and city planning offices to overhaul the clearer system for
funding America’s major roads.

Die Fahrzeuge, die jede Meile ein Autofahrer fahrt und diese Informationen an Biirokraten weiterleitet, stehen

Trans. im Zentrum eines ungerechtfertigten Versuchs in Washington und in den Stadtplanungsbiiros, das klarere System
zur Finanzierung der zu iiberarbeiten.
The devices in which track every mile a motorist drives and transmit that M to bureaucrats, are 07:0 the center
Adv. kNN of a controversial attempt in Washington and state planning offices to overhaul the outdated Estate for funding
America’s major roads.
Die , in denen jede Meile ein Autofahrer fahrt und diese M an Birokraten , sind 07:0 das
Trans.

Zentrum eines umstrittenen Versuchs in Washington und staatlichen Planungsbiiros, das veraltete Estate fiir die

Finanzierung der zu iiberarbeiten.

Adv. Seq2Sick

Trans.

The devices, which road everyably a motorist drives and transmit that information to walnut socialisms, are
at the center of a Senate attempt in Washington and state planning offices toestablishment the outdated
system for funding America’s major paths.

Die Gerite, die ein Autofahrer und diese Informationen an Walnusssozialismen iibertrigt,
stehen im Zentrum eines Senatsversuchs in Washington und in den staatlichen Planungsbiiros, das veraltete
System zur Finanzierung der

Amerikas einzurichten.

Table 11: Adversarial examples against Marian NMT (En-Zh) by various methods (white-box).

Sentence | Text

Org. And what your husband said... if Columbus had done it, we’d all be Indians.
Ref. Trans. PRSEFRER... ZRFHOAME R IEN, BN TR LA T

Org. Trans.  |VRSCRUEAGIE... ARFHBAME T HATH S REIEZA

Adv. TransFool
Trans.

And with your husband said... if Columbus had done it, we’d all be Indians.

PRERGEANFFHE AT E] T B IH 2R EI LA

Adv. kNN
Trans.

And what your husband said... if Columbus had60, we’ Nineteen all it Indians.

PRERVIATIE... WRBHEA 60" Fi119 A

Adv. Seq2Sick
Trans.

And completing your penalties said... if timely had done it, we’d all be briefed.
SERARAILE T, AR T FE A Bl TR 2 152 T iR

19



Under review as submission to TMLR

Table 12: Adversarial examples against mBARTS50 (En-Fr) crafted by various methods (white-box).

Sentence | Text
Ore Wearing a wingsuit, he flew past over the famous Monserrate Sanctuary at 160km/h. The sanctuary is located
& at an altitude of over 3000 meters and numerous spectators had gathered there to watch his exploit.
Equipé d’un wingsuit, il est passé & 160 km/h au-dessus du célebre sanctuaire Monserrate, situé & plus de 3 000
Ref. Trans. : ) . iyt . .
metres d’altitude, ot de nombreux badauds s’étaient rassemblés pour observer son exploit.
Org. Trans 11 a survolé & 160 km/h le célebre sanctuaire de Monserrate, situé & une altitude de plus de 3000 meétres, ot de

nombreux spectateurs se sont réunis pour assister a son exploit.

) Wearing a wingsuit, he flew past over the famous Interesserrage Sanctuary at 160km/h. The sanctuary is
Adv. TransFool i’ ‘ > .
located at an altitude of over 3000 meters and numerous spectators had gathered there to watch his exploit.

Le sanctuaire est situé a une altitude de plus de 3000 metres ¢t de nombreux spectateurs se sont réunis pour

Trans.
rans assister a son exploit.
Wearing a wingsuit. he flew past over the famous Monserrate Sanctuary at 160km/h. The sanctuary is located at
Adv. kNN .. . i i
anzu opinionstitude of over 8000 meters and numerous spectators had gathered there the watch his exploit.
Trans 11 a survolé le célebre sanctuaire de Monserrate & 160 km/h. Le sanctuaire est situé a une opiniontitude de plus

de 8000 metres ot de nombreux spectateurs se sont pour son exploit.

. Wearing a wingsuit, he flew past over the famous Monserrate Sanctuary at 160km/h. The sanctuary is located
Adv. Seq2Sick . . . .
at an altitude of over74 meters and numerous spectators had gathered there to watch his exploit.

1l a survolé & 160 km/h le célebre sanctuaire de Monserrate, situé a plus de 74 métres d’altitude, ot de nombreux
spectateurs se sont réunis pour assister a son exploit.

Trans.

Table 13: Adversarial examples against mBART50 (En-De) crafted by various methods (white-box).

Sentence | Text

Org. In Oregon, planners are experimenting with giving drivers different choices.

Ref. Trans. In Oregon experimentieren die Planer damit, Autofahrern eine Reihe von Auswahlméglichkeiten zu geben.
Org. Trans. In Oregon experimentieren Planer damit, Fahrern verschiedene Wahlen zu geben.

Adv. TransFool|In Oregon, planners were experimenting with giving drivers different choices.

Trans. In Oregon experimentierten Planer

Adv. kNN in Oregon, planners nemmeno experimenting withkjer driver. different choices,

Trans. in Oregon, Planer nemmeno experimentieren mitkjer Fahrer. verschiedene Wahlen,

Adv. Seq2Sick |acontece, planners are studying with Kivakapis against decisions,

Trans. In acontece studieren Planer Kivakapis gegen Entscheidungen,

Table 14: Adversarial examples against mBART50 (En-Zh) crafted by various methods (white-box).

Sentence | Text

Or Delegations are requested to submit the names of their representatives to the Secretary of the Preparatory
& Committee, Ms. Vivian Pliner-Josephs (room S-2950E; fax: (212) 963-5935).

Ref. Trans. HERERHH AR R LA BB E RS VivianPliner-Josephs 22 1 (S-2950E % ; F.%:(212)963-5935) -
Org. Trans. | E&REHME&EZ RSB VivianPliner-Josephs(S-2050E% ;4 £:(212)963-5935) 32 H L F AT 4 -

Adv. TransFool Delegations are requested to submit the names of their representatives to the Secretary of the Preparatory
Committee, Mr. Vivian Pliner-Josephs (room C-2930E; fax: (211) 96 25-30935).

v HERER BEEBASUS C-2930E;{% H:(211)9625-
rans. .
30935) -
Adv. KNN Delegations are requested to submit the names of their representatives that the Secretary of the Preparatory
’ Committee, Ms. VivianPliner-Joseph, (room S-2950 e, fax: (212) 963-5935).
Trans. HA KA M E &ZE RSP VivianPliner-Joseph (S-2950% ;% H:(212)963-5935) RERS -

Adv. Seq2Sick Delegations are requested to submit the names of their representatives to the Secretary of the Preparatory
- eaee Committee, Ms.jadan Pliner-Josephs (room S-2950E; 599: 212 96 2010,935.

Trans. HERER BEEZASHD (S-2950E%;599:212962010,935) «
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E More Results on the Black-box Attack

E.1 Attacking Google Translate

To evaluate the effect of different attacks in practice, Table 15: Performance of black-box attack against
we attack Google Translat{] by TransFool, kNN, and = Google Translate (En-Fr).

Seq2Sick. Since querying Google Translate is lim-
ited per day, we were not able to attack with WSLS, Method ASRt RDBLEUt RDcwFt Sim.t Perp.) WERJ
which requires high number of queries. Table

ts th ‘ f the Enolish to F I TransFool 67.83 0.55 0.23 0.85 184.35 20.85
presents the performance of the English to Frenc
. kNN 37.22 0.35 0.17 0.82 389.45 30.24
translation task. The results demonstrate that ad-

Seq2Sick  23.49 0.20 0.15 0.75 174.88 20.34

versarial sentences crafted by TransFool can degrade
the translation quality more while preserving the
semantics better. The perplexity score and word Table 16: Performance of TransFool black-box attack
error rate of TransFool compete with those metrics against Google Translate (En_De), when the target
of Seq2Sick, but Seq2Sick is not meaning-preserving Janguage is different..

and is less effective.

Task ASRT RDBLEUT RDchrF{ Sim.T Perp.] WER]

We also performed the cross-lingual black-box attack.
We consider Marian NMT (En-Fr) as the reference En-Fr — En-De 6742 0.65 026 0.85 198.56 20.78
model and attack En-De Google Translate. The

results for TransFool are reported in Table

E.2 Semantic Similarity Computed by Other Metrics

Similar to the white-box attack, we compute the sim- Table 17: Similarity performance of black-box attacks.
ilarity between the adversarial and original sentences

by BERTScore and BLEURT-20, since they correlate Task Method USET BERTScoref BLEURT-20 1
well with human judgments. The similarity perfor- TransFool 0.85 0.95 0.66
mance of TransFool and WSLY in the black-box En-Fr ~ WSLS 084 0.93 0.58
settings are demonstrated in Table According TransFool 0.84 0.96 0.67

to Table TransFool is better at maintaining se- En-De  WSLS  0.86 0.94 0.61
mantic similarity. It may be because we used LM TransFool 0.88 0.96 0.68
embeddings instead of the NMT ones in the similarity En-Zh  WSLS  0.83 0.93 0.56
constraint.

E.3 Some Adversarial Examples

We also present some adversarial examples generated by TransFool and WSLS, in the black-box setting, in
Table In this table, the tokens modified by TransFool are written in blue in the original sentence, and
the modified tokens by different adversarial attacks are written in red in their corresponding adversarial
sentences. Moreover, the changes made by the adversarial attack to the translation that are not directly
related to the modified tokens are written in , while the changes that are the direct result of modified
tokens are written in brown. These examples show that modifications made by TransFool are less detectable,
i.e., the generated adversarial examples are more natural and similar to the original sentence. Moreover,
TransFool makes changes to the translation that are not the direct result of the modified tokens of the
adversarial sentence.

F Effect of Back-Translation Model Choice on WSLS Performance

WSLS uses a back-translation model for crafting an adversarial example. In (Zhang et al., 2021), the authors
investigate the En-De task and use the winner model of the WMT19 De-En sub-track (Ng et al. [2019)

"We should note that as we do not have a tokenizer, we compute Word Error Rate (WER) instead of Token Error Rate
(TER).
8The results of kNN and Seq2Sick are not reported as they are transfer attacks, and their performance is reported in Table
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Sentence | Text

Or (¢) To provide care and support by strengthening programming for orphans and vulnerable children in-
& fected/affected by AIDS and by expanding life skills training for young people.

Ref, Trans, | ) OB P BY ORI LRV i e/ NRINESS LR 7 22, DL IR K B3 R N O T R V1 2 B
o ’ TR BN 3B -

Org. Trans. | ()@ id gt Sk s/ 52 = PN LAIREES LB T AN RN S AR A IE S REERI, 52 LR 3By -

Adv. TransFool

[¢) To provide care and support by strengthening programming for orphans and vulnerable children Disabled/

Table 18: Adversarial examples against mBARTS50 (En-Zh) crafted by various methods (black-box).

afflicted by AIDS and by expanding life skill training for young people.

Trans. [c)iEsd N5 LA PR FEBRAREERRERI

Adv. WSLS (¢) To provide nursing and unstinted__support by strengthening i Lifetv for orphans and susceptable
children infected/affected by CPR__mannequins and by broadening life skills training for young people.

Trans. (o) LI CPR_TZRESe /W IAIN 5 7 15 1 JLR B Lifetv, 7 JEEEEA F A2 F e B
YIAR B BRI TE A3

Adv. KNN (' so) address provide care and support by strengthening prioritization for orphans and vulnerable children
infected/affected by AIDS and by expanding life skills issue for young people.

_— R 3 3BT S e /5 I LRS5O 5 o 00R g v 2 A 26 T B LA, 77 R R

JEFA S B o
(c) To provide care and support by strengthening digital for dress and harmful children Journal/ Letter by
Region and by disappear Violence skills training for young people.

(B ISR ARFEANE T LB AL #2005 9 F W R

Adv. Seq2Sick

7156

Trans. FEI, B A R RN S

for the back-translation model. However, they do not evaluate their method for En-Fr and En-Zh tasks.
To evaluate the performance of WSLS in Table 3] We have used pre-trained Marian NMT models for all
three back-translation models. In order to show the effect of our choice of back-translation model, we
compare the performance of WSLS for the En-De task when we use Marian NMT or (Ng et al., [2019) as the
back-translation model in Table [I9] As this Table shows, WSLS with Marian NMT as the back-translation
model results in even more semantic similarity and lower perplexity score. On the other hand, WSLS with
(Ng et al., 2019) as the back-translation model has a slightly more success rate. These results show that our
choice of back-translation model does not highly affect the performance of WSLS.

G License Information and Details

In this Section, we provide some details about
the datasets, codes, and models used in this
paper. We should note that we used the
models and datasets that are available in
HuggingFace transformers (Wolf et al., [2020)
and datasets (Lhoest et al. 2021) librariesﬂ
They are licensed under Apache License 2.0.
Moreover, we used PyTorch for all experiments (Paszke et al.l 2019), which is released under the BSD

licensd™]

Table 19: Performance of WSLS (En-De) with two back-

translation models.

Back-Translation ASR RDBLEU RDchrF Sim. Perp. #Queries
Marian NMT 44.33 0.50 0.19 0.86 219.32 1262
(Ng et al.|[2019)  51.68 0.58 0.21 0.81 241.96 1307

G.1 Datasets

WMT14 In the Ninth Workshop on Statistical Machine Translation, WMT14 was introduced for four
tasks. We used the En-De and En-Fr news translation tasks. There is no license available for this dataset.

OPUS-100 OPUS-100 is a multilingual translation corpus for 100 languages, which is randomly sampled
from the OPUS collection (Tiedemann 2012). There is no license available for this dataset.

9These two libraries are available at this GitHub repository: https://github.com/huggingface.
Ohttps://github.com/pytorch/pytorch/blob/master/LICENSE
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G.2 Models

Marian NMT Marian is a Neural Machine Translation framework, which is mainly developed by the
Microsoft Translator team, and it is released under MIT Licensd™} This model uses a beam size of 4.

mBART50 mBART50 is a multilingual machine translation model of 50 languages, which has been
introduced by Facebook. This model is published in the Fairseq library, which is released under MIT
Licensd™l This model uses a beam size of 5.

G.3 Codes

kNN In order to compare our method with kNN (Michel et al., 2019), we used the code provided by the
authors, which is released under the BSD 3-Clause "New" or "Revised" License/"]

Seq2Sick To compare our method with Seq2Sick (Cheng et al., |2020a), we used the code published by the
authors[™ There is no license available for their code.

WSLS We implemented and evaluated WSLS (Zhang et al., |2021) using the source code published by the
authors[™]

Hhttps://github.com/marian-nmt/marian/blob/master/LICENSE.md

2https://github.com/facebookresearch/fairseq/blob/main/LICENSE

13The source code is available at https://github.com/pmichel31415/translate/tree/paul/pytorch_translate/research/
adversarial/experiments and the license is avialable at https://github.com/pmichel31415/translate/blob/paul/LICENSE

™The source code is available at https://github.com/cmhcbb/Seq2Sickl

Bhttps://github.com/JHL-HUST/AdvNMT-WSLS
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