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Abstract. Simultaneous segmentation of organs and tumors from ab-
dominal CT images is challenging, and the task has many critical clinical
applications such as disease diagnosis, lesion and organ measurements,
and surgical planning. Based on nnU-Net, we develop a method for ab-
dominal organ and whole-body pan-tumor segmentation for both abdom-
inal and whole-body CT images. First, in a fully supervised setting, we
train the base models of organs and tumors to generate initial pseudo-
labels. Then, in a semi-supervised setting, a mixed-labeled dataset is used
to iteratively train a higher-performance segmentation model to create
higher-quality pseudo-labels. Due to the correlation between organs and
tumors in the abdominal region, we leverage the idea of multi-task learn-
ing to train a single model to segment both organs and tumors to improve
the performance of a single task. Finally, to trade off segmentation effi-
ciency and accuracy, we design a sliding window strategy based on the
body prior and a simplified version of test-time augmentation (TTA4).
Our final model achieved 88.93% mean organ DSC and 45.76% tumor
DSC on the FLARE23 online validation set. In addition, the average
running time and area under GPU memory-time curve were 26.7s and
49352.9MB, respectively. On the test set, we achieved mean organ and
tumor DSC of 89.68% and 62.89%, respectively, NSD of 95.89% and
51.69%, respectively, and average inference time of 18.53s. Our code is
publicly available at https://github.com/LeoZhong997/FLARE23.

Keywords: Segmentation · Multi-task learning · Semi-supervised learn-
ing.

1 Introduction

Simultaneous segmentation of organs and tumors from abdominal CT images is
a formidable challenge that holds immense clinical significance. It plays a piv-
otal role in various critical clinical applications, such as disease diagnosis, precise
⋆ Corresponding author
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lesion and organ measurements, and the development of surgical plans. Never-
theless, manually labeling organs and lesion locations is a time-consuming task
that demands a great deal of expertise from physicians. FLARE23 is a challenge
aimed at fostering the development of fully automatic solutions for this task.
Expanding upon the 13 abdominal organs segmentation task of FLARE22 [13],
FLARE23 requires participants to simultaneously segment tumors, a more prac-
tical study given that the majority of real clinical data may contain lesions.
Furthermore, the challenge restricts the inference time and GPU memory usage
to mimic actual clinical conditions, implying that we cannot complete the task
solely by increasing the model size or using more computational resources.

Semi-supervised learning is a crucial strategy employed in medical image
segmentation tasks, due to the limited availability of medical data and the time-
consuming annotation process. One of the most common approaches to semi-
supervised segmentation is to use pseudo-labels [9] generated by a model trained
on the labeled data. When training a model with a large amount of unlabeled
data, the accuracy of the pseudo-labels becomes critical. Consequently, elim-
inating uncertain pseudo-labels is a vital step in the training procedure. The
standard method for filtering out uncertain pseudo-labels involves applying a
confidence threshold to determine whether the pseudo-labels are reliable. Fur-
thermore, recent studies have demonstrated that these unreliable pseudo-labels
can also be leveraged in the self-training process [17].

In this paper, we propose an iterative training framework based on nnU-net
to perform organ and tumor segmentation tasks. We start from a single-task set-
ting, where we iteratively train the organ segmentation model. Semi-supervised
learning is employed to generate pseudo labels for the partially labeled data and
unlabeled data. Subsequently, we transition to a multi-task setting, training a
model to perform both organ and tumor segmentation tasks using the pseudo
labels generated in the prior stage. Additionally, we incorporate unlabeled data
into the training set. Furthermore, to enhance inference speed, we introduce a
sliding window strategy and we utilize a simplified version of test-time augmen-
tation (TTA4) to improve segmentation accuracy.

2 Method

2.1 Preprocessing

The preprocessing strategies we use are as follows:

– Data cleaning or statistical analysis:
We perform label analysis to check label completeness. Out of 2200 labeled
data, 222 cases include complete organ labels without tumors, and 1497 cases
have tumor labels. These two subsets are utilized for training our single-task
models.

– Reorientation:
As we want the network to predict images regardless of orientation, we reori-
ent the images to the standard RAS orientation during the training phase.
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Later, we will apply mirroring operations in the later stages of data augmen-
tation to enhance the network’s orientation robustness.

– Resampling method for anisotropic data:
In order to leverage the physical information within the CT data, all images
are resampled to the same resolution of 4.0mm × 1.2mm × 1.2mm.

– Intensity normalization method:
Initially, we compute the 0.5 and 99.5 percentiles, as well as the mean and
standard deviation of the data intensity. Subsequently, the data is clipped to
the 0.5 and 99.5 percentiles, and z-score normalization is applied using the
global mean and standard deviation.

2.2 Proposed Method

We introduce an iterative training framework for the task of multi-organ and
tumor segmentation. Our networks are derived from the 3D nnU-Net [8]. How-
ever, we separate from the nnU-Net’s auto-configuration and introduce two fixed
network architectures: the medium and large nnU-Net, with their parameters de-
tailed in the experiment part. Fig. 1 illustrates the workflow of our proposed ap-
proach. Our approach comprises two stages: single-task training and multi-task
training.

Single-task Training During the single-task stage, we train the nnU-Net sep-
arately for organ and tumor segmentation. To address the multi-organ segmen-
tation task, we utilize the 222 labeled data that include complete organ labels.

Following the development of the organ segmentation model, we employ it
to generate pseudo labels for the remaining 1978 labeled data lacking organ
labels. Nevertheless, within these 1978 labeled data, we have part of ground
truth labels. We propose combining these ground truth labels with the pseudo
labels. Since this model only performs organ segmentation, we filter out organs
that do not contain tumors in the true labels. Determining the organ to which
the tumor belongs is accomplished through morphological analysis. We conduct a
morphological dilation operation on the tumors and if an overlap exists between
the tumor and an organ, the tumor is attributed to that organ. Subsequently, we
replace the corresponding pseudo labels with the ground truth labels for organs
without tumors, resulting in a hybrid labeled dataset.

The hybrid labeled dataset is employed for training the organ segmentation
model, and we utilize the model to generate pseudo labels for the entire 2200
training set. Iterative training is then conducted to enhance the accuracy of our
pseudo labels of organs.

In the context of the tumor segmentation task, we utilize the 1497 labeled
data containing tumor labels. However, due to suboptimal Dice Similarity Co-
efficient (DSC) and Normalized Surface Dice (NSD) performance, we do not
employ this model in our subsequent training procedures.
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Multi-task Training To reduce inference time costs and maximize the utiliza-
tion of the correlation between organs and tumors, we suggest training a single
model capable of accomplishing both organ and tumor segmentation tasks. The
organ model trained in the previous stage is utilized to generate the pseudo
labels for the 1497 labeled data. These pseudo labels are then combined with
the ground truth, following the same procedure described earlier. Following the
utilization of the hybrid labeled subset for training the multi-task model, we
employ the model to generate the pseudo labels of the 2200 training set and
retrain the model.

Once the multi-task model is trained using the 2200 labeled data, we employ
the model to generate the pseudo labels of the 1800 unlabeled data. Subsequently,
we straightforwardly add these data to the training set and conduct iterative
training twice to obtain the final model.

Fig. 1. Workflow of our proposed approach. The workflow comprises two stages: single-
task training and multi-task training.

Loss Function We use the summation between a weighted Dice loss and cross-
entropy loss because compound loss functions have been proven to be robust in
various medical image segmentation tasks [10]. What’s more, deep supervision
is used to fully utilize the feature information of the intermediate encoding and
decoding layers.
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Sliding Window Strategy In order to improve inference speed and reduce
resource consumption, we adopt the sliding window strategy to fuse the predic-
tions of overlapping patches. We adapt the fast sliding window strategy initially
proposed by the FLARE22 winning team [7] to align it with the requirements of
the tumor segmentation task. Given that tumors can appear in various regions
in the abdominal area, the absence of a label in the central patch does not nec-
essarily imply the absence of tumors in the surrounding patches. Consequently,
for every slice along the z-axis, after the acquisition of the central patch, we also
retrieve all the surrounding patches to generate the final prediction.

2.3 Post-processing

To improve the performance of pseudo-labels, we employ connected component
analysis on organs, retaining the largest 3D connected component. If the organ’s
Dice loss increases following connected component analysis, we opt to conduct
the analysis for that specific organ. During the validation and testing phases,
connected component analysis is deactivated to reduce time overhead.

Additionally, we introduce a streamlined test-time augmentation approach
(TTA4). Instead of applying augmentation in all 8 directions, we restrict it to
4 directions: the original orientation and the flipped orientations along the x, y,
and z axes, respectively.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE 2023 challenge is an extension of the FLARE 2021-2022 [12][13],
aiming to promote the development of foundation models in abdominal disease
analysis. The segmentation targets cover 13 organs and various abdominal le-
sions. The training dataset is curated from more than 30 medical centers under
the license permission, including TCIA [2], LiTS [1], MSD [16], KiTS [5][6], au-
toPET [4,3], TotalSegmentator [18], and AbdomenCT-1K [14]. The training set
includes 4000 abdomen CT scans where 2200 CT scans with partial labels and
1800 CT scans without labels. The validation and testing sets include 100 and
400 CT scans, respectively, which cover various abdominal cancer types, such as
liver cancer, kidney cancer, pancreas cancer, colon cancer, gastric cancer, and
so on. The organ annotation process used ITK-SNAP [19], nnU-Net [8], and
MedSAM [11].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.
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3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1. The training protocols of medium nnU-Net and large nnU-
Net are listed in Table 2 and Table 3 respectively. We adopt data augmentation of
rotation, scaling, Gaussian noise and blur, brightness, contrast, gamma, elastic
deformation, and mirror on the fly during training. Notably, we reduced the
number of test time augmentation(TTA) flips to balance segmentation accuracy
and inference time.

Table 1. Development environments and requirements.

System Ubuntu 18.04.5 LTS
CPU Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz
RAM 8×64GB; 3200MT/s
GPU (number and type) Four NVIDIA A4000 16G
CUDA version 11.6
Programming language Python 3.8.13
Deep learning framework torch 1.13, torchvision 0.14.0
Specific dependencies nnU-Net 1.7.0
Code https://github.com/LeoZhong997/FLARE23

Table 2. Training protocols for medium nnU-Net

Network initialization "He" normal initialization
Batch size 2
Stage number 5
Convolution number per stage 2
Patch size 32×128×192
Total epochs 1500
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule Poly learning rate policy: (1− epoch/1000)0.9

Training time 25 hours
Loss function Dice loss and cross-entropy loss
Number of model parameters 22M
Number of flops 253.90G
CO2eq 8.14 Kg

https://github.com/LeoZhong997/FLARE23
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Table 3. Training protocols for large nnU-Net

Network initialization "He" normal initialization
Batch size 2
Stage number 6
Convolution number per stage 3
Patch size 32×128×192
Total epochs 1500
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule Poly learning rate policy: (1− epoch/1000)0.9

Training time 33 hours
Loss function Dice loss and cross-entropy loss
Number of model parameters 85M
Number of flops 375.14G
CO2eq 9.83 Kg

4 Results and discussion

4.1 Quantitative results on validation set

First, we train the single models MO and MT on the fully-labeled dataset of 222
cases of organ and 1497 cases of tumor, respectively. To obtain complete labels of
organs, MO first generates pseudo-labels on partially-labeled data of 2200 cases
and combines them with ground true labels to produce a mixed-labeled organ
dataset for training MO1, and continues to iterate to generate a new dataset for
training MO2, to produce high-quality organ pseudo labels.

To validate the effectiveness of multi-task segmentation, we combine the
mixed labels of organs with the ground true label of tumor on 1497 cases to
train the model MOT, which is able to segment all organs and tumor at once
and achieves better segmentation performance than single-task segmentation.

Further, MOT was utilized to generate new organs and tumor pseudo-labels
on 2200 images and combined with ground true labels to form a hybrid-label
dataset, wherein, due to the low accuracy of tumor segmentation, we utilized or-
gans to constrain tumor pseudo-labels during label merging, and disregarded the
results of tumor segmentation outside of organs. Using this dataset, we trained
the model MOT1.

In order to verify the effectiveness of unlabeled data on model segmentation
performance improvement, we use MOT1 to generate segmentation results on
4000 cases, of which 2200 cases are regenerated as a mixed-labeled dataset on
partially-labeled data. The remaining 1800 cases are directly used as pseudo-
labels for unlabeled data. We train the model MOT2 on these 4000-cases dataset.

Finally, we utilize MOT2 to iterate on the 4000-cases to generate a new dataset
and upgrade the medium model to large to extract more feature information,
then train the final model MOT3. In order to balance the inference speed and
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segmentation accuracy, we adopt the TTA4 strategy (by reducing the number
of flips of TTA, i.e., flipping the input image over x, y, and z, respectively) to
complete the final inference process.

We report the final results of DSC and NSD of organ and tumor on the
validation set in Table 4. The results of ablation studies to analyze the effect of
multi-task segmentation and unlabeled data can be obtained from Table 5.

Table 4. Quantitative evaluation results. The public validation denotes the perfor-
mance on the 50 validation cases with ground truth. Please present both the mean
score and standard deviation. The online validation denotes the leaderboard results.
The Testing results will be released during MICCAI.

Target Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Liver 97.46±0.48 99.26±1.32 97.44 99.15 96.72 98.33
Right kidney 94.35±8.27 97.4±7.01 93.56 95.61 94.05 95.16
Spleen 96.51±0.69 99.76±0.58 96.72 99.23 96.06 98.43
Pancreas 86.14±5.42 98.38±2.79 85.49 96.99 90.05 98.4
Aorta 94.68±1.67 98.09±2.37 95.38 98.94 95.58 99.43
Interior vena cava 92.94±1.66 96.69±2.69 93.94 97.27 94.51 98.37
Right adrenal gland 80.21±12.36 96.66±14.01 79.74 93.8 79.15 93.58
Left adrenal gland 80.48±5.9 97.54±2.89 79.62 93.67 79.16 93.66
Gallbladder 81.95±24.98 88.32±27.02 80.87 81.42 79.89 82.11
Esophagus 81.09±14.86 94.51±14.65 82.41 94.39 87.46 98.45
Stomach 92.69±3 98.37±3.27 93.37 98.45 93.07 98.41
Duodenum 83.46±6.07 96.49±4.48 84.38 96.33 88.09 98.10
Left kidney 93.99±6.21 96.33±8.33 93.22 95.24 92.90 94.62
Tumor 52.23±35.08 51.8±34.38 45.76 38.5 62.89 51.69
Average 86.30 93.54 85.85 91.36 87.83 92.77

4.2 Qualitative results on validation set

Fig. 2 shows four representative segmentation results of the final model MOT3 in
the validation dataset. For Case #FLARETs_0083 and Case #FLARETs_0027,
the model successfully identified all organs and accurately segmented the tumor
boundaries. For Case #FLARETs_0051, although the model had identified all
the correct organs, it failed to successfully segment the tumor, resulting in lower
metrics for both the tumor and the organs. In Case #FLARETs_0091, the
model even failed to determine the location of the prostate tumor. We believe
that, on the one hand, there is no annotation information for prostate organs in
the dataset, resulting in the failure to establish a connection between organ and
tumor; on the other hand, prostate tumors are a low percentage in the dataset,
and the model lacks sufficient data to learn to segment this target.
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Fig. 2. Qualitative results of our final model on two easy cases and two hard cases.
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4.3 Segmentation efficiency results on validation set

We applied a sliding window strategy with body prior and a simplified TTA4
method on the final model MOT3 to build the final submitted docker image. In
Table 6 and Table 7, we report the efficiency evaluation results from the official
platform.

Table 6. Quantitative evaluation of segmentation efficiency in terms of the running
time and GPU memory consumption. Total GPU denotes the area under GPU Memory-
Time curve. Evaluation GPU platform: NVIDIA QUADRO RTX5000 (16G).

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 19.28 2468 31332
0051 (512, 512, 100) 26.05 2468 49968
0017 (512, 512, 150) 38.61 2468 54208
0019 (512, 512, 215) 23.93 2468 43972
0099 (512, 512, 334) 27.27 2468 51457
0063 (512, 512, 448) 31.75 2468 59780
0048 (512, 512, 499) 34.23 2468 65627
0029 (512, 512, 554) 38.02 2468 73601

Table 7. Efficiency evaluation results of our submitted docker. All metrics reported
are the average values on 20 validation cases.

Time GPU
Memory

AUC GPU
Time

CPU
Utilization

AUC CPU
Time RAM AUC RAM

Time
26.7 2504.6 49352.9 66.67 916.63 6283.97 126713.2

4.4 Results on final testing set

Our method achieved seventh place out of 37 submissions in the final testing set.
Tables 4 and 8 show the detailed evaluation metrics of our method in the final
testing set.

Table 8. Testing results of our proposed method. All metrics reported are the average
values on 400 testing cases.

Organ
DSC

Organ
NSD

Tumor
DSC

Tumor
NSD

AUC GPU
Time Time

0.8968 0.9589 0.6289 0.5169 33804 18.53
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4.5 Limitation and future work

We used a simple but effective iterative training strategy to gradually improve
the quality of pseudo-label generation, but there may be noise in the pseudo-
labels, which can limit or even degrade the segmentation performance of the
model. Therefore, we will investigate the latest pseudo-label selection strategy
in our future work to form a positive feedback loop in iterative training.

5 Conclusion

In this paper, we iteratively train a model capable of segmenting both abdom-
inal organs and whole-body pan-tumors on a mixed-labeled dataset based on
the nnU-Net framework, which combines fully supervised, semi-supervised, and
multi-task learning. In addition, this paper designs a sliding window strategy
based on the body prior and a simplified test-time augmentation to trade-off
efficiency and accuracy during inference. The results of the public validation set
of FLARE2023 show that the method has good segmentation performance and
computational efficiency.
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