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ABSTRACT

Graph Neural Networks (GNNs) have become the de facto standard for model-
ing graph-structured data in various applications. Among them, implicit GNNs
have shown a superior ability to effectively capture long-range dependencies in
underlying graphs. However, implicit GNNs tend to be computationally expensive
and have high memory usage, due to 1) their use of full-batch training; and 2)
they require a large number of iterations to solve a fixed-point equation. These
compromise the scalability and efficiency of implicit GNNs especially on large
graphs. In this paper, we aim to answer the question: how can we efficiently train
implicit GNNs to provide effective predictions on large graphs? We propose a
new scalable and effective implicit GNN (SEIGNN) with a mini-batch training
method and a stochastic solver, which can be trained efficiently on large graphs.
Specifically, SEIGNN can more effectively incorporate global and long-range infor-
mation by introducing coarse-level nodes in the mini-batch training method. It also
achieves reduced training time by obtaining unbiased approximate solutions with
fewer iterations in the proposed solver. Comprehensive experiments on various
large graphs demonstrate that SEIGNN outperforms baselines and achieves higher
accuracy with less training time compared with existing implicit GNNs.

1 INTRODUCTION

Recently, Graph Neural Networks (GNNs) have been widely used for modeling graph-structured data
in the real world and achieved great success in numerous applications (Wu et al., 2020) including
computer vision (Shi and Rajkumar, 2020), recommendation systems (Zhang et al., 2020), and drug
discovery (Wan et al., 2019). In general, to utilize both graph topology and node attributes for
generating meaningful node representations, modern GNNs iteratively aggregate representations of
neighbors of each node with its own representation to update representations, which is termed as the
“message passing" mechanism (Gilmer et al., 2017).

Despite the success achieved by these GNNs on different tasks, they lack the ability to capture
long-range dependencies in graphs. The reason is that traditional GNN models can only capture
information up to T -hops away with T layers. T cannot be large because a large T causes the
over-smoothing problem (Li et al., 2018). To mitigate this limitation of traditional GNNs, another
type of GNNs, called implicit GNNs, has been proposed to capture long-range dependencies (Gu
et al., 2020; Liu et al., 2022; Li et al., 2023). Implicit GNNs define an implicit layer using a fixed-
point equation for aggregation and generate the equilibrium as node representations by solving the
fixed-point equation. These implicit GNNs have superiority in capturing long-range information
as they can be treated as a GNN with many layers defined implicitly to aggregate the information
from distant nodes in the forward pass. Meanwhile, they enjoy constant memory complexity through
implicit differentiation when computing gradients in the backward pass (Bai et al., 2019).

In spite of the advantages of implicit GNNs in capturing long-range information, they suffer from
scalability issues on large graphs. The first limitation is is their reliance on full-batch training, which
involves iteratively aggregating an entire graph to solve the fixed-point equation. This approach
incurs significant computational costs and it is sometimes not even feasible on large graphs since
massive memory may be required to load a whole graph into GPU during training. For example,
MGNNI runs out of GPU memory on the ogbn-products dataset as shown in Table 2.
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Although there are several sampling-based methods proposed to enable mini-batch training for
traditional GNN models (Hamilton et al., 2017; Zeng et al., 2021; Chiang et al., 2019), it is infeasible
to directly apply these methods to implicit GNNs without sacrificing their effectiveness 1. The reason
is that these methods split an entire graph into several subgraphs as mini-batches, which prohibits
information propagation between different mini-batches. Therefore, directly employing existing
mini-batch methods may be harmful to the ability of implicit GNNs to capture long-range information.
Besides the limitation of using full-batch training, the second limitation is that implicit GNNs are
computationally expensive to train, as they usually require a large number of iterations to iteratively
solve a fixed-point equation. This issue can be exacerbated on large graphs.

Motivated by the aforementioned limitations of previous implicit GNNs, in this paper, we aim
to answer the question: how to efficiently train implicit GNNs to provide effective predictions on
large graphs? To achieve this, we propose a scalable and effective implicit GNN (SEIGNN) with a
mini-batch training method. Specifically, following previous sampling-based methods, our designed
mini-batch training method also samples subgraphs, but adds coarse-level nodes representing different
graph partitions, while new edges are included considering both coarse nodes and original nodes.
In this way, our mini-batch training method avoids full-batch training and encourages information
propagation between nodes within different mini-batches, which cannot be achieved by previous
implicit GNNs or by directly applying existing mini-batch methods to implicit GNNs. Therefore,
with this mini-batch training, SEIGNN can scale up to large graphs without sacrificing the ability to
capture global or long-range information.

Moreover, to reduce the extensive training time of previous implicit GNNs caused by a large number
of iterations for obtaining equilibrium, in SEIGNN, we also propose a new stochastic unbiased solver
that can solve the fixed-point equation with fewer iterations to obtain approximated equilibrium.

Our contributions We summarize the contributions of this work as follows:

• We first point out the scalability and efficiency limitations of previous implicit GNNs, which are
caused by full-batch training and their large number of iterations used for getting equilibrium.

• To mitigate the limitations, we propose SEIGNN, a scalable and effective implicit GNN, which
incorporates our designed mini-batch training methods with coarse nodes to capture global infor-
mation; and a new stochastic solver that achieves unbiased estimates of equilibriums. Through
these, SEIGNN can be efficiently trained on large graphs while maintaining the ability to capture
long-range information.

• Comprehensive experiments on 6 datasets show that SEIGNN achieves better accuracies with less
training time on large graphs. Additionally, the detailed ablation studies further demonstrate the
effectiveness of our methods.

2 RELATED WORK

2.1 GRAPH NEURAL NETWORKS

GNNs have been widely used for modeling graph data in different tasks. Modern GNNs (Kipf
and Welling, 2016; Hamilton et al., 2017) usually follow the “message passing" mechanism where
information is aggregated from the neighbor nodes for each node. Different GNN models have
been proposed to utilize skip connection (Xu et al., 2018; Chen et al., 2020), attention mechanism
(Veličković et al., 2018), and simplified activation (Wu et al., 2019). However, these models usually
only involve finite aggregation layers due to the over-smoothing problem (Li et al., 2018), which
makes them hardly capture long-range dependencies on graphs.

2.2 IMPLICIT MODELS AND IMPLICIT GRAPH NEURAL NETWORKS

Implicit models / deep equilibrium models (Bai et al., 2019) generally define an equilibrium equation
as implicit hidden layers to generate outputs by solving the equation. These models have attracted
much attention recently as they can avoid storing hidden states and achieve constant memory con-
sumption by using implicit differentiation. For example, Bai et al. (2019) and Bai et al. (2020)

1Table 5 empirically shows that directly using these methods with implicit GNNs performs poorly.
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propose the deep equilibrium model (DEQ) and its multiscale variant demonstrating the ability of
implicit models in image and text related tasks. Some theoretical works (Kawaguchi, 2021) and
(Geng et al., 2021) also explore the convergence analysis and provide a gradient estimate for implicit
models to avoid exact gradient computation, respectively.

Inspired by implicit models, several implicit GNN models have been proposed, such as IGNN (Gu
et al., 2020), EIGNN (Liu et al., 2021), MGNNI (Liu et al., 2022), CGS (Park et al., 2022). Since
these models iteratively aggregate information from neighbors to obtain the fixed-point solution of the
equilibrium equation, they can capture long-range information on graphs. However, as these implicit
GNNs use full-batch training that iteratively aggregates a full graph to get outputs, they cost a lot
of training time and need massive memory for storing a whole graph and the representation of each
node in GPU memory. To reduce the computation complexities, a recent work USP (Li et al., 2023)
proposes to use mini-batch training as aggregating information on randomly sampled subgraphs with
proposed proximal solvers. However, randomly sampling subgraphs as mini-batch might affect the
ability of implicit GNNs to capture long-range information.

2.3 GRAPH NEURAL NETWORKS FOR LARGE GRAPHS

To avoid huge computation costs incurred in training GNNs on large graphs, several mini-batch
training methods for traditional GNNs have been proposed to scale up GNNs. Cluster-GCN (Chiang
et al., 2019), GraphSAINT (Zeng et al., 2020), and Shadow-GNN (Zeng et al., 2021) sample
subgraphs as minibatches and train GNNs within different subgraphs to reduce the computation
cost. Specifically, Cluster-GCN relies on a graph clustering method to generate subgraphs while
Shadow-GNN uses Personalized-PageRank scores to select important nodes to form a subgraph for
each target node. GraphSAGE (Hamilton et al., 2017) proposes to use a sampled neighborhood of a
node for message aggregation to efficiently generate node representations.

3 PRELIMINARIES

An undirected graph can be represented as G = (V, E) which consists of the node set V with n nodes
and the edge set E . Each node v has a length-d feature xv. The adjacency matrix A ∈ Rn×n and
the node feature matrix X ∈ Rd×n are taken as the input for graph neural networks. Considering
unweighted adjacency matrix A, if node i and j are connected, Ai,j = 1, otherwise Ai,j = 0.

Traditional GNNs and Implicit GNNs Traditional GNNs (Kipf and Welling, 2016; Chen et al.,
2020; Hamilton et al., 2017) have a learnable aggregation process that iteratively propagates informa-
tion from each node to its neighbor nodes. For each layer l, the aggregation step can be defined as
follows:

Z(l+1) = ϕ(W (l)Z(l)S +Ω(l)X), (1)

where Z(l) is the hidden states in layer l, S is the normalized adjacency matrix; W (l) and Ω(l) are
trainable weight matrices.

Similar to traditional GNNs, implicit GNNs (Gu et al., 2020; Liu et al., 2021; 2022; Park et al., 2022)
also have an aggregation process but with tied wight matrices W and Ω at each iteration step. The
aggregation process in implicit GNNs is generally defined as Z(l+1) = ϕ(WZ(l)S +ΩX) at step l.
Given such aggregation step, implicit GNNs solve the fixed-point equation Z∗ = ϕ(WZ∗S +ΩX)
and obtain the equilibrium Z∗ as node representations. To obtain the equilibrium, implicit GNNs
usually require a large number of iterations of the equation until convergence, which may demand a
significant amount of time. For example, MGNNI (Liu et al., 2022) ensure the convergence by using
a damping factor γ ∈ [0, 1) and define the aggregation as follows:

Z(l+1) = γg(W )Z(l)S + f(X,G), (2)

where g(W ) projects the weight W into a Frobenius norm ball of radius < 1 and f(X,G) is a
parameterized transformation. In contrast, IGNN (Gu et al., 2020) enforces ∥W∥∞ ≤ κ/λpf (A)
with the Perron-Frobeius (PF) eigenvalue λpf (Berman and Plemmons, 1994).

Mini-batch sampling for GNNs In general, mini-batch methods for GNNs need to compute the
predictions for target nodes in each mini-batch. Previous mini-batch sampling methods for GNNs
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generally either sample auxiliary nodes of target nodes to form a mini-batch (Hamilton et al., 2017;
Zeng et al., 2021) or directly sample subgraphs from the whole graph and use a subgraph as a
mini-batch (Chiang et al., 2019). For example, given a set of target nodes Vout, Shadow-GNN (Zeng
et al., 2021) constructs a set of auxiliary nodes Vaux by selecting nodes with top-k personalized
PageRank (PPR) scores for each target node v ∈ Vtgt. To obtain a mini-batch, it forms a subgraph
Gs with a node set Vs = Vtgt ∪ Vaux and train GNNs on this subgraph as if it is the full graph.

4 SCALABLE AND EFFECTIVE IMPLICIT GNNS

As mentioned in Sec 1, previous implicit GNNs (Gu et al., 2020; Liu et al., 2022; Park et al., 2022)
usually use full-batch training with an entire graph which involves recursively aggregating neighbors
to calculate fixed-point solutions for nodes. It needs massive GPU memory and is not feasible for
large graphs (e.g., with millions of nodes) since full-batch training requires storing a whole graph
and representations of all nodes. Moreover, these works usually cost a lot of time for model training
as they require a large number of iterations to solve a fixed-point equation.

Motivated by these limitations, we propose an implicit graph model SEIGNN which enables mini-
batch training for implicit GNNs without harming the ability to capture long-range information and
accelerates model training with a new unbiased stochastic solver.

4.1 MINI-BATCH TRAINING

For traditional GNNs, there are several sampling techniques proposed to improve training efficiency
such as Hamilton et al. (2017); Zeng et al. (2021); Chiang et al. (2019). However, these techniques
cannot be directly used to train implicit GNNs without sacrificing the accuracy, since these sampling
methods enforce implicit GNNs to lose long–range dependency. To explain, these sampling-based
mini-batch methods either sample neighbor nodes or a subgraph to form a training mini-batch. In this
way, given a mini-batch, these methods inevitably prohibit information propagation between nodes of
the current subgraph and nodes outside the subgraph. Therefore, directly using these methods can
affect the advantage of implicit GNNs in capturing long-range dependencies. This is the reason why
we cannot trivially use previous methods for implicit GNNs.

Subgraph 1

Subgraph 2
Message passing 
via coarse nodes

Coarse Node 

Original Node Coarse-coarse Edge

Coarse-original Edge

Figure 1: Illustrations of adding
coarse nodes.

Graph with coarse nodes To solve the above issue, inspired
by graph coarsening/partitioning, we propose to use additional
coarse nodes representing different partitions to facilitate long-
range information propagation for implicit GNNs with mini-
batch training. First, we conduct graph partitioning to obtain k
partitions/subgraphs Gsi ...Gsk , which can represent the coarse
information on the graph. For each partition, we create a new
coarse node vci to represent the partition Gsi . We construct two
types of edges as follows:

• Coarse-original edges: if a node on the original graph v ∈ G
also belongs to the i-th partition, i.e., v ∈ Gsi , an edge
e = (v, vci) connecting v and vci is constructed.

• Coarse-coarse edges: considering two different partitions Gsi
and Gsj , if there exists at least one edge e ∈ E connecting
two different nodes vi ∈ Gsi and vj ∈ Gsj , we construct
a coarse-coarse edge connecting two corresponding coarse
nodes vsi and vsj as e = (vsi , vsj ).

With coarse-original edges, a coarse node can act as a summary
of nodes in its partitions as all original nodes in this partition are
its 1-hop neighbors. This can be treated as local information
within each partition. Coarse-coarse edges propagate the inter-partition information by passing
the message contained in a coarse node to another coarse node, which can facilitate long-range
information propagation between nodes from different partitions. In addition, coarse-coarse edges
also provide coarse-level graph connectivity information as global information of the whole graph.
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Mini-batch training After constructing a new graph with additional coarse nodes, we can use
existing mini-batch sampling methods, such as Shadow-GNN (Zeng et al., 2021) or GraphSAGE
(Hamilton et al., 2017), to construct mini-batches for training on subgraphs. To construct a mini-batch,
we first randomly sample target nodes from the node set V , which means that we exclude coarse
nodes from being target nodes. After that, to generate the prediction of each target node v, we
choose some nodes which are more relevant or important as auxiliary nodes. As in Zeng et al. (2021),
we rely on Personalized PageRank (PPR) score, a graph-structure-based metric, to determine the
relevant/important nodes with respect to a target node v. Specifically, we select the nodes with
top-k PPR scores as auxiliary nodes of the current target node v. Combining all target nodes and
their auxiliary nodes as a node set Vs, we obtain the subgraph Gsub with the corresponding edges
connecting any two nodes in this node set.

In a mini-batch with the subgraph Gsub, modifying the aggregation step in Eq (2), the fixed-point
equation of our implicit GNNs can be re-written as:

Z∗
sub = φ(Z∗

sub, X,G) = γg(W )Z∗
subSsub + f(Xsub,Gsub), (3)

where Ssub and Xsub are the adjacency matrix and node feature matrix with only nodes in Gsub.

4.2 ACCELERATE TRAINING WITH NEW SOLVERS

To get the equilibrium of a fixed-point equation as node representations, previous implicit GNNs
usually use an original iterative solver which simply iterates the equation (Gu et al., 2020; Liu et al.,
2022; Park et al., 2022). However, it requires a large number of iterations to get the equilibrium,
which costs a massive time for training. In this section, we aim to reduce the training time by reducing
the number of iterations with new solvers to approximate the equilibrium of the forward pass.

Neumann solver First, we show that we can approximate the equilibrium with the Neumann series
2. As proven in Liu et al. (2021), the equilibrium of Eq (3) can be obtained as follows:

lim
l→∞

vec[Z(l)] = vec[Z∗] = (I − γ[S ⊗ g(W )])
−1

vec[f(X,G)]. (4)

Using the fact of the Neumann series (I − γ[S ⊗ g(W )])
−1

=
∑∞

k=0 γ
k[ST ⊗ g(W )]k and a

vectorization property, we can have:

vec[Z∗] =

∞∑
k=0

γk
[
ST ⊗ g(W )

]k
vec[f(X,G)] =

∞∑
k=0

γk vec[g(W )kf(X,G)Sk]. (5)

Then, removing the vectorization from both sides, the equilibrium can be obtained as a form of
infinite sum:

Z∗ =

∞∑
k=0

γkg(W )kf(X,G)Sk. (6)

To get the simplest approximation of the equilibrium, we can directly truncate the Neumann series at
a certain step t and define V (t) as the approximation of the equilibrium:

V (t) =

t∑
k=0

γkg(W )kf(X,G)Sk ≈ Z∗. (7)

Stochastic solver However, directly truncating the Neumann series to get the approximated equi-
librium with Eq (7) will incur errors that are not going to vanish as the forward pass is biased.
Therefore, we further propose a new stochastic solver to get the approximated equilibrium Ẑ∗. We
first truncate the series at step t as in Eq (7) and set the approximation Ẑ = V (t). At each following
step i > t, we sample a Bernoulli random variable bi ∼ Bernoulli(α), which means P (bi = 1) = α

and P (bi = 0) = 1− α. If bi = 1, we update the current approximation Ẑ with an amplifying factor
1

α(i−t) as follows:

Ẑ(i) = Ẑ(i−1) + γi 1

α(i−t)
g(W )if(X,G)Si. (8)

2Note that we omit the subscript "sub" in equations hereafter for better clarity since the equations are
applicable for both a subgraph and a whole graph.
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Algorithm 1: The stochastic solver’s procedure for the equilibrium.
Input: The subgraph G, the normalized adjacency matrix S, and the node features X .
Output: The approximated equilibrium Ẑ∗.

1 V (t) =
∑t

k=0 γ
kg(W )kf(X,G)Sk;

2 Ẑ(t) = V (t);
3 Define a Bernoulli distribution pα where pα[b = 1] = α and pα[b = 0] = 1− α;
4 i = t ;
5 Sample bi ∼ pα;
6 while bi = 1 do
7 i = i+ 1 ;
8 Ẑ(i) = Ẑ(i−1) + γi 1

α(i−t) g(W )if(X,G)Si ;
9 Sample bi ∼ pα;

10 Ẑ∗ = Ẑ(i) ;
11 return Ẑ∗;

Otherwise if bi = 0, we cease the process and obtain the final approximation as Ẑ∗ = Ẑ(i). The
procedure of our stochastic solver is illustrated in Algorithm 1.

Using the stochastic solver, we can obtain the unbiased approximation of the equilibrium as shown in
the following proposition.
Proposition 1. The proposed stochastic solver is an unbiased estimator of the equilibrium Z∗ of
the forward pass, i.e., the expectation of the approximated equilibrium Ẑ∗ is the same as that of
the true equilibrium Z∗: E[Ẑ∗] = Z∗ =

∑∞
k=0 γ

kg(W )kf(X,G)Sk, under the condition that∑∞
k=t+1 γ

kg(W )kf(X,G)Sk 1
αk−t exists 3.

We provide the proof of this proposition in Appendix A.1. Our stochastic solver is an unbiased
stochastic solver which can have the same error with fewer iterations in expectation compared with
our Neumann solver and the original iterative solver (Gu et al., 2020) used in existing implicit GNNs.

4.3 TRAINING OF SEIGNN

For model training, with a subgraph in a mini-batch, we use our unbiased stochastic solver with Eq
(8) to obtain the approximated equilibrium Ẑ∗ for the forward pass. For backward pass, as shown in
Liu et al. (2022) and Bai et al. (2019), implicit differentiation is used to compute the gradients by
directly differentiating through the equilibrium as:

∂ℓ

∂(·)
=

∂ℓ

∂Ẑ∗

(
I − Jφ(Ẑ

∗)
)−1 ∂φ(Ẑ∗, X,G)

∂(·)
, (9)

where Ẑ∗ = φ(Ẑ∗, X,G) is the fixed-point equation and J = ∂φ(Ẑ∗,X,G)
∂Ẑ∗ . To avoid expensive

computation of calculating
(
I − Jφ(Ẑ

∗)
)−1

, we adopt a recently proposed phantom gradient esti-
mation (Geng et al., 2021) which has the advantages on efficient computation and stable training
dynamics. Therefore, with our unbiased stochastic solver and phantom gradient estimation, we can
enjoy efficient computation for both forward and backward passes.

5 EXPERIMENTS

In this section, we demonstrate the effectiveness and efficiency of SEIGNN compared with both
implicit GNNs and representative traditional GNNs on large graph datasets for the node classification
task. Specifically, we conduct experiments on 6 commonly used datasets for node classification (i.e.,
Flickr, Yelp, Reddit, PPI, ogbn-arxiv, and ogbn-products). We provide the descriptions and details of
datasets in Appendix B.1.

3We discuss the case when this condition does not hold in Appendix A.1.
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Table 1: Comparison on test accuracy / micro F1 score on large graph datasets.

Model Flickr Reddit Yelp PPI

GCN (Kipf and Welling, 2016) 49.2 ± 0.3 93.3 ± 0.1 37.8 ± 0.1 51.2 ± 0.3
GraphSAGE (Hamilton et al., 2017) 50.1 ± 1.3 95.3 ± 0.1 63.4 ± 0.6 63.7 ± 0.6

FastGCN (Chen et al., 2018) 50.4 ± 0.1 92.4 ± 0.1 26.5 ± 5.3 51.3 ± 3.2
ASGCN (Huang et al., 2018) 50.4 ± 0.2 95.8 ± 0.1 63.4 ± 0.6 68.7 ± 1.2

ClusterGCN (Chiang et al., 2019) 48.1 ± 0.5 95.4 ± 0.1 60.9 ± 0.5 89.5 ± 0.4
GraphSAINT (Zeng et al., 2020) 51.5 ± 0.1 96.7 ± 0.1 64.5 ± 0.3 98.0 ± 0.2

IGNN (Gu et al., 2020) 53.0 ± 0.2 97.0 ± 0.2 65.8 ± 0.2 97.8 ± 0.1
MGNNI (Liu et al., 2022) 53.5 ± 0.2 96.2 ± 0.2 56.6 ± 0.1 98.6 ± 0.1

USP (Li et al., 2023) 54.3 ± 0.1 96.8 ± 0.2 66.1 ± 0.2 98.5 ± 0.2

SEIGNN 55.8 ± 0.1 97.8 ± 0.1 66.9 ± 0.2 98.8 ± 0.2

Table 2: Test Accuracy on OGBN datasets.

Model ogbn-arxiv ogbn-products

IGNN 70.4 ± 0.8 69.7 ± 0.8
MGNNI 71.2 ± 0.4 OOM

USP 72.7 ± 0.2 73.6 ± 0.3

SEIGNN 77.9 ± 0.2 76.4 ± 0.2

Table 3: Training time per epoch (second).

Model Flickr Reddit ogbn-arxiv

IGNN 7.68 141.12 8.51
MGNNI 9.29 60.95 4.04

USP 3.13 52.78 7.05

SEIGNN 4.36 6.21 3.79

5.1 NODE CLASSIFICATION

Comparison on popular large graphs We first use the various graph datasets with relatively large
sizes (i.e., Flickr, Reddit, Yelp, PPI). Their scenarios vary from predicting communities of online
posts (Reddit) to classifying protein functions (PPI).

The results are shown in Table 1. We can see that SEIGNN generally outperforms all other representa-
tive baselines including both implicit GNNs and traditional GNNs on these four datasets. Compared
with USP (Li et al., 2023) which uses mini-batch training, SEIGNN achieves better performance by
up to 1.5% absolute improvement. This can be attributed to the better ability of SEIGNN to capture
global and long-range information by adding coarse nodes during training. IGNN and MGNNI, two
implicit GNNs with full-batch training, generally perform worse than USP and SEIGNN, indicating
that mini-batch training is more effective on large graphs in terms of performance. In addition, as
MGNNI shares a similar aggregation step as SEIGNN, the worse performance of MGNNI compared
with SEIGNN verifies the effectiveness of our designs of mini-batch training with the stochastic
solver and coarse nodes.

Comparison on OGBN datasets Apart from four large graph datasets, to better examine scalability
and effectiveness, we also conduct experiments with two popular OGBN datasets (ogbn-arxiv and
ogbn-products). Specifically, ogbn-products is the largest dataset used in this paper, which contains
around 2.5 million nodes and 61 million edges.

Table 2 shows the comparison of accuracies between SEIGNN and other implicit GNNs on OGBN
datasets. SEIGNN can still outperform other implicit GNNs by a large margin. Specifically, SEIGNN
achieves 5.1% and 2.7% absolute accuracy improvements on ogbn-arxiv and ogbn-products re-
spectively. In addition, we observe that MGNNI would face the out-of-memory (OOM) issue on
ogbn-products as MGNNI has to load all nodes into GPU memory for full-batch training. This
verifies again the limitation of using full-batch training in previous implicit GNNs.

Efficiency Comparison In addition to evaluating prediction accuracy, we also provide experimental
results regarding the training efficiency of different implicit GNN models. Table 5 demonstrates the
comparison of training time per epoch among different models. We can see that our model SEIGNN
generally has less training time per epoch compared with existing implicit GNNs. Especially, on
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Figure 2: Efficiency Comparison: Accuracy vs Training Time.

Table 4: Accuracy comparison: the effectiveness of using
coarse nodes and the unbiased stochastic solver.

Model Reddit Yelp ogbn-arxiv

SEIGNN (full version) 97.85 66.85 77.94
w/o coarse nodes 96.34 63.70 71.40

remove stochastic solver 97.51 66.65 77.24

Table 5: Accuracy of different mini-
batch methods.

Method ogbn-arxiv

ClusterGCN 71.31
GraphSAGE 68.84

SEIGNN 77.94

Reddit, SEIGNN only needs 6.21s for an epoch, which is around 8x less compared with USP. Note
that, although USP spends the least time training an epoch on Flickr which is relatively small, it
requires more time compared with SEIGNN on other large datasets. This may indicate that USP is
not efficient enough for relatively large and dense datasets (e.g., Reddit).

Moreover, for a more holistic view of efficiency comparison, in Figure 2, we show how accuracy would
change as training progresses for different models. First of all, our model SEIGNN achieves better
eventual accuracies with less total training time compared with other implicit GNNs. Additionally,
the accuracy of SEIGNN also increases much faster. These observations confirm the effectiveness
and efficiency of our model on large graphs.

Besides the efficiency comparison, we also provide the comparison of memory usage in Table 9 of
Appendix B.3, showing that SEIGNN has significantly less GPU memory usage compared with other
implicit GNNs. Lower memory usage leads to higher scalability of our model.

5.2 ABLATION STUDY AND FURTHER EXPERIMENTAL INVESTIGATION

Besides the overall performance and efficiency comparison in the above section, we also conduct
detailed ablation studies and further investigations about the effectiveness of two key components in
SEIGNN (i.e., mini-batch training with coarse nodes and the unbiased stochastic solver).

Effectiveness of using coarse nodes and the proposed solver Table 4 demonstrates the results
of removing coarse nodes in our designed mini-batch method and replacing the unbiased stochastic
solver with the naive Neumann solver. It shows that, without adding coarse nodes in mini-batch
training, the accuracies drop significantly, especially on Yelp and ogbn-arxiv. This confirms that
adding coarse nodes is helpful for better global information propagation. By replacing our unbiased
stochastic solver with the naive Neumann solver, the performance also slightly decreases, which
indicates the effectiveness of the unbiased stochastic solver.

Ineffectiveness of directly applying existing mini-batch methods In Section 1 and 4.1, we
explain the reason that directly applying existing mini-batch methods for implicit GNNs may affect
the performance. Table 5 empirically verifies the ineffectiveness of using existing mini-batch
methods by illustrating that trivially using those methods (i.e., ClusterGCN (Chiang et al., 2019)
and GraphSAGE with neighbor sampling (Hamilton et al., 2017)) for implicit GNNs provides much
worse performances compared to our mini-batch training method with coarse nodes.
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Table 6: Compatibility: using coarse nodes can
improve other existing mini-batch methods.

Method Variant Accuracy

ClusterGCN w/o coarse nodes 71.31
w/ coarse nodes 76.21

GraphSAGE w/o coarse nodes 68.84
w/ coarse nodes 73.89

Table 7: Accuracy and Total Time (second) of dif-
ferent solvers with different numbers of maximum
iterations on ogbn-arxiv.

our solver original solver
Max iter. 3 5 10 50

Accuracy 77.94 77.19 77.53 77.79
Total Time 7891 15399 21748 45775
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(a) Accuracy comparison for
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(b) Relative Improvement.

Figure 3: The effect of using
coarse nodes for nodes with
different levels of degrees on
ogbn-arxiv.

The improvements are higher for low-degree nodes. As the sig-
nificant improvement by using coarse nodes is shown in Table 4,
we try to provide more insights by further investigating how coarse
nodes may specifically improve the performance. Considering nodes
with different levels of degrees, we evenly split nodes into 5 groups
according to their degrees (1st group contains nodes with the high-
est level of degrees while the 5th group contains the lowest-degree
nodes). Figure 3a shows the average accuracies of different degree
groups by comparing the variants using/not using coarse nodes, and
Figure 3b demonstrates the relative improvement of degree groups
through adding coarse nodes. We can see that 1) nodes with lower
degrees tend to have low accuracies for both two variants, and 2)
accuracy improvements on nodes with lower degrees are more ob-
vious compared with nodes with higher degrees. These observations
suggest that our proposed mini-batch training with coarse nodes is
more helpful on nodes with lower degrees. The reason might be
that, by enhancing global/long-range information propagation via
coarse nodes, low-degree nodes can receive sufficient information
compared with the variant not adding coarse nodes.

Additionally, we also investigate the compatibility of using coarse
nodes for applying other sampling-based mini-batch methods to
SEIGNN. Table 6 shows that, on ogbn-arxiv, adding coarse nodes can
also improve the performance of two existing mini-batch methods
(i.e., ClusterGCN and GraphSAGE with neighbor sampling).

Efficiency comparison for different solvers Moreover, to verify the effectiveness of our stochastic
solver, in Table 7, we provide an experimental comparison of accuracy and total time between our
solver and the original solver used in (Liu et al., 2022; Gu et al., 2020). We use different maximum
iterations for the original solvers and set maximum iterations as 3 for our solver with the continue
probability α = 0.5. The results show that our solver can generally achieve better accuracy compared
with the original solver while spending much less time. We also observe that the original solver needs
more iterations (i.e., 50) to achieve a comparable accuracy as our solver, which leads to excessive
time consumption.

6 CONCLUSION

In this paper, we propose a scalable and effective implicit GNN model (SEIGNN) that can be
efficiently trained on large graphs. Specifically, SEIGNN contains a mini-batch training method with
added coarse nodes and an unbiased stochastic solver to scale up the model to large graphs without
losing the ability to capture long-range information. The experiments on several large-graph datasets
demonstrate that SEIGNN can achieve superior performance using less training time compared with
existing implicit GNNs. Furthermore, the results of ablation studies verify the effectiveness of our
mini-batch training method and the unbiased stochastic solver. We also try to provide a deeper
analysis of why using coarse nodes in our mini-batch training can improve performance.
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Appendices
A PROOFS

A.1 PROOF OF PROPOSITION 1

Proof. We first define Si ∈ {0, 1} as a random variable, indicating whether we sample the i-th term
or not. By the property of probability, we can decompose the marginal P[St = 1] by

P(Si = 1) = P[Si = 1|Si−1 = 1] · P[Si−1 = 1] + P[Si = 1|Si−1 = 0] · P[Si−1 = 0].

Here, P[Si = 1|Si−1 = 0] = 0 in our algorithm because we terminate the iteration if Si−1 = 0.
Thus,

P[Si = 1] = P[Si = 1|Si−1 = 1] · P[Si−1 = 1].

Moreover, as the random variable Si is sampled from a Bernoulli distribution Bernoulli(α), we
have P[Si = 1|Si−1 = 1] = α in our algorithm. Plugging this into the above,

P[Si = 1] = αP[Si−1 = 1].

Recursively applying this equation,

P[Si = 1] = αi−tP[St = 1].

Since P[Si = 1] = 1 for all i ≤ t in our algorithm, we have

P[Si = 1] = αi−t.

Considering the possibility of reaching step i, the forward pass of our algorithm can be written as:

Ẑ(i) = Ẑ(t) +

i∑
k=t+1

γk 1{Sk = 1}
α(k−t)

g(W )kf(X,G)Sk,

where 1{Sk = 1} take the value 1 when Sk = 1 (i.e., the algorithm reaches step k), otherwise it
takes the value 0.

As we continue the algorithm until the termination (i.e., Si = 0), we can write the approximated
equilibrium as follows:

Ẑ∗ = Ẑ(t) +

∞∑
k=t+1

γk 1{Sk = 1}
α(k−t)

g(W )kXSk.

By taking the expectation of the second term, with the definition Ai = γig(W )if(X,G)Si and the
condition that

∑∞
k=t+1 Ak

1
αk−t exists, we have the following:

E

[ ∞∑
k=t+1

γk 1{Sk = 1}
α(k−t)

g(W )kXSk

]
= E

[ ∞∑
k=t+1

Ak
1{Sk = 1}

αk−t

]

=

∞∑
k=t+1

AkE
[
1{Sk = 1}

αk−t

]

=

∞∑
k=t+1

Ak
P[Sk = 1]

αk−t

=

∞∑
k=t+1

Ak =

∞∑
k=t+1

γkg(W )kf(X,G)Sk,
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Combining the above expectation of the second term with the deterministic term Ẑ(t) =∑t
i=0 γg(W )kf(X,G)Sk, we get obtain the expectation E[Ẑ∗] as follows:

E[Ẑ∗] = Ẑ(t) + E

[ ∞∑
k=t+1

γk 1{Sk = 1}
α(k−t)

g(W )kXSk

]

=

t∑
k=0

γkg(W )kf(X,G)Sk +

∞∑
k=t+1

γkg(W )kf(X,G)Sk

=

∞∑
k=0

γkg(W )kf(X,G)Sk = Z∗.

This indicates that our proposed stochastic solver is an unbiased estimator of the equilibrium Z∗.

In the above proof, we have an assumption that
∑∞

k=t+1 Ak
1

αk−t exists. In the case where∑∞
k=t+1 Ak

1
αk−t does not exist, we define fn to be the output of a modified version of the Al-

gorithm 1 where we replace the while-loop with the for-loop up to n step: i.e., we forceful terminate
the while-loop if it takes more than n steps. Then, by using the same proof steps except that we replace
the infinite sum with the finite sum upto n terms, we conclude that for any n, E[fn] =

∑n
k=0 Ak.

This implies that our proposed stochastic solver is still an unbiased estimator of the equilibrium
Z∗ of the forward pass up to the error

∑∞
k=n Ak. For any desired error value ϵ > 0 (including

machine precision), there exists a sufficiently large n such that
∑∞

k=n Ak ≤ ϵ. Thus, the statement in
Proposition 1 still holds true up to the machine precision without the condition that

∑∞
k=t+1 Ak

1
αk−t

exists. The output of our algorithm is equivalent to fn with n = ∞. Thus, it is ensured to be
unbiased.

B MORE ON EXPERIMENTS

B.1 DATASET STATISTICS AND DESCRIPTIONS

The dataset statistics are provided in Table 8. ogbn-products is the largest dataset used in our paper,
which contains around 25 million nodes and 61 million edges. Reddit is the densest dataset here with
the average node degrees as 50. We follow Li et al. (2023) to use six datasets in our experiments. We
provide a detailed description of each dataset as follows:

• Flickr is a single-label multi-class classification dataset. The task is to categorize types of images
based on the descriptions and common properties of online images. We are using the Flickr dataset
as provided in Zeng et al. (2020). Flickr data are collected in the SNAP website 4 from different
sources. Flickr contains an undirected graph and a node in the graph represents an image on
Flickr. An edge is connected between two nodes if two corresponding images share some common
properties (e.g., the same gallery, comments from the same user, etc.). The node features are the
500-dimensional bag-of-word representations of the images. For labels, each image belongs to one
of the 7 classes.

• Reddit is a single-label multi-class classification dataset. The task is to predict different com-
munities of online posts. We use the Reddit dataset from Hamilton et al. (2017) as in Li et al.
(2023). The nodes are online posts and an edge is connected between two posts if the same user
comments on both. Word features in posts are 300-dimensional word vectors. Node features are
concatenated using 1) the average embedding of the post title, 2) the average embedding of all the
post’s comments, 3) the post’s score, 4) the number of comments on the post.

• Yelp is a multi-label multi-class classification dataset. The task is to categorize types of businesses
based on users and friendships. We use the Yelp dataset provided in Zeng et al. (2020). Yelp
contains a single graph. The nodes are users who provide reviews. If two users are friends, an edge
between them is connected. The features of each node are added and normalized using several
300-dimensional vectors representing a review word provided by the user.

4https://snap.stanford.edu/data/web-flickr.html
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Table 8: Dataset statistics.

Dataset Nodes Edges Avg. Degree Classes Features Train/Val/Test

Flickr 89,250 899,756 10 7 500 0.50/0.25/0.25
Reddit 232,965 11,606,919 50 41 602 0.66/0.10/0.24
Yelp 716,847 6,977,410 10 100 300 0.75/0.10/0.15
PPI 14,755 225,270 14 121 50 0.79/0.11/0.10

ogbn-arxiv 169,343 1,166,243 7 40 128 0.54/0.18/0.29
ogbn-products 2,449,029 61,859,140 25 100 47 0.10/0.02/0.88

• PPI is a single-label multi-class classification dataset that contains multiple graphs. The task is to
classify protein functions based on the interactions of human tissues. PPI dataset has 24 graphs
in total and each graph represents a different human tissue. In a graph, nodes represent proteins
and edges indicate interactions between proteins. Each node can have up to 121 labels, which are
originally collected from Molecular Signatures dataset (Subramanian et al., 2005) by Hamilton
et al. (2017). The dataset splits used in our paper are the same as in Hamilton et al. (2017), i.e., 20
graphs for training, 2 graphs for validation, and 2 graphs for testing.

• ogbn-arxiv is a single-label classification dataset that contains a directed graph. The task is to
predict the 40 subject areas of arXiv CS papers, such as cs.AI, cs.LG, and cs.OS, which are
manually labeled by the authors of the paper and the moderators. each node is an arXiv paper and
each directed edge indicates that one paper cites another one. The node feature of each node is a
128-dimensional vector obtained by averaging the embeddings of words in the title and abstract.
We download ogbn-arxiv dataset from the OGB website 5. The detailed descriptions can be found
in Hu et al. (2020).

• ogbn-products is a single-label multi-class classification dataset which contains an undirected and
unweighted graph. Nodes represent products sold on Amazon, and edges between two products
indicate that these two products are purchased together. Node features are generated by extracting
bag-of-words features from the description of the product followed by a Principal Component
Analysis to reduce the dimension to 100. We download ogbn-products dataset from the OGB
website 5. The detailed descriptions can be found in Hu et al. (2020).

B.2 EXPERIMENTAL SETTING

For experimental setup, we mainly follow Li et al. (2023). As we use the same experimental setting
on some datasets, we reuse the results of some baselines from Li et al. (2023) and Zeng et al.
(2020). We compare SEIGNN with 3 implicit GNNs (i.e., USP (Li et al., 2023), MGNNI (Liu et al.,
2022), and IGNN (Gu et al., 2020)) and 6 explicit/traditional GNNs (GCN (Kipf and Welling, 2016),
GraphSAGE (Hamilton et al., 2017), FastGCN (Chen et al., 2018), ASGCN (Huang et al., 2018),
ClusterGCN (Chiang et al., 2019), and GraphSAINT (Zeng et al., 2020)). The experiments are run
with 5 different trials. The averaged accuracy and standard deviation are reported. We mainly run the
experiments on an RTX-A5000 GPU with 24GB GPU memory.

Model Architecture and Hyperparameters For SEIGNN, we use the same structure with a few
implicit graph layers and the same number of linear layers as in MGNNI (Liu et al., 2022) and USP
(Li et al., 2023). We select the number of implicit graph layers from {2, 3, 4}. We also conduct a
hyperparameter search on learning rate {0.01, 0.005, 0.001} and dropout rate {0.0, 0.2, 0.5}. The
number of deterministic steps t in our stochastic solver is chosen from {3, 5} and the continuation
probability α is set to 0.5. The hyperparameter γ used in an implicit graph layer is set to 0.8. The
Adam optimizer (Kingma and Ba, 2015) is used for optimization. The number of partitions for adding
coarse nodes in our mini-batch training method is selected from {50, 100, 200}. The number of target
nodes in a mini-batch is configured as follows: 8192 for Flickr and PPI, 10240 for ogbn-arxiv, Yelp,
and Reddit, and 16384 for ogbn-products.

5https://ogb.stanford.edu/docs/nodeprop
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Table 9: GPU Memory Usage (GB) of different models. OOM indicates Out-of-Memory.

2-layer 3-layer
SEIGNN MGNNI IGNN SEIGNN MGNNI IGNN

Reddit 7.23 23.77 18.67 8.41 OOM 22.21
Yelp 5.82 15.96 13.65 7.27 20.72 17.34

ogbn-products 9.21 OOM OOM 9.78 OOM OOM

B.3 ADDITIONAL EXPERIMENTAL RESULTS

Besides the overall comparison of accuracy and efficiency, we also investigate the memory usage
of different implicit GNNs. Table 9 shows that SEIGNN requires significantly less GPU memory
compared with IGNN and MGNNI. In particular, SEIGNN only uses 37% of the memory as IGNN
with 3 implicit layers on Reddit. Moreover, we can see that SEIGNN cost less than 10GB GPU
memory on ogbn-products while MGNNI and IGNN face the out-of-memory issue using a GPU with
24GB memory.
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