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Abstract

Focusing on only semantic instances that only salient in
a scene gains more benefits for robot navigation and self-
driving cars than looking at all objects in the whole scene.
This paper pushes the envelope on salient regions in a video
to decompose them into semantically meaningful compo-
nents, namely, semantic salient instances. We provide the
baseline for the new task of video semantic salient instance
segmentation (VSSIS), that is, Semantic Instance - Salient
Object (SISO) framework. The SISO framework is simple
vet efficient, leveraging advantages of two different segmen-
tation tasks, i.e. semantic instance segmentation and salient
object segmentation to eventually fuse them for the final re-
sult. In SISO, we introduce a sequential fusion by looking at
overlapping pixels between semantic instances and salient
regions to have non-overlapping instances one by one. We
also introduce a recurrent instance propagation to refine the
shapes and semantic meanings of instances, and an iden-
tity tracking to maintain both the identity and the semantic
meaning of instances over the entire video. Experimental
results demonstrated the effectiveness of our SISO base-
line, which can handle occlusions in videos. In addition,
to tackle the task of VSSIS, we augment the DAVIS-2017
benchmark dataset by assigning semantic ground-truth for
salient instance labels, obtaining SEmantic Salient Instance
Video (SESIV) dataset. Our SESIV dataset consists of 84
high-quality video sequences with pixel-wisely per-frame
ground-truth labels.

1. Introduction

Recent advances in salient object segmentation (SOS)
in videos using CNN [22, 27, 29, 50] have demonstrated
impressive performance in accuracy. Such SOS meth-
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Figure 1: Segmentation levels of salient objects. The input
video frame is followed by different levels of label anno-
tation. Our work focuses on segmenting semantic salient
instances (most right).

Figure 2: Examples obtained by our method on the SESIV
dataset. From left to right, the original video frame is fol-
lowed by instance label and semantic label. The first and
second rows show ground-truth labels, and segmented re-
sults, respectively.

ods [22, 27, 29, 50] focus on only localizing the region
of interest by labeling “salient” or “non-salient” to each
pixel in the video frame. The localized salient region,
however, may involve multiple (interacting) objects (Fig. 1
a), which is a more reasonable scenario in the real-world
scenes. Therefore, localized salient regions should be de-
composed into conceptually meaningful components (Fig. 1
b), called salient instances [26], for better understanding
of videos. Furthermore, attaching a semantic label to each
salient instance (Fig. 1 ¢) will widen the range of applica-
tions of SOS even to autonomous driving [54] and robotic
interaction [52]. Nevertheless, segmenting semantic salient
instances is not yet addressed in the literature.

To achieve this semantic-instance level segmentation of
salient regions, we aim to jointly identify individual in-
stances in the segmented salient regions and categorize
these salient instances (Fig. 1 c). We refer this problem to
semantic salient instance segmentation, which aims to iden-
tify only individual prominent foreground object classes.
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The problem is even more challenging on the videos be-
cause instances need to be tracked over the entire video to
maintain their identifications even if they are occluded at
some frames. We remark that in this paper, an instance in a
video is defined to be salient if it appears in the first video
frame and stands out for more than 50% duration of the
video in total.

Many computer vision tasks such as action localiza-
tion [15], action recognition [8], object relation detec-
tion [17], or video captioning [46], focus on dominant ob-
jects in the scene to avoid the expensive computational cost.
Narrowing down dominant objects further using semantic
salient instances is more appropriate in real application sce-
narios. Indeed, for autonomous robots or self-driving car,
it is sufficient to focus on only a few useful semantic in-
stances on the street view such as pedestrians or cars with
high performance in accuracy and processing time instead
of looking at all semantic object classes in the whole scene.

There are many methods proposed for each task of se-
mantic instance segmentation (SIS) [9, 16, 34] and SOS [29,
33, 50]. However, to the best of our knowledge, no work ex-
ists on semantic salient instance segmentation in images or
videos to the date. Li et al. [26] very recently proposed a
method for salient instance segmentation for images but do
not deal with semantic level of segmentation.

On the other hand, the CNN-based approach to SOS re-
quires a large number of training samples. As illustrated
in Table 1, several benchmark datasets for various tasks of
SOS have been provided [1, 2, 6, 7, 12, 28, 29, 37, 44, 47,
49, 51, 53]. The dataset quality is improved over the time
in terms of the number of samples and the detailed annota-
tion. Though some datasets for salient instance segmenta-
tion are recently available (e.g. SOI dataset [26] for images
and SegTrack2 dataset [25] for videos), they do not have
sufficient numbers of samples to train deep networks. For
semantic salient instance segmentation, to the best of our
knowledge, no dataset having a sufficient number of sam-
ples for training is available to the date.

The overall contribution of this paper is three-fold:

First, we address the new task of video semantic salient
instance segmentation (VSSIS) and analyze in-depth chal-
lenges of the problem. Finding semantic salient instances in
videos is a useful task and it can be an interesting prob-
lem for the community. Existing work individually per-
forms SIS or SOS, but no work can jointly perform these
two tasks, which is considered as the new task of VSSIS.

Second, we introduce the baseline for VSSIS, called
Semantic Instance - Salient Object (SISO). SISO is a sim-
ple yet efficient two-stream framework leveraging advan-
tages of two different segmentation tasks, i.e. SIS and
SOS, through combining outputs of two streams. SISO pos-
sesses three key features: sequential fusion, recurrent in-
stance propagation, and identity tracking. The sequential
fusion frame-wisely fuses the outputs of the two streams.

Table 1: Datasets for salient object segmentation tasks.

Task | Image Video
MSRA [7], CSSD [53], SegTrack [44],
Salient Object Judd-A [1], THUR [6],  DAVIS-2016 [37],

Segmentation HKU-IS [28], XPIE [51], 10-Clips [12], FBMS [2],

DUTS [47] ViSal [49], VOS [29]
Salient Instance
Segmentation SOI[26] SegTrack? [25]
Semantic Salient None Our proposed SESIV

Instance Segmentation

Using our introduced instance merging order and frame-
confidence, the salient region obtained from the SOS stream
is decomposed into non-overlapping salient instances one
by one. The recurrent instance propagation recovers un-
segmented semantic salient instances by recurrently prop-
agating instances in frames with high frame-confidence to
ones in frames with low frame-confidence. Identity track-
ing, on the other hand, maintains the consistency of instance
identities and semantic labels over the entire video where
identity propagation is for short-term consistency and re-
identification is for long-term consistency. We also compre-
hensively evaluate the performance of the proposed baseline
and deeply analyze results to show promising avenues for
future research.

Third, we provide a dataset, SEmantic Salient Instance
Video (SESIV) dataset 'accompanied with complementary
metrics specifically designed for the task of VSSIS. The
SESIV dataset consists of 84 high-quality video sequences
with various densely annotated, pixel-accurate and per-
frame ground-truth labels for different segmentation tasks.
Our SESIV annotations are built on top of existing DAVIS-
2017 annotations [38]. From pixel-wise instance-level la-
bels of the DAVIS-2017 dataset, we identify salient in-
stances and assign a semantic label to each instance. We
emphasize that this is the very first dataset for VSSIS. Fig-
ure 2 shows some example results obtained by the SISO
baseline in the SESIV dataset. We believe that our intro-
duced SESIV dataset and metrics raise interest to the com-
munity and promote further research on VSSIS.

2. Related Work

Semantic instance segmentation (SIS) is the task of uni-
fying object detection and semantic segmentation. It has
been intensively studied in recent years where the segmen-
tation based approach or the proposal based approach is em-
ployed. The segmentation based approach [19, 24, 31, 54]
generally adopts two-stage processing: segmentation first
and then instance clustering. The proposal based ap-
proach [4, 9, 16, 30, 34], on the other hand, predicts
bounding-boxes first and then parses the bounding-boxes to
obtain mask regions [9] or exploits object detection mod-

IThe SESIV annotations and evaluation scripts are publicly available
at https://sites.google.com/view/Itnghia/research/sesiv
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els (e.g., Faster R-CNN [40] or R-FCN [10]) to classify
mask regions [4, 16, 30, 34]. Among these methods, Mask
R-CNN [16] achieves the state-of-the-art performance, and
recent work [13, 34] is based on Mask R-CNN’s architec-
ture. To the best of our knowledge, no work exists that deals
with video semantic instance segmentation. We thus use
the strategy of frame-by-frame segmentation followed by
instance linkage over the entire video.

Recent video salient object segmentation (VSOS) meth-
ods are based on the convolutional neural network
(CNN) [22, 23, 27, 29, 50] and have demonstrated supe-
rior results over early work utilizing only hand-crafted fea-
tures [21, 35, 39, 48, 49, 55]. These CNN based methods
are classified into two approaches: segmentation based ap-
proach and end-to-end saliency inference approach. The
segmentation based approach first segments each frame of
a video into regions and uses deep features extracted from
each region for saliency inference [23]. The end-to-end
saliency inference approach, on the other hand, uses fully
convolutional networks (FCNs) [22, 27, 29, 50] to utilize
optical flow [27, 29, 50] or 3D kernels [22]. The end-
to-end saliency inference approach achieves better perfor-
mance than the segmentation based one, and using 3D ker-
nels can deal with more frames than optical flow to incorpo-
rate temporal information. We thus employ [22] as the SOS
stream in SISO.

3. Semantic Salient Instance Video Dataset
3.1. Overview

To promote VSSIS, a publicly available dataset with
pixel-wise ground-truth annotation is mandatory. We thus
construct the SEmantic Salient Instance Video (SESIV)
dataset. We emphasize that no other dataset is publicly
available for VSSIS. Figure 3 illustrates examples from our
SESIV dataset with their corresponding ground-truth labels.

The proposed SESIV dataset consists of 84 videos with
185 semantic salient instances categorized into 29 classes.
The training set consists of 58 videos (with 136 instances
and 27 categories), and the testing set consists of 26 videos
(with 49 instances and 14 categories). For each video frame,
we provide various ground-truth labels (i.e., saliency label,
instance label, and semantic label, as exampled in Fig. 3).
We remark that SESIV annotations are built on top instance-
level ground-truth labels of the DAVIS-2017 dataset [38].

3.2. Dataset Construction

To build the dataset, we used 90 videos in the DAVIS-
2017 dataset [38], which has pixel-wise instance-level
ground-truth. This dataset is designed for semi-supervised
instance segmentation where instances are indicated in the
first frame of the video regardless of whether they are
salient. Therefore, instance labels in the DAVIS-2017
dataset are annotated regardless of whether they are salient

or non-salient, and they do not contain any semantic labels.

In order to construct annotations for the task of VS-
SIS, we need to identify salient instances and assign a se-
mantic label to each salient instance to create the SESIV
dataset. Figure 4 illustrates the flowchart of constructing
the SESIV dataset. We first manually eliminated non-salient
instances and kept only salient instances (Fig. 4 (a)). Then,
we annotated semantic labels to the instances to have se-
mantic salient instances using 29 among 80 categories of
the MS-COCO dataset [32] (Fig. 4 (b)). They are person,
bicycle, car, motorcycle, airplane, bus, train, truck, boat,
bird, cat, dog, horse, sheep, cow, elephant, bear, backpack,
snowboard, sports ball, kite, skateboard, surfboard, tennis
racket, chair, tv, remote, cell phone, and clock. The famous
MS-COCO dataset is the largest large-scale dataset for ob-
ject detection/segmentation to the date, thus synchroniz-
ing our SESIV with MS-COCO has advantages for training
models. After that, we merged unlabeled salient instances
into their neighboring one so that the merged instance can
be labeled. For example, “mask” instance is merged into
“clothes” instance to obtain a new instance that is annotated
with person (Fig. 4 (c)). Finally, we discarded six videos,
namely, camel, goat, gold-fish, pigs, rhino, and varanus-
cage as in Fig. 4 (d), because these videos do not have any
labeled semantic salient instances.

3.3. Dataset Description

The SESIV dataset consists of 84 videos, and the average
length of the 84 videos is 68 frames. We note that 28% of
the videos have from 71 to 80 frames. We also note that the
challenge of the SESIV dataset is enhanced due to the same
properties as the DAVIS-2017 dataset [38]. They are back-
ground clutter, dynamic background, deformation, appear-
ance change, shape complexity, small instance, occlusion,
out of view, motion blur, and fast motion.

We here analyze in-depth two other properties that are
specifically designed for VSSIS:

e Number of semantic salient instances.

e Number of categories used for semantic annotation.
We present the distribution of these two properties over the
SESIV dataset in Fig. 5. Each video has the maximum of
8 semantic salient instances. Most videos have from 1 to 3
semantic salient instances: 37% of the videos have one in-
stance, 35% do two instances, and 18% do three instances
(Fig. 5 (a)). Each video has the maximum of 4 categories.
54% of the videos have only one category while 39% do
two categories (Fig. 5 (b)). A large number of videos have
a single instance (37%) or two instances from different cat-
egories (25%) (Fig. 5 (¢)).

It is also noteworthy that instances can disappear in sev-
eral frames in a video due to, for example, full occlusion or
out of view. 17.9% of the videos have instances that dis-
appear in their some frames. They are, for example, bmx-
bumps, color-run, dog-gooses, drone, surf, and walking.
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Figure 3: Samples from the SESIV dataset. From top to bottom, video frame is followed by saliency ground-truth, instance

ground-truth, and semantic label ground-truth.

DAVIS-2017 Ground-Truth

Our SESIV Ground-Truth

(d) Discard unlabeled videos

(a) Eliminate non-salient instances
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Figure 4: SESIV dataset construction.

4. Proposed Baseline
4.1. Overview

The most straightforward approach to VSSIS is to seg-
ment individual instances frame-by-frame and then com-
bine them to obtain final results. However, this approach
does not guarantee consistency of labels over frames due
to frame-by-frame processing. Furthermore, this approach
faces the problem that instances overlap with each other.

To overcome such issues, we propose a Semantic
Instance - Salient Object (SISO) baseline, consisting of two
streams (one for SIS, and the other for SOS), where salient
instances in the current frame are propagated to those in
subsequent frames to maintain consistency of their labels,
in terms of identity and semantic, even if instances disap-
pear in some frames. Therefore, SISO is able to deal with a
varying number of salient semantic instances and is scalable
to the length of videos.

Figure 6 illustrates pipeline of SISO. Two streams
(e.g. SIS and SOS) of SISO work on both spatial and tem-

poral domains. Outputs of streams are fused to remove non-
salient instances, producing a pixel-wisely labeled instance
map. We remark that both salient region mask and seman-
tic instances are spatially refined before the fusion, using
boundary snapping method [3, 20, 22], improving accuracy
of the final result. Finally, the identity tracking maintains
the consistency of instance labels over the entire video.

SIS Stream. No existing work can deal with SIS in
videos. We thus use the strategy of frame-by-frame segmen-
tation followed by instance linkage over the entire video.
Particularly, semantic instances segmented at each frame
are temporally propagated over the entire video using the
recurrent instance propagation to improve the accuracy of
instance shapes. In section 5.3, we evaluate the perfor-
mance of various network architectures implemented in the
SIS stream.

SOS Stream. We employ the 3D FCN model proposed
by Le et al. [22] as the SOS stream, thus computed saliency
map implicitly contains temporal information. The saliency
map is then binarized to have salient region mask using, for
example, the adaptive threshold 8 = i + 1 where p and 7
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Figure 5: Statistics of videos over the SESIV dataset based on the numbers of instances/categories in each video.

Recurrent
Instance
Propagation

Semantic Instance
Sequential Identity
Fusion Tracking
Salient Region Mask
s0s —|

Figure 6: Pipeline of proposed SISO baseline. Yellow, or-
ange, and blue blocks are for spatial, temporal, and spa-
tiotemporal computation, respectively. Both two streams
can work on the spatiotemporal domain.

are the mean value and the standard deviation of pixel-wise
saliency values over the frame.

4.2. Sequential Fusion

When fusing semantic instances with the salient region
mask for the semantic salient instance map, dealing with
the areas where different instances overlap with each other
becomes a crucial issue.

Almost all multi-instance segmentation methods ignore
such areas and randomly merge instances [5, 36, 42, 43, 45].
Though Le et al. [20] proposed to merge instances depend-
ing on the order based on their topological relationships,
their method requires the ground-truth label of the first
video frame to learn the order. We here propose a novel
sequential fusion that does not require any ground-truth la-
bel. We compute the merging order in each frame using the
salient region mask from the SOS stream.

Algorithm 1 describes our proposed sequential fusion to
select a set of instances (hereafter, referred to confident-
instances) to compute a fusion map. We select the instance
that overlaps the salient region mask best where we use
IOU [14] to compute the overlapping area between the in-
stance and the mask. We set semantic label of the selected
instance to each pixel in its corresponding region of the fu-
sion map. We then remove the overlapping area from the
salient region mask. Next, we select the instance from other
remaining instances that overlaps the remaining salient re-
gion mask best and then remove the overlapping area. We
iterate this procedure until no instance exists inside the re-
maining salient region mask. In our experiments, when the
IOU score for an instance is less than § = 0.1, we regarded

Semantic Salient
Instance

Algorithm 1: Sequential fusion and confidence com-
putation.

input : salient region mask M set of instance identities
I, where each instance ¢ € I has region R;,
category C;, and classification score Sfds)

output : fusion map F'M; frame-confidence F'C, set of

confident-instance identities J, yhere each
instance j € J has new region R;
parameter: threshold 6

initialize: FM « [0]"*%; §(°nD) « 0; J « 0;

1
2 repeat

3 Slsee) o [O]II‘; // set of segmentation scores
4 for i € I do

5 5¢8) 10U (R;, M);

6 if 5(5°8) —— 0 then

7 | S 0, S5 0 Ry 0; C < 0

8 end if

9 end for

10 j < arg max Ssee),

11 Ej — R; N M;

12 Pixels in F'M corresponding to I~%j «— Cy;
B3 | M+« M\R;;J+« JU{j}

14 Glconf) . gleonf) | CS(SJ(-Seg), SJ(-CIS));

15 | S 0859 0 Ry 0:C5 0
6 until max S8 < g or §°8) == ¢

(conf)
17 FC + %

—

the instance is not present in the salient region mask.

We also compute the frame-confidence for each frame by
averaging the confidence scores of all the semantic salient
instances in the frame. The confident score of a semantic
salient instance, denoted by CS(+), is computed as a trade-
off between the IOU score and the classification accuracy:

(14828608 510
CS = B2 5(s<8) | 5(cls)

IOU score of the instance and S(°'*) is the classification ac-
curacy score of the instance. We remark that in our experi-
ments we set 32 = 0.3 so that the segmentation score S (5¢8)
is more weighted.

, where S is the segmentation
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Figure 7: Flowchart of identity tracking module. Instance
identities from a video frame are propagated to its new
frames by flow warping. When an instance is occluded
or out of frame, it is re-identified in next frames by using
the feature extracted at its key-frame k. The consistency
of identities and semantic labels of instances is maintained
over the entire video.

4.3. Recurrent Instance Propagation

Some semantic instances may not be segmented due to
severely deformed appearances caused by object motion
and/or camera motion. To recover such missing seman-
tic instances, we introduce the recurrent instance propaga-
tion where instances are recurrently propagated to neigh-
boring frames. More specifically, We propagate instances
in frames with high frame-confidences to those in frames
with low frame-confidences.

Video frames are first sorted in the descending order
based on their frame-confidences computed by Algorithm 1.
We sequentially update confident-instances and frame-
confidences of all video frames in this order. If a video
frame has larger frame-confidence than its adjacent frames,
instances of the frame are propagated to the next frame
and the previous frame using flow wrapping/inverse flow
wrapping where the flow is computed using FlowNet2 [18].
The propagated instances are then integrated to instances
already segmented in the target frame. After that, we re-
compute frame-confidence and confident-instances of the
target frame. If the frame-confidence increases, we update
the frame-confidence and confident-instances of the target
frame. After updating frame-confidences of all the video
frames, the average confidence of the video is computed by
averaging all frame-confidences. This propagation is recur-
rently executed until the average confidence of the video
converges. We remark that we empirically observe that
semantic salient instances are effectively propagated after
around five iterations.

4.4. Identity Tracking

Since the semantic label of an instance is attached frame-
by-frame, how to maintain the consistency of the label over
the entire video is critical. To enable SISO to maintain this
consistency, we introduce the identity tracking where the
identities of instances are propagated over frames to main-

tain short-term consistency and they are re-identified and
unified for long-term consistency. With this identity track-
ing, the identities of instances are consistently tracked over
the entire video even if the instances disappear (or are oc-
cluded) and re-appear in some frames in the video. Fig. 7
depicts the flowchart of our proposed identity tracking.

4.4.1 Identity Propagation

We initialize identities of instances in the first frame. The
identity propagation propagates the identifies of instances
in a given frame to its next frame using flow warping. We
then check how each propagated instance overlaps with in-
stance already segmented in the target frame. Namely, for a
propagated instance, we compute IOU [14] scores between
the instance and each of the instances already segmented in
the target frame. We then update the identity of the instance
having the largest IOU score so that it is the same with the
identity of the propagated instance. If none of the instances
in the target frame achieves # = 0.7 of the IOU score, we
regard that the propagated instance is out of frame or oc-
cluded in the target frame. Re-identification is required for
such an instance.

We note that any instance at the target frame that is not
propagated from the previous frame is regarded as a new
instance and annotated with a new identity.

4.4.2 Re-identification

We employ instance search [41] for re-identifying instance
identity, where we use feature of an instance of interest in a
previous frame to detect the instance in future frames.
Given an instance of interest to be re-identified in a target
frame, we first select its key-frame from previous frames
and then extract a query feature from the bounding-box
around the region of the instance in the key-frame. After
that, we apply Faster R-CNN [40] to the target frame to
generate region proposals and extract features from each of
proposed regions. We then select the proposed region that
is most similar to the instance based on cosine similarity be-
tween the query feature and the feature extracted from each
region. Next, we compute IOU [14] between the selected
proposed region and each region of all instances already
segmented in the target frame. If the largest IOU score is
larger than the threshold # = 0.7, the corresponding in-
stance is updated with identity of the instance of interest.
For instance i, the key-frame is selected as follows. The
instance may have multiple separated regions in a frame.
We thus compute the average area of connected regions
Si(atrca)

area;

of the instance 7 in a frame ¢: = =5 where
k2

area; ; is the area where instance 7 exists at frame t, and
n;+ denotes the number of separated regions of instance
¢ at frame ¢. The key-frame of the instance ¢ is given by

(area)
arg max Sie -
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Table 2: Results on SESIV. The best results are shown in
blue.

Method | Js T8
Mask R-CNNoyg [16] | 041 043

Mask R-CNNyrop 15.65 16.70
Mask R-CNNsiso 41.71  42.59
MNCo:g [9] 0.72 0.72
MNCprop 20.36  18.97
MNCsiso 31.07 31.08

4.4.3 Semantic Unification

For a semantic salient instance and a category, we first com-
pute the summation over the entire video of the classifica-
tion scores that the instance belongs to the category. We
then choose for the instance the semantic label of the cate-
gory that achieves the maximum value among all the cate-
gories. In this way, the semantic labels attached to salient
instances are unified over the entire video.

5. Experiments
5.1. Implementation Details

For the SOS stream, we employed DSRFCN3D [22],
using the public pre-trained model on video saliency
datasets [22] (without any fine-tuning).

For the SIS stream, we employed Mask R-CNN [16]
and MNC [9] to evaluate the performance of the proposed
SISO on various network architectures. We used public
pre-trained models without any fine-tuning (Mask R-CNN
is pre-trained on the MS-COCO dataset [32], and MNC is
pre-trained on the VOC Pascal dataset [11]). We remark that
we used only semantic instances whose classification scores
are larger than 0.7; we eliminated the other instances. We
also remark that to evaluate MNC, we converted semantic
ground-truth labels of the MS-COCO to their correspond-
ing categories of the VOC Pascal and used only convertible
semantic salient instances.

We implemented optical flow [18], instance search [41],
and SIS models [9, 16] with python, VSOS model [22] and
other modules with Matlab. All experiments were con-
ducted on a computer with a Core i7 3.6GHz processor,
32GB of RAM, and GTX1080Ti GPU.

5.2. Evaluation Criteria

To evaluate performances, we introduce semantic region
similarity and semantic contour accuracy defined as fol-
lows. Let m and g be binary masks of the predicted in-
stance and the ground-truth instance. The semantic region
similarity 7S and the semantic contour accuracy FS are

TS(m, g) = did(m).id(g)Osi(m),si(g)T (M, 9), )
‘FS(mag) = 5id(m),id(g)dsl(m),sl(g)}—(mvg)a @)

Table 3: Effectiveness of confident instance utilization. The
best results are shown in blue.

Method or Metric ‘ SIS0, ‘ SIS0, ‘ SISO,
Sequential Fusion v v
Recurrent Instance Propagation v
JS 36.57 37.43 41.71
FS 39.59 40.32 42.59

Table 4: Effectiveness of identity tracking. The best results
are shown in blue.

Method or Metric | SISO, | SISOs | SISO,

Identity Propagation v v
Re-Identification v
JS 0.95 33.74 41.71
FS 1.02 34.56 42.59

where J (-) and F(-) are region similarity [11] and contour
accuracy [37]. ¢ denotes the Kronecker delta, and id(m)
and sl(m) are the identity and the semantic label of instance
m, respectively. Remark that we compare the similarity of
two instances only if they have the same identity and the
same semantic label. We note that region similarity is the in-
tersection over the union of the estimated segmentation and
the ground-truth mask while contour accuracy is a trade-off
between the contour-based precision and recall.

Similar to [38], we first evaluate each instance and then
take the average over the dataset. More precisely, letting V'
be a set of videos in the dataset, and M € {JS, FS} be a
given metric, the performance M (V') over V is defined by

M(V):ﬁz

iely

1
Foal Z M(mi, g]), 3)
v(®) FEF, (i)

where Iy is the set of annotated instances in V, v(i) € V'is
the sequence in which the instance ¢ € Iy, appears, and F,
is the set of frames in sequence v. m{ and ng are respec-
tively the predicted region and the ground-truth of instance
7 in frame f.

We remark that we matched identities of predicted in-
stances at the first frame with those of the ground-truth
by maximizing IOU scores between the predicted instances
and the ground-truth. This avoids the identity permutation
problem in the evaluation.

5.3. Results of SISO Instances

We emphasize that SISO is the first work for VSSIS,
meaning that no state-of-the-art method is available for
comparison. We thus evaluated the performance of vari-
ous network architectures implemented in the SIS stream.
Each method M, where M = {Mask R-CNN, MNC}, is
employed with three different settings: M, is the original
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Figure 8: Visualization of some results by our method on the SESIV dataset. From left to right, original video frame is
followed by instance label and semantic label, respectively. The top row indicates ground-truth labels and the bottom row

shows results by our method.

model (we applied this frame-by-frame for videos), Mpop
is the model incorporating our identity propagation mod-
ule (this is just to simply exploit temporal information), and
Msg1s0 is the model incorporated in our proposed SISO.

The quantitative results are shown in Table 2, indicating
that SISO significantly outperforms the other settings for
any SIS method on all metrics. This suggests that SISO is
capable of eliminating non-salient instances and maintain-
ing consistent identities of instances over the entire video.
We also note that the setting M, achieves the worst per-
formances. This is because it is a frame-by-frame method
and does not take into account temporal information. Fig-
ure 8 is the visualization of a few examples obtained by
Mask R-CNNgiso. We see that our method handles com-
plex instances with background clutter, giving accurate and
consistent segmentation.

5.4. Ablation Studies

To demonstrate the effectiveness of components in SISO,
i.e., sequential fusion, recurrent instance propagation, and
identity tracking, we performed experiments under con-
trolled settings and compared results. We note that we used
Mask R-CNNgigp for these experiments because we see
that Mask R-CNNgigo performed better than MNCgigo.

5.4.1 Effectiveness of Confident-Instance Utilization

As shown in Section 4, confident-instances are utilized in
the sequential fusion and the recurrent instance propaga-
tion modules. To evaluate the effectiveness of confident-
instances, we performed experiments under three different
controlled settings: merging instances in the random order
without using any confident-instance (denoted by SI1.50,,),
using the sequential fusion only (denoted by ST1.S0y), and
using both the sequential fusion and the recurrent instance
propagation (denoted by S1S0,.). Table 3 shows their re-
sults, indicating that (1) merging instances based on intro-
duced confident-instances (SIS0y) achieves better perfor-
mance than in the random order (S150,), and that (2) uti-

lizing confident instances (SISO, and SISO.) performs
better than not using confident-instances (S1.50,,). In par-
ticular, our complete method SISO, performs best.

5.4.2 Effectiveness of Identity Tracking

To evaluate the effectiveness of the identity tracking mod-
ule, we performed experiments under three different con-
trolled settings: not tracking any instances (denoted by
S150,), using the identity propagation only (denoted by
SIS50g), and using both the identity propagation and the
re-identification (denoted by S150.,). Table 4 shows their
results and indicates that our complete method SISO, ex-
hibits outperformance against the other settings on all the
metrics. In particular, the outperformance over SIS0, is
significant. We also observe that using both the identity
propagation and the re-identification (S150.,,) brings more
gains than using the identity propagation only (S1503).
This suggests that the identity tracking contributes to main-
tain consistent identities of instances over the entire video.

6. Conclusion

We addressed a new task of video semantic salient in-
stance segmentation (VSSIS), and proposed the first base-
line for for VSSIS, called Semantic Instance - Salient Ob-
ject (SISO). SISO is a simple yet efficient framework that
jointly performs semantic instance segmentation and salient
object segmentation in videos. Furthermore, SISO is ca-
pable of eliminating non-salient instances and maintaining
consistency of both identities and semantic labels for salient
instance over the entire video thanks to our introduced se-
quential fusion, recurrent instance propagation, and identity
tracking. To address the task of VSSIS, we provided a new
dataset SESIV consisting of 84 video sequences with pixel-
wisely annotated per-frame ground-truth labels.

Besides extending the quantity of the dataset, developing
a way to directly segment salient instances from videos is
left for future work.
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