
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ACCELERATING INFERENCE FOR MULTILAYER NEURAL
NETWORKS WITH QUANTUM COMPUTERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Fault-tolerant Quantum Processing Units (QPUs) promise to deliver exponential
speed-ups in select computational tasks, yet their integration into modern deep
learning pipelines remains unclear. In this work, we take a step towards bridging
this gap by presenting the first fully-coherent quantum implementation of a multi-
layer neural network with non-linear activation functions. Our constructions mirror
widely used deep learning architectures based on ResNet, and consist of residual
blocks with multi-filter 2D convolutions, sigmoid activations, skip-connections,
and layer normalizations. We analyse the complexity of inference for networks
under three quantum data access regimes. Without any assumptions, we establish a
quadratic speedup over classical methods for shallow bilinear-style networks. With
efficient quantum access to the weights, we obtain a quartic speedup over classical
methods. With efficient quantum access to both the inputs and the network weights,
we prove that a network with an N -dimensional vectorized input, k residual block
layers, and a final residual-linear-pooling layer can be implemented with an error
of ϵ with O(polylog(N/ϵ)k) inference cost.

1 INTRODUCTION

Within the past decade, deep learning methods (LeCun et al., 2015; Goodfellow et al., 2016) have
become the mainstream methodology to tackling problems in machine learning and generative
artificial intelligence, including tasks in computer vision (He et al., 2016; Ho et al., 2020; Dosovitskiy
et al., 2021), natural language processing (Vaswani et al., 2017; Brown et al., 2020) and various
other tasks with increasing applicability (Silver et al., 2016; Jumper et al., 2021; Fawzi et al., 2022).
This progress is partly facilitated by advances in GPUs, which offer speed-ups for parallelizable
operations such as matrix-vector arithmetic. However, as we approach the physical limits of Moore’s
law (Moore, 1965), the continuous upscaling of CPUs and GPUs may begin to plateau. Consequently,
a natural question is whether quantum computing (Feynman, 1982; 1986; Nielsen & Chuang, 2010)
and potential quantum processing units (QPUs) can offer further acceleration for deep learning.

The field of quantum machine learning (QML) (Biamonte et al., 2016; Schuld & Petruccione, 2021;
Du et al., 2025), investigates this possibility. QML can broadly be separated into two main paradigms:
(1) quantum algorithms tailored to the structure of near-term quantum hardware (Preskill, 2018) under
assumptions of limited quantum resources, and (2) using quantum subroutines to obtain provable
speed-ups for existing machine learning models, typical requiring large amounts of quantum resources
necessitating error-corrected fault-tolerant quantum computers.

In the first paradigm, proposals of quantum neural networks (QNN) based on variational quantum
algorithms (VQA) (Peruzzo et al., 2014; Cerezo et al., 2021) train parametrized quantum circuits
(PQC) (Benedetti et al., 2019b) in an analogue to multi-layer neural networks. However, these
algorithms face trainability issues in the form of poor local minima (Bittel & Kliesch, 2021; An-
schuetz & Kiani, 2022) and vanishing gradients, or barren plateaus (McClean et al., 2018; Larocca
et al., 2025). Moreover, techniques mitigating these issues often result in the algorithms being
classically simulable (Cerezo et al., 2025; Bermejo et al., 2024). While alternate approaches such
as quantum kernel methods (Havlíček et al., 2019; Schuld & Killoran, 2019) and others have been
proposed (Benedetti et al., 2019a; Huang & Rebentrost, 2024), they often face similar trainability
issues (Thanasilp et al., 2024; Rudolph et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Erf

N
orm

alize

Flatten

Square

Linear

L2 Pool

N
orm

alize

Square

“Cat”

2D
Conv

N
orm

alize

Erf

N
orm

alize

Flatten

Square

Linear

L2 Pool

N
orm

alize

Square

“Cat”

2D
Conv

N
orm

alize

Neural Net
… d×

Concatenate
(b)

(a)

L2 Pool

N
orm

alize

Square

“Cat”

(c)

… d×

k×

k×

Erf

N
orm

alize

Flatten
2D
Conv

N
orm

alize

k×
Neural Net

Neural Net

Neural Net

Erf

N
orm

alize

Flatten

Square

Linear

L2 Pool

N
orm

alize

Square

“Cat”

2D
Conv

N
orm

alize

Erf

N
orm

alize

Flatten

Square

Linear

L2 Pool

N
orm

alize

Square

“Cat”

2D
Conv

N
orm

alize

Neural Net

… d×

Concatenate
(b)

(a)

L2 Pool

N
orm

alize

Square

“Cat”

(c)

… d×

k×

k×

Erf

N
orm

alize

Flatten

2D
Conv

N
orm

alize

k×
Neural Net

Neural Net

Neural Net

Figure 1: Architecture for Convolutional Neural Networks. This figure shows the architectures we
consider with provable quantum complexity guarantees for inference under three regimes of quantum
data access assumptions. (a) Depicts the architecture where both the inputs and network weights are
provided in an efficient quantum data structure. (b) Only the network weights are provided in an
efficient quantum data structure. (c) No input assumptions are made. In all architectures, the input is
assumed to be a rank-3 tensor (e.g., images with 4 channels).

The second paradigm focuses on the use of quantum subroutines (Harrow et al., 2009; Montanaro,
2016; Gilyén et al., 2019; Dalzell et al., 2025b) to provide asymptotic speed-ups in the underly-
ing linear algebra of classical machine learning models, e.g., in matrix inversion, matrix-vector
arithmetic, and sampling. Applications include support vector machines (Rebentrost et al., 2014),
regression (Wiebe et al., 2012), feedforward neural networks (Allcock et al., 2020), convolutional
neural networks (Kerenidis et al., 2020), transformers (Guo et al., 2024b), and other models (Lloyd
et al., 2014; Wiebe et al., 2016; Rebentrost et al., 2018; Kapoor et al., 2016; Cherrat et al., 2024; Liu
et al., 2021b; Yang et al., 2023; Ivashkov et al., 2024; Wang et al., 2025). Other works have also
explored speeding up classical neural network training and inference (Kerenidis & Prakash, 2020;
Abbas et al., 2023; Liu et al., 2024).

Main Contributions. In this paper, we propose a method that can be used to accelerate inference
for multilayer residual networks (ResNets) (He et al., 2016) on quantum computers, given their
significance in enabling deep networks (Xie et al., 2017; Dong et al., 2021). We provide core
quantum subroutines and techniques for regularized multi-filter 2D convolutions, sigmoid activations,
skip-connections, and layer normalizations – all of which we show can be coherently implemented
on quantum computers. We list the main contributions as follows.

• In Section 2, we further develop a modular vector-encoding framework for quantum matrix-vector
arithmetic. This is a special case of quantum block-encodings, with many useful properties.

• In Section 2.3, we derive a novel quantum algorithm for the multiplication of arbitrary full-rank and
dense matrices with the element-wise square of a given vector, without incurring a rank-dependence.
To the best of our knowledge, this is the first result which allows a quantum algorithm to utilize an
arbitrary full-rank and dense matrix without a Frobenius norm complexity dependence.

• In Section 2.4, we provide a novel QRAM-free block-encoding for 2D multi-filter convolutions.

• In Section 4, to the best of our knowledge, we derive the first coherent quantum implementations
of multi-layer neural networks with non-linear activations. We provide rigorous end-to-end
complexity proofs for inference under three QRAM regimes:

– Regime 1 (inputs and weights provided via QRAM): Assuming QRAM access to both inputs
and weights, for a network with k non-linear activations acting on N -dimensional inputs we
prove Õ(polylog(N/ϵ)k) inference cost. Moreover, we argue that existing techniques are

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

insufficient to dequantize this result.
– Regime 2 (weights provided via QRAM): When a cost linear in the dimension of the input

must be paid (i.e., no QRAM for the input), but the network weights are stored in QRAM, we
prove a quartic speedup over exact classical implementations for shallow architectures.

– Regime 3 (no QRAM): In the absence of any QRAM, we prove a quadratic speedup over an
exact classical implementation.

The relevant architectures in each regime can be seen in Figure 1. We derive a number of techniques
and algorithms which have broad utility in implementing machine learning architectures on quantum
computers. However, our main focus is on accelerating inference for classification, with our formal
problem statement given in Definition 1. At a high-level, we assume that we are given a trained
neural network which, given an input, outputs a probability distribution over possible outputs (e.g.,
over image classes). The goal is to draw a sample from this output distribution (thereby assigning a
class to the input). We introduce an error parameter ϵ, which allows the algorithm to sample from a
distribution whose ℓ2 norm distance from the true distribution is bounded by at most ϵ.
Definition 1 (The Approximate Sampling-Based Classification Problem). Let 0 ≤ ϵ ≤ 1. Given
a neural network represented by function h : RD 7→ RC (i.e. with D-dimensional inputs and
C-dimensional outputs) which returns a probability distribution as its output (i.e., for any x ∈ RD,
y := h(x) is all non-negative, and ∥y∥1 = 1), then the sampling-based classification problem is to
return a sample from some probability vector ŷ such that ∥y − ŷ∥2 ≤ ϵ.

For example, in the case of CIFAR-10, D = 3× 32× 32 = 3072, and C = 10. Then, given some
input x ∈ R3072, y ∈ R10 the entries of y correspond to the probability of assigning a given class
(e.g., class i is assigned with probability yi, etc). This problem statement also naturally captures
other applications, such as autoregressive next-token prediction, where the output distribution would
instead be over the set of possible tokens rather than classes.

Comparison to Prior Work. In prior work, to achieve multi-layer architectures in feedforward
and convolutional neural networks as well as transformers, intermediate measurements for inner
products (Allcock et al., 2020) or quantum state tomography that read out the entire state (Kerenidis
et al., 2020; Guo et al., 2024b) are required to extract information out to classical computers where
data is required to be re-encoded into the quantum circuit for computation in the next layer, breaking
the coherence of the quantum architecture and limiting potential speed-ups. We compare against
the prior work in Table 1. To the best of our knowledge, our work provides the first fully coherent
quantum implementation of classical multi-layer neural networks . Further, our work is also the first
in works that accelerate classical deep learning algorithms to present an architecture which does not
use QRAM. Moreover, we demonstrate that careful tracking on bounds of the vector norm (as it
propagates through the forward-pass of a given network) is required to prevent arbitrary decay of
the norm in multilayer structures, and subsequent unbounded runtimes. We provide rigorous proofs
and develop tools to prove this norm preservation in our architectural blocks. Further, we make the
observation that residual skip connections that enable deep networks classically are fundamental
to the norm stability and preservation, enabling us to provide an efficient and coherent multilayer
architecture not present in prior work.

Introduction to Quantum Computing. Quantum computation can provide asymptotic speed-
ups over their classical counterparts (Nielsen & Chuang, 2010) by utilizing quantum phenomena.
Quantum bits, or qubits, form the basic unit for computation, and can host a superposition of states
expressed as a two-dimensional complex vector (or ket) |ψ⟩ = α|0⟩+ β|1⟩ where |α|2 + |β|2 = 1.
With n qubits, we can create a superposed state over 2n bit strings |i⟩, each with a different amplitude
and expressed as |ψ⟩ =

∑2n−1
i=0 vi|i⟩, where

∑2n−1
i=0 |vi|2 = 1. That is, an n-qubit quantum state is a

2n-dimensional ℓ2-normalized complex vector. Quantum computers achieve computation through
applying a circuit consisting of one-or-two-qubit logical gates (Feynman, 1986) on qubits. Quantum
circuits can be contracted and represented as a single unitary operation.

Notation. We use standard big and small O notations for asymptotics, using Õ to hide polylogarith-
mic factors. The notation [N] represents the set of integers 0, ..., N − 1. We use kets to represent
arbitrary (not necessarily normalized vectors). Logarithms are assumed to be base-2 unless otherwise
stated. The subscript on the ket denotes the number of qubits it acts on (i.e., the log of the dimension),

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Architecture Coherent
Multi-
Layer

Coherent
Non-

Linearity

QRAM-
Free

Norm
Preser-
vation

Polylog
1/ϵ

Polylog
N

Cong et al. (2019)∗ CNN Inspired
PQC ✗ ✗ ✓ ✓ N/A N/A

Allcock et al. (2020) Feed-forward ✗ ✗ ✗ ✗ ✗ ✗
Kerenidis et al. (2020) CNN ✗ ✗ ✗ ✗ ✗ ✗
Guo et al. (2024b) Transformer ✗ ✓ ✗ ✗ ✗ ✗
Our work - Regime 1 Residual CNN ✓ ✓ ✗ ✓ ✓ ✓

Our work - Regime 2 Bilinear
Residual CNN ✓ ✓ ✗ ✓ ✓ ✗

Our work - Regime 3 Bilinear
Residual CNN ✓ ✓ ✓ ✓ ✓ ✗

Table 1: Comparison with prior work. We briefly explain the meaning of each column. Coherent
multi-layer refers to the construction of multi-layer architectures separated by non-linear activation
functions without tomography. Coherent non-linearity refers to the implementation of non-linear
transformations on the quantum computer without readout. Norm preservation refers to the preser-
vation of vector norms throughout the network forward pass. Next, each quantum implementation
of a classical architecture incurs some error over the exact classical implementation, and as such an
entry ✓ in the polylog 1/ϵ column indicates a O(polylog(1/ϵ)) error-dependence, whilst a ✗ entry
indicates a O(poly(1/ϵ)) error-dependence. Finally, polylog N refers to polylogarithmic complexity
in the input dimension N . ∗Note: the architecture presented in Cong et al. (2019), is inspired by
CNNs but is based on parameterized quantum circuits (PQC). As they do not aim to accelerate an
existing classical architecture, it is not possible to provide an entry in the polylog ϵ column. Moreover,
they do not provide complexities when considering classical input data, and so we do not give an
entry in the column corresponding to polylog N .

thus |ψ⟩n ∈ C2n . When we assume a ket is normalized, we will explicitly state that it is. The one
exception is with the definition of a vector-encoding (as defined subsequently in Definition 3). For
example, an (1, a, ϵ)-VE for |ψ⟩n implicitly implies that ∥|ψ⟩n∥2 = 1, and so we will not explicitly
state the normalization of the encoded vector every time we introduce a VE. A bra is defined as
the conjugate transpose of a ket, ⟨ψ|n = |ψ⟩†n. We use the notation In to refer to an n-qubit (i.e.,
2n-dimensional) identity matrix. We define the Kronecker product with the symbol ⊗, and will
sometimes refer to this as a tensor product. We define basis functions both in vector notation and in ket
notation, i.e., |j⟩ ≡ ej . E.g., |0⟩ = e0 = (1 0 . . . 0)

T . When we define a function f on scalars,
i.e., f : C 7→ C, given a vector x ∈ CN we sometimes use the notation f(x) :=

∑N−1
j=0 f(xj)ej ,

i.e., f(x) denotes an element-wise application of f to x.

2 QUANTUM MATRIX-VECTOR ARITHMETIC

In this section, we define and motivate the tools necessary to perform quantum matrix-vector
arithmetic. These subroutines are essential for our subsequent results implementing classical neural
networks on quantum computers. In Section 2.1, we provide a summary of quantum block-encodings
and quantum vector encodings. Novel contributions in this section: In Section 2.2, we further
develop the framework of vector-encodings, introducing straight-forward new quantum algorithms
for vectors encoded as VEs, enabling vector sums, matrix-vector products, tensor products, and vector
concatenations. In Section 2.3, we present a novel algorithm which applies an arbitrary full-rank and
dense matrix to the element-wise square of a vector, without incurring a Frobenius norm dependence.
Finally, in Section 2.4, we give a novel QRAM-free block-encoding for 2D multi-filter convolutions.

2.1 QUANTUM BLOCK-ENCODINGS AND VECTOR-ENCODINGS

A widely used tool in quantum algorithm design is the block-encoding (Gilyén et al., 2019), which
can be viewed as a way to encode and manipulate matrices in quantum algorithms. A block-encoding

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

is a unitary matrix U , specified by a quantum circuit, whose top left block contains a matrix Ã (such
that ∥Ã∥2 ≤ 1) which is a scaled approximation to some matrix A. We give the formal definition in
the following.

Definition 2 (Block encoding (Gilyén et al., 2019)). Suppose that A is a 2s × 2s matrix, α, ϵ ∈ R+

and a ∈ N, then we say that the 2s+a × 2s+a unitary matrix U is an (α, a, ϵ)-block-encoding of A, if

∥A− α(⟨0|⊗a ⊗ I)U(|0⟩⊗a ⊗ I)∥ ≤ ϵ. (1)

Essentially, noting that ⟨0|⊗a⊗I = (I 0 . . . 0), we see that ⟨0|⊗a⊗I selects the first 2s rows of
U , and then |0⟩⊗a⊗I selects the first 2s columns of (⟨0|⊗a⊗I)U , meaning that (⟨0|⊗a⊗I)U(|0⟩⊗a⊗
I) is simply the top-left 2s × 2s block of U . Indeed, if ϵ = 0, then A/α = (⟨0|⊗a ⊗ I)U(|0⟩⊗a ⊗ I).
Additionally, α can be viewed as an upper-bound on the normalization factor of A, e.g., if ϵ = 0, then
∥A/α∥2 ≤ 1. Any matrix encoded in a sub-block of a unitary matrix cannot have norm exceeding 1.

Analogously to how a quantum block-encoding encodes a general matrix in the top left block of a
unitary, we can embed arbitrary (sub-normalized) N -dimensional vectors in the first N rows of a
larger vector corresponding to a normalized quantum state.

This naturally leads to the following definition of quantum vector-encodings (VEs), the definition of
which we take nearly verbatim from Rattew & Rebentrost (2023), where they were called SPBEs.

Definition 3 (Vector-Encoding (VE) (Rattew & Rebentrost, 2023)). Let α ≥ 1, a ∈ N, and ϵ ≥ 0.
We call the 2a+n × 2a+n unitary matrix Uψ an (α, a, ϵ)−VE for the 2n-dimensional quantum state
|ψ⟩n, if

∥|ψ⟩n − α (⟨0|a ⊗ In)Uψ|0⟩a+n∥2 ≤ ϵ. (2)

Note that (⟨0|a ⊗ In)Uψ|0⟩a+n corresponds to the exact vector encoded by Uψ , specifically encoded
in the first 2n rows of the first column of Uψ . The parameter α is a measure of the norm of the encoded
vector, e.g., if ϵ = 0 then ∥(⟨0|a ⊗ In)Uψ|0⟩a+n∥2 = 1/α. One of the most essential components of
working with matrix-vector arithmetic in quantum algorithms is tracking the norm of the encoded
vectors throughout the algorithm, as the quantum complexity is usually inversely proportional to the
norm of the encoded vector. Vector encodings give a methodical way to track encoded vector norms
when implementing various matrix-arithmetic operations on the encoded vectors.

In summary, block-encodings provide a formal framework for working with matrices in quantum
algorithms, and vector-encodings provide a formal way for working with vectors.

2.2 NEW OPERATIONS ON VECTOR ENCODINGS

To enable our results on architectural blocks, we had to develop primitive operations on vector-
encodings. These results are straight-forward modifications of existing techniques into the VE
framework, but are necessary to allow easy tracking of the norm of encoded vectors, which is a
crucial parameter dictating the complexity of quantum neural network accelerations.

Lemma 1 (Vector Sum, Proof in Appendix B). Let 0 ≤ τ ≤ 1. We are given unitary circuits Uψ and
Uϕ which are (α, a, ϵ0) and (β, b, ϵ1) VEs for |ψ⟩n and |ϕ⟩n, respectively. Define c := max(a, b),
|Γ⟩n := τ

α |ψ⟩n + (1−τ)
β |ϕ⟩n, N := ∥|Γ⟩n∥2 and |Γ⟩n := |Γ⟩n/N . Then, using one controlled Uψ

circuit, one controlled Uϕ circuit, and two additional single-qubit gates, we can construct a unitary
matrix V such that V is a (N−1, c+ 1, (ϵ0α + ϵ1

β)/N)-VE for |Γ⟩.

Lemma 2 (Matrix-Vector Product, Proof in Appendix B). We are given an (α, a, ϵ0)-block-encoding
UA for the n-qubit operator A, and Uψ a (β, b, ϵ1)-VE for the ℓ2-normalized n-qubit quantum state
|ψ⟩. Let N := ∥A|ψ⟩n∥2. Uψ has Tψ circuit complexity, and UA has TA circuit complexity. Then,
we can obtain an a+ b+ n qubit unitary U with O(Tψ + TA) circuit complexity such that U is an
(αβ/N , a+ b, (ϵ0 + αϵ1)/N)-VE for the quantum state state A|ψ⟩n/N .

Lemma 3 (Tensor Product of Vector Encodings, Proof in Appendix B). Given Uψ an (α, a, ϵ)-VE for
|ψ⟩n with O(Tψ) circuit complexity, and Uϕ an (β, b, δ)-VE for |ϕ⟩m with O(Tϕ) circuit complexity,
then we can obtain the circuit V which is an (αβ, a + b, ϵ + δ + ϵδ)-VE for |ψ⟩n ⊗ |ϕ⟩m with
O(max(Tψ, Tϕ) + max(n, b)) circuit depth.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Lemma 4 (Concatenation of Vector Encodings, Proof in Appendix B). Let D = 2d, N = 2n, and
0 ≤ ϵ < 1. Assume that d ≤ n. Suppose we are given a set of D unitary circuits, {Ui}i∈[d] such
that each Ui is an (αi, a, ϵ)-VE for the quantum state |ψi⟩n with O(T) circuit complexity. 1 Let
|Ψ⟩d+n =

∑D−1
j=0 |j⟩d|ψj⟩/αj , and let N := ∥|Ψ⟩d+n∥2 =

√∑D−1
j=0

1
α2
j

. Then, we can obtain a

(D/N , d+ a, ϵ) for |Ψ⟩d+n
N with O(dDT) circuit complexity.

2.3 MATRIX VECTOR SQUARED PRODUCT

We are now ready to present the first key result of this section, showing how given a matrix W (with
∥W∥2 ≤ 1) and a vector encoding of x, we can obtain a vector encoding of W (x)2. The key idea
is to avoid obtaining a quantum block-encoding of the operator W (which in general requires W
to be either low-rank, or sparse (Gilyén et al., 2019)). We then implement the product by using
importance-weighting to coherently combine the columns of W weighted by the corresponding
elements of the input vector, and then apply the result to a modified version of the input vector.
Theorem 1 (Product of Arbitrary Matrix with a Vector Element-wise Squared, Informal). Let
N = 2n. We are given a matrix W ∈ CN×N , provided via a pre-processed efficient quantum
accessible data-structure. Additionally, we are given the unitary Uψ with circuit complexity O(Tψ),
a (α, a, ϵ)-VE for the quantum state |ψ⟩n. Define the function g : C 7→ R as g(x) = |x|2, and
N := ∥Wg(|ψ⟩n)∥2. Then we can construct the unitary Uf which is a (α

2

N , 2a+ 2n+ 3, 2αϵN)-VE
for Wg(|ψ⟩n)/N , and has O(Tψ + n2) circuit depth.2

This result is stated formally and proven as Theorem B.1 in the Appendix, and we formally define one
possible implementation of the quantum accessible data-structure assumption in Definition B.3. To use
this to prepare the quantum state Wg(|ψ⟩n)/N , the vector normalization result (Lemma B.8) can be
directly applied to the output VE yielded by Theorem 1, preparing the state with Õ(α2(Tψ +n2)/N)
circuit complexity. This is the first such result without a Frobenius norm dependence on A.

We will now informally sketch the proof of this procedure. First, define the columns of W as
W = (w0 . . . wN−1). Define the normalized version as |wj⟩ = wj/ ∥wj∥2, and define aj :=
∥wj∥2. We assume access to three objects. (1) A block-encoding of A := diag(a0, . . . , aN1

).
(2) An oracle implementing UW |0⟩|j⟩ = |wj⟩|j⟩. (3) A vector-encoding for |ψ⟩ =

∑
j ψj |j⟩.

Then, by using our vector-encoding circuit, we can get an encoding of |ϕ⟩ :=
∑
j ψj |j⟩|wj⟩ =

(ψ0⟨w0| . . . ψN−1⟨w1|)†. Then, using our block-encoding of A, we can efficiently get a block-

encoding of
(
a0ψ0In . . . aN1ψN−1In

0

)
(where In is a 2n dimensional identity matrix, and

only the first N rows are non-zero). We can then use the product of matrix-encoding with vector

encoding result to take the product of
(
a0ψ0In . . . aN1

ψN−1In
0

)
with |ϕ⟩ yielding the desired

vector-encoding.

2.4 QRAM-FREE QUANTUM ENCODING OF 2D MULTI-FILTER CONVOLUTIONS

While the matrix-form of a 2D convolution has been given many times before in the literature, to the
best of our knowledge the following is the first result giving a block-encoding of a QRAM-free 2D
multi-filter convolution. We also stress that the following result can be highly optimized, especially if
QRAM is used. We leave such optimizations to future work. The full proof is provided in Section B.2.
Lemma 5 (QRAM-Free Block-Encoding of 2D Convolution With Filters). Let M = 2m, let
n = 2m, let N = 2n, and let D = 2d. Define the matrix form of the 2D multi-filter convolution
operation, C ∈ RCM2×CM2

, as per Lemma B.17. Here, C represents the number of input and
output channels, and D represents the dimension of the kernel over rows and columns (i.e., the
kernel is a rank−4 tensor containing C, C ×D ×D filters). Then, after performing some one-time
classical pre-computation, we can obtain a (1, 3 + 8D + 2 log(CD), 0)- block-encoding of C

2∥C∥2

with O(m2C3D4 log(C) log(D)) circuit depth.
1If D is not a power of 2, padding can be added.
2For simplicity, here we are assuming that the parameter d (as defined in Theorem B.1) is set to n.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2: Generic Residual Architectural Block. This diagram illustrates the structure of a typical
residual block used in deep neural networks. The input vector x is transformed through a sequence
of operations: a learnable linear transformation W , a non-linear activation function f , and a residual
(skip) connection that adds the original input to the transformed signal. The output is then passed
through a normalization layer (norm).

While the degrees on the number of channels and the filter size D seem large, the filter size is
usually quite small in practice (e.g., often 3). Moreover, there are straight-forward optimizations of
this result which can substantially reduce the degrees on both C and D. Convolutional layers are
excellent candidates for QRAM-free implementation, since the number of parameters they contain
are usually much smaller than the dimension of the vectorized tensors which they act upon. Indeed,
we essentially obtain Lemma 5 by efficiently constructing a block-encoding of the matrix-form of
the highly-structured object corresponding to each parameter in the convolutional kernel, and then
taking a linear combination of the result. This explains why the complexity of our procedure is
polylogarithmic in the dimension, whilst being polynomial in the number of parameters. This is
in contrast to exact classical algorithms which have polynomial dimension-dependence. Moreover,
our result can be substantially optimized further, potentially by exploiting the fact that circulant
convolutions are diagonalized by the Fourier transform.

3 ARCHITECTURAL BLOCKS

In this section we will derive two key architectural blocks, a residual block, and a multi-layer residual
block, which allow our subsequent complexity claims. We present an additional architectural block
building on these in Appendix C, but do not include it in the main text as it is not essential for
understanding the key complexity details of such quantum implementations.
Lemma 6 (General Skip Norm Block). Let ϵ1 ∈ (0, 1]. Let κ ∈ [1, 2]. Consider the architecture
shown in Figure 2. Let N = 2n. We are given the unitary Uψ a (1, a, ϵ0)-VE for |ψ⟩n with circuit
complexity O(T1), and are given the unitary UW a (1, b, 0)-block-encoding for the n-qubit operator
W/κ with circuit complexity O(T2) such that ∥W∥2 ≤ 1. Define f(x) := erf(4x/5), |ψf ⟩n :=
|ψ⟩n+f(W |ψ⟩n), and N := ∥|ψf ⟩n∥2. Then, we can obtain a (1, 2(a+b)+n+9, 712(ϵ0 + ϵ1))-VE
for |ψf ⟩n/N with circuit complexity O(log(

√
N
ϵ1

) log(1
ϵ1
)(a+ b+ n+ T1 + T2)).3

The rigorous proof of this result is provided in Appendix C, but it essentially follows from using
our preceding results on matrix-vector multiplication, vector sums, and the extant results on layer
normalization and applications of the error-function. The key insight enabling this proof is that in
a residual block such as the one we have described, the forward norm of the vector is efficiently
lower-bounded prior to every normalization layer. Without such skip connection, and the techniques
we developed for working with vector-encodings (which enable effective tracking of the norm of
a vector propagating through a network), the norm at the end of such a block could be arbitrarily
small, leading to complexities which could be on the order of ≈ Nk (or even unbounded) for k-layer
architectures – completely intractable even for constant depth networks. As a consequence, we are
able to prove the following result for multi-layer residual blocks.
Lemma 7 (Sequence of k Residual Blocks). Let N = 2n. Suppose we are given a unitary Uψ with
circuit complexity O(T1) such that it is a (1, a, 0)-VE for |ψ⟩n. Let k be an asymptotic constant.
Suppose we have a sequence of k residual blocks (as per Lemma 6), with weights implemented by k
unitaries {UWi

}i such that UWi
(with circuit complexity O(T2)) is a (1, b, 0)-block-encoding for the

n-qubit operator Wi/2, and ∀i, ∥Wi∥2 ≤ 1. Then, we can prepare a (1, 2k(a+ 2b+ n+ 9), ϵ)-VE
for the output of the k residual blocks with O(log(

√
N/ϵ)2k(a+ 2b+ n+ T1 + T2)) circuit depth.

3We implicitly assume that ∥W |ψ⟩n∥ > 0, which is a reasonable assumption for any input which comes
from the same distribution as the training data.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

This result is proven in Appendix C, and follows by repeatedly invoking Lemma 6 with its output as
the next input. It appears that the complexity of this result as a function of the number of layers k is
a fundamental limitation of any quantum algorithm. As described in greater detail in Appendix C,
for a unitary matrix (a linear operator) to enact a non-linear transformation on a vector, its definition
must in general be input-dependent. Consequently, unless Lemma 6 can be implemented with only
a single copy of its input, it seems unlikely that this complexity can be avoided. This suggests
that quantum computers are best suited for accelerating the wide and shallow regime, which is
a popular regime for classical inference accelerators (since wide networks can be parallelized on
classical hardware, but depth cannot be parallelized). Classically, with the aim of accelerating both
inference and training, there are a range of techniques for compressing neural networks (Cheng
et al., 2018). Moreover, classically, deep neural networks are much harder to accelerate than their
shallow and wide counterparts (you can parallelize matrix-multiplications, but not consecutive
layers). Consequently, there are a number of classical architectures striving for shallow networks
(e.g. Zagoruyko & Komodakis (2016)) which can serve as sources of inspiration for designing
architectures best suited for quantum acceleration. We discuss this in greater detail in Appendix C.

4 ARCHITECTURES

We will now use the architectural blocks derived above to prove the quantum complexity in inference
for the architectures shown in Figure 1 (a), which is then used to prove the complexity of the
architecture in panel (b). A corollary is used to prove the complexity of the architecture in panel (c).

In all 3 regimes, the key architectural block shared in common is the sequence of k residual convolu-
tional blocks, which is enacted by combining Lemma 5 and Lemma 7. The architectures then only
differ in how the input tensor is transformed, and in how the output of the k residual convolutional
blocks is processed. Consequently, we will now provide high-level intuition for the important se-
quence of k residual convolution blocks. First, Lemma 7 is simply obtained by chaining the result
for a single residual block (given by Lemma 6) k times, using the output of each invocation as the
input for the next. Lemma 6 itself is implemented by enacting each of the vector-encoding operations
corresponding to the operations shown in Figure 2: matrix-vector multiplication via Lemma 2, non-
linear activation via Lemma B.19, vector sum via Lemma 1, and vector normalization via Lemma B.8.
Noting that Lemma B.19 and Lemma B.8 are straight-forward improvements over the results from
prior work, we delegate them to the appendix. It is also worth noting that our selection of the erf
activation function is not restrictive, and was selected for analytical convenience. This could easily be
swapped with other activation functions compatible with Lemma B.18, e.g., GELU or tanh. Finally,
the last key piece of intuition regards the dimension of the specific vectorized tensor which is input to
the sequence of k residual blocks. In Regime 1, this tensor is simply a fixed concatenation of the
input tensor, and consequently for an input with vectorized dimension O(N) has dimension O(N).
In Regimes 2 and 3, the input tensor is mapped through a tensor product d times, resulting in an input
to the residual block sequence of dimension O(N2) (when d = 2).

Thus, our results in all 3 data-access regimes all follow from the general result, formally stated below:

Theorem 2 (General Multilayer Convolutional Network with Skip Connections). Let M = 2m,
N = 2n =M2. Consider the neural network architecture shown in Figure 1 (a). Let the inputX be a
rank−3 tensor of dimension 4×M×M (with an R, G, B and null channel, where the null channel has
all 0s). Assume that ∥vec(X)∥2 = 1, and that we have access to a unitary UX that is a (1, 0, 0)-VE
for the input in column-major layout |X⟩2+2m =

∑4
i=0

∑M−1
j=0

∑M−1
k=0 Xi,k,j |i⟩2|j⟩m|k⟩m. Assume

that UX has O(TX) circuit complexity. As shown in the figure, we have a sequence of k residual
convolutional layers, where each convolutional layer has 16 input channels, 16 output channels (i.e.,
16 filters) with filter width and height 3. I.e., each convolutional layer has 16× 16× 3× 3 = 2304
parameters. Assume that there is 0 padding so the input and outputs always have the same dimension,
and that there is a stride of 1. Suppose each convolutional layer has been regularized, so that its
spectral norm is at most 1. LetW represent theN×N full-rank linear layer applied in the final output
block of the network, and assume that ∥W∥2 ≤ 1. Let C represent the number of output classes, and
assume that C = 2c (padding can be added otherwise). Let the overall network be represented by the
function h : R4×M×M 7→ RC . Let y = h(X) (and note that ∥y∥1 = 1, and y ∈ RC). Then, with
O(log(

√
N/ϵ)2k+1(TX + n2)) total circuit depth, and with O(2kn) ancillary qubits, we can draw a

sample from an ℓ1-normalized C-dimensional vector ỹ such that ∥y − ỹ∥2 ≤ ϵ.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Proof. We have a 4 channel input and we want to map this to a 16 channel in-
put (by concatenating |X⟩2+2m vector with itself 4 times). Let |X⟩4+2m :=
1√
4
(⟨X|2+2m ⟨X|2+2m ⟨X|2+2m ⟨X|2+2m)

T . We can invoke Lemma 4 with UX four times,
obtaining a (1, 0, 0)-VE for |X⟩4+2m with O(TX) circuit complexity. Using Lemma 5, for each
of the i = 0, ..., k − 1 convolutions, we can obtain a (1, 27, 0)-block-encoding for Ci/2 ∥Ci∥2 (the
matrix form of the corresponding convolution) with O(m2) circuit depth. Consequently, we can
invoke Lemma 7 to obtain Uconv a (1, 2k(63+n), ϵ)-VE for the ℓ2-normalized output of the sequence
of k residual blocks. Moreover, Uconv has O(log(

√
N/ϵ)2k(n+ TX +m2)) circuit depth. Then, we

can invoke Lemma C.2 with Uconv to draw a sample from some probability vector ỹ ∈ RC such that
∥ỹ − y∥2 ≤ ϵ withO(log(

√
N/ϵ)2k+1(TX+n2)) circuit depth and withO(2kn) ancilla qubits.

An important point to consider is that in order for a unitary matrix (or more generally, any linear
operator) to enact a non-linear transformation, its definition must depend on the vector it is being
applied to. For instance, consider the simple example where we are given a vector x, and we define
A := diag(x). Then,Ax = (x)2 (with the square applied element-wise) which is clearly a non-linear
transformation. Consequently, our algorithm for Theorem 2 adaptively (and efficiently) constructs a
new circuit on the fly for each new input – this is accounted for in the result statement.

4.1 KEY RESULTS UNDER DIFFERING QUANTUM DATA ACCESS ASSUMPTIONS

The feasibility of quantum random access memory, the primary method assumed in the literature for
accessing classical data in quantum algorithms, is widely debated in the literature (Jaques & Rattew,
2023). However, recent work (Dalzell et al., 2025a) provides a promising path forward, addressing
many of the limitations raised in Jaques & Rattew (2023). Regardless, algorithms papers often fail
to meaningfully address the memory assumptions they make, and so we include a comprehensive
discussion of it in Appendix D highlighting the feasibility of the technology, and that importantly
our QRAM assumptions are no stronger than the usual made in such algorithms papers. The key
concept discussed in Appendix D is that any algorithm utilizing a QRAM device must consider the
classical opportunity cost of using that device, which dictates the constraints placed on realizing a
useful QRAM (e.g., for such purposes the physical QRAM device cannot simply be implemented in
the circuit model).

Regime 1: Input and Network Use QRAM. The primary purpose of the architecture we presented
in Regime 1 is to show that quantum computers can implement multi-layer neural networks based on
real architectures coherently, with reasonable input assumptions, and with cost polylogarithmic in the
dimension of the network. As per the main-text, in this regime we assume that the matrix weights
(in particular for the final full-rank linear layer) and vectorized input are provided via QRAM. The
architecture for this regime is shown in Figure 1 (a). Let the dimension of the vectorized input be
O(N). Since the input is provided via QRAM, TX as defined in Theorem 2 is TX ∈ O(polylog(N))
(see, Section D.2). Thus, for a constant number of layers k, the cost to perform inference (in
accordance with Definition 1) becomes O(polylog(

√
N/ϵ)k). Please see Section E.1 for a detailed

discussion outlining important application areas where such input assumptions are practical (namely,
where the input can be constructed in an amortized fashion online). Moreover, in Section E.1 we
also discuss considerations relating the receptive field of such architectures, and argue that existing
techniques are insufficient to dequantize this result.

Regime 2: Network Stored in QRAM, Input Loaded Without QRAM. The architecture in
this regime is shown in Figure 1 (b). The architecture contains d paths of purely classical neural
networks, which each operate on O(N) dimensional (vectorized) inputs. These classical architectures
are assumed to have Õ(N) time complexity in terms of the input. These separate paths are then
normalized, converted to quantum states, and then the Kronecker product of the result is taken. The
result is fed into exactly the same architecture as in Regime 1. This architecture is inspired by bilinear
neural networks (Lin et al., 2015). Consequently, to determine the cost of this architecture, we can
again invoke Theorem 2. Here, we need to pay an Õ(N) cost to load each of the input paths in as
a quantum state (via brute-force (Plesch & Brukner, 2011)),TX ∈ O(N). Consequently, we obtain
an overall algorithmic complexity of O(N log(N

d/2

ϵ)2k), which for constant k and d, simplifies to

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Õ(N log(1/ϵ)2k). When d = 2, the dimension after the tensor product is N2. Consequently, the final
linear layer contains a matrix multiplication of an N2 ×N2 matrix with an N2 dimensional vector,
which takes Ω(N4) time. Consequently, for a constant k, this architecture produces a quartic
speedup for the inference problem defined in Definition 1 over exact classical computation.
When d = 1, the speedup due to the final layer is instead quadratic. This speedup can be increased by
setting d to larger values.

Regime 3: No QRAM. This architecture is identical to the one presented in Regime 2, only
dropping the final full-rank linear block. In Section E.3 we show that the architecture in Figure 1 (c)
can perform inference with a total O(N log(1/ϵ)2k) circuit complexity. Since the dimension of the
vector acted on by the 2D convolution is O(N2) (when d=2), the classical cost to compute this is
Ω(N2): showing a quadratic speedup over an exact classical implementation. The speedup can
be made asymptotically larger by increasing d. We have a more detailed discussion of this regime
in Section E.3.

5 CONCLUSION

This work proposes a modular framework for accelerating classical deep learning inference using
fault-tolerant quantum subroutines. Our approach offers direct quantum implementations of important
neural network architectural blocks (such as convolutions, activation functions, normalization layers,
and residual connections), and uses structured primitives such as quantum block-encodings.

In summary, we provide a number of novel theoretical contributions. We further develop the VE
framework for quantum vector encodings. We derive a novel quantum algorithm for the multiplication
of an arbitrary dense and full-rank matrix with the element-wise square of a given vector, which to
the best of our knowledge, is the first such result which does not incur a Frobenius norm (and thus
rank) complexity dependence. We provide a novel QRAM-free block-encoding of multi-filter 2D
convolutions. We then prove the first end-to-end complexity guarantees for the coherent quantum
acceleration of multi-layer neural network inference, under three QRAM regimes. In the first regime,
we give complexity which is polylogarithmic in both the dimension of the input, and the number of
parameters in the network. In the second, we show a quartic speedup over exact classical computation.
In the third, we show a quadratic speedup.

6 FUTURE WORK

To the best of our knowledge, this is the first paper to implement multi-layer neural networks
coherently on a quantum computer, and as such, many important open directions of research remain.
Moreover, progress towards achieving a practically passive QRAM is important for realizing the
speedups in the first two regimes. Moreover, exploring the connection between this work and
the techniques utilized in scientific computing (e.g., quantum differential equation solvers, finite
difference methods, etc (Cao et al., 2013; Montanaro, 2016; Childs et al., 2021; Berry & Costa,
2024; Jennings et al., 2024; An et al., 2024; Shang et al., 2025; Liu et al., 2021a; 2023; Krovi,
2023; Costa et al., 2025; Wu et al., 2025)) would be interesting. Most importantly, we wonder if
it is possible to coherently enact sequences of non-linear transformations without an exponentially
increasing circuit depth (and with polylogarithmic error-dependence), thereby allowing very deep
multi-layer architectures to be quantized, but we suspect that this may be provably impossible (at least
in general). Furthermore, it is conceivable that an approach enacting the non-linear transformations
coherently with techniques based on QPE (Mitarai et al., 2019) might be able to enact a sequence of
non-linearities without exponentially increasing circuit depth (albeit at the cost of an exponentially
worse and exponentially decaying error-dependency). Combining such approaches may let quantum
computers coherently accelerate architectures with depths of e.g., up to 25. Alternatively, one could
combine sequences of coherent multi-layer architectural blocks with intermittent tomography to reset
the depth cost, in essence fusing the techniques presented in our paper with those used in the prior
work. It would also be worthwhile to explore accelerating UNet based architectures, as many of
our techniques directly apply, and a distilled UNet-based diffusion model could potentially be quite
shallow. Finally, while this work assumes our networks are trained classically, it would be interesting
to explore how the techniques we develop could also be used to help accelerate training.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Amira Abbas, Robbie King, Hsin-Yuan Huang, William J. Huggins, Ramis Movassagh, Dar Gilboa,
and Jarrod McClean. On quantum backpropagation, information reuse, and cheating measurement
collapse. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.),
Advances in Neural Information Processing Systems, volume 36, pp. 44792–44819. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/hash/8c3caae2f725c8e2a55ecd600563d172-Abstract.html.

Kazi Main Uddin Ahmed, Math HJ Bollen, and Manuel Alvarez. A review of data centers energy
consumption and reliability modeling. IEEE access, 9:152536–152563, 2021. URL https:
//doi.org/10.1109/ACCESS.2021.3125092.

Jonathan Allcock, Chang-Yu Hsieh, Iordanis Kerenidis, and Shengyu Zhang. Quantum algorithms
for feedforward neural networks. ACM Trans. Quantum Comput., 1(1), October 2020. URL
https://doi.org/10.1145/3411466.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization
in overparameterized neural networks, going beyond two layers. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
hash/62dad6e273d32235ae02b7d321578ee8-Abstract.html.

Dong An, Akwum Onwunta, and Gengzhi Yang. Fast-forwarding quantum algorithms for linear
dissipative differential equations, 2024. URL https://arxiv.org/abs/2410.13189.

Eric R. Anschuetz and Bobak T. Kiani. Quantum variational algorithms are swamped with
traps. Nature Communications, 13(1), December 2022. URL https://doi.org/10.1038/
s41467-022-35364-5.

Ryan Babbush, Jarrod R. McClean, Michael Newman, Craig Gidney, Sergio Boixo, and Hartmut
Neven. Focus beyond quadratic speedups for error-corrected quantum advantage. PRX Quantum,
2:010103, Mar 2021. URL https://link.aps.org/doi/10.1103/PRXQuantum.2.
010103.

Marcello Benedetti, Delfina Garcia-Pintos, Oscar Perdomo, Vicente Leyton-Ortega, Yunseong Nam,
and Alejandro Perdomo-Ortiz. A generative modeling approach for benchmarking and training
shallow quantum circuits. npj Quantum Information, 5(1), May 2019a. URL https://doi.
org/10.1038/s41534-019-0157-8.

Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini. Parameterized quantum circuits
as machine learning models. Quantum Sci. Technol., 4(4):043001, November 2019b. URL
http://doi.org/10.1088/2058-9565/ab4eb5.

Pablo Bermejo, Paolo Braccia, Manuel S. Rudolph, Zoë Holmes, Lukasz Cincio, and M. Cerezo.
Quantum convolutional neural networks are (effectively) classically simulable, 2024. URL https:
//arxiv.org/abs/2408.12739.

Dominic W. Berry and Pedro C. S. Costa. Quantum algorithm for time-dependent differential
equations using dyson series. Quantum, 8:1369, June 2024. URL https://doi.org/10.
22331/q-2024-06-13-1369.

Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd.
Quantum machine learning. Nature, 549(7671):195–202, 2016. URL https://doi.org/10.
1038/nature23474.

Lennart Bittel and Martin Kliesch. Training variational quantum algorithms is np-hard. Phys.
Rev. Lett., 127:120502, Sep 2021. URL https://link.aps.org/doi/10.1103/
PhysRevLett.127.120502.

11

https://proceedings.neurips.cc/paper_files/paper/2023/hash/8c3caae2f725c8e2a55ecd600563d172-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/8c3caae2f725c8e2a55ecd600563d172-Abstract.html
https://doi.org/10.1109/ACCESS.2021.3125092
https://doi.org/10.1109/ACCESS.2021.3125092
https://doi.org/10.1145/3411466
https://proceedings.neurips.cc/paper_files/paper/2019/hash/62dad6e273d32235ae02b7d321578ee8-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/62dad6e273d32235ae02b7d321578ee8-Abstract.html
https://arxiv.org/abs/2410.13189
https://doi.org/10.1038/s41467-022-35364-5
https://doi.org/10.1038/s41467-022-35364-5
https://link.aps.org/doi/10.1103/PRXQuantum.2.010103
https://link.aps.org/doi/10.1103/PRXQuantum.2.010103
https://doi.org/10.1038/s41534-019-0157-8
https://doi.org/10.1038/s41534-019-0157-8
http://doi.org/10.1088/2058-9565/ab4eb5
https://arxiv.org/abs/2408.12739
https://arxiv.org/abs/2408.12739
https://doi.org/10.22331/q-2024-06-13-1369
https://doi.org/10.22331/q-2024-06-13-1369
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://link.aps.org/doi/10.1103/PhysRevLett.127.120502
https://link.aps.org/doi/10.1103/PhysRevLett.127.120502

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Daan Camps and Roel Van Beeumen. Approximate quantum circuit synthesis using block encodings.
Phys. Rev. A, 102:052411, Nov 2020. URL https://link.aps.org/doi/10.1103/
PhysRevA.102.052411.

Daan Camps, Lin Lin, Roel Van Beeumen, and Chao Yang. Explicit quantum circuits for block
encodings of certain sparse matrices. SIAM J. Matrix Anal. Appl., 45(1):801–827, 2024. URL
https://doi.org/10.1137/22M1484298.

Yudong Cao, Anargyros Papageorgiou, Iasonas Petras, Joseph Traub, and Sabre Kais. Quantum
algorithm and circuit design solving the poisson equation. New Journal of Physics, 15(1):013021,
January 2013. URL https://doi.org/10.1088/1367-2630/15/1/013021.

Aaron Carroll and Gernot Heiser. An analysis of power consumption in a smartphone. In Proceedings
of the 2010 USENIX Conference on USENIX Annual Technical Conference, USENIXATC’10,
pp. 21, USA, 2010. USENIX Association. URL https://dl.acm.org/doi/10.5555/
1855840.1855861.

M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii,
Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J. Coles. Variational
quantum algorithms. Nat. Rev. Phys, 3(9):625–644, August 2021. URL http://doi.org/10.
1038/s42254-021-00348-9.

M. Cerezo, Martin Larocca, Diego García-Martín, N. L. Diaz, Paolo Braccia, Enrico Fontana,
Manuel S. Rudolph, Pablo Bermejo, Aroosa Ijaz, Supanut Thanasilp, Eric R. Anschuetz,
and Zoë Holmes. Does provable absence of barren plateaus imply classical simulabil-
ity? Nature Communications, 16(1), August 2025. URL https://doi.org/10.1038/
s41467-025-63099-6.

Shantanav Chakraborty, Aditya Morolia, and Anurudh Peduri. Quantum regularized least squares.
Quantum, 7:988, April 2023. URL https://doi.org/10.22331/q-2023-04-27-988.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. Model compression and acceleration for deep
neural networks: The principles, progress, and challenges. IEEE Signal Processing Magazine, 35
(1):126–136, 2018. URL https://doi.org/10.1109/MSP.2017.2765695.

El Amine Cherrat, Iordanis Kerenidis, Natansh Mathur, Jonas Landman, Martin Strahm, and
Yun Yvonna Li. Quantum vision transformers. Quantum, 8:1265, February 2024. URL
https://doi.org/10.22331/q-2024-02-22-1265.

Nai-Hui Chia, András Pal Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and Chunhao Wang.
Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum ma-
chine learning. Journal of the ACM, 69(5):1–72, October 2022. URL https://doi.org/10.
1145/3549524.

Andrew M. Childs and Nathan Wiebe. Hamiltonian simulation using linear combinations of unitary
operations. Quantum Information and Computation, 12(11 & 12):901–924, November 2012. URL
https://doi.org/10.26421/QIC12.11-12-1.

Andrew M Childs, Jin-Peng Liu, and Aaron Ostrander. High-precision quantum algorithms for
partial differential equations. Quantum, 5:574, 2021. URL https://doi.org/10.22331/
q-2021-11-10-574.

12

https://proceedings.neurips.cc/paper_files/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://link.aps.org/doi/10.1103/PhysRevA.102.052411
https://link.aps.org/doi/10.1103/PhysRevA.102.052411
https://doi.org/10.1137/22M1484298
https://doi.org/10.1088/1367-2630/15/1/013021
https://dl.acm.org/doi/10.5555/1855840.1855861
https://dl.acm.org/doi/10.5555/1855840.1855861
http://doi.org/10.1038/s42254-021-00348-9
http://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s41467-025-63099-6
https://doi.org/10.1038/s41467-025-63099-6
https://doi.org/10.22331/q-2023-04-27-988
https://doi.org/10.1109/MSP.2017.2765695
https://doi.org/10.22331/q-2024-02-22-1265
https://doi.org/10.1145/3549524
https://doi.org/10.1145/3549524
https://doi.org/10.26421/QIC12.11-12-1
https://doi.org/10.22331/q-2021-11-10-574
https://doi.org/10.22331/q-2021-11-10-574

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Iris Cong, Soonwon Choi, and Mikhail D. Lukin. Quantum convolutional neural networks.
Nature Physics, 15(12):1273–1278, August 2019. URL http://doi.org/10.1038/
s41567-019-0648-8.

D. Coppersmith. An approximate fourier transform useful in quantum factoring, 2002. URL
https://arxiv.org/abs/quant-ph/0201067.

Pedro C. S. Costa, Philipp Schleich, Mauro E. S. Morales, and Dominic W. Berry. Further improving
quantum algorithms for nonlinear differential equations via higher-order methods and rescal-
ing. npj Quantum Information, 11(1), August 2025. URL https://doi.org/10.1038/
s41534-025-01084-z.

Marcus Cramer, Martin B. Plenio, Steven T. Flammia, Rolando Somma, David Gross, Stephen D.
Bartlett, Olivier Landon-Cardinal, David Poulin, and Yi-Kai Liu. Efficient quantum state tomog-
raphy. Nature Communications, 1(1), December 2010. URL https://doi.org/10.1038/
ncomms1147.

Alexander M. Dalzell, András Gilyén, Connor T. Hann, Sam McArdle, Grant Salton, Quynh T.
Nguyen, Aleksander Kubica, and Fernando G. S. L. Brandão. A distillation-teleportation protocol
for fault-tolerant qram, 2025a. URL https://arxiv.org/abs/2505.20265.

Alexander M. Dalzell, Sam McArdle, Mario Berta, Przemyslaw Bienias, Chi-Fang Chen, András
Gilyén, Connor T. Hann, Michael J. Kastoryano, Emil T. Khabiboulline, Aleksander Kubica,
Grant Salton, Samson Wang, and Fernando G. S. L. Brandão. Quantum algorithms: A survey of
applications and end-to-end complexities, April 2025b. URL https://doi.org/10.1017/
9781009639651.

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need:
pure attention loses rank doubly exponentially with depth. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 2793–2803. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/dong21a.html.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=YicbFdNTTy.

Thomas G. Draper. Addition on a quantum computer, 2000. URL https://arxiv.org/abs/
quant-ph/0008033.

Yuxuan Du, Xinbiao Wang, Naixu Guo, Zhan Yu, Yang Qian, Kaining Zhang, Min-Hsiu Hsieh,
Patrick Rebentrost, and Dacheng Tao. A Gentle Introduction to Quantum Machine Learning.
Springer Nature Singapore, 2025. doi: 10.1007/978-981-95-1284-3. URL https://doi.
org/10.1007/978-981-95-1284-3.

Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power provisioning for a warehouse-
sized computer. SIGARCH Comput. Archit. News, 35(2):13–23, June 2007. URL https:
//doi.org/10.1145/1273440.1250665.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Moham-
madamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, David Silver, Demis Hassabis, and Pushmeet Kohli. Discovering faster matrix multipli-
cation algorithms with reinforcement learning. Nature, 610(7930):47–53, October 2022. URL
https://doi.org/10.1038/s41586-022-05172-4.

Richard P. Feynman. Simulating physics with computers. International Journal of Theoretical
Physics, 21(6–7):467–488, June 1982. URL https://doi.org/10.1007/BF02650179.

Richard P. Feynman. Quantum mechanical computers. Foundations of Physics, 16(6):507–531, June
1986. URL https://doi.org/10.1007/BF01886518.

13

http://doi.org/10.1038/s41567-019-0648-8
http://doi.org/10.1038/s41567-019-0648-8
https://arxiv.org/abs/quant-ph/0201067
https://doi.org/10.1038/s41534-025-01084-z
https://doi.org/10.1038/s41534-025-01084-z
https://doi.org/10.1038/ncomms1147
https://doi.org/10.1038/ncomms1147
https://arxiv.org/abs/2505.20265
https://doi.org/10.1017/9781009639651
https://doi.org/10.1017/9781009639651
https://proceedings.mlr.press/v139/dong21a.html
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://arxiv.org/abs/quant-ph/0008033
https://arxiv.org/abs/quant-ph/0008033
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1145/1273440.1250665
https://doi.org/10.1145/1273440.1250665
https://doi.org/10.1038/s41586-022-05172-4
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF01886518

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Sevag Gharibian and François Le Gall. Dequantizing the quantum singular value transformation:
Hardness and applications to quantum chemistry and the quantum pcp conjecture. SIAM Journal
on Computing, 52(4):1009–1038, 2023. URL https://doi.org/10.1137/22M1513721.

András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular value transformation
and beyond: exponential improvements for quantum matrix arithmetics. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, pp. 193–204, New
York, NY, USA, 2019. Association for Computing Machinery. URL https://doi.org/10.
1145/3313276.3316366.

Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Architectures for a quantum random access
memory. Phys. Rev. A, 78:052310, Nov 2008a. URL https://link.aps.org/doi/10.
1103/PhysRevA.78.052310.

Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum random access memory. Phys.
Rev. Lett., 100:160501, Apr 2008b. doi: 10.1103/PhysRevLett.100.160501. URL https:
//link.aps.org/doi/10.1103/PhysRevLett.100.160501.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. URL
http://www.deeplearningbook.org.

Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J. Cree. Regularisation of neural
networks by enforcing lipschitz continuity. Machine Learning, 110(2):393–416, December 2020.
URL https://doi.org/10.1007/s10994-020-05929-w.

Lov Grover and Terry Rudolph. Creating superpositions that correspond to efficiently integrable
probability distributions, 2002. URL https://arxiv.org/abs/quant-ph/0208112.

Naixu Guo, Kosuke Mitarai, and Keisuke Fujii. Nonlinear transformation of complex amplitudes
via quantum singular value transformation. Phys. Rev. Res., 6:043227, December 2024a. URL
https://link.aps.org/doi/10.1103/PhysRevResearch.6.043227.

Naixu Guo, Zhan Yu, Matthew Choi, Yizhan Han, Aman Agrawal, Kouhei Nakaji, Alán Aspuru-
Guzik, and Patrick Rebentrost. Quantum transformer: Accelerating model inference via quantum
linear algebra, 2024b. URL https://arxiv.org/abs/2402.16714.

Connor T Hann. Practicality of quantum random access memory. PhD thesis, Yale University, 2021.
URL https://elischolar.library.yale.edu/gsas_dissertations/346.

Connor T. Hann, Gideon Lee, S.M. Girvin, and Liang Jiang. Resilience of quantum random access
memory to generic noise. PRX Quantum, 2:020311, Apr 2021. URL https://link.aps.
org/doi/10.1103/PRXQuantum.2.020311.

Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems of
equations. Phys. Rev. Lett., 103:150502, October 2009. URL https://link.aps.org/
doi/10.1103/PhysRevLett.103.150502.

Vojtěch Havlíček, Antonio D. Córcoles, Kristan Temme, Aram W. Harrow, Abhinav Kandala,
Jerry M. Chow, and Jay M. Gambetta. Supervised learning with quantum-enhanced feature
spaces. Nature, 567(7747):209–212, March 2019. URL https://doi.org/10.1038/
s41586-019-0980-2.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016. URL https://doi.org/10.1109/CVPR.2016.90.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 6840–6851. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html.

14

https://doi.org/10.1137/22M1513721
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1145/3313276.3316366
https://link.aps.org/doi/10.1103/PhysRevA.78.052310
https://link.aps.org/doi/10.1103/PhysRevA.78.052310
https://link.aps.org/doi/10.1103/PhysRevLett.100.160501
https://link.aps.org/doi/10.1103/PhysRevLett.100.160501
http://www.deeplearningbook.org
https://doi.org/10.1007/s10994-020-05929-w
https://arxiv.org/abs/quant-ph/0208112
https://link.aps.org/doi/10.1103/PhysRevResearch.6.043227
https://arxiv.org/abs/2402.16714
https://elischolar.library.yale.edu/gsas_dissertations/346
https://link.aps.org/doi/10.1103/PRXQuantum.2.020311
https://link.aps.org/doi/10.1103/PRXQuantum.2.020311
https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1109/CVPR.2016.90
https://proceedings.neurips.cc/paper_files/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Fang-Yu Hong, Yang Xiang, Zhi-Yan Zhu, Li-zhen Jiang, and Liang-neng Wu. Robust quantum
random access memory. Phys. Rev. A, 86:010306, Jul 2012. URL https://link.aps.org/
doi/10.1103/PhysRevA.86.010306.

Po-Wei Huang and Patrick Rebentrost. Post-variational quantum neural networks, 2024. URL
https://arxiv.org/abs/2307.10560.

Petr Ivashkov, Po-Wei Huang, Kelvin Koor, Lirandë Pira, and Patrick Rebentrost. Qkan: Quantum
kolmogorov-arnold networks, 2024. URL https://arxiv.org/abs/2410.04435.

Samuel Jaques and Arthur G. Rattew. Qram: A survey and critique, 2023. URL https://arxiv.
org/abs/2305.10310.

David Jennings, Matteo Lostaglio, Robert B Lowrie, Sam Pallister, and Andrew T Sornborger.
The cost of solving linear differential equations on a quantum computer: fast-forwarding to
explicit resource counts. Quantum, 8:1553, 2024. URL https://doi.org/10.22331/
q-2024-12-10-1553.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland,
Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer,
Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu,
Pushmeet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with al-
phafold. Nature, 596(7873):583–589, July 2021. URL https://doi.org/10.1038/
s41586-021-03819-2.

Ashish Kapoor, Nathan Wiebe, and Krysta Svore. Quantum perceptron models. In
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances
in Neural Information Processing Systems, volume 29. Curran Associates, Inc.,
2016. URL https://proceedings.neurips.cc/paper/2016/hash/
d47268e9db2e9aa3827bba3afb7ff94a-Abstract.html.

Iordanis Kerenidis and Anupam Prakash. Quantum recommendation systems. In 8th Innovations
in Theoretical Computer Science Conference (ITCS 2017), volume 67 of Leibniz International
Proceedings in Informatics (LIPIcs), pp. 49:1–49:21. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2017. URL https://doi.org/10.4230/LIPIcs.ITCS.2017.49.

Iordanis Kerenidis and Anupam Prakash. Quantum gradient descent for linear systems and least
squares. Phys. Rev. A, 101(2), February 2020. URL https://link.aps.org/doi/10.
1103/PhysRevA.101.022316.

Iordanis Kerenidis, Jonas Landman, and Anupam Prakash. Quantum algorithms for deep convolu-
tional neural networks. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=Hygab1rKDS.

Hari Krovi. Improved quantum algorithms for linear and nonlinear differential equations. Quantum,
7:913, February 2023. URL https://doi.org/10.22331/q-2023-02-02-913.

Martín Larocca, Supanut Thanasilp, Samson Wang, Kunal Sharma, Jacob Biamonte, Patrick J.
Coles, Lukasz Cincio, Jarrod R. McClean, Zoë Holmes, and M. Cerezo. Barren plateaus in
variational quantum computing. Nature Reviews Physics, 7(4):174–189, March 2025. URL
https://doi.org/10.1038/s42254-025-00813-9.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015. URL https://doi.org/10.1038/nature14539.

Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. Bilinear cnn models for fine-grained
visual recognition. In 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1449–
1457. IEEE, December 2015. URL https://doi.org/10.1109/ICCV.2015.170.

15

https://link.aps.org/doi/10.1103/PhysRevA.86.010306
https://link.aps.org/doi/10.1103/PhysRevA.86.010306
https://arxiv.org/abs/2307.10560
https://arxiv.org/abs/2410.04435
https://arxiv.org/abs/2305.10310
https://arxiv.org/abs/2305.10310
https://doi.org/10.22331/q-2024-12-10-1553
https://doi.org/10.22331/q-2024-12-10-1553
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://proceedings.neurips.cc/paper/2016/hash/d47268e9db2e9aa3827bba3afb7ff94a-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/d47268e9db2e9aa3827bba3afb7ff94a-Abstract.html
https://doi.org/10.4230/LIPIcs.ITCS.2017.49
https://link.aps.org/doi/10.1103/PhysRevA.101.022316
https://link.aps.org/doi/10.1103/PhysRevA.101.022316
https://openreview.net/forum?id=Hygab1rKDS
https://doi.org/10.22331/q-2023-02-02-913
https://doi.org/10.1038/s42254-025-00813-9
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/ICCV.2015.170

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Jin-Peng Liu, Herman Øie Kolden, Hari K Krovi, Nuno F Loureiro, Konstantina Trivisa, and
Andrew M Childs. Efficient quantum algorithm for dissipative nonlinear differential equations.
Proceedings of the National Academy of Sciences, 118(35):e2026805118, 2021a. URL https:
//www.pnas.org/doi/abs/10.1073/pnas.2026805118.

Jin-Peng Liu, Dong An, Di Fang, Jiasu Wang, Guang Hao Low, and Stephen Jordan. Efficient quantum
algorithm for nonlinear reaction-diffusion equations and energy estimation. Communications
in Mathematical Physics, 404(2):963–1020, 2023. URL https://link.springer.com/
article/10.1007/s00220-023-04857-9.

Junyu Liu, Minzhao Liu, Jin-Peng Liu, Ziyu Ye, Yunfei Wang, Yuri Alexeev, Jens Eisert, and
Liang Jiang. Towards provably efficient quantum algorithms for large-scale machine-learning
models. Nature Communications, 15:434, 2024. URL https://doi.org/10.1038/
s41467-023-43957-x.

Yunchao Liu, Srinivasan Arunachalam, and Kristan Temme. A rigorous and robust quantum speed-up
in supervised machine learning. Nature Physics, 17:1013–1017, 2021b. URL https://doi.
org/10.1038/s41567-021-01287-z.

Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum principal component analysis. Nature
Physics, 10(9):631–633, July 2014. URL https://doi.org/10.1038/nphys3029.

Guang Hao Low and Isaac L. Chuang. Hamiltonian simulation by uniform spectral amplification,
2017. URL https://arxiv.org/abs/1707.05391.

Aqeel Mahesri and Vibhore Vardhan. Power consumption breakdown on a modern laptop. In
Power-Aware Computer Systems, pp. 165–180. Springer Berlin Heidelberg, 2005. URL https:
//doi.org/10.1007/11574859_12.

Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut Neven.
Barren plateaus in quantum neural network training landscapes. Nature Communications, 9(1),
November 2018. URL https://doi.org/10.1038/s41467-018-07090-4.

Hela Mhiri, Ricard Puig, Sacha Lerch, Manuel S. Rudolph, Thiparat Chotibut, Supanut Thanasilp,
and Zoë Holmes. A unifying account of warm start guarantees for patches of quantum landscapes,
2025. URL https://arxiv.org/abs/2502.07889.

Kosuke Mitarai, Masahiro Kitagawa, and Keisuke Fujii. Quantum analog-digital conversion. Phys.
Rev. A, 99:012301, Jan 2019. URL https://link.aps.org/doi/10.1103/PhysRevA.
99.012301.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=B1QRgziT-.

Ashley Montanaro. Quantum algorithms: an overview. npj Quantum Information, 2(1), January 2016.
URL https://doi.org/10.1038/npjqi.2015.23.

Gordon E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8):114–117,
April 1965. URL https://ieeexplore.ieee.org/document/4785860.

Danial Motlagh and Nathan Wiebe. Generalized quantum signal processing. PRX Quantum, 5:
020368, Jun 2024. doi: 10.1103/PRXQuantum.5.020368. URL https://link.aps.org/
doi/10.1103/PRXQuantum.5.020368.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cam-
bridge University Press, 2010. URL https://doi.org/10.1017/CBO9780511976667.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and

16

https://www.pnas.org/doi/abs/10.1073/pnas.2026805118
https://www.pnas.org/doi/abs/10.1073/pnas.2026805118
https://link.springer.com/article/10.1007/s00220-023-04857-9
https://link.springer.com/article/10.1007/s00220-023-04857-9
https://doi.org/10.1038/s41467-023-43957-x
https://doi.org/10.1038/s41467-023-43957-x
https://doi.org/10.1038/s41567-021-01287-z
https://doi.org/10.1038/s41567-021-01287-z
https://doi.org/10.1038/nphys3029
https://arxiv.org/abs/1707.05391
https://doi.org/10.1007/11574859_12
https://doi.org/10.1007/11574859_12
https://doi.org/10.1038/s41467-018-07090-4
https://arxiv.org/abs/2502.07889
https://link.aps.org/doi/10.1103/PhysRevA.99.012301
https://link.aps.org/doi/10.1103/PhysRevA.99.012301
https://openreview.net/forum?id=B1QRgziT-
https://doi.org/10.1038/npjqi.2015.23
https://ieeexplore.ieee.org/document/4785860
https://link.aps.org/doi/10.1103/PRXQuantum.5.020368
https://link.aps.org/doi/10.1103/PRXQuantum.5.020368
https://doi.org/10.1017/CBO9780511976667

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love,
Alán Aspuru-Guzik, and Jeremy L. O’Brien. A variational eigenvalue solver on a photonic
quantum processor. Nature Communications, 5:4213, 2014. URL https://doi.org/10.
1038/ncomms5213.

Martin Plesch and Časlav Brukner. Quantum-state preparation with universal gate decompositions.
Phys. Rev. A, 83:032302, March 2011. URL https://link.aps.org/doi/10.1103/
PhysRevA.83.032302.

Anupam Prakash. Quantum algorithms for linear algebra and machine learning. PhD thesis,
University of California, Berkeley, 2014. URL https://digicoll.lib.berkeley.edu/
record/136504.

John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, August 2018. URL
https://doi.org/10.22331/q-2018-08-06-79.

Arthur G. Rattew and Bálint Koczor. Preparing arbitrary continuous functions in quantum registers
with logarithmic complexity, 2022. URL https://arxiv.org/abs/2205.00519.

Arthur G. Rattew and Patrick Rebentrost. Non-linear transformations of quantum amplitudes:
Exponential improvement, generalization, and applications, 2023. URL https://arxiv.
org/abs/2309.09839.

Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum support vector machine for big
data classification. Phys. Rev. Lett., 113:130503, September 2014. URL https://link.aps.
org/doi/10.1103/PhysRevLett.113.130503.

Patrick Rebentrost, Thomas R. Bromley, Christian Weedbrook, and Seth Lloyd. Quantum hopfield
neural network. Phys. Rev. A, 98:042308, October 2018. URL https://link.aps.org/
doi/10.1103/PhysRevA.98.042308.

Manuel S. Rudolph, Sacha Lerch, Supanut Thanasilp, Oriel Kiss, Oxana Shaya, Sofia Vallecorsa,
Michele Grossi, and Zoë Holmes. Trainability barriers and opportunities in quantum generative
modeling. npj Quantum Information, 10(1), November 2024. URL https://doi.org/10.
1038/s41534-024-00902-0.

Sushant Sachdeva and Nisheeth K Vishnoi. Faster algorithms via approximation theory. Foundations
and Trends® in Theoretical Computer Science, 9(2):125–210, 2014. URL https://doi.org/
10.1561/0400000065.

Mehdi Saeedi and Massoud Pedram. Linear-depth quantum circuits for n-qubit toffoli gates with
no ancilla. Phys. Rev. A, 87:062318, Jun 2013. URL https://link.aps.org/doi/10.
1103/PhysRevA.87.062318.

Maria Schuld and Nathan Killoran. Quantum machine learning in feature hilbert spaces. Phys.
Rev. Lett., 122:040504, February 2019. URL https://link.aps.org/doi/10.1103/
PhysRevLett.122.040504.

Maria Schuld and Francesco Petruccione. Machine Learning with Quantum Computers. Springer In-
ternational Publishing, 2021. URL https://doi.org/10.1007/978-3-030-83098-4.

Hanie Sedghi, Vineet Gupta, and Philip M. Long. The singular values of convolutional layers. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=rJevYoA9Fm.

Zhong-Xia Shang, Naixu Guo, Dong An, and Qi Zhao. Designing a nearly optimal quantum algorithm
for linear differential equations via lindbladians. Phys. Rev. Lett., 135:120604, Sep 2025. URL
https://link.aps.org/doi/10.1103/cvl9-97qg.

17

https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://link.aps.org/doi/10.1103/PhysRevA.83.032302
https://link.aps.org/doi/10.1103/PhysRevA.83.032302
https://digicoll.lib.berkeley.edu/record/136504
https://digicoll.lib.berkeley.edu/record/136504
https://doi.org/10.22331/q-2018-08-06-79
https://arxiv.org/abs/2205.00519
https://arxiv.org/abs/2309.09839
https://arxiv.org/abs/2309.09839
https://link.aps.org/doi/10.1103/PhysRevLett.113.130503
https://link.aps.org/doi/10.1103/PhysRevLett.113.130503
https://link.aps.org/doi/10.1103/PhysRevA.98.042308
https://link.aps.org/doi/10.1103/PhysRevA.98.042308
https://doi.org/10.1038/s41534-024-00902-0
https://doi.org/10.1038/s41534-024-00902-0
https://doi.org/10.1561/0400000065
https://doi.org/10.1561/0400000065
https://link.aps.org/doi/10.1103/PhysRevA.87.062318
https://link.aps.org/doi/10.1103/PhysRevA.87.062318
https://link.aps.org/doi/10.1103/PhysRevLett.122.040504
https://link.aps.org/doi/10.1103/PhysRevLett.122.040504
https://doi.org/10.1007/978-3-030-83098-4
https://openreview.net/forum?id=rJevYoA9Fm
https://openreview.net/forum?id=rJevYoA9Fm
https://link.aps.org/doi/10.1103/cvl9-97qg

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with
deep neural networks and tree search. Nature, 529:484–489, 2016. URL https://doi.org/
10.1038/nature16961.

Ewin Tang. A quantum-inspired classical algorithm for recommendation systems. In Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, pp. 217–228,
New York, NY, USA, 2019. Association for Computing Machinery. URL https://doi.org/
10.1145/3313276.3316310.

Supanut Thanasilp, Samson Wang, M. Cerezo, and Zoë Holmes. Exponential concentration in
quantum kernel methods. Nature Communications, 15(1), June 2024. URL https://doi.
org/10.1038/s41467-024-49287-w.

Joran van Apeldoorn, Arjan Cornelissen, András Gilyén, and Giacomo Nannicini. Quantum tomogra-
phy using state-preparation unitaries. In Proceedings of the 2023 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 1265–1318. Society for Industrial and Applied Mathematics,
January 2023. URL https://doi.org/10.1137/1.9781611977554.ch47.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Kaito Wada, Naoki Yamamoto, and Nobuyuki Yoshioka. Heisenberg-limited adaptive gradient
estimation for multiple observables. PRX Quantum, 6:020308, Apr 2025. URL https://link.
aps.org/doi/10.1103/PRXQuantum.6.020308.

Yunfei Wang, Ruoxi Jiang, Yingda Fan, Xiaowei Jia, Jens Eisert, Junyu Liu, and Jin-Peng Liu.
Towards efficient quantum algorithms for diffusion probability models, 2025. URL https:
//arxiv.org/abs/2502.14252.

Nathan Wiebe, Daniel Braun, and Seth Lloyd. Quantum algorithm for data fitting. Phys. Rev. Lett.,
109:050505, Aug 2012. URL https://link.aps.org/doi/10.1103/PhysRevLett.
109.050505.

Nathan Wiebe, Ashish Kapoor, and Krysta M. Svore. Quantum deep learning. Quantum Information
and Computation, 16(7 & 8):541–587, May 2016. URL https://doi.org/10.26421/
QIC16.7-8-1.

Hsuan-Cheng Wu, Jingyao Wang, and Xiantao Li. Quantum algorithms for nonlinear dynamics:
Revisiting carleman linearization with no dissipative conditions. SIAM J. Sci. Comput., 47(2):
A943–A970, 2025. URL https://doi.org/10.1137/24M1665799.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5987–5995, 2017. URL https://doi.org/10.1109/
CVPR.2017.634.

Siyi Yang, Naixu Guo, Miklos Santha, and Patrick Rebentrost. Quantum alphatron: quantum
advantage for learning with kernels and noise. Quantum, 7:1174, November 2023. URL https:
//doi.org/10.22331/q-2023-11-08-1174.

Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the generalizability
of deep learning, 2017. URL https://arxiv.org/abs/1705.10941.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Procedings of the British Ma-
chine Vision Conference 2016, BMVC 2016, pp. 87.1–87.12. British Machine Vision Association,
2016. URL https://doi.org/10.5244/C.30.87.

18

https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1145/3313276.3316310
https://doi.org/10.1145/3313276.3316310
https://doi.org/10.1038/s41467-024-49287-w
https://doi.org/10.1038/s41467-024-49287-w
https://doi.org/10.1137/1.9781611977554.ch47
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://link.aps.org/doi/10.1103/PRXQuantum.6.020308
https://link.aps.org/doi/10.1103/PRXQuantum.6.020308
https://arxiv.org/abs/2502.14252
https://arxiv.org/abs/2502.14252
https://link.aps.org/doi/10.1103/PhysRevLett.109.050505
https://link.aps.org/doi/10.1103/PhysRevLett.109.050505
https://doi.org/10.26421/QIC16.7-8-1
https://doi.org/10.26421/QIC16.7-8-1
https://doi.org/10.1137/24M1665799
https://doi.org/10.1109/CVPR.2017.634
https://doi.org/10.1109/CVPR.2017.634
https://doi.org/10.22331/q-2023-11-08-1174
https://doi.org/10.22331/q-2023-11-08-1174
https://arxiv.org/abs/1705.10941
https://doi.org/10.5244/C.30.87

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

In Appendix A we present a summary of Quantum Random Access Memory (QRAM), which we
subsequently use. In Appendix B we present a number of existing techniques which we require
to manipulate vectors and matrices with quantum computers, and then use them to develop a
number of new useful results for quantum matrix-vector arithmetic. In Appendix C, we use the
techniques developed in Appendix B to construct quantum-implementations of key architectural
blocks. In Appendix D, we discuss the feasibility of QRAM. In Appendix E we use the architectural
blocks obtained in Appendix C to derive end-to-end complexities for a number of architectures under
different QRAM assumptions.

A QUANTUM RANDOM ACCESS MEMORY (QRAM)

Quantum Random Access Memory (Giovannetti et al., 2008b) is a widely assumed mechanism in
the quantum computing literature for accessing data in a quantum computer. In this paper, we make
a range of QRAM assumptions under different regimes of assumed feasibility. With the aim of
enabling practical end-to-end speed-ups, it is important to explicitly state the different assumptions
and consider the feasibility of each of these regimes.

In this section, we will formally define QRAM, and state the assumed complexities. In Appendix D,
we dive into a deeper discussion of the feasibility of our various QRAM assumptions, with the aim
of providing a clear understanding of what sorts of end-to-end speed-ups our results can offer in
practice.
Definition A.1 (QRAM for Classical Data). Let N = 2n and D = 2d. Let |i⟩n be any n-qubit
standard basis vector, and let xi ∈ [D]. Then, a QRAM withO(dN logN) total qubits can implement
the mapping,

U |i⟩n|0⟩d = |i⟩n|xi⟩d (A.1)

with O(d logN) circuit depth.

As mentioned in a number of sources, e.g., Hann et al. (2021); Giovannetti et al. (2008a) an N qubit
QRAM can be implemented with O(logN) depth complexity. Consequently, performing a sequence
of d of these (to implement each of the d-bits in each memory register), a circuit depth complexity of
O(d logN) trivially follows.
Definition A.2 (QRAM for Quantum Data (Prakash, 2014; Kerenidis & Prakash, 2017; Kerenidis
et al., 2020)). Let N = 2n, M = 2m. Let |i⟩n be any n-qubit standard basis vector. Allow |ψi⟩m to
be an arbitrary m-qubit normalized quantum states. Then, a QRAM with Õ(MN) total qubits, and
Õ(MN) classical pre-processing to construct the data-structure, can implement the mapping,

U |i⟩n|0⟩m = |i⟩n|ψi⟩m (A.2)

with O(log2(NM)) circuit depth.

Importantly, as per Prakash (2014); Kerenidis & Prakash (2017); Kerenidis et al. (2020) QRAM for
quantum data can be implemented by a circuit (based on Grover & Rudolph (2002)) with depth and
width O(polylog(MN)) with access to a QRAM data structure (as per Definition A.1) containing
all the entries of each state in the quantum data (along with O(logM) copies for each of the sets of
partial norms). Thus, if QRAM for classical data is feasible (as discussed in Appendix D), QRAM
for quantum data is as well (with pre-processing to construct the appropriate data-structures).

In this work, we will use QRAM to describe QRAM for both quantum and classical data, and will
make the distinction clear when it is relevant.

B QUANTUM MATRIX-VECTOR ARITHMETIC

In this section, we formally derive a number of tools for quantum matrix-vector arithmetic.
Lemma B.1 (Product of block encodings (Gilyén et al., 2019)). If U is an (α, a, δ)-block-encoding
of an s-qubit operator A, and V is an (β, b, ϵ)-block-encoding of an s-qubit operator B then
(Ib ⊗ U)(Ia ⊗ V) is an (αβ, a+ b, αϵ+ βδ)-block-encoding of AB.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

In Lemma B.1 we adopt the tensor product notation used in Gilyén et al. (2019); the tensor product
in this lemma is used differently than it is used anywhere else in this paper.

We now present a standard result (see Lemma 1 of Camps & Van Beeumen (2020) or Lemma 21
of Chakraborty et al. (2023)), and we include the proof for completeness, as it is the basis of a
subsequent proof Lemma 3. In particular, our derivation closely follows that of Lemma 1 of Camps
& Van Beeumen (2020).

Lemma B.2 (Tensor Product of Block-Encoded Operators). Given a unitaryUA which is an (α, a, ϵ0)-
block-encoding for n-qubit operator A with O(TA) circuit complexity, and a unitary UB which is a
(β, b, ϵ1)-block-encoding for m-qubit operator B with O(TB) circuit complexity, we can obtain an
(αβ, a+ b, ϵ0β+ ϵ1α+ ϵ0ϵ1)-block-encoding for A⊗B with O(max(TA, TB)+max(n, b)) circuit
complexity.

Proof. The main idea is that UA ⊗ UB almost directly implements a block-encoding of A⊗B, but
the ancillas and the main computation registers are in the wrong order. To correct this, we need to
swap the ancilla register of UB with the main register of UA.

Consequently, define the operator Π such that it swaps the n-qubit register with the b-qubit register
(and leaves the other registers unchanged), so that all the ancilla registers precede the main registers.
If n ≥ b, Π can be implemented by a sequence of O(n/b) swaps, with each swap swapping
O(b) qubits in parallel. If n < b, then it can be implemented with O(b/n) swaps. Thus, Π has
a circuit depth bounded by O(max(n/b, b/n)) ∈ O(max(n, b)). Then, Π(|0⟩a+b ⊗ In+m) =
(|0⟩a ⊗ In)⊗ (|0⟩b ⊗ Im), and (⟨0|a+b ⊗ In+m)Π† = (⟨0|a ⊗ In)⊗ (⟨0|b ⊗ Im).

Following Camps & Van Beeumen (2020), define Ã := (⟨0|a ⊗ In)UA(|0⟩a ⊗ In), and B̃ :=

(⟨0|b⊗Im)UB(|0⟩b⊗Im). LetEA := A−αÃ, and letEB := B−βB̃. Define V := Π†(UA⊗UB)Π.
Then, A⊗B = (αÃ+ EA)⊗ (βB̃ ⊗ EB), and (⟨0|a+b ⊗ In+m)V (|0⟩a+b ⊗ In+m) = Ã⊗ B̃, so

∥A⊗B − αβ(⟨0|a+b ⊗ In+m)V (|0⟩a+b ⊗ In+m)∥2 (B.1)

=
∥∥∥(αÃ+ EA)⊗ (βB̃ ⊗ EB)− αβÃ⊗ B̃

∥∥∥
2

(B.2)

≤ ϵ0β + ϵ1α+ ϵ0ϵ1. (B.3)

We now present a result from the literature allowing a block-encoding to have all of its singular values
scaled by a constant value. We present the result nearly verbatim from Lemma 5 of Wada et al. (2025)
(with trivial modifications to make it easier to invoke in our context), which presents the results of
Low & Chuang (2017); Gilyén et al. (2019) cleanly in the language of block-encodings.

Lemma B.3 (Uniform Singular Value Amplification (Wada et al., 2025; Low & Chuang, 2017; Gilyén
et al., 2019)). Let ϵ, δ ∈ (0, 1/2), and let γ > 1. Let UA be an (1, a, 0)-block-encoding of the n-qubit
operator A with O(T) circuit depth. Suppose ∥A∥2 ≤ (1− δ)/γ. Then, we can obtain a quantum
circuit V which is a (1, a+ 1, ϵ)-block-encoding for γA with O(γδ log(γ/ϵ)(T + a)) circuit depth,
and with O(poly(γδ log(γ/ϵ))) classical computation to determine the QSVT rotation angles.

Proof. This is taken directly from Wada et al. (2025); Low & Chuang (2017); Gilyén et al. (2019),
simply noting that an a-controlled X gate can be implemented by a sequence of O(a) single and
two-qubit gates.

We now present a simple result which is just a special case of uniform singular value amplifica-
tion (Wada et al., 2025; Low & Chuang, 2017; Gilyén et al., 2019) in the case where all the singular
values of an encoded operator are either 0 or 1/2. This is done following the ideas of oblivious
amplitude amplification (see Gilyén et al. (2019)).

Lemma B.4 (12 Oblivious Amplitude Amplification). We are given a matrix A ∈ CN×N , with
singular values either 1 or 0. Assume we have access to UA a (2, a, 0)-BE of A with O(T) circuit
depth. One can construct (1, a + 1, 0)-BE of A with O(T) circuit depth, and with 3 calls to a
controlled-U circuit.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Proof. Note that T3(x) = 4x3 − 3x satisfies the condition that |T3(x)| ≤ 1 for x ∈ [−1, 1] and
T3(

1
2) = −1. Therefore, one can achieve the task by implementing the function −T3(x) via QSVT

and the block encoding. The first kind of the Chebyshev polynomial can be directly achieved without
any classical processing to determine angle rotations, so one can construct the block encoding with
no error.

For completeness, we now re-derive an existing result on the linear combination of block-encoded
matrices, directly following Gilyén et al. (2019) (which presents the result of Childs & Wiebe (2012)
in the context of block-encodings).
Lemma B.5 (Linear Combination of Block-Encodings (Childs & Wiebe, 2012; Gilyén et al., 2019)).
Suppose we are given a set of D = 2d unitaries {Ui}i such that each Ui is an (α, a, ϵ)-block-
encoding for n qubit operator Ai, and each Ui has a total of O(T0) single and two qubit gates.
Define the vector b ∈ CD such that b = (b0 b1 . . . bD−1)

T . Define |b⟩d =
∑D
j=0

√
bj |j⟩d and

β := ∥|b⟩d∥22 = ∥b∥1. We are given the d-qubit unitary Ub, with O(T1) single and two qubit gates,
such that Ub|0⟩d = |b⟩d/ ∥|b⟩d∥2. Define A :=

∑D−1
j=0 bjAj . Then, we can obtain a unitary V with

O(dDT0 + T1) circuit depth which is an (αβ, a+ d, αβϵ)-block-encoding for A.

Proof. For each j ∈ [D], let Ãj := (⟨0|a ⊗ In)Uj(|0⟩a ⊗ In), and let Ej := Aj − αÃj . Define
S :=

∑D−1
j=0 |j⟩⟨j|d ⊗ Uj . Note that S can be implemented by a sequence of D multi-controlled Uj

operators. Note that by using Saeedi & Pedram (2013), a d controlled gate targeting 1 or 2 qubits can
be decomposed into a sequence of O(d) single and two qubit gates. Consequently, each d-controlled
Uj has O(dT0) circuit depth in terms of single and two qubit gates. Thus, S consists of a total of
O(dDT0) single and two qubit gates. Then, define V := (U†

b ⊗ Ia+n)S(Ub ⊗ Ia+n).

Noting that (⟨0|d ⊗ Ia+n)V (|0⟩d ⊗ Ia+n) = 1
β

∑D−1
j=0 bjUj . Using the fact that |0⟩a+d ⊗ In =

(|0⟩d ⊗ Ia+n)(|0⟩a ⊗ In), we then obtain

(⟨0|a+d ⊗ In)V (|0⟩a+d ⊗ In) =
1

β
(⟨0|a ⊗ In)(

D−1∑
j=0

bjUj)(|0⟩a ⊗ In) =
1

β

D−1∑
j=0

bjÃj . (B.4)

Consequently,

∥A− αβ(⟨0|a+d ⊗ In)V (|0⟩a+d ⊗ In)∥2 =

∥∥∥∥∥∥
D−1∑
j=0

bj(αÃj + Ej)−
D−1∑
j=0

αbjÃj

∥∥∥∥∥∥
2

(B.5)

=

∥∥∥∥∥∥
D−1∑
j=0

bjαEj

∥∥∥∥∥∥
2

≤ α

D−1∑
j=0

|bj | ∥Ej∥2 (B.6)

≤ αβϵ. (B.7)

Thus, V gives a (αβ, a, αβϵ)-block-encoding for A, and has O(dDT0 + T1) circuit depth.

The following is a standard result which has been used in various contexts, and is included for
completeness.
Lemma B.6 (Block Encoding of Rank 1 Projector of Basis Vectors). Let n ∈ N≥0, and let N = 2n.
Define i ∈ [N] and j ∈ [N]. Then, we can get a unitary U which is a (1, 2, 0)-block-encoding of the
n qubit operator |i⟩⟨j|. Moreover, U has O(n) circuit depth.

Proof. Following Jaques & Rattew (2023), a (1, 2, 0) block-encoding of the matrix |0⟩⟨0|, call it
V , can be obtained with O(n) circuit complexity. This follows by constructing a (1, 0, 0) block-
encoding of the Grover reflection operator, I − 2|0⟩⟨0|, and taking a linear combination with I
via the sum of block-encoding result of Gilyén et al. (2019). The circuit complexity is dominated
by reflection operator, which can be implemented by applying a n − 1 controlled XZX gate on
the most significant qubit, controlled on the 0 state of the other n − 1 qubits. Using Saeedi &
Pedram (2013) this can be decomposed into a sequence of O(n) two-qubit gates. Decompose

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

i and j into bits as, i = i0i1 . . . in−1, and j = j0j1 . . . jn−1. We now define two operators,
Mi := Xi0⊗Xi1⊗. . .⊗Xin−1 andMj := Xj0⊗Xj1⊗. . .⊗Xjn−1 . Clearly,Mi|0⟩⟨0|Mj = |i⟩⟨j|.

Then, since (I2 ⊗Mi)V (I2 ⊗Mj) =

(
|i⟩⟨j| ·
· ·

)
. Thus, (I2 ⊗Mi)V (I2 ⊗Mj) is a (1, 2, 0) block-

encoding for |i⟩⟨j|.

We now present a simple result which helps intuitively visualize VEs as encoding vectors in a
subspace.

Lemma B.7 (Intuitive Picture of VE as a Vector Subspace Encoding). Let Uψ be an (α, a, ϵ)-VE
for |ψ⟩n. Define |Eψ⟩n := |ψ⟩n − α(⟨0|a ⊗ In)Uψ|0⟩a+n. Define the a-qubit operator paj := |j⟩⟨j|.
Then,

Uψ|0⟩a+n =
|0⟩a|ψ⟩n − |0⟩a|Eψ⟩n

α
+

2a−1∑
j=1

(paj ⊗ In)Uψ|0⟩a+n =

(|ψ⟩n−|Eψ⟩n
α
...

)
. (B.8)

Proof. |Eψ⟩n = |ψ⟩n − α(⟨0|a ⊗ In)Uψ|0⟩a+n implies that |0⟩a|Eψ⟩n = |0⟩a|ψ⟩n − α(pj0 ⊗
In)Uψ|0⟩a+n. The result follows trivially by algebraic maniuplation of Uψ|0⟩a+n = (

∑2a−1
j=0 paj ⊗

In)Uψ|0⟩a+n.

Intuitively, in the absence of error, the first 2n entries of Uψ|0⟩a+n will contain the sub-normalized
vector |ψ⟩n/α.

We now state the following result from Rattew & Rebentrost (2023) nearly verbatim, slightly improv-
ing the complexity. The following result is a tool essentially implementing ℓ2 layer normalization,
follows directly from oblivious amplitude amplification (see e.g., Gilyén et al. (2019)), and is taken
nearly verbatim from Rattew & Rebentrost (2023).

Lemma B.8 (Vector Normalization, Lemma 18 of Rattew & Rebentrost (2023)). Let ϵ0 ∈ [0, 1/2],
α ≥ 1, a ∈ N, ϵ1 > 0. Let α′ be a known bound such that α′ ≥ α. Given a unitary Uψ, a (α, a, ϵ0)-
VE for the ℓ2-normalized quantum state |ψ⟩n with circuit complexity O(Tψ), we can construct a
(1, a + 4, 2(ϵ0 + ϵ1))-VE for |ψ⟩n with circuit complexity O((Tψ + a + n)α′ log(1/ϵ1)) and with
O(α′ log(1/ϵ1)) queries to a Uψ and U†

ψ circuit.

This implements vector normalization by boosting the scaling factor so the norm of the encoded
vector is 1, and all the padding entries are 0 (up to logarithmic error).

Proof. Define |ϕ⟩n := (⟨0|a ⊗ In)Uψ|0⟩a+n, Nϕ := ∥|ϕ⟩n∥2, |Φ⟩n := |ϕ⟩n/Nϕ. Then, Uψ is
equivalently a (Nϕ, a, 0)-VE for |ϕ⟩n/Nϕ. Using Lemma B.6, we can get U0 a (1, 2, 0)-block-
encoding of the n+ a qubit projector |0⟩⟨0| with O(n+ a) circuit depth. Then, V = (I2 ⊗Uψ)U0 is
a (1, 2, 0)-block-encoding for Uψ|0⟩⟨0|, with O(Tψ + a+ n) circuit complexity. Noting that (⟨0|2 ⊗
Ia+n)V (|0⟩2⊗Ia+n) = Uψ|0⟩⟨0|, then (⟨0|2+a⊗In)V (|0⟩2+a⊗In) = (⟨0|a⊗In)Uψ|0⟩⟨0|(|0⟩a⊗
In) = |ϕ⟩⟨0|a, so

∥|ϕ⟩⟨0|a − ⟨0|2+a ⊗ In)V (|0⟩2+a ⊗ In)∥2 = 0. (B.9)

Thus, we have a (1, a+ 2, 0)-block-encoding of |ϕ⟩⟨0|a = Nϕ|Φ⟩⟨0|. This object has singular value
Nϕ. Thus, we want to apply a polynomial approximation to this block-encoding, such that the error
of the polynomial approximation is at most ϵ1 on the interval [Nϕ, 1]. From Corollary 6 of Low &
Chuang (2017), we know that there exists an odd polynomial Pk(x) with degree k ∈ O(1τ log(1/ϵ1))
such that

max
x∈[−1,− τ

2]∪[τ/2,1]
|Pk(x)− sign(x)| ≤ ϵ1 (B.10)

and maxx∈[−1,1] |Pk(x)| ≤ 1. Since Nϕ ≥ 1
2α ≥ 1

2α′ , we can set τ = 1
2α′ , guaranteeing that

P (Nϕ) ≥ 1 − ϵ1. Consequently, we can invoke quantum singular value transformation (QSVT)
(Gilyén et al., 2019) with Pk, yielding Vf a (1, a+4, ϵ1)-block-encoding for P (Nϕ|Φ⟩⟨0|) = c|Φ⟩⟨0|,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

where 1 ≥ c ≥ 1− ϵ1. Moreover, Vf has O(1
α′ log(1/ϵ1)(Tψ + a+ n)) circuit complexity. Noting

that

∥|ψ⟩⟨0| − P (Nϕ|Φ⟩⟨0|)∥2 = ∥|ψ⟩⟨0| − |Φ⟩⟨0|+ |Φ⟩⟨0| − c|Φ⟩⟨0|∥2 (B.11)
≤ ∥|ψ⟩⟨0| − |Φ⟩⟨0|∥2 + ∥|Φ⟩⟨0| − c|Φ⟩⟨0|∥2 (B.12)
≤ ∥|ψ⟩n − |Φ⟩n∥2 + ϵ1. (B.13)

Moreover,

∥|ψ⟩n − |Φ⟩n∥2 ≤∥|ψ⟩n − α|ϕ⟩n∥2 + ∥α|ϕ⟩n − 1

Nϕ
|ϕ⟩n∥2 (B.14)

≤ϵ0 +
1

Nϕ
∥αNϕ|ϕ⟩n − |ϕ⟩n∥ = ϵ0 +

|αNϕ − 1|
Nϕ

∥|ϕ⟩n∥2 (B.15)

≤ϵ0 + |αNϕ − 1|. (B.16)

Moreover, using the reverse triangle inequality with ∥|ψ⟩n − α|ϕ⟩n∥2 ≤ ϵ0, we get |1−α ∥|ϕ⟩n∥2 | =
|1−αNϕ| ≤ ϵ1, which implies that 1− ϵ0 ≤ αNϕ ≤ 1+ ϵ0. Consequently, |αNϕ− 1| ≤ ϵ0, and so

∥|ψ⟩n − |Φ⟩n∥2 ≤ 2ϵ0. (B.17)

Thus,

∥|ψ⟩⟨0| − P (Nϕ|Φ⟩⟨0|)∥2 ≤ 2ϵ0 + ϵ1. (B.18)

Moreover, since Vf is a (1, a+ 4, ϵ1)-block-encoding for P (Nϕ|Φ⟩⟨0|),
∥P (Nϕ|Φ⟩⟨0|)− (⟨0|a+4 ⊗ In)Vf (|0⟩a+4 ⊗ In)∥2 ≤ ϵ1. (B.19)

Thus,

∥|ψ⟩⟨0| − (⟨0|a+4 ⊗ In)Vf (|0⟩a+4 ⊗ In)∥2 ≤ 2(ϵ0 + ϵ1). (B.20)

Sometimes it is necessary to increase the norm of the vector encoded in the subspace of a VE. This
is equivalent to multiplying all of the entries in the encoded vector by a constant with value greater
than or equal to one. The following lemma achieves the opposite: it allows the norm of the encoded
vector to be shrunk by an arbitrarily large amount. This is equivalent to dividing all the entries in the
encoded vector by a constant greater than or equal to one. It is worth noting that the following result
is trivial and can almost certainly be further optimized, e.g., by removing the additional ancillary
qubits added.
Lemma B.9 (Vector De-Amplification). Let τ ≥ 1, α ≥ 1, ϵ ≥ 0. Given Uψ an (α, a, ϵ)-VE for
|ψ⟩n, with circuit complexity O(T), we can obtain U ′

ψ an (ατ, a + 2, ϵ)-VE for |ψ⟩n with circuit
complexity O(T + a).

Proof. Let |ϕj⟩n := (⟨0|a ⊗ In)Uψ|0⟩a+n. Then, note that Uψ|0⟩a+n =
∑2a−1
j=0 |j⟩a ⊗ |ϕj⟩n.

By Definition 3, we know that ∥|ψ⟩n − α|ϕ0⟩n∥ ≤ ϵ.

We introduce two single-qubit ancillas as the most significant bits, and then apply a multiple-controlled
X gate (with a controls each activated by the 0 state of each of the previous a ancilla qubits) targeting
the first newly added ancilla qubit. Using Saeedi & Pedram (2013) this can be implemented with
O(a) two-qubit gates. We then apply a controlled R1/τ2 (as per Definition B.1) gate targeting the
second new ancilla qubit, controlled on the first new ancilla. This yields the state,

|1⟩1(
1

τ
|0⟩1 +

√
1− 1

τ2
|1⟩1)|0⟩a|ϕ0⟩n + |0⟩1|0⟩1

2a−1∑
j=1

|j⟩a|ϕj⟩n. (B.21)

We then apply a X gate to the first ancilla qubit, and we call the 2 + a-qubit unitary containing all
the preceding operations V . Then, U ′

ψ := (V ⊗ In)(I2 ⊗ Uψ). Simple analysis thus shows that
(⟨0|2+a ⊗ In)U

′
ψ|0⟩2+a+n = |ϕ0⟩n/τ . Then,∥∥|ψ⟩n − ατ(⟨0|2+a ⊗ In)U

′
ψ|0⟩2+a+n

∥∥
2
= ∥|ψ⟩n − α|ϕ0⟩n∥ ≤ ϵ. (B.22)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 3: Circuit for addition of VE encoded vectors. Given two unitary matrices, Uψ which is
a (α, a, ϵ0)-VE for the n-qubit state |ψ⟩, and Uϕ which is a (β, b, ϵ1)-VE for the n-qubit state |ϕ⟩,
define c := max(a, b). We define Ũψ by appropriately tensoring Uψ with Ic−a and we define Ũϕ by
appropriately tensoring Uϕ with Ic−b, such that Ũψ and Ũϕ both act on n+ c qubits. Then, the given
circuit yields a VE of the sum of the encoded vectors, as shown in Lemma 1.

Definition B.1 (Real Rotation Single Qubit Gate). Let 0 ≤ τ ≤ 1. Then, define the following
single-qubit gate:

Rτ :=

(√
τ −

√
1− τ√

1− τ
√
τ ,

)
. (B.23)

Proof of Lemma 1 (Vector Sum). This result follows using a common techniques, see e.g.,
LCU (Childs & Wiebe, 2012), or the sum of block-encodings result (Gilyén et al., 2019). As
per Figure 3, we will augment Uψ and Uϕ so that they both act on c = max(a + b) ancilla qubits.
Then, define the n+ c qubit states, |ψ̃⟩n+c := Uψ|0⟩n+c. We will drop the subscripts on these states
for the rest of the proof, as their dimension is clear from the context. This block-encoding will be
obtained with the circuit shown in Figure 3, and so we will now analyze the action of that circuit. First,
we start with the state |0⟩1+n+c, which we will write as |0⟩|0⟩, where the first register has one qubit,
and the second register has the remaining n+c qubits. We then applyRτ (as defined in Definition B.1)
to the first qubit, yielding the state (

√
τ |0⟩+

√
1− τ |1⟩)|0⟩. Next, we apply the controlled Uψ and Uϕ

gates, yielding,
√
τ |0⟩|ψ̃⟩+

√
1− τ |1⟩|ϕ̃⟩. Next, we apply R†

τ =

(√
τ

√
1− τ

−
√
1− τ

√
τ

)
on the first

qubit, yielding the output of the new VE, V |0⟩ = |0⟩(τ |ψ̃⟩+(1−τ)|ϕ̃⟩)+
√
τ(1− τ)|1⟩(|ϕ̃⟩−|ψ̃⟩).

Define |Eψ⟩ := |ψ⟩ − α(⟨0|⊗(c) ⊗ In)|ψ̃⟩ and note that ∥|Eψ⟩∥2 ≤ ϵ0. Similarly define |Eϕ⟩, and
note that ∥|Eϕ⟩∥2 ≤ ϵ1. As a result, we can determine the properties of this VE by bounding the
following, ∥∥∥∥|Γ⟩ − 1

N
(⟨0|⊗(1+c) ⊗ In)V |0⟩1+c+n

∥∥∥∥
2

(B.24)

=

∥∥∥∥|Γ⟩ − 1

N
(⟨0|⊗c ⊗ In)(τ |ψ̃⟩+ (1− τ)|ϕ̃⟩)

∥∥∥∥
2

(B.25)

=

∥∥∥∥|Γ⟩ − 1

N

(
τ

α
(|ψ⟩ − |Eψ⟩) +

1− τ

β
(|ϕ⟩ − |Eϕ⟩)

)∥∥∥∥
2

(B.26)

=

∥∥∥∥ 1

N

(
τ

α
|Eψ⟩+

1− τ

β
|Eϕ⟩

)∥∥∥∥
2

≤ 1

N

(
τϵ0
α

+
(1− τ)ϵ1

β

)
(B.27)

≤ 1

N

(
ϵ0
α

+
ϵ1
β

)
≤ ϵ0 + ϵ1

N
. (B.28)

where the final inequality comes from the definition of a VE imposing that α ≥ 1 and β ≥ 1. Thus,
the unitary circuit V is a (N−1, 1 + a+ b,N−1(ϵ0 + ϵ1))-VE for |Γ⟩.

Proof of Lemma 2 (Matrix Vector Product). We now require a result allowing for matrix-vector
products with our vector-encodings. This result is essentially a special case of the product of the
standard product of block-encodings result (Lemma 53 of Gilyén et al. (2019)). As a result, the
following proof closely follows that in Gilyén et al. (2019).

In this lemma, again following the notation of Gilyén et al. (2019) for tensor products, it is assumed
that UA and Uψ act trivially on the other’s ancillas. To be explicit, the tensor products in (Ib ⊗

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

UA)(Ia ⊗ Uψ) use a special definition only in this lemma. Let N := ∥A|ψ⟩n∥2. We wish to
upper-bound,

ξ :=

∥∥∥∥A|ψ⟩nN
− αβ

N
(⟨0|a+b ⊗ In)(Ib ⊗ UA)(Ia ⊗ Uψ)|0⟩a+b+n

∥∥∥∥
2

(B.29)

=
1

N
∥A|ψ⟩n − αβ(⟨0|a+b ⊗ In)(Ib ⊗ UA)(Ia ⊗ Uψ)(|0⟩a+b ⊗ In)|0⟩n∥2 (B.30)

Then, directly from the proof of Lemma 53 in Gilyén et al. (2019),

ξ =
1

N
∥A|ψ⟩n − αβ [(⟨0|a ⊗ In)UA(|0⟩a ⊗ In)] [(⟨0|b ⊗ In)Uψ(|0⟩b ⊗ In)] |0⟩n∥2 (B.31)

Let Ã := α(⟨0|a ⊗ In)UA(|0⟩a ⊗ In) and let |ψ̃⟩ := β(⟨0|b ⊗ In)Uψ(|0⟩b+n). Then,

ξ =
1

N

∥∥∥A|ψ⟩n − Ã|ψ̃⟩n
∥∥∥
2
=

1

N

∥∥∥A|ψ⟩n − Ã|ψ⟩n + Ã|ψ⟩n − Ã|ψ̃⟩n
∥∥∥
2

(B.32)

≤ 1

N

(∥∥∥A− Ã
∥∥∥
2
+
∥∥∥Ã∥∥∥

2

∥∥∥|ψ⟩n − |ψ̃⟩n
∥∥∥
2

)
(B.33)

Noting that
∥∥∥Ã∥∥∥

2
≤ α, we then get

ξ ≤ (ϵ0 + αϵ1)/N . (B.34)

Consequently, (Ib ⊗ UA)(Ia ⊗ Uψ) gives a (αβ/N , a+ b, (ϵ0 + αϵ1)/N)-VE for A|ψ⟩n/N .

In the following lemma we derive a technical result handling the case where you have a vector

encoding for some vector |ψ⟩, and another vector of interest |ϕ⟩ is sub-encoded as |ψ⟩ =
(
|ϕ⟩/β

·

)
.

Our result also handles the case where each vector is imperfectly encoded (i.e., encoded with error).

Lemma B.10 (Vector Sub-Encodings). Let m,n be integers such that m > n. Let Uψ be an
(α, a, ϵ)-VE for |ψ⟩m, and let |ψ⟩m ≈ Vϕ|0⟩m (precisely, ∥|ψ⟩m − Vϕ|0⟩m∥2 ≤ γ), where Vϕ is a
(β,m− n, δ)-VE for |ϕ⟩n. Then, Uψ is an (αβ, a+m− n, δ + β(ϵ+ γ))-VE for |ϕ⟩n.

Proof. Let b = m − n. First, define |Eψ⟩m := |ψ⟩m − α (⟨0|a ⊗ Im)Uψ|0⟩a+m, and |Eϕ⟩n :=
|ϕ⟩n − α (⟨0|b ⊗ In)Uψ|0⟩b+n. By Definition 3, ∥|Eψ⟩m∥2 ≤ ϵ and ∥|Eϕ⟩n∥2 ≤ δ. Let |Ev⟩m :=
|ψ⟩m − Vϕ|0⟩m. Now observe,

(⟨0|b ⊗ In) (⟨0|a ⊗ Im)Uψ|0⟩a+m = (⟨0|b ⊗ In) (|ψ⟩m − |Eψ⟩m)/α (B.35)
= (⟨0|b ⊗ In) (Vϕ|0⟩m + |Ev⟩m − |Eψ⟩m)/α (B.36)
= ((|ϕ⟩n − |Eϕ⟩n)/β + (⟨0|b ⊗ In)(|Ev⟩m − |Eψ⟩)) /α.

(B.37)

Consequently, since (⟨0|b ⊗ In)(⟨0|a ⊗ Im) = ⟨0|a+b ⊗ In,

∥|ϕ⟩n − αβ(|0⟩a+b ⊗ In)Uψ|0⟩a+b+n∥2 (B.38)
≤ ∥|Eϕ⟩n∥2 + β ∥|Eψ⟩m∥2 + β ∥|Ev⟩m∥2 ≤ δ + β(ϵ+ γ). (B.39)

Lemma B.11 (Tracing Out Qubits in Vector Sub-Encodings). Let U be an (α, a, ϵ)-VE for |0⟩b|ψ⟩n.
Then, U is an (α, a+ b, ϵ)-VE for |ψ⟩n.

Proof. Let |E⟩b+n := |0⟩b|ψ⟩n−α(⟨0|a⊗In+b)U |0⟩a+b+n. Since ⟨0|a+b⊗In = (⟨0|b⊗In)(⟨0|a⊗
Ib+n), (⟨0|a+b ⊗ In)U |0⟩a+b+n = 1

α (|ψ⟩n − (⟨0|b ⊗ In)|E⟩b+n). Thus,

∥|ψ⟩n − α(⟨0|a+b ⊗ In)U |0⟩a+b+n∥2 = ∥(⟨0|b ⊗ In)|E⟩b+n∥2 ≤ ϵ. (B.40)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Proof of Lemma 3 (Vector Tensor Product). This result closely follows the derivation of the tensor
product of block-encodings (Lemma B.2), which was a rederivation of Lemma 1 of Camps &
Van Beeumen (2020).

Uψ acts on an a-qubit ancilla register and a n-qubit main register, while Uϕ acts on an b-qubit ancilla
register and a m-qubit main register.

As per Lemma B.2, define Π to swap the n-qubit register with the b-qubit register acting trivially on
the other two registers. Again, Π has a circuit depth bounded byO(max(n/b, b/n)) ∈ O(max(n, b)).
Then, (⟨0|a+b ⊗ In+m)Π† = (⟨0|a ⊗ In) ⊗ (⟨0|b ⊗ Im). Let V = Π†(Uψ ⊗ Uϕ). Let |Eψ⟩n =
|ψ⟩n − α(⟨0|a ⊗ In)Uψ|0⟩a+n and |Eϕ⟩m = |ϕ⟩m − β(⟨0|b ⊗ Im)Uϕ|0⟩b+m. Then,

(⟨0|a+b ⊗ In+m)Π†(Uψ ⊗ Uϕ)|0⟩a+b+n+m =
1

αβ
(|ψ⟩n − |Eψ⟩n)⊗ (|ϕ⟩m − |Eϕ⟩m), (B.41)

and so,

∥|ψ⟩n|ϕ⟩m − αβ(⟨0|a+b ⊗ In+m)Π(Uψ ⊗ Uϕ)|0⟩a+b+n+m∥2 ≤ ϵ+ δ + ϵδ. (B.42)

Proof of Lemma 4 (Vector Concatenation). We now present the proof of a simple result on the
concatenation of vectors stored in VEs. This result follows from a simple modification of LCU
(Childs & Wiebe, 2012). In essence, given a set of D = 2d vectors {|ψj⟩n}j , we first create vector
encodings of {|j⟩d|ψj⟩n}j and then take the resulting sum of the encoded vectors following LCU,
yielding an encoding of (⟨ψ0|n . . . ⟨ψD−1|n)†.

For all j, define |Eψj ⟩n := |ψj⟩n − α(⟨0|a ⊗ In)Ui|0⟩a+n.

First, let j be d bits, and let j = j0j1 . . . jd−1. Define Xj := Xj0 ⊗Xj1 ⊗ . . .⊗Xjd−1

. Note that
|j⟩d = Xj |0⟩d, and thus that Xj is a (1, 0, 0)-VE for |j⟩d. Then, we can invoke Lemma 3 with Uj
and Xj to obtain Vj , an (αj , a, ϵ)-VE for |j⟩d|ψj⟩n with O(T + n) circuit complexity. Moreover, by
inspecting Lemma 3, we find that (⟨0|a ⊗ In+d)Vj |0⟩a+d+n = 1

αj
(|j⟩d|ψj⟩n − |j⟩d|Eψj ⟩n).

Additionally, define S :=
∑D−1
j=0 |j⟩⟨j|d ⊗ Vj . This can be implemented by a sequence of O(D)

multi-controlled gates, each enacting Vj when the control register is |j⟩d (in the standard fashion of
LCU (Childs & Wiebe, 2012)). First, note that by using Saeedi & Pedram (2013) a multiple-controlled
gate with O(d) controls can be split into a sequence of O(d) single and two-qubit gates. By splitting
each of the d control qubits into a+d+n copies (withO(log(a+d+n)) depth), we can control each
gate in each layer of Uj in parallel with O(d) circuit depth. Since these ancillas can be uncomputed
and traced out, we ignore them in the complexity analysis. Thus, each multi-controlled Vj gate can be
decomposed into a sequence of O(dT) single and two-qubit gates. Thus, S has a total circuit depth
of O(dDT). Let Ĥ := H⊗d ⊗ Id+n+a. Using ⟨0|a+d ⊗ In+d = (⟨0|d ⊗ In+d)(Id ⊗ ⟨0|a ⊗ Id+a),

(⟨0|d+a ⊗ In+d)ĤSĤ|0⟩2d+a+n (B.43)

= (⟨+|d ⊗ In+d)(Id ⊗ ⟨0|a ⊗ In+d)

D−1∑
j=0

(|j⟩⟨j|d ⊗ Vj)|+⟩d|0⟩a+d+n (B.44)

=
1

D

D−1∑
j=0

|j⟩d|ψj⟩d − |j⟩d|Eψj ⟩n
αj

. (B.45)

Then, noting that N 2 =
∑D−1
j=0

1
α2
j

, and that
∥∥∥∑D−1

j=0 |j⟩d|Eψj ⟩n/αj
∥∥∥
2
≤ N ϵ,

∥∥∥∥ |Ψ⟩d+n
N

− D

N
(⟨0|d+a ⊗ In+d)ĤSĤ|0⟩2d+a+n

∥∥∥∥
2

=
1

N

∥∥∥∥∥∥
D−1∑
j=0

|j⟩d|Eψj ⟩n/αj

∥∥∥∥∥∥
2

≤ ϵ. (B.46)

Thus, ĤSĤ is a (D/N , d+ a, ϵ) for |Ψ⟩d+n
N with O(dDT) circuit complexity.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

B.1 GENERAL MATRIX-VECTOR-SQUARED PRODUCT

In this subsection, we will derive a procedure which given an arbitrary matrix W and quantum
state |ψ⟩, allows for a state proportional to the product of W (|ψ⟩)2 to be obtained with complexity
independent of the Frobenius norm (and thus rank), and sparsity, of W . To the best of our knowledge,
this is the first result which allows such a product without either a rank or sparsity condition on
W . The key insight is to avoid ever constructing a block-encoding of the operator W , and directly
query its columns weighted by the entries of the vector it is being applied to. In particular, at
a high-level we construct two objects. Define the columns of W = (w0 . . . wN−1), define
the column norms aj := ∥wj∥2, and the normalized versions of the columns |wj⟩n = wj/aj .
Additionally, define the state we are applying it to as |ψ⟩n =

∑
j ψj |j⟩n. First, we construct the

normalized state
∑
j ψj |j⟩n|wj⟩n. Clearly, this object has no Frobenius norm dependence. We

would like to map all the vectors in the first register to the |0⟩ state so that we have something
resembling the matrix-vector product, and to do this we construct another operator. Note that the

matrix Q =

(
a0In . . . aN−1In

0

)
(i.e., the first N rows are non-zero, and the rest are all zero)

when applied to |ϕ⟩2n =
∑
j ψj |j⟩n|wj⟩n yields Q|ϕ⟩2n = |0⟩n ⊗ (W |ψ⟩n). However, this object

has a spectral norm Ω(∥W∥F). Instead, we define M :=

(
a0ψ0In . . . aN−1ψN−1In

0

)
and note

thatM can be shown to have ∥M∥2 ≤ 1, and moreover, we subsequently show how a block-encoding
of this operator can be efficiently obtained. Consequently, since M |ϕ⟩2n = |0⟩n ⊗ (W (|ψ⟩n)2), the
result follows. The rest of this section simply derives the ingredients necessary to rigorously prove
this intuition.
Definition B.2 (RY (t) Gate). Let t ∈ R, and let Y be the standard single-qubit Pauli-Y gate. Then,
define

RY (t) := e−itY = cos(t)I − i sin(t)Y =

(
cos(t) − sin(t)
sin(t) cos(t)

)
. (B.47)

For completeness, we will now present a standard result allowing one to transfer digitally represented
information to the amplitudes of a quantum state.
Lemma B.12 (CRY (t) Gate). Let t ∈ R. Let Y be a standard Pauli-Y gate. Let |a⟩d be a d-bit
standard basis vector, and let |ψ⟩1 be an arbitrary single-qubit quantum state. Then, we can define
the gate CRY (t) by the following action,

CRY (t)|ψ⟩1|a⟩d = (e−iatY |ψ⟩1)|a⟩d. (B.48)

In the event that |ψ⟩1 = |0⟩1, this action can be simplified to

CRY (t)|0⟩1|a⟩d = (cos(at)|0⟩1 + sin(at)|1⟩1)|a⟩d. (B.49)

Moreover, the CRY (t) gate is implemented with O(d) circuit depth.

Proof. This is a standard result. This proof is included for completeness, and follows the one
in Rattew & Koczor (2022). Let D = 2d. First, note that CRY (t) =

∑D−1
a=0 e

−iatY ⊗ |a⟩⟨a|.
Additionally, let a = ad−1ad−2 . . . a1a0 = ad−12

d−1 + ...+ a12 + a0. Then,

e−iatY = e−i(ad−12
d−1+...+a12+a0)tY = e−iad−12

d−1tY · . . . · e−ia1tY e−ia0tY . (B.50)

Then, CRY (t) can be implemented by applying a sequence of d controlled e−i2
jtY gates (Defini-

tion B.2), targeting the first register, controlled on the jth bit of the second register.

We now present a result on obtaining a block-encoding of an arbitrary diagonal matrix whose entries
are stored in QRAM. This is essentially a special case of Lemma 48 of Gilyén et al. (2019), but by
considering this special case moderate improvements in complexity can be obtained.
Lemma B.13 (Quantum Block-Encoding of Diagonal Matrices from QRAM). Let N = 2n. We
are given a set of N real coefficients, {aj}j such that ∀j, |aj | ≤ 1. Assume that each aj can
be represented exactly in a binary encoding with d-bits of precision, and define D = 2d. Define

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

bj := arccos(aj)D/π, and for simplicity assume that each bj can also be implemented with exactly
d-bits of precision4, and note that bj ∈ [D]. Assume that we are given an oracle, implemented via
QRAM, such that U |0⟩d|j⟩n = |bj⟩d|j⟩n. Then, we can obtain UA, a (1, d+ 1, 0)-block-encoding
for A = diag(a0, . . . , aN−1), with O(dn) circuit depth.

Proof. Define the circuit V := (I1 ⊗ U†)(CRY (
π
D) ⊗ In)(I1 ⊗ U), with CRY (πD) defined as

per Lemma B.12. First, since for any |ϕ⟩ and basis vector |j⟩, |ϕ⟩⊗ |j⟩⟨j| = (|ϕ⟩|j⟩)⟨j|, observe that

(I1 ⊗ U)(|0⟩d+1 ⊗ In) =

N−1∑
j=0

[(I1 ⊗ U)|0⟩1|0⟩d|j⟩n] ⟨j|n =

N−1∑
j=0

(|0⟩1|bj⟩d|j⟩n)⟨j|n. (B.51)

Then, since cos(bj
π
D) = arccos(aj),

(CRY (
π

D
)⊗ In)(I1 ⊗ U)(|0⟩d+1 ⊗ In) =

N−1∑
j=0

(
(aj |0⟩1 +

√
1− a2j |1⟩1)|bj⟩d|j⟩n

)
⟨j|n.

(B.52)

Then, since (⟨0|d+1 ⊗ In)(I1 ⊗ U†) = [(I1 ⊗ U)(|0⟩d+1 ⊗ In)]
† =

∑N−1
j=0 |j⟩n(⟨0|1⟨bj |d⟨j|n), we

readily find that

(⟨0|d+1 ⊗ In)V (|0⟩d+1 ⊗ In) =

N−1∑
j=0

aj |j⟩⟨j| = diag(a0, . . . , aN−1) = A. (B.53)

Thus, V is a (1, d + 1, 0)-block-encoding for A. The circuit depth of implementing U is the
depth of making a QRAM query, and is thus O(d logN) = O(nd) (see Definition A.1). The cost
of implementing the CRY gate is simply O(d) as per Lemma B.12, and thus the overall circuit
complexity of this block-encoding is O(nd).

In the case where each aj ∈ C, the complex and real parts need to be specified separately. A
diagonal block-encoding of the real and imaginary parts can then be obtained using Lemma B.13,
and can then be summed by adding an ancilla to obtain a (2, d+ 2, 0)-block-encoding with the same
overall circuit complexity. One might wonder why, given a QRAM assumption, a state-preparation
unitary yielding a state proportional to

∑
j aj |j⟩ can’t be used instead, in combination with the

diagonal block-encoding of state amplitudes result of Rattew & Rebentrost (2023). If each aj
represent the column norm of some matrix W , doing so would result in a normalization factor of∥∥∥∑j aj |j⟩

∥∥∥
2
=
√∑

j |aj |2 = ∥W∥F , yielding a Frobenius norm-dependence which this approach
avoids.

The following data-structure is useful in situations where you are willing to pay a pre-processing cost
linear (up to polylogarithmic factors) in the number of non-zero matrix elements, but want a fast
algorithm at runtime. This is the case with accelerating neural network inference. The following data
structure is very similar to the one given in Kerenidis & Prakash (2017).
Definition B.3 (Preprocessed Matrix QRAM Data Structure). Let N = 2n, and let D = 2d.

Let W ∈ CN×N and let ∥W∥2 ≤ 1. Let the columns of W be represented as W =
(w0 . . . wN−1). Additionally, define |wj⟩ = wj/ ∥wj∥2, and aj = ∥wj∥. Let bj :=
arccos(aj)D/π. For simplicity, we assume that bj can be exactly written with d-bits, and thus
that bj will be an integer between [0, D − 1]. We say we have access to a Preprocessed QRAM Data
Structure for W if we have a QRAM oracle UW (as per Definition A.2) such that

UW |j⟩n|0⟩n = |j⟩n|wj⟩n, (B.54)
and we also have access to a QRAM yielding the mapping,

UA|0⟩d|j⟩n = |bj⟩d|j⟩n. (B.55)

UW can be implemented with O(log2N) circuit depth, and with Õ(N2) total qubits (as per Defini-
tion A.2). UA can be implemented with O(d logN) circuit depth, and with Õ(dN) total qubits (as
per Definition A.1).

4In practice this will result in an additional logarithmic source of error, which we are neglecting, as it is akin
to finite-precision arithmetic error which is usually neglected in classical algorithm analysis.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

We are now ready to present a somewhat surprising result on matrix-vector multiplication with
arbitrary (potentially full-rank and dense) matrices and the element-wise square of a given vector.
The following uses ideas similar to importance-sampling.
Theorem B.1 (Product of Arbitrary Matrix with a Vector Element-wise Squared). Let N = 2n.
We are given a matrix W ∈ CN×N through the data-structure in Definition B.3. Let d be the
number of bits required to represent the function of the column norms of W , bj , as per Definition B.3.
Additionally, we are given the unitary Uψ with circuit complexity O(Tψ), a (α, a, ϵ)-VE for the
quantum state |ψ⟩n. Define the function g : C 7→ R as g(x) = |x|2, and N := ∥Wg(|ψ⟩n)∥2. Then
we can construct the unitary Uf which is a (α

2

N , 2a + d + 3 + n, 2αϵN)-VE for Wg(|ψ⟩n)/N , and
has a circuit depth of O(Tψ + dn+ n2).

Proof. Noting that aj = ∥W |j⟩∥2, it is easy to show ∥W∥2 ≤ 1 =⇒ ∀j, aj ≤ 1; aj = ∥W |j⟩∥2 ≤
maxx:∥x∥2=1 ∥Wx∥2 = ∥W∥2 ≤ 1. Consequently, by Lemma B.13 we can immediately get UA, a
(1, d+ 1, 0)-block-encoding for A = diag(a0, . . . , aN−1) with O(dn) circuit depth.

Let |ψ1⟩n := A|ψ⟩n =
∑N−1
j=0 ajψj |j⟩n, N1 := ∥|ψ1⟩n∥2. By Lemma 2, we can combine UA

and Uψ to obtain V1, a (α/N1, a + d + 1, ϵ/N1)-VE for |ψ1⟩n/N1. This has circuit complexity
O(Tψ + dn).

By Lemma B.6, we can get U0, a (1, 2, 0)-block-encoding for the n+a+d+1-qubit projector |0⟩⟨0|.
Let |Eψ1

⟩n := |ψ1⟩
N1

− α
N1

(⟨0|a+d+1 ⊗ In)V1(|0⟩n+a+d+1). Then, by Definition 3, ∥|Eψ1
⟩n∥2 ≤

ϵ/N1. Moreover, ⟨0|a+d+1 ⊗ In)V1(|0⟩n+a+d+1) = 1
α (|ψ1⟩n − N1|Eψ1

⟩n). Then, observe that
V2 := U0(I2 ⊗ V †

1) is a (1, 2, 0)-block-encoding for |0⟩⟨0|V †
1 . Let c = a + d + 1. Noting that

(|0⟩c+2 ⊗ In) = (|0⟩2 ⊗ Ic+n)(|0⟩c ⊗ In), then,
(⟨0|c+2 ⊗ In)V2(|0⟩c+2 ⊗ In) = (⟨0|c ⊗ In)(⟨0|2 ⊗ Ic+n)V2(|0⟩2 ⊗ Ic+n)(|0⟩c ⊗ In) (B.56)

= (⟨0|c ⊗ In)|0⟩⟨0|V †
1 (|0⟩c ⊗ In) (B.57)

=
1

α
(|0⟩n(⟨ψ1|n −N1⟨Eψ1

|n)) . (B.58)

The third inequality follows by noting that (⟨0|c ⊗ In)|0⟩n+c = |0⟩n, and that by Definition 2,
(⟨0|2 ⊗ Ic+n)V2|0⟩2 ⊗ Ic+n) = |0⟩⟨0|V †

1 . Then, letting |0⟩⟨ψ1| be a 2n × 2n projector,
∥|0⟩⟨ψ1| − α(⟨0|c+2 ⊗ In)V2(|0⟩c+2 ⊗ In)∥2 = N1 ∥|0⟩⟨Eψ1

|∥2 ≤ ϵ. (B.59)
Consequently, V2 is a (α, a+ d+ 3, ϵ)-block-encoding for the 2n × 2n projector |0⟩⟨ψ1|. Moreover,
the circuit complexity of V2 is dominated by the circuit complexity of V1, and thus is O(Tψ + dn).
Then, V3 := V2 ⊗ In is a (α, a+ d+ 3, ϵ)-block-encoding for (|0⟩⟨ψ1|)⊗ In.

Let UW be defined as in Definition B.3, i.e., it enacts UW |j⟩n|0⟩n = |j⟩n|wj⟩n.

Define |ϕ⟩2n :=
∑N−1
j=0 ψj |j⟩n|wj⟩n.

Then, let S := (Ia ⊗ UW)(Uψ ⊗ In). We will now show that S is an (α, a, ϵ)-VE for |ϕ⟩2n.

Let |Eψ⟩n := |ψ⟩n − α(⟨0|a ⊗ In)Uψ|0⟩a+n, thus, (⟨0|a ⊗ In)Uψ|0⟩a+n = 1
α (|ψ⟩n − |Eψ⟩n)

Moreover, define the a-qubit projector, paj := |j⟩⟨j|. Then, Ia+n =
∑2a−1
j=0 paj ⊗ In. Finally, define

|γj⟩n := (⟨j|a ⊗ In)Uψ|0⟩a+n. Of course,

Uψ|0⟩a+n =

2a−1∑
j=0

paj ⊗ In

Uψ|0⟩a+n =
1

α
(|0⟩a(|ψ⟩n − |Eψ⟩n)) +

2a−1∑
j=1

|j⟩a|γj⟩n. (B.60)

Consequently,
(⟨0|a ⊗ I2n)S|0⟩a+2n = (⟨0|a ⊗ I2n)(Ia ⊗ UW)(Uψ ⊗ In)|0⟩a+2n (B.61)

= (⟨0|a ⊗ UW)

 1

α
(|0⟩a(|ψ⟩n − |Eψ⟩n)) +

2a−1∑
j=1

|j⟩a|γj⟩n

 |0⟩n (B.62)

=
1

α
(|ϕ⟩2n − UW |Eψ⟩n|0⟩n) . (B.63)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Thus,

∥|ϕ⟩2n − α(⟨0|a ⊗ I2n)S|0⟩a+2n∥2 = ∥UW |Eψ⟩n|0⟩n∥2 ≤ ϵ. (B.64)

Thus, S is an (α, a, ϵ)-VE for |ϕ⟩2n. Moreover, the circuit complexity of S comes from summing
the circuit complexity of Uψ and UW . As per Definition B.3, the circuit complexity of UW is O(n2),
giving an overall circuit complexity for S of O(Tψ + n2).

Define |Γ⟩n :=Wg(|ψ⟩n), and note that

[(|0⟩⟨ψ1|)⊗ In]|ϕ⟩2n = |0⟩n
N−1∑
j=0

|ψj |2aj |wj⟩n = |0⟩n|Γ⟩n. (B.65)

We now have V3, a (α, a+ d+ 3, ϵ)-block-encoding for (|0⟩⟨ψ1|)⊗ In, and S an (α, a, ϵ)-VE for
|ϕ⟩2n. We will now invoke Lemma 2 to take the product of the matrix encoded in V3 with the vector
encoded in S, and then will invoke Lemma B.11 to remove the |0⟩n tensored register. This yields Uf ,
an (α

2

N , 2a+ d+ 3 + n, 2αϵN)-VE for |Γ⟩n/N with circuit complexity O(Tψ + dn+ n2).

B.2 CONVOLUTION BLOCK-ENCODING

In this section, we will first provide a matrix-form of a 2D multi-filter convolution (with stride 1
and 0 padding to ensure the input and outputs have the same dimension). We then derive a quantum
block-encoding of the matrix form of the convolution.

As a note, some popular deep learning frameworks such as PyTorch (Paszke et al., 2019) actually
implement cross-correlation rather than convolution. However, in the pre-processing stage, our con-
volutional block-encoding immediately gives a cross-correlation block-encoding by simply switching
theQ operator (Definition B.6) with aQT operator. Finally, in this section, we assume that all addition
on basis vectors is mod the dimension of the vector. I.e., for integers i, j, |i+j⟩n = |(i+j) mod N⟩n
(with N = 2n).

Definition B.4 (Permutation Matrix). Define the following N dimensional unitary permutation
matrix that maps an input basis vector i to the basis vector (i+ 1) mod N .

P :=

N∑
i=0

|i+ 1⟩⟨i| =


0 0 0 . . . 1
1 0 0 0
0 1 0 0
...

. . .
...

0 0 0 . . . 0

 . (B.66)

Definition B.5 (RZ Phase Gate). Define the single-qubit phase gate, RZ(t) := eitZ =

(
eit 0
0 e−it

)
.

We now derive a block-encoding of the permutation matrix P acting on m qubits. We include this
result for completeness, and similar results may be found in the literature (see e.g., Motlagh &
Wiebe (2024), where they derive a 1D circulant convolution via QSP, or Camps et al. (2024)). Our
implementation of Pm is identical to a +m adder implemented with QFT, see e.g., Draper (2000).

Lemma B.14 (Permutation Matrix Block-Encoding). Let m ∈ N>0. Let N = 2n. The mth

power of the permutation matrix P is given by Pm =
∑N−1
j=0 |j + m⟩⟨j|. Then, we can get a

(1, 1, 0)-block-encoding with O(n2) circuit complexity for Pm.

Proof. Drawing inspiration from Motlagh & Wiebe (2024); Sedghi et al. (2019), let F := QFT

represent the Quantum Fourier Transform on n qubits. Define ωjN := e2πij/N . Noting that F =
1√
N

∑N−1
i=0

∑N−1
j=0 ωijN |i⟩⟨j|, it is easy to show that PmF |j⟩ = ω−mj

N F |j⟩. Consequently, we can

write Pm = FDF−1, where D = diag(ω0
N , ω

−m
N , . . . , ω

−m(N−1)
N). Thus, by getting a block-

encoding of D, we can implement Pm by taking a product of FDF−1. Let |j⟩n be a basis vector,
and let j = 2n−1jn−1 + . . .+ 21j1 + 20j0. We will now give a unitary Vm which implements the
mapping Vm|0⟩1|j⟩n = ω−jm

N |0⟩1|j⟩n. Noting that ω−jm
N = e−2πijm/N =

∏n−1
l=0 e

−2πim(2jl jl)/N ,

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

we can apply a sequence of n controlled RZ(t) gates, where the lth gate is controlled on bit jl and
applies RZ(m2jl/N) on the ancilla qubit. This implements the desired mapping, and can be easily
shown to be a (1, 1, 0)-block-encoding for D. The Quantum Fourier Transform (Coppersmith, 2002)
can be implemented with O(n2) circuit complexity (Nielsen & Chuang, 2010), and so we can get a
trivial (1, 0, 0)-block-encoding for both F and F †. Thus, (I1 ⊗ F)Vm(I1 ⊗ F †) is a (1, 1, 0)-block-
encoding for Pm, with O(n2) circuit depth. Its worth noting that since the ancilla qubit in Vm is
separable after the computation, this could be equivalently considered a (1, 0, 0)-block-encoding.

Definition B.6 (Discrete Unilateral Shift Operator). Define Q to be the N -dimensional discrete
unilateral shift operator,

Q :=

N−2∑
j=0

|j + 1⟩⟨j| =


0 0 . . . 0 0
1 0 0 0
0 1 0 0
...

. . .
...

0 0 . . . 1 0

 . (B.67)

This is just the permutation matrix P without wrap-around.

Lemma B.15 (Block-Encoding of Q). Let N = 2n. Define Q as per Definition B.6. Then, we can
obtain a (1, 4, 0)-block-encoding for Q with O(n2) circuit complexity.

Proof. By Lemma B.14, we can obtain a UP a (1, 1, 0)-block-encoding of P =
∑N−1
j=0 |j + 1⟩⟨1|

with O(n2) circuit complexity. By Lemma B.6, we can obtain V a (1, 2, 0)-block-encoding of the
n-qubit projector |0⟩⟨N−1| withO(n) circuit depth. Following LCU (Childs & Wiebe, 2012; Gilyén
et al., 2019), we can get the sum of these two block-encodings, introducing an additional ancilla,
with the circuit Uf := (H ⊗ I2+n)(|0⟩⟨0|1 ⊗ I1 ⊗ UP − |1⟩⟨1|1 ⊗ V)(H ⊗ I2+n). Then, Uf is
a (1, 3, 0)-block-encoding for 1

2 (P − |0⟩⟨N − 1|) = 1
2Q, with O(n2) circuit complexity. Noting

that Q†Q = In − |N − 1⟩⟨N − 1|, it is clear that ∥Q∥2 ≤ 1. Moreover, since all the singular
values of Q/2 are either 0 or 1/2, we can invoke Lemma B.4, a special case of oblivious amplitude
amplification (Gilyén et al., 2019), to immediately convert this to a (1, 4, 0)-block-encoding for Q
with only 3 calls to Uf .

Lemma B.16 (Block-Encoding of Qm). Let m ∈ N>0 and let N = 2n. Define the N -dimensional
operator Q as per Definition B.6. Then, we can obtain a (1, 4m, 0)-block-encoding of Qm with
O(mn2) circuit complexity.

Proof. As per Lemma B.15, we can obtain UQ a (1, 4, 0)-block-encoding for Q with O(n2) circuit
complexity. Invoking Lemma 53 (Product of Block-Encoded Matrices) of Gilyén et al. (2019) withUQ
m times directly yields a (1, 4m, 0)-block-encoding of Qm with O(mn2) circuit complexity.5

Now, we present a standard well-known result giving the matrix form of a 2D multi-filter convolution
(see e.g., Sedghi et al. (2019); Kerenidis et al. (2020)).
Lemma B.17 (Matrix Form of 2D Multi-Filter Convolution). Let M = 2m, let n = 2m, let
N = 2n, and let D = 2d. Let C = 2c represent the number of input and output channels. Let X
represent the rank−3 input tensor, which in vectorized form (stored in column-major order for each
input channel) is given by, |X⟩n+c =

∑C−1
i=0

∑M−1
j=0

∑M−1
k=0 Xi,k,j |i⟩c|j⟩m|k⟩m. I.e., |X⟩n+c is of

dimension M2C = NC. Define X̃i,j,k = Xi,j,k if j ≥ 0 and k ≥ 0, and X̃i,j,k = 0 otherwise. We
can define the convolutional kernel K to be a rank-4 tensor containing each of the C, C ×D ×D
filters6, where the first index represents the output channel, the second index represent the input
channel, the third index represents the row index, and the fourth index represents the column index.
Then, entry y, z of the xth output channel after convolution with K is given by,

[X ∗K]x,y,z :=

C−1∑
j=0

D−1∑
k=0

D−1∑
l=0

Kx,j,k,lX̃j,z−k,y−l. (B.68)

5This can likely be optimizing by using QSVT (Gilyén et al., 2019).
6If the number of channels is 1 (i.e., C = 1), then the kernel is D ×D dimensional.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Defining Q as per Definition B.6, we can give the matrix form of the convolution,

C :=

C−1∑
i=0

C−1∑
j=0

D−1∑
k=0

D−1∑
l=0

Ki,j,k,l(|i⟩⟨j|c ⊗Ql ⊗Qk). (B.69)

I.e., C|X⟩n+c = vec(X ∗K).

Proof. We will verify that C indeed implements the mapping specified in Equation (B.68) by comput-
ing the following, ⟨x|c⟨y|m⟨z|mC|X⟩n+c. Note that for all i < l, ⟨i|Ql = 0, and that for all i ≥ l,
⟨i|Ql = ⟨i− l|. Consequently, if y − l ≥ 0, z − k ≥ 0, then ⟨j|c ⊗ (⟨y|m⟨z|mQl ⊗Qk)|X⟩n+c =
Xj,z−k,y−l, and if y − l < 0 or z − k < 0 then ⟨j|c ⊗ (⟨y|m⟨z|mQl ⊗ Qk)|X⟩n+c = 0. Thus,
⟨j|c ⊗ (⟨y|m⟨z|mQl ⊗Qk)|X⟩n+c = X̃j,z−k,y−l. Therefore,

⟨x|c⟨y|m⟨z|m
C−1∑
j=0

Ki,j,k,l(|i⟩⟨j|c ⊗Ql ⊗Qk)|X⟩n+c =
C−1∑
j=0

Kx,j,k,lX̃j,z−k,y−l. (B.70)

As a result,

⟨x|c⟨y|m⟨z|mC|X⟩n+c =
C−1∑
j=0

D−1∑
k=0

D−1∑
l=0

Kx,j,k,lX̃j,z−k,y−l = [X ∗K]x,y,z. (B.71)

Proof of Lemma 5. Define |X⟩n+c, K, and C as per Lemma B.17. As a result, obtaining a block-
encoding of C allows us to implement the desired 2D convolution in the vectorized setting.

First, for a given i, j, k, l, we will show how to obtain a block-encoding ofKi,j,k,l(|i⟩⟨j|c⊗Ql⊗Qk).
Using Lemma B.6, we can obtain Ui,j a (1, 2, 0)-block-encoding of the c-qubit projector |i⟩⟨j|c, with
O(c) circuit depth. Then, using Lemma B.16, we can obtain UQl a (1, 4l, 0)-block-encoding of m
qubit Ql with O(lm2) circuit complexity. We similarly obtain UQk a (1, 4k, 0)-block-encoding of
m qubit Qk with O(km2) circuit complexity. We can then invoke Lemma B.2 with Ui,j and UQl ,
and again with UQk , to obtain Ui,j,l,k, a (1, 2 + 4l + 4k, 0)-block-encoding of |i⟩⟨j|c ⊗ Ql ⊗ Qk

with O(c+Dm2) circuit complexity. To make each operator act on the same number of qubits, we
will augment each with the appropriate number of tensored identities to yield a (1, 2 + 8D, 0)-block-
encoding for the corresponding operator.

Define |K⟩2c+2d :=
∑C−1
i=0

∑C−1
j=0

∑D−1
k=0

∑D−1
k=0 Ki,j,k,l|i⟩c|j⟩c|k⟩d|l⟩d, and define |

√
K⟩2c+2d =√

|K⟩2c+2d (with the square-root applied element-wise). Then, define NK :=
∥∥∥|√K⟩2c+2d

∥∥∥
2
=

∥|K⟩2c+2d∥1/21 , and |K⟩2c+2d := |K⟩2c+2d/NK . Noting that this vector is C2D2 dimensional, we
can brute-force construct a unitary UK , with a total of O(C2D2) single and two qubit gates, such that
UK |0⟩2c+2d = |

√
K⟩2c+2d/NK (Plesch & Brukner, 2011). We can then invoke Lemma B.5, obtain-

ing a (N 2
K , 2 + 8D + 2 log(CD), 0)-block-encoding for C with O(cdC2D3m2) circuit complexity.

This is equivalent to a (1, 2 + 8D + 2 log(CD), 0)-block-encoding for C/ ∥|K⟩2c+2d∥1. Since we
are concerned with accelerating inference, we will ignore classical pre-computation costs that must
only be paid one time to construct this datastructure. We can then invoke Lemma B.3, setting
γ = ∥|K⟩2c+2d∥1 /2 ∥C∥2 and δ = 1/2, since ∥C/ ∥|K⟩2c+2d∥1∥2 ≤ 1

2

2∥C∥2

∥|K⟩2c+2d∥1
. Neglecting

the logarithmic error-terms incurred by Lemma B.3 (as these will not dominate complexity), this
then yields a (1, 3+8D+2 log(CD), 0)-block-encoding for C

2∥C∥2
with O(

∥|K⟩2c+2d∥1

∥C∥2
cdC2D3m2)

circuit depth. We will now show that ∥|K⟩2c+2d∥1

∥C∥2
≤ DC3/2, and thus that the overall circuit depth is

bounded by O(cdm2C3D4).

We will now upper-bound ∥|K⟩2c+2d∥1. Define the basis vector |x⟩c+2m = |x1⟩c|x2⟩m|x3⟩m.
Then, the xth row of C is given by ⟨x|c+2mC. Simple analysis shows that ⟨x|c+2mC =∑C−1

j=0

∑D−1
k=0

∑D−1
l=0 Kx1,j,k,l⟨j|c ⊗ ⟨x2 − l|m ⊗ ⟨x3 − k|m, where ⟨x2 − l|m = 0 if x2 − l < 0

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

and ⟨x3 − k|m = 0 if x3 − k = 0. Then it can be readily shown that ∥⟨x|c+2mC∥22 =∑C−1
j=0

∑D−1
k=0

∑D−1
l=0 |Kx1,j,k,l|2. For any operator A with ∥A∥2 ≤ 1, the maximum column

norm max|i⟩ ∥A|i⟩∥2 ≤ max|ψ⟩:∥|ψ⟩∥2=1 ∥A|i⟩∥2 ≤ 1. Similarly, since ∥A∥2 =
∥∥A†

∥∥
2
, the max-

imum row norm cannot exceed the spectral norm of the matrix. Therefore, any row of C must
have ℓ2-norm bounded by ∥C∥2, thus,

∑C−1
j=0

∑D−1
k=0

∑D−1
l=0 |Kx1,j,k,l|2 ≤ ∥C∥22. Consequently,

∥|K⟩2c+2d∥22 =
∑C−1
i=0

∑C−1
j=0

∑D−1
k=0

∑D−1
l=0 |Ki,j,k,l|2 ≤ C ∥C∥22. Moreover, for an n-dimensional

vector x, ∥x∥1 ≤
√
n ∥x∥2, and thus, ∥|K⟩2c+2d∥1 ≤

√
C2D2

√
C ∥C∥2 = DC3/2 ∥C∥2. Conse-

quently, ∥|K⟩2c+2d∥1 / ∥C∥2 ≤ DC3/2.

To see a set of related block-encoding circuits, see Camps et al. (2024).

It is also worth noting that the preceding result can be made substantially more efficient by utilizing a
circulant convolution to implement the non-circulant convolution. We will now quickly sketch this
idea for future optimization. For simplicity, we assume that the convolution has one input channel and
one output channel, and that the input is a rank-2 tensor (e.g., a black and white image). Let M = 2m.
Then, if the input image isX ∈ RM×M , we can add 0 padding with theM×M projector, |0⟩⟨0|m⊗X .
Then, enacting a circulant convolution on this augmented operator and projecting onto the zero-state
of the first register yields the desired non-circulant convolution. Moreover, we can define a circulant
2D convolution as [X ∗K]i,j =

∑l−1
k=0

∑d−1
l=0 Kk,lXi−k,j−l. The following sketch generalizes the

1D circulant convolution given in Motlagh & Wiebe (2024), and also follows the ideas discussed
in Sedghi et al. (2019). Consequently, the operator C :=

∑d−1
i=0

∑d
j=0Ki,jP

j ⊗ P i implements
X ∗K in the vectorized setting (using a column-major vectorization for X). Let ωM := exp(2πi/M)
be the M th root of unity. Let F := QFT represent the Quantum Fourier Transform on m qubits. It is
easy to show that P kF |j⟩ = ω−kj

M F |j⟩. Thus, let D := F−1PF = diag(ω0
M , ω

−1
M , . . . , ω

−(M−1)
M).

Consequently, P = FDF−1, and so C = (F ⊗ F)
(∑d−1

i=0

∑d−1
j=0 Ki,jD

j ⊗Di
)
(F−1 ⊗ F−1).

Clearly, since implementing the QFT is efficient on a quantum computer, the key to implementing C
is in implementing a block-encoding of the diagonal matrix Γ :=

∑d−1
i=0

∑d−1
j=0 Ki,jD

j ⊗Di. Noting
that this is a 1-sparse matrix with efficiently computable entries, a technique such as Gilyén et al.
(2019) can be immediately used to obtain the desired block-encoding (replacing QRAM assumptions
with arithmetic oracles computing the locations and values of the non-zero elements). This can be
further optimized by replacing the arithmetic with QRAM. In the multi-filter case, the diagonal matrix
becomes a block-diagonal matrix (with blocks of height and width given by the number of input and
output channels), and the sparse block-encoding techniques can still be used.

B.3 NON-LINEAR TRANSFORMATION OF VECTOR-ENCODINGS

We now present an essential result on transforming the amplitudes of a state encoded as a VE. This
result is a direct translation of the ideas in the result given in Rattew & Rebentrost (2023) (which
in turn builds on Guo et al. (2024a); Mitarai et al. (2019)) to the setting of VEs. While Rattew &
Rebentrost (2023) also give a similar result in the setting of a VE (called an SPBE in that paper),
they obtain it by treating the whole unitary VE as a state-preparation unitary, and then invoke their
non-linear amplitude transformation (NLAT) result on that, which gives slightly worse complexity
than just directly re-deriving the whole transformation result in the framework of VEs. We include
the following for completeness and simplicity, and do not claim novelty on this result.
Lemma B.18 (NLAT of VE (Rattew & Rebentrost, 2023)). Let N = 2n. Let 0 ≤ ϵ0 ≤ 1, and
α ≥ 1. We are given a unitary matrix Uψ which is an (α, a, ϵ0)-VE for the n-qubit real quantum
state |ψ⟩n with circuit complexity O(T), and a function f : R 7→ R with Lipschitz constant L
such that f(0) = 0. Define ϵ1 such that 0 < ϵ1 ≤ L. Define N := ∥f(|ψ⟩n/α)∥2. Define the
interval of approximation [−τ, τ], where 0 < τ ≤ 1 which can be set to either τ = 1 or any value
such that τ ≥ 1+ϵ0

α if a smaller region of approximation yields a better complexity. Define the
polynomial P : R 7→ R, such that with degree k, maxx∈[−τ,τ] |P (x) − f(x)| ≤ Lϵ1

2
√
N

. Suppose
we are given a bound γ̃ satisfying γ̃ ≥ maxx∈[−1,1] |P (x)/x|, and require that P (0) = 0. Then,

we can obtain a unitary circuit Uf that is a
(

4γ̃
N , n+ 2a+ 4, LN (ϵ0 + ϵ1)

)
-VE for f(|ψ⟩n/α)/N ,

and which requires O(k) calls to a controlled Uψ and U†
ψ circuit, and has a total circuit depth of

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

O(k(n+ a+ T)). This circuit can be obtained with O(poly(k, log(γ̃
N ϵ1

))) classical time complexity.

Proof. We will begin by considering the domain we require for the polynomial approximation.
Essentially, by noting that if α > 1, the function is being applied to a sub-component of an ℓ2-
normalized vector, and thus the maximum value of its input will be strictly less than 1+ϵ0

α . In some
cases, this could yield a more efficient polynomial approximation, and so we will write our result
both in the setting where the interval of approximation is [−1, 1] and [− 1+ϵ0

α , 1+ϵ0α]. In particular,
the function will be applied to (⟨0|a ⊗ In)Uψ|0⟩a+n, and so we must upper-bound the maximum
amplitude in this quantity. Define c ∈ R such that 0 < c ≤ 1. Define the un-normalized vector
|ϕ⟩n := (⟨0|a ⊗ In)Uψ|0⟩a+n. Define |Eψ⟩n := |ψ⟩n −α|ϕ⟩n, and note that ∥|ϕ⟩n∥2 ≤ 1, and thus
that 1

α ∥|ψ⟩n − |Eψ⟩n∥2 ≤ 1. Additionally, by Definition 3, ∥|Eψ⟩n∥2 ≤ ϵ0. Define {ϕj}j such that
|ϕ⟩n =

∑N
j=1 ϕj |j⟩n. Thus, |ϕj | ≤ ∥|ϕ⟩n∥2 ≤ 1

α (1 + ϵ0). Define c := min(1
α (1 + ϵ0), 1).

Let Nψ := N . Let NP := ∥P (|ψ⟩/α)∥2. Define the degree k − 1 polynomial Q(x) := P (x)/x,
and define ϵ2 such that maxx∈[−c,c] |P (x)− f(x)| ≤ ϵ2.

Using Lemma 6 of Rattew & Rebentrost (2023), we can get a (1, a + n + 2, 0)-block-encoding
UA of A := diag(Uψ|0⟩a+n) with O(a + n) circuit depth, and 6 additional calls to a controlled
Uψ circuit. Invoking Theorem 56 of Gilyén et al. (2019) with Q(x)/4γ̃, we get the unitary UQ, a
(1, a+ n+ 4, δ)-block-encoding for Q(A)/4γ̃, requiring O((a+ n)k) single and two-qubit gates,
O(k) calls to a controlled UA circuit, and O(poly(k, log(1/ϵ))) classical computation to determine
the QSVT rotation angles to implement the degree k polynomial. We can equivalently call UQ a
(1, a+ n+ 4, 0)-block-encoding for some matrix V , such that ∥V −Q(A)/4γ̃∥2 ≤ δ. Additionally,
define EQ := V −Q(A)/4γ̃. Since for any vector x, Q(diag(x))x = P (x), we get, V Uψ|0⟩a+n =
P (Uψ|0⟩a+n)

4γ̃ +EV Uψ|0⟩a+n. Additionally, noting that (⟨0|a⊗In)P (x) = P ((⟨0|a⊗In)x), and that

(⟨0|a⊗ In)Uψ|0⟩a+n = |ϕ⟩n, we get (⟨0|a⊗ In)V Uψ|0⟩a+n = P (|ϕ⟩n)
4γ̃ +(⟨0|a⊗ In)EV Uψ|0⟩a+n.

Define Ũψ := Ia+n+4 ⊗ Uψ .

First, note that Ũψ|0⟩2a+2n+4 = (|0⟩n+a+4 ⊗ Ia+n)Uψ|0⟩a+n. Then, note that (⟨0|n+2a+4 ⊗
In) = (⟨0|a ⊗ In)(⟨0|n+a+4 ⊗ Ia+n). Consequently, by Definition 2, since (⟨0|n+a+4 ⊗
Ia+n)UQ(|0⟩n+a+4 ⊗ Ia+n) = V ,

(⟨0|n+2a+4 ⊗ In)UQŨψ|0⟩2n+2a+4 = (⟨0|a ⊗ In)V Uψ|0⟩a+n (B.72)

=
P (|ϕ⟩n)

4γ̃
+ (⟨0|a ⊗ In)EV Uψ|0⟩a+n. (B.73)

We will now show that UQŨψ is a VE for 1
Nψ f(|ψ⟩n/α). Precisely, we must upper-bound,

ξ1 :=

∥∥∥∥ 1

Nψ
f(|ψ⟩n/α)−

4γ̃

Nψ
(⟨0|n+2a+4 ⊗ In)UQŨψ|0⟩2n+2a+4

∥∥∥∥
2

(B.74)

≤ 1

Nψ

(
∥f(|ψ⟩n/α)− P (|ϕ⟩n)∥2 + 4γ̃ ∥(⟨0|a ⊗ In)EV Uψ|0⟩a+n∥2

)
. (B.75)

Let ⟨j|Eψ⟩ := ej . We will now prove a sequence of simple facts. Since |f(x) − f(x + b)| ≤
L|b|, and using |ϕ⟩n =

|ψ⟩n−|Eψ⟩n
α , we have that ∥f(|ψ⟩n/α)− f(|ϕ⟩n)∥22 =

∑N
i=j |f(ψj) −

f((ψj − ej)/α)|2 ≤ L2

α2

∑N
j=1 |ej |2 = L2

α2 ∥|Eψ⟩n∥22 ≤ L2ϵ0
α2 . Then, ∥f(|ϕ⟩n)− P (|ϕ⟩n)∥22 =∑N

j=1 |f(ϕj)− P (ϕj)|2 ≤ maxx∈[−c,c] |f(x)− P (x)|2N ≤ ϵ22N . Then,

∥f(|ψ⟩n/α)− P (|ϕ⟩n)∥2 = ∥f(|ψ⟩n/α)− f(|ϕ⟩n) + f(|ϕ⟩n)− P (|ϕ⟩n)∥2 (B.76)

≤ Lϵ0
α

+ ϵ2
√
N. (B.77)

At this point, the proof branches into two cases. The first case is where we simply use the uniform
approximation to the function on the entire interval [−1, 1]. The second case, which should only be
used when approximating the function on [−τ, τ] yields a better asymptotic approximation, will be
proven after.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Noting that ∥(⟨0|a ⊗ In)EV Uψ|0⟩a+n∥2 ≤ δ, we can now get the overall bound of

ξ1 ≤ 1

Nψ

(
Lϵ0
α

+ ϵ2
√
N + 4γ̃δ

)
≤ 1

Nψ

(
Lϵ0 + ϵ2

√
N + 4γ̃δ

)
. (B.78)

Thus, we have shown thatUQŨψ is a (4γ̃
Nψ , 2a+n+4, 1

Nψ (Lϵ0+ϵ2
√
N+4γ̃δ))-VE for 1

Nψ f(|ψ⟩n/α).
To get the overall error-bound, we will set ϵ2

√
N = Lϵ1/2, and 4γ̃δ = Lϵ1/2, yielding ϵ2 = Lϵ1

2
√
N

,

and δ = Lϵ1
8γ̃ . This gives a (4γ̃

Nψ , 2a+ n+ 4, L
Nψ (ϵ0 + ϵ1))-VE for 1

Nψ f(|ψ⟩n/α), and requires O(k)

calls to a controlled Uψ and U†
ψ circuit, and has a total circuit depth of O(k(n+ a+ T)). This circuit

can be obtained with O(poly(k, log(γ̃
Lϵ1

))) classical time complexity.

To make the preceding result easier to use, we provide a special case for transformation by the error
function, and again do not claim novelty.

Lemma B.19 (Application of erf(νx) to a Vector Encoding). Let N = 2n, let ν ≥ 1/2, let 1 ≥ ϵ0 ≥
0 and let 0 < ϵ1 ≤ 2. We are given a unitary matrix Uψ with circuit complexity O(T) which is an
(α, a, ϵ0)-VE for the n-qubit quantum state |ψ⟩n, and we are also given the error function fν(x) =

erf(νx). Let N := ∥fν(|ψ⟩n/α)∥2. Then, we can obtain a
(

16ν√
πN , 2a+ n+ 4, 2να(ϵ0 + ϵ1)

)
-VE

for fν(|ψ⟩n/α)/N , with O(ν log(
√
N
ϵ1

)) queries to a controlled Uψ and U†
ψ circuit, and with a total

circuit depth of O(ν log(
√
N
ϵ1

)(a+ n+ T)). Moreover, N ≥ 1
2α .

Proof. From Lemma F.1, we know that the Lipschitz constant L of erf(νx) is L = 2ν√
π

.

Define c = O(1/α). Using Lemma F.1, we can obtain a degree k ∈ O(ν log(ν/αϵ′)) polynomial
Pk,ν such that Pk,ν(0) = 0 and maxx∈[−c,c] |Pk,ν(x) − fν(x)| ≤ ϵ′. Since we need ϵ′ ≤ Lϵ1

2
√
N

,

we can set ϵ′ = νϵ1
10

√
N

in accordance with Lemma B.18, we have a degree k ∈ O(ν log(
√
N
ϵ1

))

polynomial approximation.

From Lemma F.1, for ν ≥ 1/2, we know that ∀x ∈ [−1, 0)∪(0, 1], | erf(νx)| ≥ |x/2|. Consequently,
N 2 =

∑N
j=1 |f(ψj/α)|2 ≥ (1

2α)
2. Additionally, we know that γ̃ = maxx∈[−1,1] |Pk,ν(x)/x| ≤ 4ν√

π
.

Invoking Lemma B.18, setting with all of the above facts and setting γ̃ = 4ν√
π

then gives the
complexity.

C GENERAL ARCHITECTURAL BLOCKS

The architectural blocks we present in this paper are intended to demonstrate how the different
operations on encoded matrices and vectors can be combined to coherently implement various
architectures on quantum computers. There is a rich set of possibilities, and we are only exploring a
small but elucidating set.

Two of the most important concepts governing the complexity of the quantum implementation of any
classical architecture are: (1) the number of non-linear activation layers, and (2) the ℓ2 norm of the
vectorized input tensor as it propagates through the network.

In order for a unitary matrix (a linear operator) to enact a non-linear transformation on a vector,
its definition must depend on the vector it is being applied to. Consequently, techniques which
enact non-linear transformations on state-amplitudes (e.g., Rattew & Rebentrost (2023); Guo et al.
(2024a)) must have circuit definitions which depend on the vector-encoding circuit they are being
applied to. Thus, if the unitary circuit implementing the transformation requires even two calls to
the input vector encoding, then the circuit complexity will grow exponentially with the number of
non-linear activations. Consequently, wide but shallow multi-layer architectures are ideal for quantum
acceleration. Finally, an alternative to fully coherent quantum acceleration is to periodically read-out
the vector in intermediate layers of the network. As discussed in the introduction, several quantum
computing papers have proposed this approach. However, in general, since reading out a quantum
state incurs a dimension-dependent cost (Cramer et al., 2010; van Apeldoorn et al., 2023) (and incurs

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

polynomial error-dependence) this either imposes significant constraints on the types of architectures
that can be accelerated (requiring frequent mappings to very low-dimensional spaces where readout
is cheaper), or incur asymptotically dominating error accumulation. Nevertheless, there are certain
settings where periodic state readout may be desirable, and our techniques are fully compatible with
these ideas.

The second key concept governing the complexity of a quantum implementation of an architecture
relates to the norm of the encoded vector as it propagates through the network. Whenever a sample is
drawn from an encoded vector, a cost inversely proportional to the norm of the encoded vector must
be paid. Similarly, whenever an encoded vector is normalized, an inverse norm-cost must be paid.
Consequently, to obtain provable end-to-end complexity results, we need to be able to lower-bound
the norm of the encoded vector whenever we apply a layer norm (or draw a sample from the output
of the network). A key tool in doing this is the skip connection, as it allows the norm from the
previous layer to be preserved in the output of the next layer. Additionally, if the weight layers are
normalized (i.e., if W represents the matrix form of any parameter layer, then ∥W∥2 ≤ 1), and the
activation function is scaled so that its Lipschitz constant on the interval [−1, 1] is at most 1, this
results in provable norm-preservation bounds. Requiring weight-layers to be sub-normalized has
been extensively explored in the classical deep learning literature (Miyato et al., 2018; Yoshida &
Miyato, 2017; Gouk et al., 2020), as sub-normalization can help prevent network norm explosion as
deeper networks are trained.

It is worth briefly noting that, in certain cases, the sub-normalization condition on the weight layers
can be removed (i.e., for matrix W , 0 ≤ ∥W∥2 ≤ c where c ≥ 1). This is done by implementing
W/ ∥W∥2, and then scaling the input of the subsequent activation function by ∥W∥2. If using the
error function activation, this increases the cost of the polynomial approximation by an amount
proportional to c. We do not consider this regime as it makes it more challenging to prove norm
preservation properties after the skip connection, but stress that quantum computers can actually
implement such regimes. Numerical studies examining norm preservation for such networks could
shed light into their efficiency.

We will now formally define our ℓ2-norm squared pooling; this is essentially just an ℓ2-norm pooling
operation followed by an element-wise square. Throughout we will assume that dimensions neatly
line-up, noting that if they don’t padding can be used to easily and efficiently ensure alignment.

Definition C.1 (Squared ℓ2 Norm Pooling). Given an N -dimensional vector |ϕ⟩ =
∑N
j=1 ϕj |j⟩, and

a positive integerC such thatN is divisible byC, define fj := (j−1)NC +1. Then, we define ℓ2-norm

squared pooling by poolC(|ϕ⟩) :=
∑C
j=1

∑jNC
l=fj

ϕ2l |j⟩, where {|j⟩} is the set of C-dimensional basis
vectors.
Lemma C.1 (Error Propagated Through ℓ2 Norm Squared Pooling). Define the N -dimensional
vectors |ϕ⟩ and |ϕ̃⟩, such that

∥∥∥|ϕ⟩ − |ϕ̃⟩
∥∥∥
2
≤ ϵ. Then, defining a positive integer C such thatN is di-

visible by C, and defining poolC as per Definition C.1, we have that
∥∥∥poolC(|ϕ⟩)− poolC(|ϕ̃⟩)

∥∥∥
2
≤

2Nϵ√
C

.

Proof. Let |ϕ⟩ =
∑N
j=1 ϕj |j⟩, and let |ϕ̃⟩ =

∑N
j=1 ϕ̃j |j⟩. Then,

∥∥∥|ϕ⟩ − |ϕ̃⟩
∥∥∥
2
≤ ϵ implies that

∀j, |ϕj − ϕ̃j | ≤ ϵ. Then, additionally using that |ϕj + ϕ̃j | ≤ 2,

∥∥∥poolC(|ϕ⟩)− poolC(|ϕ̃⟩)
∥∥∥2
2
=

C∑
j=1

jN/C∑
l=fj

(ϕl − ϕ̃l)(ϕl + ϕ̃l)

2

≤ 4

C∑
j=1

(
Nϵ

C

)2

=
4N2ϵ2

C
.

(C.1)

Proof of Lemma 6. The parameter κ in the lemma is designed for situations where we don’t have a
perfect block-encoding of the matrix we would like. For instance, in cases where we want to apply
some matrix A, but we are only able to get a block-encoding of A/2. We can fix this when applying
the activation function by scaling its input to remove the 1/2 factor.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Figure 4: Full-rank linear-pooling output block.

Figure 5: This figure shows the final output architectural block used in our neural networks for
Regimes 1 and 2. Here, g(x) = x2 and W is a sub-normalized (potentially full-rank and dense)
matrix.

Let ν := 4κ/5. Let |ϕ1⟩n :=W |ψ⟩n/κ, N1 := ∥|ϕ1⟩n∥2, and |Φ1⟩n := |ϕ1⟩n/N1. Using Lemma 2
we get U1 a (N−1

1 , a+ b, ϵ0N−1
1)-VE for |Φ1⟩n with O(T1 + T2) circuit complexity.

Let |ϕ2⟩n := f(W |ψ⟩n)), N2 := ∥|ϕ2⟩n∥2, and |Φ2⟩n := |ϕ2⟩n/N2. Define 0 < ϵ1 ≤
1. Invoking Lemma B.19 with U1 and f(κx) = erf(4κx/5) = erf(νx), we obtain U2 a(

16ν√
πN2

, 2(a+ b) + n+ 4, 2νN−1
1 (ϵ0 + ϵ1)

)
-VE for f(|Φ1⟩nN1)/ ∥f(|Φ1⟩nN1)∥2 = |Φ2⟩n. U2

has circuit complexity O(ν log(
√
N
ϵ1

)(a+ b+ n+ T1 + T2)).

So as to invoke Lemma 1 to implement the skip connection and obtain a state proportional to |ψf ⟩n,
we will need to factor out a common factor of

√
π

16ν . Consequently, we invoke Lemma B.9 on Uψ to
obtain U ′

ψ a (16ν√
π
, a+ 2, ϵ0)-VE for |ψ⟩n with O(T1 + a) circuit complexity.

Define |γ⟩n :=
√
π

32ν (|ψ⟩n + |Φ2⟩nN2) =
√
π

32ν (|ψ⟩n + f(W |ψ⟩n)), Nγ := ∥|γ⟩n∥2 and |Γ⟩n :=
|γ⟩n/Nγ . Then, we can invoke Lemma 1 (setting τ = 1/2) with U ′

ψ and U2, yielding U3 a(
N−1
γ , 2(a+ b) + n+ 5, N−1

γ [ϵ0
√
π

16ν + N2
√
π

16ν (2νN−1
1 (ϵ0 + ϵ1))]

)
-VE for |Γ⟩n, with circuit com-

plexity O(ν log(
√
N
ϵ1

)(a+ b+ n+ T1 + T2)). We will now simplify the error component of this VE
statement.

First, define |x⟩n =
∑
i xi|i⟩n = W |ψ⟩n. Then, using the fact that f(x) = erf(4x/5) has

a Lipschitz-constant of 8
5
√
π

(as per Lemma B.19), N 2
2 = ∥f(W |ψ⟩n)∥22 ≤

∑
i |f(xi)|2 ≤

(8
5
√
π
)2
∑
i |xi|2 = (8

5
√
π
)2 ∥W |ψ⟩n∥22. Since ∥W∥2 ≤ 1, ∥W |ψ⟩n∥2 ≤ 1, and thus N2 ≤

8
5
√
π

≤ 0.91. Next, we must lower-bound Nγ . Thus, N 2
γ = (

√
π

32ν)
2
(
1 +N 2

2 + 2N2⟨Φ2|ψ⟩
)
≥

(
√
π

32ν)
2 (1−N2)

2 ≥ (
√
π

32ν)
2(0.09)2. Consequently, using that ν ≤ 8/5 (since κ ≤ 2) we get

that Nγ ≥ 1/400. Additionally, it is straight-forward to show that N2/N1 ≤ 0.91κ ≤ 2.
Inserting all of these values and performing simple algebra, we find that U3 is equivalently a(
N−1
γ , 2(a+ b) + n+ 5, 355(ϵ0 + ϵ1)

)
-VE for |Γ⟩n.

Let 0 < ϵ2 ≤ 1. Then, invoking Lemma B.8, we get Uf , a (1, 2(a+b)+n+9, 2(355(ϵ0+ϵ1)+ϵ2))-
VE for |Γ⟩n, with circuit complexity O(log(

√
N
ϵ1

) log(1
ϵ2
)(a+ b+ n+ T1 + T2)). If we let ϵ2 = ϵ1,

then we can simplify this to a (1, 2(a + b) + n + 9, 712(ϵ0 + ϵ1))-VE with circuit complexity
O(log(

√
N
ϵ1

) log(1
ϵ1
)(a+ b+ n+ T1 + T2)).

Proof of Lemma 7. This result comes from repeatedly invoking Lemma 6, with the output of each
application becoming the input of the next.

We will first give a bound on the total number of ancilla qubits of the block-encoding giving the
final output after k residual block layers. Let a0 = a. c = 2b + n + 9. After one application of
the residual block, the number of ancillas is given by a1 = 2a0 + c. Then, the general form for the
number of ancillas is given by the recurrence ai = 2ai−1 + c. We can obtain an upper-bound by

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

instead setting ai = 2(ai−1 + c). Clearly, ai = 2i(a+ c) = 2i(a+ 2b+ n+ 9). Thus, we have a
(1, 2k(a+ 2b+ n+ 9), ϵ)-block-encoding.

We will now determine a bound on the resulting error, ϵ. Note that the ith residual block introduces
a new error-parameter ϵi which controls the error in the activation function and the normalization
of that block. After the first iteration, the error δ1 is given by δ1 = 712(ϵ0 + ϵ1). After the second
iteration, the error from the previous iteration becomes the new ϵ0, and so the error after the second
iteration is given by δ2 = 712(δ1 + ϵ2). We can set ϵi = δi−1, giving the general form of the error
after the ith residual layer of δi = 1424δi−1 = 724 · 1424i−1ϵ1 = 1424iϵ1/2. Noting that we want
a final error of at most ϵ, we must set δk ≤ ϵ. I.e., we can set ϵ = 1424kϵ1/2 =⇒ ϵ1 = 2ϵ/1424k.
Thus, for i > 1, each ϵi = δi−1 = 1424iϵ1/2 = 1424i

1424k
ϵ = ϵ/1424k−i.

Define h(ϵi) := log(
√
N/ϵi) log(1/ϵi). Let the circuit complexity of the block-encoding after

applying i residual blocks be O(Ri). Noting that R1 ∈ O(h(ϵ1)(a0 + b + n + T1 + T2)), Ri
asymptomatically dominates T1, T2, ai−1, n and b. Then, the circuit complexity after block i + 1
will be O(h(ϵi+1)(ai + b + n + Ri + T1)) ∈ O(h(ϵi+1)(ai + Ri)). Then, we can simplify to
find that Rk ∈ O((ak + R1)

∏k
i=1 h(ϵi)) ∈ O((2k(a + 2b + n) + T1 + T2)

∏k
i=1 h(ϵ/1424

k−i)).
Noting that

∏k
i=1 h(ϵi) ∈ O((

∏k
i=1 log(

√
N/ϵi))

2),
∏k
i=1 h(ϵ/1424

k−i)) ∈ O((
∏k
i=1(k − i +

log(
√
N/ϵi)))

2) ∈ O((k+log(
√
N/ϵ))2k). Since k is an asymptotic constant,O(k+log(

√
N/ϵ)) ∈

O(log(
√
N/ϵ)), and so

∏k
i=1 h(ϵ/1424

k−i)) ∈ O(log(
√
N/ϵ)2k). Thus, the overall circuit com-

plexity is given by O(log(
√
N/ϵ)2k(a+ 2b+ n+ T1 + T2)).

Lemma C.2 (Full-Rank Linear Pooling Output Block). Consider the architecture block shown
in Figure 5. Let the dimension of the input vector be N = 2n, and let the dimension of the output of
the network block be C = 2c (i.e., the number of classes). Let the output of the network be given by
the vector |y⟩c. Suppose we have Uψ an (1, a, ϵ0)-VE for the N -dimensional input vector |ψ⟩n = x
with O(Tϵ0) circuit complexity. Here, Tϵ0 makes explicit that the complexity of the input circuit will
be dependent on the desired error of the vector encoding of the layer input to this architectural block.
Suppose we are given access to an arbitrary matrix W such that ∥W∥2 ≤ 1 as per Theorem B.1.
Then, if the weight on the skip-path is τ = 0.51, we can draw a sample from a vector |ϕ̃⟩c such that∥∥∥|ϕ̃⟩c − |y⟩c

∥∥∥
2
≤ ϵ with O(log(N√

Cϵ
)(Tϵ0 + a + n2)) circuit complexity and with O(a + n) total

ancilla qubits.

Proof. Let d represent the number of bits in part of the QRAM encoding of W , as per Theorem B.1.
Note that d is assumed to be an asymptotic constant. Let |ϕ1⟩n :=Wg(|ψ⟩n), N1 := ∥|ϕ1⟩n∥ and
|Φ1⟩n := |ϕ1⟩n/N1. Using Theorem B.1, we can get a (N−1

1 , 2a + d + 3 + n, 2ϵ0N−1
1)-VE for

|Φ1⟩n with O(Tϵ0 + dn+ n2) circuit complexity. Here d is a constant specifying the precision in the
representation of the elements of the matrix stored as per Definition B.3.

Let |γ⟩n := τ |ψ⟩n + (1− τ)|Φ1⟩nN1 = τ |ψ⟩n + (1− τ)Wg(|ψ⟩n), and let Nγ := ∥|γ⟩n∥2.

Then, Lemma 1 yields V2 a (N−1
γ , 2a+d+4+n, 3ϵ0N−1

γ)-VE for |γ⟩n/Nγ withO(Tϵ0 +dn+n
2)

circuit complexity.

We will now lower-bound Nγ . The main idea is that if you are summing two vectors, one with norm
1, and the other with norm at most 1, if you put arbitrarily more mass on the constant-norm vector (δ),
you are guaranteed that the vectors cannot fully cancel out, and thus that some norm is preserved in the
sum. Note that N1 = ∥Wg(|ψ⟩n)∥2 ≤ ∥W∥2

∥∥∥∑j ψ
2
j |j⟩n

∥∥∥
2
≤
∥∥∥∑j ψj |j⟩n

∥∥∥
2
= 1. Consequently,

|⟨ψ|Φ1⟩| ≤ 1, and so

N 2
γ = ∥τ |ψ⟩n + (1− τ)|Φ1⟩nN1∥22 = τ2 + (1− τ)2N 2

1 + 2τ(1− τ)N1⟨ψ|Φ1⟩ (C.2)

≥ τ2 + (1− τ)2N 2
1 + 2τ(1− τ) = (τ − (1− τ)N1)

2. (C.3)

For some parameter δ ∈ [0, 1], assuming that τ = (1 + δ)/2, we then get that Nγ ≥ δ.

Then, define ϵ1 ∈ (0, 1]. We can then invoke Lemma B.8 yielding V3 a (1, 2a+d+8+n, 6ϵ0δ +2ϵ1)-
VE for |γ⟩n/Nγ with O(1δ log(1/ϵ1)(Tϵ0 + a+ dn+ n2)) circuit complexity.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Define poolC as per Definition C.1. Noting that poolC(|γ⟩n/Nγ) = |y⟩c.

We can equivalently define some ℓ2-normalized state |Γ̃⟩n such that V3 is a (1, 2a+ d+8+n, 0)-VE
for |Γ̃⟩n. Then, since

∥∥∥|Γ̃⟩n − |γ⟩n
Nγ

∥∥∥
2
≤ 6ϵ0

δ + 2ϵ1, we can invoke Lemma C.1 which shows that∥∥∥poolC(|Γ̃⟩n)− |y⟩c
∥∥∥
2
≤ 2N√

C
(6ϵ0δ + 2ϵ1).

Consequently, to get an error of at most ϵ, we set 2N√
C
(6ϵ0δ + 2ϵ1) = ϵ, by setting ϵ1 =

√
Cϵ

8N and

ϵ0 = ϵ
√
Cδ

24N . Then, we can simply draw a sample ϵ-close to |y⟩c in ℓ2-norm distance by sampling the
state prepared by V3 and then assigning it to the appropriate bin.

Setting δ = 0.02 gives τ = 0.51. Then, V3 is a (1, 2a + d + 8 + n, ϵ)-VE for |γ⟩n/Nγ with
O(log(N√

Cϵ
)(Tϵ0 +a+dn+n

2)) circuit complexity. Consequently, we can draw a sample from some

vector |ϕ̃⟩c such that
∥∥∥|ϕ̃⟩c − |y⟩c

∥∥∥
2
≤ ϵwithO(log(N√

Cϵ
)(Tϵ0+a+dn+n

2)) ∈ O(log(N√
Cϵ

)(Tϵ0+

a + n2)) circuit complexity, and with O(a + n) ancilla qubits, noting that d is an asymptotic
constant.

D FEASIBILITY OF QRAM ASSUMPTIONS

In this section, we consider the feasibility of different QRAM assumptions to help motivate our
discussion in Appendix E. In Section D.1 we consider the feasibility of our QRAM assumptions.
In Section D.2 we summarize how arbitrary quantum states can be prepared by using a QRAM
data-structure, in service of our subsequent discussion of the different architectural regimes.

D.1 PASSIVE AND ACTIVE QRAM

It is clear that, if a fault-tolerant quantum computer can be constructed, that a QRAM based on
the various quantum circuit constructions (see Jaques & Rattew (2023); Giovannetti et al. (2008a);
Hann (2021)) can be directly implemented. Moreover, these circuit constructions have log-depth
access costs. However, as laid out in Jaques & Rattew (2023), the fundamental issue regarding the
practicality of QRAM comes down to the opportunity cost of the total energy required to implement
a query to the QRAM. Precisely, given a QRAM with N bits of memory, a QRAM is considered
passive if and only if each query to the QRAM requires o(N) total energy input. If the query instead
requires Ω(N) energy input (even if the time complexity is O(polylog(N))) then the QRAM is
active. Importantly, this means that any QRAM implemented in the error-corrected circuit-model
must be active, as each qubit requires O(1) classical resources to run the error-correction, resulting
in an Ω(N) total energy cost per QRAM query. Even if error-correction is not used, if enacting
the gates in the system requires constant energy input (e.g., by enacting the gates as laser pulses)
then the QRAM will be active. If the QRAM is active, then Jaques & Rattew (2023) show that
a wide-range of quantum linear algebra applications lose quantum speedup. Moreover, there are
additional challenges such as how a noisy (non-error corrected) quantum memory could be interfaced
with an error-corrected quantum processor.

However, as noted in Jaques & Rattew (2023) there is some hope in practice, and we will now outline
their arguments. As an example, consider classical Dynamic Random Access Memory (DRAM).
DRAM requires a constant power draw for each bit in memory, and thus an N -bit memory requires
Ω(N) energy input. This makes DRAM active. Nevertheless, because the energy expenditure of
DRAM is often dwarfed by the energy expenditure of the CPU accessing it, it is usually treated
as being a passive component in classical algorithm design. For instance, Carroll & Heiser (2010)
demonstrates that for mobile phones, “RAM power is insignificant in real workloads”, and Mahesri
& Vardhan (2005) draws a similar conclusion for laptops. At larger server-scales, the asymptotics
of active memory become more noticeable, but memory still usually draws less power than the
controlling CPU (Ahmed et al., 2021; Fan et al., 2007). Analogously, consider a regime where a
QRAM is active, but its constant energy costs are extremely small relative to the energy costs of
the error-corrected quantum computer it is being interfaced with. Given the substantial expected
overheads of quantum error-correction (Babbush et al., 2021), the ratio of energy consumption for an
error-corrected QPU to an active QRAM could be even more favourable than in the classical setting.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Then, if there is some way to interface this noisy device with the error-corrected QPU, for moderate
scales (e.g., terabytes of memory), it is conceivable that the QRAM could be practically treated as
passive. We will call this a “practically passive QRAM”. Nevertheless, even though practically passive
QRAMs are asymptotically active, they are unlikely to allow full error-correction without losing their
constant advantages (unless, for some reason, the structure of QRAM allows for extremely efficient
custom-made error-correcting codes). Consequently, it is important that the QRAM implementation is
resilient to errors. Indeed QRAMs based on the bucket-brigade architecture (Giovannetti et al., 2008b),
are intrinsically exponentially (in terms of the number of memory registers) robust to errors (Hann
et al., 2021; Hann, 2021; Hong et al., 2012).

In this paper, for simplicity, when making a QRAM assumption we treat the QRAM as passive. We
stress that substantially more work is needed to fully understand the feasibility of QRAM, but that it
is plausible that the QRAM assumptions made in this paper could be physically realized in practice.
In particular, assuming that truly passive QRAM is impossible, we outline the following questions
(building on Jaques & Rattew (2023)) which could result in our results being practically useful. How
can a noisy QRAM system be interfaced with an error-corrected quantum computer? If such an
interface is possible, how do errors in the QRAM propagate through the error-correction in the QPU?
Recent promising work (Dalzell et al., 2025a) provides answers to these two preceding questions,
and offers a path forward for research aiming to construct practically passive and useful QRAM.
Additional questions which need to be investigated to help realize a practically passive QRAM
include some of the following. What is the ratio in energy consumption for plausible practically
passive QRAM systems to the energy consumption of the controlling fault-tolerant QPUs for different
error-correcting codes? Given potential active (practically passive) QRAM architectures, what is the
total expected energy consumption for different sized memories?

D.2 INPUT PREPARATION VIA QRAM

The data-structure due to Kerenidis & Prakash (2017) can allow for an arbitrary quantum state to be
prepared, so long as the state amplitudes are made available through a specific QRAM data-structure.
Lemma D.1 (Input Data QRAM Data-Structure (Kerenidis & Prakash, 2017)). Let N = 2n. Given a
vector x ∈ RN , we can define a data-structure utilizing a QRAM with Õ(N) total qubits 7 storing x.
Then: (1) the cost to update (insert, delete, or modify) an entry xj is O(n2), (2) using the QRAM
data-structure, the state |x⟩ = x/ ∥x∥2 can be prepared by a circuit with depth O(n2), acting on
O(n) qubits.

This is just a special case of the more general result in Kerenidis & Prakash (2017) giving a similar
data-structure for arbitrary matrices (which we presented as QRAM for quantum data in Appendix A).
Intuitively, the state can be prepared by following Grover-Rudolph (Grover & Rudolph, 2002), using
the QRAM data structure containing the tree of binary partial norms of the vector to compute the
controlled rotation angles for each additional qubit.

E ARCHITECTURES IN DIFFERENT REGIMES

As summarized in the main text, the results presented thus far can be used to construct a range of
architectures in a number of different settings. In particular, we consider three regimes characterized
by the QRAM assumptions they make. In the first regime, we assume that both the input to the
network and the weights in the network are made available via QRAM. In the second regime, we
assume that the network may use QRAM (since its QRAM data-structure may be pre-computed prior
to inference-time), but that the input to the network is received classically and entirely on-the-fly, and
thus that the input cannot be provided with QRAM (so a cost linear in the dimension of the input
must be paid to load it into the quantum computer). In the third regime, we assume no QRAM. We
will now expand on the arguments presented in the main text in greater detail.

E.1 REGIME 1: INPUT AND NETWORK USE QRAM

Here we expand on the argument presented in Section 4.1.
7Neglecting the finite precision error due to storing vector elements (and their partial squared sums) in binary

representations

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Online Input Construction Noting that as per Section D.2 QRAM data-structures can be efficiently
updated, we note that there are a number of settings where it might be realistic for the input vector to
be provided via QRAM. For example, in any setting where inference needs to be repeatedly performed
on a slowly-changing input (e.g., in an interactive chat with an autoregressive LLM, where each
output token becomes part of the new input), or where the input is the result of some other quantum
algorithm. For example, in the context of auto-regressive interactive LLM (where the output would
be a probability distribution over tokens instead of classes), the initial vector x might be an encoding
of the hidden prompt to the network (and so the associated data-structure can be pre-computed). As a
user queries the LLM, a small number of tokens are added to x, and these updates can be efficiently
performed to the data structure. Then, the network is run, and the new output token is added to x,
again efficiently. This process can then continue to repeat, and so the cost of loading the data is
either entirely precomputed, or amortized on-the-fly. We can envision similar applications in the
classification of video, where a very large, but slowly-changing, video needs to be analysed one frame
at a time. Here, a cost would need to be paid proportional to the number of changing pixels between
each frame, and so the input data-structure could be efficiently updated. Additional settings where it
might be reasonable for the input to be provided efficiently could be if the input corresponds to some
combination of continuous function (via Rattew & Koczor (2022)), or if it was prepared as the output
of some other quantum algorithm.

Receptive Field To understand the importance of the final linear layer in the architecture for this
regime, we must first summarize the receptive field problem of multi-layer convolutional architectures.

For simplicity, consider a 2D convolution with one input channel and one output channel, and consider
a sequence of k such convolutional layers. Let the kernel be D ×D. Since a convolutional layer
can map the information in location i, j to, at the furthest, the location i+D, j +D, after k layers
the information in any given entry will come from local information in the input at most ≈ kD
pixels away. Consequently, the final layer which is input to the output linear-layer-residual block
will contain features with kD local information, which the linear layer then combines in a global
fashion. We conjecture that having a full-rank layer at this stage is more effective for merging the
local information than a similar dimension, but low-rank, linear layer. Since the cost of the quantum
algorithm grows exponentially with depth, without the final linear layer, with such an architecture no
learning could occur which requires global information from the input image.

Moreover, there are other approaches which could be taken to make the local information globally
accessible to the earlier convolutional layers, potentially improving the power of such quantum-
amenable architectures in practice. For instance, after a set number of convolutional layers, a
linear layer could be added to make local information global (however, this damages the nice
algebraic properties of convolutional layers). Alternatively, a sequence of convolutions can be
implemented in each residual block (without activation functions between them) as this would not
increase the complexity exponentially, potentially allowing for many more convolutions in sequence.
Most appealingly, a solution can be found in the popular classical architecture of bilinear neural
networks (Lin et al., 2015) (which forms the basis of the architecture presented for Regime 2). Here,
paths of convolutional-based residual blocks are passed into a Kronecker product, which is followed
by more layers. Via Lemma 3, we can efficiently do this in a quantum computer. Since the Kronecker
product makes all local information globally available, it immediately solves the receptive field
problem. However, while a Kronecker product makes local information globally accessible, it loses
positional information. This can be resolved by enacting a positional encoding along one of the
paths of the network prior to the product, e.g., as is done when Tokenizing the inputs to transformer
architectures (Vaswani et al., 2017).

Dequantization A number of quantum algorithms which were believed to have exponential speed-
ups over their classical counterparts lost their exponential speedup after new classical randomized
algorithms were developed which mirrored the quantum input assumptions. For example, see the
works of Kerenidis & Prakash (2017) and Tang (2019). Indeed, it seems likely that, as was the case
with the quantum CNN implementation in Kerenidis et al. (2020), that the convolutional residual
blocks in our architectures could be dequantized (even though they make no QRAM assumptions).
However, our new techniques enables the final linear-residual block to contain an arbitrary full-
rank and dense matrix. Since known dequantization techniques require the matrix to be either
low-rank (Chia et al., 2022; Tang, 2019) or sparse (with certain strong caveats) (Gharibian & Le Gall,

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

2023), existing techniques appear insufficient to dequantize our full architecture. Moreover, as
previously discussed, removing the final linear layer introduces receptive field problems, highlighting
that it is not a purely artificial addition to the network. Nevertheless, it would be interesting to
exploring dequantizing the architecture without the final linear layer (or perhaps replacing it with a
low-rank one), and this could result in some interesting techniques to classical accelerate inference
for certain architectures.

E.2 REGIME 2: NETWORK STORED IN QRAM, INPUT LOADED WITHOUT QRAM

See the discussion in Section 4.1.

E.3 REGIME 3: NO QRAM

To reiterate, in this regime, both the matrix weights and the network input are not given by QRAM.
We will now prove the complexity of the Regime 3 architecture shown in Figure 1 (c), as discussed
in Section 4.1. We note that there are many simple modifications which could be made to this
architecture, for example by having a final low-rank linear layer with O(N) parameters. Adopt the
notation used in Theorem 2. Let the input be a 4×M×M tensor, and defineN =M2, n = log2(N),
m = log2(M). Thus, the vectorized input is of dimension O(N). Let d be the number of paths into
the input tensor (i.e., the latent dimension will be O(Nd)), as per Figure 1 (c). TX is the access cost
of the input; in the QRAM-free regime we assume a worst-case of TX ∈ O(N). Let C be the number
of output classes (or set of possible output tokens).

Assume d = 2. Let δ > 0 be an error parameter used only in the proof. Directly from the proof
of Theorem 2, we have Uconv, a (1, 2k(63+n), δ)-VE (vector encoding) for the ℓ2-normalized output
of the k convolutional/residual block layers. Uconv has O(log(N/δ)2k(n2 + TX)) circuit depth. Note
that in that proof,N corresponds to the vectorized dimension of the latent space (i.e., if there is 1 input
and output channel, N corresponds to the dimension of the vector acted upon by the matrix-form of
the 2D convolution), and thus corresponds to Nd here.

Let |ϕ⟩ represent the exact vector output after the sequence of k convolutional layers. This VE
corresponds to a state |ϕ̃⟩ such that ∥|ϕ⟩ − |ϕ̃⟩∥2 ≤ δ. Consequently, by Lemma C.1, sampling
this VE (and applying the binning-protocol) yields a sample from a vector poolC(|ϕ̃⟩) such that
∥poolC(|ϕ⟩) − poolC(|ϕ̃⟩)∥2 ≤ 2N2δ√

C
. Noting that the correct output of the network is given by

y = poolC(|ϕ⟩), we can get an overall error of ϵ, such that the vector we sample from satisfies
∥y − poolC(|ϕ̃⟩)∥2 ≤ ϵ by setting ϵ = 2N2δ√

C
=⇒ δ = ϵ

√
C

2N2 . By plugging this into the circuit
complexity of Uconv, and noting that here we assume we pay the full input dimension cost (since there
is no QRAM), TX ∈ O(N), and so this simplifies to O(N log(N3/ϵ

√
C)2k) ∈ Õ(N log(1/ϵ)2k)

total circuit cost. As stated in the main text, since the dimension of the vector acted on by the 2D
convolution is O(N2) (when d=2), the classical cost to compute this is Ω(N2): showing a quadratic
speedup over an exact classical implementation. The speedup can be made asymptotically larger
by increasing d.

Possible Limitations Here we will outline some of the possible limitations of the architecture
shown in Figure 1 (c). Since there is no final linear layer (in the architecture as directly presented),
the receptive field problems outlined in Section 4.1 may appear to apply. However, by virtue of taking
the tensor product of the input paths, local information becomes immediately globally accessible
circumventing this limitation. Moreover, another way that local information could made global is
from the processing that occurs along each path prior to the tensor product, since there is no limit on
the classical processing that can occur (so long as the total compute is linear in the dimension of the
input).

Moreover, our argument against dequantization in the first regime (see Section 4.1) relies on the
final dense and full-rank linear layer. However, since this layer is not feasible without QRAM, this
argument does not apply here. However, as we are only suggesting a polynomial speedup in Regime
3, we do not expect a dequantized algorithm to completely close the performance gap past quadratic,
as we benefit from amplitude amplification. However, exploring dequantized algorithms based on the
ideas in this paper appears to be interesting subsequent work.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Finally, if the network only contains the convolutional layers, it will likely be very under-
parameterized making training challenging (see e.g., Allen-Zhu et al. (2019) for a discussion
on overparameterized neural networks). However, where the dimension of the vectorized input is N ,
it would be easy to add O(N) parameters, either in the classical paths prior to the tensor product, or
as a final low-rank residual output block (prior to the ℓ2-norm-pooling), so long as the number of
parameters in that block are O(N).

Alternative: Parameterized Quantum Circuits as Network Layers Alternatively, one could
use parameterized quantum circuits as network layers (Peruzzo et al., 2014; Benedetti et al., 2019b;
Cerezo et al., 2021), as the number of parameters in such circuits are usually polylogarithmic in the
dimension of the operator. However, such circuits are often hard to train even on classical machines,
due to under-parameterization, the barren plateau problem (McClean et al., 2018; Larocca et al.,
2025), and the exponential amount of bad local minima in the optimization landscape (Anschuetz &
Kiani, 2022). However, given good enough initializations and warm start assumptions (Mhiri et al.,
2025), it may still possible to train such architectures, leading to potential speed-ups in inference.

Other Possible Sources of Speedup In some cases, where the input can be efficiently prepared
without paying a dimension-dependent cost (e.g., the input comes from quantum states which are
easy to prepare, either via some other quantum algorithm, or via techniques like Rattew & Koczor
(2022)) it may be possible to obtain better than quadratic speedups. However, we leave this as a topic
for future investigation.

F TECHNICAL RESULTS

We now report a result on the efficient polynomial approximation to the error function due to Low
& Chuang (2017), which builds on the results of Sachdeva & Vishnoi (2014). This result is an
improvement over the approximation obtained by an integration of the series expansion for the
Gaussian distribution.

Lemma F.1 (Polynomial Approximation to Error Function due to Corollary 4 of Low & Chuang
(2017)). Let m ≥ 1/2, 1 ≥ ϵ > 0. There exists a degree k ∈ O(m log(1/ϵ)) polynomial Pk,m(x)
such that

Pk,m(x) :=
2me−m

2/2

√
π

I0(m2/2)x+

(k−1)/2∑
j=1

Ij(m
2/2)(−1)j

(
T2j+1(x)

2j + 1
− T2j−1(x)

2j − 1

)
(F.1)

and maxx∈[−1,1] | erf(mx)− Pk,m(x)| ≤ ϵ. Let 1 ≥ c > 0. Alternatively, if k ∈ O(m log(mc/ϵ)),
then maxx∈[−c,c] | erf(mx)−Pk,m(x)| ≤ ϵ. Additionally, for all k, maxx∈[−1,1] |Pk,m(x)/x| ≤ 4m√

π
,

and Pk,m(0) = 0. Finally, minx∈[−1,1] | erf(mx)/x| ≥ 1/2, and erf(mx) has Lipschitz constant
L = 2m√

π
,

Proof. For the case where maxx∈[−1,1] | erf(mx) − Pk,m(x)| ≤ ϵ, the result on the polynomial
approximation is directly taken from Low & Chuang (2017). We will now prove the bound when the
function is constrained to the interval [−c, c]. Let ϵ1 := maxx∈[−c,c] | erf(mx) − Pk,m(x)|. From
Equation (71) of Corollary 4 of Low & Chuang (2017), for a degree k polynomial approximation, we
have the following error-bound,

ϵ1 ≤ 2me−m
2/2

√
π

∣∣∣∣∣∣
∞∑

j=(k+1)/2

Ij(m
2/2)(−1)j

(
T2j+1(x)

2j + 1
− T2j−1(x)

2j − 1

)∣∣∣∣∣∣ . (F.2)

Using the identity
(
T2j+1(x)
2j+1 − T2j−1(x)

2j−1

)
= 2

∫ x
0
T2j(t)dt, and using the fact that all Cheby-

shev polynomials of the form T2j are even, we can get the bound that 2
∣∣∣T2j+1(x)

2j+1 − T2j−1(x)
2j−1

∣∣∣ ≤
2
∫ |x|
0

|T2j(t)|dt ≤ 2|x| ≤ 2maxx∈[−c,c] |x| = 2c, since maxx∈[−1,1] |T2j(x)| ≤ 1.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Then, applying the triangle inequality, Equation (F.2) becomes,

ϵ1 ≤ 4cme−m
2/2

√
π

∞∑
j=(k+1)/2

∣∣Ij(m2/2)
∣∣ . (F.3)

Define ϵgauss,γ,k as per Corollary 3 of Low & Chuang (2017). Define some ϵ′ > 0.
Note that ϵgauss,γ,k = 2e−γ

2/2
∑∞
j=n

2 +1 |Ij(γ2/2)|, and that ϵgauss,γ,k ≤ ϵ′ if k ∈
O(
√
(γ2 + log(1/ϵ′)) log(1/ϵ′)). Thus, ϵ1 ≤ 2cmϵ′√

π
. To get an overall error-bound of at most

ϵ, we can set 2cmϵ′√
π

= ϵ, and so ϵ′ =
√
πϵ

2cm . Thus, if we set k ∈ O(m log(cmϵ)), we are guaranteed
that maxx∈[−c,c] |Pk,m(x)− erf(mx)| ≤ ϵ.

Next, d
dx erf(mx) = 2m√

π
e−(mx)2 , and consequently the maximum value of the derivative of the

function is when x = 0, i.e., maxx∈[−1,1] | ddx erf(mx)| =
2m√
π

.

We will now prove that |Pk,m(x)/x| ≤ 4m√
π

and minx∈[−1,1] | erf(mx)/x| ≥ 1/2.

Noting that Pk,m(0) = 0, (since for x = 0, T2j(x) = cos((2j + 1) arccos(0)) = cos((2j +

1)π/2) = 0), by Lipschitz continuity we have that |Pk,m(x)/x| ≤ | ddxPk,m(x)|. Noting that
d
dx

1
2 (
T2j+1(x)
2j+1 − T2j−1(x)

2j−1) = T2j(x),

max
x∈[−1,1]

|Pk,m(x)/x| ≤ max
x∈[−1,1]

∣∣∣∣ ddxPk,m(x)

∣∣∣∣ (F.4)

= max
x∈[−1,1]

∣∣∣∣∣∣2me
−m2/2

√
π

I0(m2/2) + 2

(k−1)/2∑
j=1

Ij(m
2/2)(−1)jT2j(x)

∣∣∣∣∣∣ .
(F.5)

A common identity for modified Bessel functions of the first kind states for t ̸= 0, e
1
2y(t+t

−1) =∑∞
j=−∞ tjIj(y). Setting t = 1, we find ey =

∑∞
j=−∞ Ij(y). Moreover, since Ij(y) ≥ 0 for all

y > 0,
∑(k−1)/2
j=1 Ij(m

2/2) ≤ em
2/2. Thus, using that maxx∈[−1,1] |T2j(x)| ≤ 1,

max
x∈[−1,1]

|Pk,m(x)/x| ≤ 4me−m
2/2

√
π

(k−1)/2∑
j=1

Ij(m
2/2) ≤ 4m√

π
. (F.6)

Thus, it is clear that this upper-bound is independent of the degree of the polynomial approximation,
and thus applies to the whole interval x ∈ [−1, 1] and not just x ∈ [−c, c].
Finally, we must show that minx∈[−1,1] | erf(mx)/x| ≥ 1/2. First, note that | erf(mx)/x| is
symmetrical, so we can simply consider the interval x ∈ [0, 1]. Moreover, it is monotonically
decreasing, so we can take the endpoint minx∈[−1,1] | erf(mx)/x| = erf(m). Since m ≥ 1/2,
erf(m) ≥ erf(1/2) ≈ 0.52 > 1/2.

44

	Introduction
	Quantum Matrix-Vector Arithmetic
	Quantum Block-Encodings and Vector-Encodings
	New Operations on Vector Encodings
	Matrix Vector Squared Product
	QRAM-Free Quantum Encoding of 2D Multi-Filter Convolutions

	Architectural Blocks
	Architectures
	Key Results under Differing Quantum Data Access Assumptions

	Conclusion
	Future Work
	Quantum Random Access Memory (QRAM)
	Quantum Matrix-Vector Arithmetic
	General Matrix-Vector-Squared Product
	Convolution Block-Encoding
	Non-Linear Transformation of Vector-Encodings

	General Architectural Blocks
	Feasibility of QRAM Assumptions
	Passive and Active QRAM
	Input Preparation via QRAM

	Architectures in Different Regimes
	Regime 1: Input and Network Use QRAM
	Regime 2: Network Stored in QRAM, Input Loaded Without QRAM
	Regime 3: No QRAM

	Technical Results

