

ACCELERATING INFERENCE FOR MULTILAYER NEURAL NETWORKS WITH QUANTUM COMPUTERS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

Fault-tolerant Quantum Processing Units (QPUs) promise to deliver exponential speed-ups in select computational tasks, yet their integration into modern deep learning pipelines remains unclear. In this work, we take a step towards bridging this gap by presenting the first fully-coherent quantum implementation of a multi-layer neural network with non-linear activation functions. Our constructions mirror widely used deep learning architectures based on ResNet, and consist of residual blocks with multi-filter 2D convolutions, sigmoid activations, skip-connections, and layer normalizations. We analyse the complexity of inference for networks under three quantum data access regimes. Without any assumptions, we establish a quadratic speedup over classical methods for shallow bilinear-style networks. With efficient quantum access to the weights, we obtain a quartic speedup over classical methods. With efficient quantum access to both the inputs and the network weights, we prove that a network with an N -dimensional vectorized input, k residual block layers, and a final residual-linear-pooling layer can be implemented with an error of ϵ with $O(\text{polylog}(N/\epsilon)^k)$ inference cost.

1 INTRODUCTION

Within the past decade, deep learning methods (LeCun et al., 2015; Goodfellow et al., 2016) have become the mainstream methodology to tackling problems in machine learning and generative artificial intelligence, including tasks in computer vision (He et al., 2016; Ho et al., 2020; Dosovitskiy et al., 2021), natural language processing (Vaswani et al., 2017; Brown et al., 2020) and various other tasks with increasing applicability (Silver et al., 2016; Jumper et al., 2021; Fawzi et al., 2022). This progress is partly facilitated by advances in GPUs, which offer speed-ups for parallelizable operations such as matrix-vector arithmetic. However, as we approach the physical limits of Moore’s law (Moore, 1965), the continuous upscaling of CPUs and GPUs may begin to plateau. Consequently, a natural question is whether quantum computing (Feynman, 1982; 1986; Nielsen & Chuang, 2010) and potential quantum processing units (QPUs) can offer further acceleration for deep learning.

The field of quantum machine learning (QML) (Biamonte et al., 2016; Schuld & Petruccione, 2021; Du et al., 2025), investigates this possibility. QML can broadly be separated into two main paradigms: (1) quantum algorithms tailored to the structure of near-term quantum hardware (Preskill, 2018) under assumptions of limited quantum resources, and (2) using quantum subroutines to obtain provable speed-ups for existing machine learning models, typical requiring large amounts of quantum resources necessitating error-corrected fault-tolerant quantum computers.

In the first paradigm, proposals of quantum neural networks (QNN) based on variational quantum algorithms (VQA) (Peruzzo et al., 2014; Cerezo et al., 2021) train parametrized quantum circuits (PQC) (Benedetti et al., 2019b) in an analogue to multi-layer neural networks. However, these algorithms face trainability issues in the form of poor local minima (Bittel & Kliesch, 2021; Anschuetz & Kiani, 2022) and vanishing gradients, or *barren plateaus* (McClean et al., 2018; Larocca et al., 2025). Moreover, techniques mitigating these issues often result in the algorithms being classically simulable (Cerezo et al., 2025; Bermejo et al., 2024). While alternate approaches such as quantum kernel methods (Havlíček et al., 2019; Schuld & Killoran, 2019) and others have been proposed (Benedetti et al., 2019a; Huang & Rebentrost, 2024), they often face similar trainability issues (Thanasilp et al., 2024; Rudolph et al., 2024).

Figure 1: Architecture for Convolutional Neural Networks. This figure shows the architectures we consider with provable quantum complexity guarantees for inference under three regimes of quantum data access assumptions. (a) Depicts the architecture where both the inputs and network weights are provided in an efficient quantum data structure. (b) Only the network weights are provided in an efficient quantum data structure. (c) No input assumptions are made. In all architectures, the input is assumed to be a rank-3 tensor (e.g., images with 4 channels).

The second paradigm focuses on the use of quantum subroutines (Harrow et al., 2009; Montanaro, 2016; Gilyén et al., 2019; Dalzell et al., 2025b) to provide asymptotic speed-ups in the underlying linear algebra of classical machine learning models, e.g., in matrix inversion, matrix-vector arithmetic, and sampling. Applications include support vector machines (Rebentrost et al., 2014), regression (Wiebe et al., 2012), feedforward neural networks (Allcock et al., 2020), convolutional neural networks (Kerenidis et al., 2020), transformers (Guo et al., 2024b), and other models (Lloyd et al., 2014; Wiebe et al., 2016; Rebentrost et al., 2018; Kapoor et al., 2016; Cherrat et al., 2024; Liu et al., 2021b; Yang et al., 2023; Ivashkov et al., 2024; Wang et al., 2025). Other works have also explored speeding up classical neural network training and inference (Kerenidis & Prakash, 2020; Abbas et al., 2023; Liu et al., 2024).

Main Contributions. In this paper, we propose a method that can be used to accelerate inference for multilayer residual networks (ResNets) (He et al., 2016) on quantum computers, given their significance in enabling deep networks (Xie et al., 2017; Dong et al., 2021). We provide core quantum subroutines and techniques for regularized multi-filter 2D convolutions, sigmoid activations, skip-connections, and layer normalizations – all of which we show can be coherently implemented on quantum computers. We list the main contributions as follows.

- In Section 2, we further develop a modular vector-encoding framework for quantum matrix-vector arithmetic. This is a special case of quantum block-encodings, with many useful properties.
- In Section 2.3, we derive a novel quantum algorithm for the multiplication of arbitrary full-rank and dense matrices with the element-wise square of a given vector, *without* incurring a rank-dependence. To the best of our knowledge, this is the first result which allows a quantum algorithm to utilize an arbitrary full-rank and dense matrix without a Frobenius norm complexity dependence.
- In Section 2.4, we provide a novel QRAM-free block-encoding for 2D multi-filter convolutions.
- In Section 4, to the best of our knowledge, we derive the *first coherent quantum implementations of multi-layer neural networks with non-linear activations*. We provide rigorous end-to-end complexity proofs for inference under three QRAM regimes:
 - **Regime 1 (inputs and weights provided via QRAM):** Assuming QRAM access to both inputs and weights, for a network with k non-linear activations acting on N -dimensional inputs we prove $\tilde{O}(\text{polylog}(N/\epsilon)^k)$ inference cost. Moreover, we argue that existing techniques are

108 insufficient to dequantize this result.
 109
 110 – **Regime 2 (weights provided via QRAM):** When a cost linear in the dimension of the input
 111 must be paid (i.e., no QRAM for the input), but the network weights are stored in QRAM, we
 112 prove a quartic speedup over exact classical implementations for shallow architectures.
 113 – **Regime 3 (no QRAM):** In the absence of any QRAM, we prove a quadratic speedup over an
 114 exact classical implementation.

115 The relevant architectures in each regime can be seen in Figure 1. We derive a number of techniques
 116 and algorithms which have broad utility in implementing machine learning architectures on quantum
 117 computers. However, our main focus is on accelerating inference for classification, with our formal
 118 problem statement given in Definition 1. At a high-level, we assume that we are given a trained
 119 neural network which, given an input, outputs a probability distribution over possible outputs (e.g.,
 120 over image classes). The goal is to draw a sample from this output distribution (thereby assigning a
 121 class to the input). We introduce an error parameter ϵ , which allows the algorithm to sample from a
 122 distribution whose ℓ_2 norm distance from the true distribution is bounded by at most ϵ .
 123

Definition 1 (The Approximate Sampling-Based Classification Problem). *Let $0 \leq \epsilon \leq 1$. Given
 124 a neural network represented by function $h : \mathbb{R}^D \mapsto \mathbb{R}^C$ (i.e. with D -dimensional inputs and
 125 C -dimensional outputs) which returns a probability distribution as its output (i.e., for any $\mathbf{x} \in \mathbb{R}^D$,
 126 $\mathbf{y} := h(\mathbf{x})$ is all non-negative, and $\|\mathbf{y}\|_1 = 1$), then the sampling-based classification problem is to
 127 return a sample from some probability vector $\hat{\mathbf{y}}$ such that $\|\mathbf{y} - \hat{\mathbf{y}}\|_2 \leq \epsilon$.*

128 For example, in the case of CIFAR-10, $D = 3 \times 32 \times 32 = 3072$, and $C = 10$. Then, given some
 129 input $\mathbf{x} \in \mathbb{R}^{3072}$, $\mathbf{y} \in \mathbb{R}^{10}$ the entries of \mathbf{y} correspond to the probability of assigning a given class
 130 (e.g., class i is assigned with probability y_i , etc). This problem statement also naturally captures
 131 other applications, such as autoregressive next-token prediction, where the output distribution would
 132 instead be over the set of possible tokens rather than classes.

133 **Comparison to Prior Work.** In prior work, to achieve multi-layer architectures in feedforward
 134 and convolutional neural networks as well as transformers, intermediate measurements for inner
 135 products (Allcock et al., 2020) or quantum state tomography that read out the entire state (Kerenidis
 136 et al., 2020; Guo et al., 2024b) are required to extract information out to classical computers where
 137 data is required to be re-encoded into the quantum circuit for computation in the next layer, breaking
 138 the coherence of the quantum architecture and limiting potential speed-ups. We compare against
 139 the prior work in Table 1. To the best of our knowledge, *our work provides the first fully coherent*
 140 *quantum implementation of classical multi-layer neural networks*. Further, our work is also the first
 141 in works that accelerate classical deep learning algorithms to present an architecture which does not
 142 use QRAM. Moreover, we demonstrate that careful tracking on bounds of the vector norm (as it
 143 propagates through the forward-pass of a given network) is required to prevent arbitrary decay of
 144 the norm in multilayer structures, and subsequent unbounded runtimes. We provide rigorous proofs
 145 and develop tools to prove this norm preservation in our architectural blocks. Further, we make the
 146 observation that residual skip connections that enable deep networks classically are fundamental
 147 to the norm stability and preservation, enabling us to provide an efficient and coherent multilayer
 148 architecture not present in prior work.

149 **Introduction to Quantum Computing.** Quantum computation can provide asymptotic speed-
 150 ups over their classical counterparts (Nielsen & Chuang, 2010) by utilizing quantum phenomena.
 151 Quantum bits, or qubits, form the basic unit for computation, and can host a superposition of states
 152 expressed as a two-dimensional complex vector (or ket) $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$ where $|\alpha|^2 + |\beta|^2 = 1$.
 153 With n qubits, we can create a superposed state over 2^n bit strings $|i\rangle$, each with a different amplitude
 154 and expressed as $|\psi\rangle = \sum_{i=0}^{2^n-1} v_i|i\rangle$, where $\sum_{i=0}^{2^n-1} |v_i|^2 = 1$. That is, an n -qubit quantum state is a
 155 2^n -dimensional ℓ_2 -normalized complex vector. Quantum computers achieve computation through
 156 applying a circuit consisting of one-or-two-qubit logical gates (Feynman, 1986) on qubits. Quantum
 157 circuits can be contracted and represented as a single unitary operation.

158 **Notation.** We use standard big and small O notations for asymptotics, using \tilde{O} to hide polylogarithmic
 159 factors. The notation $[N]$ represents the set of integers $0, \dots, N - 1$. We use kets to represent
 160 arbitrary (not necessarily normalized vectors). Logarithms are assumed to be base-2 unless otherwise
 161 stated. The subscript on the ket denotes the number of qubits it acts on (i.e., the log of the dimension),

	Architecture	Coherent Multi-Layer	Coherent Non-Linearity	QRAM-Free	Norm Preservation	Polylog $1/\epsilon$	Polylog N
162	Cong et al. (2019)*	CNN Inspired PQC	\times	\times	✓	✓	N/A
163	Allcock et al. (2020)	Feed-forward	\times	\times	\times	\times	\times
164	Kerenidis et al. (2020)	CNN	\times	\times	\times	\times	\times
165	Guo et al. (2024b)	Transformer	\times	✓	\times	\times	\times
166	Our work - Regime 1	Residual CNN	✓	✓	\times	✓	✓
167	Our work - Regime 2	Bilinear Residual CNN	✓	✓	\times	✓	\times
168	Our work - Regime 3	Bilinear Residual CNN	✓	✓	✓	✓	\times
169							
170							
171							
172							
173							
174							
175							

Table 1: **Comparison with prior work.** We briefly explain the meaning of each column. Coherent multi-layer refers to the construction of multi-layer architectures separated by non-linear activation functions without tomography. Coherent non-linearity refers to the implementation of non-linear transformations on the quantum computer without readout. Norm preservation refers to the preservation of vector norms throughout the network forward pass. Next, each quantum implementation of a classical architecture incurs some error over the exact classical implementation, and as such an entry \checkmark in the polylog $1/\epsilon$ column indicates a $O(\text{polylog}(1/\epsilon))$ error-dependence, whilst a \times entry indicates a $O(\text{poly}(1/\epsilon))$ error-dependence. Finally, polylog N refers to polylogarithmic complexity in the input dimension N . *Note: the architecture presented in Cong et al. (2019), is inspired by CNNs but is based on parameterized quantum circuits (PQC). As they do not aim to accelerate an existing classical architecture, it is not possible to provide an entry in the polylog ϵ column. Moreover, they do not provide complexities when considering classical input data, and so we do not give an entry in the column corresponding to polylog N .

thus $|\psi\rangle_n \in \mathbb{C}^{2^n}$. When we assume a ket is normalized, we will explicitly state that it is. The one exception is with the definition of a vector-encoding (as defined subsequently in Definition 3). For example, an $(1, a, \epsilon)$ -VE for $|\psi\rangle_n$ implicitly implies that $\|\psi\rangle_n\|_2 = 1$, and so we will not explicitly state the normalization of the encoded vector every time we introduce a VE. A bra is defined as the conjugate transpose of a ket, $\langle\psi|_n = |\psi\rangle_n^\dagger$. We use the notation I_n to refer to an n -qubit (i.e., 2^n -dimensional) identity matrix. We define the Kronecker product with the symbol \otimes , and will sometimes refer to this as a tensor product. We define basis functions both in vector notation and in ket notation, i.e., $|j\rangle \equiv e_j$. E.g., $|0\rangle = e_0 = (1 \ 0 \ \dots \ 0)^T$. When we define a function f on scalars, i.e., $f : \mathbb{C} \mapsto \mathbb{C}$, given a vector $x \in \mathbb{C}^N$ we sometimes use the notation $f(x) := \sum_{j=0}^{N-1} f(x_j)e_j$, i.e., $f(x)$ denotes an element-wise application of f to x .

2 QUANTUM MATRIX-VECTOR ARITHMETIC

In this section, we define and motivate the tools necessary to perform quantum matrix-vector arithmetic. These subroutines are essential for our subsequent results implementing classical neural networks on quantum computers. In Section 2.1, we provide a summary of quantum block-encodings and quantum vector encodings. **Novel contributions in this section:** In Section 2.2, we further develop the framework of vector-encodings, introducing straight-forward new quantum algorithms for vectors encoded as VEs, enabling vector sums, matrix-vector products, tensor products, and vector concatenations. In Section 2.3, we present a novel algorithm which applies an arbitrary full-rank and dense matrix to the element-wise square of a vector, without incurring a Frobenius norm dependence. Finally, in Section 2.4, we give a novel QRAM-free block-encoding for 2D multi-filter convolutions.

2.1 QUANTUM BLOCK-ENCODINGS AND VECTOR-ENCODINGS

A widely used tool in quantum algorithm design is the block-encoding (Gilyén et al., 2019), which can be viewed as a way to encode and manipulate matrices in quantum algorithms. A block-encoding

216 is a unitary matrix U , specified by a quantum circuit, whose top left block contains a matrix \tilde{A} (such
 217 that $\|\tilde{A}\|_2 \leq 1$) which is a scaled approximation to some matrix A . We give the formal definition in
 218 the following.

219 **Definition 2** (Block encoding (Gilyén et al., 2019)). *Suppose that A is a $2^s \times 2^s$ matrix, $\alpha, \epsilon \in \mathbb{R}_+$
 220 and $a \in \mathbb{N}$, then we say that the $2^{s+a} \times 2^{s+a}$ unitary matrix U is an (α, a, ϵ) -block-encoding of A , if*

$$222 \quad \|A - \alpha(\langle 0| \otimes a \otimes I)U(|0\rangle \otimes a \otimes I)\| \leq \epsilon. \quad (1)$$

224 Essentially, noting that $\langle 0| \otimes a \otimes I = (I \quad 0 \quad \dots \quad 0)$, we see that $\langle 0| \otimes a \otimes I$ selects the first 2^s rows of
 225 U , and then $|0\rangle \otimes a \otimes I$ selects the first 2^s columns of $(\langle 0| \otimes a \otimes I)U$, meaning that $(\langle 0| \otimes a \otimes I)U(|0\rangle \otimes a \otimes I)$
 226 is simply the top-left $2^s \times 2^s$ block of U . Indeed, if $\epsilon = 0$, then $A/\alpha = (\langle 0| \otimes a \otimes I)U(|0\rangle \otimes a \otimes I)$.
 227 Additionally, α can be viewed as an upper-bound on the normalization factor of A , e.g., if $\epsilon = 0$, then
 228 $\|A/\alpha\|_2 \leq 1$. Any matrix encoded in a sub-block of a unitary matrix cannot have norm exceeding 1.

229 Analogously to how a quantum block-encoding encodes a general matrix in the top left block of a
 230 unitary, we can embed arbitrary (sub-normalized) N -dimensional vectors in the first N rows of a
 231 larger vector corresponding to a normalized quantum state.

232 This naturally leads to the following definition of quantum vector-encodings (VEs), the definition of
 233 which we take nearly verbatim from Rattew & Rebentrost (2023), where they were called SPBEs.

235 **Definition 3** (Vector-Encoding (VE) (Rattew & Rebentrost, 2023)). *Let $\alpha \geq 1$, $a \in \mathbb{N}$, and $\epsilon \geq 0$.
 236 We call the $2^{a+n} \times 2^{a+n}$ unitary matrix U_ψ an (α, a, ϵ) -VE for the 2^n -dimensional quantum state
 237 $|\psi\rangle_n$, if*

$$238 \quad \|\langle \psi \rangle_n - \alpha(\langle 0|_a \otimes I_n)U_\psi|0\rangle_{a+n}\|_2 \leq \epsilon. \quad (2)$$

240 Note that $(\langle 0|_a \otimes I_n)U_\psi|0\rangle_{a+n}$ corresponds to the exact vector encoded by U_ψ , specifically encoded
 241 in the first 2^n rows of the first column of U_ψ . The parameter α is a measure of the norm of the encoded
 242 vector, e.g., if $\epsilon = 0$ then $\|(\langle 0|_a \otimes I_n)U_\psi|0\rangle_{a+n}\|_2 = 1/\alpha$. One of the most essential components of
 243 working with matrix-vector arithmetic in quantum algorithms is tracking the norm of the encoded
 244 vectors throughout the algorithm, as the quantum complexity is usually inversely proportional to the
 245 norm of the encoded vector. Vector encodings give a methodical way to track encoded vector norms
 246 when implementing various matrix-arithmetic operations on the encoded vectors.

247 In summary, block-encodings provide a formal framework for working with matrices in quantum
 248 algorithms, and vector-encodings provide a formal way for working with vectors.

250 2.2 NEW OPERATIONS ON VECTOR ENCODINGS

252 To enable our results on architectural blocks, we had to develop primitive operations on vector-
 253 encodings. These results are straight-forward modifications of existing techniques into the VE
 254 framework, but are necessary to allow easy tracking of the norm of encoded vectors, which is a
 255 crucial parameter dictating the complexity of quantum neural network accelerations.

256 **Lemma 1** (Vector Sum, Proof in Appendix B). *Let $0 \leq \tau \leq 1$. We are given unitary circuits U_ψ and
 257 U_ϕ which are (α, a, ϵ_0) and (β, b, ϵ_1) VEs for $|\psi\rangle_n$ and $|\phi\rangle_n$, respectively. Define $c := \max(a, b)$,
 258 $|\Gamma\rangle_n := \frac{\tau}{\alpha}|\psi\rangle_n + \frac{(1-\tau)}{\beta}|\phi\rangle_n$, $\mathcal{N} := \|\Gamma\rangle_n\|_2$ and $|\bar{\Gamma}\rangle_n := |\Gamma\rangle_n/\mathcal{N}$. Then, using one controlled U_ψ
 259 circuit, one controlled U_ϕ circuit, and two additional single-qubit gates, we can construct a unitary
 260 matrix V such that V is a $(\mathcal{N}^{-1}, c+1, (\frac{\epsilon_0}{\alpha} + \frac{\epsilon_1}{\beta})/\mathcal{N})$ -VE for $|\bar{\Gamma}\rangle_n$.*

262 **Lemma 2** (Matrix-Vector Product, Proof in Appendix B). *We are given an (α, a, ϵ_0) -block-encoding
 263 U_A for the n -qubit operator A , and U_ψ a (β, b, ϵ_1) -VE for the ℓ_2 -normalized n -qubit quantum state
 264 $|\psi\rangle$. Let $\mathcal{N} := \|A|\psi\rangle_n\|_2$. U_ψ has T_ψ circuit complexity, and U_A has T_A circuit complexity. Then,
 265 we can obtain an $a+b+n$ qubit unitary U with $O(T_\psi + T_A)$ circuit complexity such that U is an
 266 $(\alpha\beta/\mathcal{N}, a+b, (\epsilon_0 + \alpha\epsilon_1)/\mathcal{N})$ -VE for the quantum state $A|\psi\rangle_n/\mathcal{N}$.*

267 **Lemma 3** (Tensor Product of Vector Encodings, Proof in Appendix B). *Given U_ψ an (α, a, ϵ) -VE for
 268 $|\psi\rangle_n$ with $O(T_\psi)$ circuit complexity, and U_ϕ an (β, b, δ) -VE for $|\phi\rangle_m$ with $O(T_\phi)$ circuit complexity,
 269 then we can obtain the circuit V which is an $(\alpha\beta, a+b, \epsilon + \delta + \epsilon\delta)$ -VE for $|\psi\rangle_n \otimes |\phi\rangle_m$ with
 $O(\max(T_\psi, T_\phi) + \max(n, b))$ circuit depth.*

270 **Lemma 4** (Concatenation of Vector Encodings, Proof in Appendix B). *Let $D = 2^d$, $N = 2^n$, and*
 271 *$0 \leq \epsilon < 1$. Assume that $d \leq n$. Suppose we are given a set of D unitary circuits, $\{U_i\}_{i \in [d]}$ such*
 272 *that each U_i is an (α_i, a, ϵ) -VE for the quantum state $|\psi_i\rangle_n$ with $O(T)$ circuit complexity.¹ Let*
 273 *$|\Psi\rangle_{d+n} = \sum_{j=0}^{D-1} |j\rangle_d |\psi_j\rangle / \alpha_j$, and let $\mathcal{N} := \|\Psi\rangle_{d+n}\|_2 = \sqrt{\sum_{j=0}^{D-1} \frac{1}{\alpha_j^2}}$. Then, we can obtain a*
 274 *$(D/\mathcal{N}, d + a, \epsilon)$ for $\frac{|\Psi\rangle_{d+n}}{\mathcal{N}}$ with $O(dDT)$ circuit complexity.*

277 2.3 MATRIX VECTOR SQUARED PRODUCT

279 We are now ready to present the first key result of this section, showing how given a matrix W (with
 280 $\|W\|_2 \leq 1$) and a vector encoding of x , we can obtain a vector encoding of $W(x)^2$.² The key idea
 281 is to avoid obtaining a quantum block-encoding of the operator W (which in general requires W
 282 to be either low-rank, or sparse (Gilyén et al., 2019)). We then implement the product by using
 283 importance-weighting to coherently combine the columns of W weighted by the corresponding
 284 elements of the input vector, and then apply the result to a modified version of the input vector.

285 **Theorem 1** (Product of Arbitrary Matrix with a Vector Element-wise Squared, Informal). *Let*
 286 *$N = 2^n$. We are given a matrix $W \in \mathbb{C}^{N \times N}$, provided via a pre-processed efficient quantum*
 287 *accessible data-structure. Additionally, we are given the unitary U_ψ with circuit complexity $O(T_\psi)$,*
 288 *a (α, a, ϵ) -VE for the quantum state $|\psi\rangle_n$. Define the function $g : \mathbb{C} \mapsto \mathbb{R}$ as $g(x) = |x|^2$, and*
 289 *$\mathcal{N} := \|Wg(|\psi\rangle_n)\|_2$. Then we can construct the unitary U_f which is a $(\frac{\alpha^2}{\mathcal{N}}, 2a + 2n + 3, \frac{2\alpha\epsilon}{\mathcal{N}})$ -VE*
 290 *for $Wg(|\psi\rangle_n)/\mathcal{N}$, and has $O(T_\psi + n^2)$ circuit depth.*²

291 This result is stated formally and proven as Theorem B.1 in the Appendix, and we formally define one
 292 possible implementation of the quantum accessible data-structure assumption in Definition B.3. To use
 293 this to prepare the quantum state $Wg(|\psi\rangle_n)/\mathcal{N}$, the vector normalization result (Lemma B.8) can be
 294 directly applied to the output VE yielded by Theorem 1, preparing the state with $\tilde{O}(\alpha^2(T_\psi + n^2)/\mathcal{N})$
 295 circuit complexity. This is the first such result *without a Frobenius norm dependence on A* .

296 We will now informally sketch the proof of this procedure. First, define the columns of W as
 297 $W = (\mathbf{w}_0 \dots \mathbf{w}_{N-1})$. Define the normalized version as $|w_j\rangle = \mathbf{w}_j / \|\mathbf{w}_j\|_2$, and define $a_j :=$
 298 $\|\mathbf{w}_j\|_2$. We assume access to three objects. (1) A block-encoding of $A := \text{diag}(a_0, \dots, a_{N_1})$.
 299 (2) An oracle implementing $U_W|0\rangle|j\rangle = |w_j\rangle|j\rangle$. (3) A vector-encoding for $|\psi\rangle = \sum_j \psi_j |j\rangle$.
 300 Then, by using our vector-encoding circuit, we can get an encoding of $|\phi\rangle := \sum_j \psi_j |j\rangle|w_j\rangle =$
 301 $(\psi_0 \langle w_0 | \dots \psi_{N-1} \langle w_1 |)^\dagger$. Then, using our block-encoding of A , we can efficiently get a block-
 302 encoding of $\begin{pmatrix} a_0 \psi_0 I_n & \dots & a_{N_1} \psi_{N-1} I_n \\ \mathbf{0} & & \end{pmatrix}$ (where I_n is a 2^n dimensional identity matrix, and
 303 only the first N rows are non-zero). We can then use the product of matrix-encoding with vector
 304 encoding result to take the product of $\begin{pmatrix} a_0 \psi_0 I_n & \dots & a_{N_1} \psi_{N-1} I_n \\ \mathbf{0} & & \end{pmatrix}$ with $|\phi\rangle$ yielding the desired
 305 vector-encoding.

309 2.4 QRAM-FREE QUANTUM ENCODING OF 2D MULTI-FILTER CONVOLUTIONS

311 While the matrix-form of a 2D convolution has been given many times before in the literature, to the
 312 best of our knowledge the following is the first result giving a block-encoding of a QRAM-free 2D
 313 multi-filter convolution. We also stress that the following result can be highly optimized, especially if
 314 QRAM is used. We leave such optimizations to future work. The full proof is provided in Section B.2.

315 **Lemma 5** (QRAM-Free Block-Encoding of 2D Convolution With Filters). *Let $M = 2^m$, let*
 316 *$n = 2m$, let $N = 2^n$, and let $D = 2^d$. Define the matrix form of the 2D multi-filter convolution*
 317 *operation, $C \in \mathbb{R}^{CM^2 \times CM^2}$, as per Lemma B.17. Here, C represents the number of input and*
 318 *output channels, and D represents the dimension of the kernel over rows and columns (i.e., the*
 319 *kernel is a rank-4 tensor containing C , $C \times D \times D$ filters). Then, after performing some one-time*
 320 *classical pre-computation, we can obtain a $(1, 3 + 8D + 2 \log(CD), 0)$ -block-encoding of $\frac{C}{2\|C\|_2}$*
 321 *with $O(m^2 C^3 D^4 \log(C) \log(D))$ circuit depth.*

322 ¹If D is not a power of 2, padding can be added.

323 ²For simplicity, here we are assuming that the parameter d (as defined in Theorem B.1) is set to n .

Figure 2: **Generic Residual Architectural Block.** This diagram illustrates the structure of a typical residual block used in deep neural networks. The input vector \hat{x} is transformed through a sequence of operations: a learnable linear transformation W , a non-linear activation function f , and a residual (skip) connection that adds the original input to the transformed signal. The output is then passed through a normalization layer (norm).

While the degrees on the number of channels and the filter size D seem large, the filter size is usually quite small in practice (e.g., often 3). Moreover, there are straight-forward optimizations of this result which can substantially reduce the degrees on both C and D . Convolutional layers are excellent candidates for QRAM-free implementation, since the number of parameters they contain are usually much smaller than the dimension of the vectorized tensors which they act upon. Indeed, we essentially obtain Lemma 5 by efficiently constructing a block-encoding of the matrix-form of the highly-structured object corresponding to each parameter in the convolutional kernel, and then taking a linear combination of the result. This explains why the complexity of our procedure is polylogarithmic in the dimension, whilst being polynomial in the number of parameters. This is in contrast to exact classical algorithms which have polynomial dimension-dependence. Moreover, our result can be substantially optimized further, potentially by exploiting the fact that circulant convolutions are diagonalized by the Fourier transform.

3 ARCHITECTURAL BLOCKS

In this section we will derive two key architectural blocks, a residual block, and a multi-layer residual block, which allow our subsequent complexity claims. We present an additional architectural block building on these in Appendix C, but do not include it in the main text as it is not essential for understanding the key complexity details of such quantum implementations.

Lemma 6 (General Skip Norm Block). *Let $\epsilon_1 \in (0, 1]$. Let $\kappa \in [1, 2]$. Consider the architecture shown in Figure 2. Let $N = 2^n$. We are given the unitary U_ψ a $(1, a, \epsilon_0)$ -VE for $|\psi\rangle_n$ with circuit complexity $O(T_1)$, and are given the unitary U_W a $(1, b, 0)$ -block-encoding for the n -qubit operator W/κ with circuit complexity $O(T_2)$ such that $\|W\|_2 \leq 1$. Define $f(x) := \text{erf}(4x/5)$, $|\psi_f\rangle_n := |\psi\rangle_n + f(W|\psi\rangle_n)$, and $\mathcal{N} := \|\psi_f\rangle_n\|_2$. Then, we can obtain a $(1, 2(a+b)+n+9, 712(\epsilon_0 + \epsilon_1))$ -VE for $|\psi_f\rangle_n/\mathcal{N}$ with circuit complexity $O(\log(\frac{\sqrt{N}}{\epsilon_1}) \log(\frac{1}{\epsilon_1})(a + b + n + T_1 + T_2))$.³*

The rigorous proof of this result is provided in Appendix C, but it essentially follows from using our preceding results on matrix-vector multiplication, vector sums, and the extant results on layer normalization and applications of the error-function. The key insight enabling this proof is that in a residual block such as the one we have described, the forward norm of the vector is efficiently lower-bounded prior to every normalization layer. Without such skip connection, and the techniques we developed for working with vector-encodings (which enable effective tracking of the norm of a vector propagating through a network), the norm at the end of such a block could be arbitrarily small, leading to complexities which could be on the order of $\approx N^k$ (or even unbounded) for k -layer architectures – completely intractable even for constant depth networks. As a consequence, we are able to prove the following result for multi-layer residual blocks.

Lemma 7 (Sequence of k Residual Blocks). *Let $N = 2^n$. Suppose we are given a unitary U_ψ with circuit complexity $O(T_1)$ such that it is a $(1, a, 0)$ -VE for $|\psi\rangle_n$. Let k be an asymptotic constant. Suppose we have a sequence of k residual blocks (as per Lemma 6), with weights implemented by k unitaries $\{U_{W_i}\}_i$ such that U_{W_i} (with circuit complexity $O(T_2)$) is a $(1, b, 0)$ -block-encoding for the n -qubit operator $W_i/2$, and $\forall i, \|W_i\|_2 \leq 1$. Then, we can prepare a $(1, 2^k(a + 2b + n + 9), \epsilon)$ -VE for the output of the k residual blocks with $O(\log(\sqrt{N}/\epsilon)^{2k}(a + 2b + n + T_1 + T_2))$ circuit depth.*

³We implicitly assume that $\|W|\psi\rangle_n\| > 0$, which is a reasonable assumption for any input which comes from the same distribution as the training data.

This result is proven in Appendix C, and follows by repeatedly invoking Lemma 6 with its output as the next input. It appears that the complexity of this result as a function of the number of layers k is a fundamental limitation of any quantum algorithm. As described in greater detail in Appendix C, for a unitary matrix (a linear operator) to enact a non-linear transformation on a vector, its definition must in general be input-dependent. Consequently, unless Lemma 6 can be implemented with only a single copy of its input, it seems unlikely that this complexity can be avoided. This suggests that quantum computers are best suited for accelerating the wide and shallow regime, which is a popular regime for classical inference accelerators (since wide networks can be parallelized on classical hardware, but depth cannot be parallelized). Classically, with the aim of accelerating both inference and training, there are a range of techniques for compressing neural networks (Cheng et al., 2018). Moreover, classically, deep neural networks are much harder to accelerate than their shallow and wide counterparts (you can parallelize matrix-multiplications, but not consecutive layers). Consequently, there are a number of classical architectures striving for shallow networks (e.g. Zagoruyko & Komodakis (2016)) which can serve as sources of inspiration for designing architectures best suited for quantum acceleration. We discuss this in greater detail in Appendix C.

4 ARCHITECTURES

We will now use the architectural blocks derived above to prove the quantum complexity in inference for the architectures shown in Figure 1 (a), which is then used to prove the complexity of the architecture in panel (b). A corollary is used to prove the complexity of the architecture in panel (c).

In all 3 regimes, the key architectural block shared in common is the sequence of k residual convolutional blocks, which is enacted by combining Lemma 5 and Lemma 7. The architectures then only differ in how the input tensor is transformed, and in how the output of the k residual convolutional blocks is processed. Consequently, we will now provide high-level intuition for the important sequence of k residual convolution blocks. First, Lemma 7 is simply obtained by chaining the result for a single residual block (given by Lemma 6) k times, using the output of each invocation as the input for the next. Lemma 6 itself is implemented by enacting each of the vector-encoding operations corresponding to the operations shown in Figure 2: matrix-vector multiplication via Lemma 2, non-linear activation via Lemma B.19, vector sum via Lemma 1, and vector normalization via Lemma B.8. Noting that Lemma B.19 and Lemma B.8 are straight-forward improvements over the results from prior work, we delegate them to the appendix. It is also worth noting that our selection of the erf activation function is not restrictive, and was selected for analytical convenience. This could easily be swapped with other activation functions compatible with Lemma B.18, e.g., GELU or tanh. Finally, the last key piece of intuition regards the dimension of the specific vectorized tensor which is input to the sequence of k residual blocks. In Regime 1, this tensor is simply a fixed concatenation of the input tensor, and consequently for an input with vectorized dimension $O(N)$ has dimension $O(N)$. In Regimes 2 and 3, the input tensor is mapped through a tensor product d times, resulting in an input to the residual block sequence of dimension $O(N^2)$ (when $d = 2$).

Thus, our results in all 3 data-access regimes all follow from the general result, formally stated below:

Theorem 2 (General Multilayer Convolutional Network with Skip Connections). *Let $M = 2^m$, $N = 2^n = M^2$. Consider the neural network architecture shown in Figure 1 (a). Let the input X be a rank-3 tensor of dimension $4 \times M \times M$ (with an R , G , B and null channel, where the null channel has all 0s). Assume that $\|\text{vec}(X)\|_2 = 1$, and that we have access to a unitary U_X that is a $(1, 0, 0)$ -VE for the input in column-major layout $|X\rangle_{2+2m} = \sum_{i=0}^4 \sum_{j=0}^{M-1} \sum_{k=0}^{M-1} X_{i,k,j} |i\rangle_2 |j\rangle_m |k\rangle_m$. Assume that U_X has $O(T_X)$ circuit complexity. As shown in the figure, we have a sequence of k residual convolutional layers, where each convolutional layer has 16 input channels, 16 output channels (i.e., 16 filters) with filter width and height 3. I.e., each convolutional layer has $16 \times 16 \times 3 \times 3 = 2304$ parameters. Assume that there is 0 padding so the input and outputs always have the same dimension, and that there is a stride of 1. Suppose each convolutional layer has been regularized, so that its spectral norm is at most 1. Let W represent the $N \times N$ full-rank linear layer applied in the final output block of the network, and assume that $\|W\|_2 \leq 1$. Let C represent the number of output classes, and assume that $C = 2^c$ (padding can be added otherwise). Let the overall network be represented by the function $h : \mathbb{R}^{4 \times M \times M} \mapsto \mathbb{R}^C$. Let $\mathbf{y} = h(X)$ (and note that $\|\mathbf{y}\|_1 = 1$, and $\mathbf{y} \in \mathbb{R}^C$). Then, with $O(\log(\sqrt{N}/\epsilon)^{2k+1}(T_X + n^2))$ total circuit depth, and with $O(2^k n)$ ancillary qubits, we can draw a sample from an ℓ_1 -normalized C -dimensional vector $\tilde{\mathbf{y}}$ such that $\|\mathbf{y} - \tilde{\mathbf{y}}\|_2 \leq \epsilon$.*

432 *Proof.* We have a 4 channel input and we want to map this to a 16 channel input (by concatenating $|X\rangle_{2+2m}$ vector with itself 4 times). Let $|X\rangle_{4+2m} :=$
 433 $\frac{1}{\sqrt{4}} (\langle X|_{2+2m} \langle X|_{2+2m} \langle X|_{2+2m} \langle X|_{2+2m})^T$. We can invoke Lemma 4 with U_X four times,
 434 obtaining a $(1, 0, 0)$ -VE for $|X\rangle_{4+2m}$ with $O(T_X)$ circuit complexity. Using Lemma 5, for each
 435 of the $i = 0, \dots, k-1$ convolutions, we can obtain a $(1, 27, 0)$ -block-encoding for $\mathcal{C}_i/2 \|\mathcal{C}_i\|_2$ (the
 436 matrix form of the corresponding convolution) with $O(m^2)$ circuit depth. Consequently, we can
 437 invoke Lemma 7 to obtain U_{conv} a $(1, 2^k(63+n), \epsilon)$ -VE for the ℓ_2 -normalized output of the sequence
 438 of k residual blocks. Moreover, U_{conv} has $O(\log(\sqrt{N}/\epsilon)^{2k}(n + T_X + m^2))$ circuit depth. Then, we
 439 can invoke Lemma C.2 with U_{conv} to draw a sample from some probability vector $\tilde{\mathbf{y}} \in \mathbb{R}^C$ such that
 440 $\|\tilde{\mathbf{y}} - \mathbf{y}\|_2 \leq \epsilon$ with $O(\log(\sqrt{N}/\epsilon)^{2k+1}(T_X + n^2))$ circuit depth and with $O(2^k n)$ ancilla qubits. \square
 441
 442

443 An important point to consider is that in order for a unitary matrix (or more generally, any linear
 444 operator) to enact a non-linear transformation, its definition must depend on the vector it is being
 445 applied to. For instance, consider the simple example where we are given a vector \mathbf{x} , and we define
 446 $A := \text{diag}(\mathbf{x})$. Then, $A\mathbf{x} = (\mathbf{x})^2$ (with the square applied element-wise) which is clearly a non-linear
 447 transformation. Consequently, our algorithm for Theorem 2 adaptively (and efficiently) constructs a
 448 new circuit on the fly for each new input – this is accounted for in the result statement.
 449

450 451 4.1 KEY RESULTS UNDER DIFFERING QUANTUM DATA ACCESS ASSUMPTIONS

452 The feasibility of quantum random access memory, the primary method assumed in the literature for
 453 accessing classical data in quantum algorithms, is widely debated in the literature (Jaques & Rattew,
 454 2023). However, recent work (Dalzell et al., 2025a) provides a promising path forward, addressing
 455 many of the limitations raised in Jaques & Rattew (2023). Regardless, algorithms papers often fail
 456 to meaningfully address the memory assumptions they make, and so we include a comprehensive
 457 discussion of it in Appendix D highlighting the feasibility of the technology, and that importantly
 458 our QRAM assumptions are no stronger than the usual made in such algorithms papers. The key
 459 concept discussed in Appendix D is that any algorithm utilizing a QRAM device must consider the
 460 classical opportunity cost of using that device, which dictates the constraints placed on realizing a
 461 useful QRAM (e.g., for such purposes the physical QRAM device cannot simply be implemented in
 462 the circuit model).

463 **Regime 1: Input and Network Use QRAM.** The primary purpose of the architecture we presented
 464 in Regime 1 is to show that quantum computers can implement multi-layer neural networks based on
 465 real architectures coherently, with reasonable input assumptions, and with cost polylogarithmic in the
 466 dimension of the network. As per the main-text, in this regime we assume that the matrix weights
 467 (in particular for the final full-rank linear layer) and vectorized input are provided via QRAM. The
 468 architecture for this regime is shown in Figure 1 (a). Let the dimension of the vectorized input be
 469 $O(N)$. Since the input is provided via QRAM, T_X as defined in Theorem 2 is $T_X \in O(\text{polylog}(N))$
 470 (see, Section D.2). **Thus, for a constant number of layers k , the cost to perform inference (in**
 471 **accordance with Definition 1) becomes** $O(\text{polylog}(\sqrt{N}/\epsilon)^k)$. Please see Section E.1 for a detailed
 472 discussion outlining important application areas where such input assumptions are practical (namely,
 473 where the input can be constructed in an amortized fashion online). Moreover, in Section E.1 we
 474 also discuss considerations relating the receptive field of such architectures, and argue that existing
 475 techniques are insufficient to dequantize this result.

476 **Regime 2: Network Stored in QRAM, Input Loaded Without QRAM.** The architecture in
 477 this regime is shown in Figure 1 (b). The architecture contains d paths of purely classical neural
 478 networks, which each operate on $O(N)$ dimensional (vectorized) inputs. These classical architectures
 479 are assumed to have $\tilde{O}(N)$ time complexity in terms of the input. These separate paths are then
 480 normalized, converted to quantum states, and then the Kronecker product of the result is taken. The
 481 result is fed into exactly the same architecture as in Regime 1. This architecture is inspired by bilinear
 482 neural networks (Lin et al., 2015). Consequently, to determine the cost of this architecture, we can
 483 again invoke Theorem 2. Here, we need to pay an $\tilde{O}(N)$ cost to load each of the input paths in as
 484 a quantum state (via brute-force (Plesch & Brukner, 2011)), $T_X \in O(N)$. Consequently, we obtain
 485 an overall algorithmic complexity of $O(N \log(\frac{N^{d/2}}{\epsilon})^{2k})$, which for constant k and d , simplifies to

486 $\tilde{O}(N \log(1/\epsilon)^{2k})$. When $d = 2$, the dimension after the tensor product is N^2 . Consequently, the final
 487 linear layer contains a matrix multiplication of an $N^2 \times N^2$ matrix with an N^2 dimensional vector,
 488 which takes $\Omega(N^4)$ time. **Consequently, for a constant k , this architecture produces a quartic**
 489 **speedup for the inference problem defined in Definition 1 over exact classical computation.**
 490 When $d = 1$, the speedup due to the final layer is instead quadratic. This speedup can be increased by
 491 setting d to larger values.

492
 493 **Regime 3: No QRAM.** This architecture is identical to the one presented in Regime 2, only
 494 dropping the final full-rank linear block. In Section E.3 we show that the architecture in Figure 1 (c)
 495 can perform inference with a total $O(N \log(1/\epsilon)^{2k})$ circuit complexity. Since the dimension of the
 496 vector acted on by the 2D convolution is $O(N^2)$ (when $d=2$), the classical cost to compute this is
 497 $\Omega(N^2)$: showing a **quadratic speedup over an exact classical implementation**. The speedup can
 498 be made asymptotically larger by increasing d . We have a more detailed discussion of this regime
 499 in Section E.3.

500 5 CONCLUSION

501 This work proposes a modular framework for accelerating classical deep learning inference using
 502 fault-tolerant quantum subroutines. Our approach offers direct quantum implementations of important
 503 neural network architectural blocks (such as convolutions, activation functions, normalization layers,
 504 and residual connections), and uses structured primitives such as quantum block-encodings.

505 In summary, we provide a number of novel theoretical contributions. We further develop the VE
 506 framework for quantum vector encodings. We derive a novel quantum algorithm for the multiplication
 507 of an arbitrary dense and full-rank matrix with the element-wise square of a given vector, which to
 508 the best of our knowledge, is the first such result which does not incur a Frobenius norm (and thus
 509 rank) complexity dependence. We provide a novel QRAM-free block-encoding of multi-filter 2D
 510 convolutions. We then prove the first end-to-end complexity guarantees for the coherent quantum
 511 acceleration of multi-layer neural network inference, under three QRAM regimes. In the first regime,
 512 we give complexity which is polylogarithmic in both the dimension of the input, and the number of
 513 parameters in the network. In the second, we show a quartic speedup over exact classical computation.
 514 In the third, we show a quadratic speedup.

515 6 FUTURE WORK

516 To the best of our knowledge, this is the first paper to implement multi-layer neural networks
 517 coherently on a quantum computer, and as such, many important open directions of research remain.
 518 Moreover, progress towards achieving a practically passive QRAM is important for realizing the
 519 speedups in the first two regimes. Moreover, exploring the connection between this work and
 520 the techniques utilized in scientific computing (e.g., quantum differential equation solvers, finite
 521 difference methods, etc (Cao et al., 2013; Montanaro, 2016; Childs et al., 2021; Berry & Costa,
 522 2024; Jennings et al., 2024; An et al., 2024; Shang et al., 2025; Liu et al., 2021a; 2023; Krovi,
 523 2023; Costa et al., 2025; Wu et al., 2025)) would be interesting. Most importantly, we wonder if
 524 it is possible to coherently enact sequences of non-linear transformations without an exponentially
 525 increasing circuit depth (and with polylogarithmic error-dependence), thereby allowing very deep
 526 multi-layer architectures to be quantized, but we suspect that this may be provably impossible (at least
 527 in general). Furthermore, it is conceivable that an approach enacting the non-linear transformations
 528 coherently with techniques based on QPE (Mitarai et al., 2019) might be able to enact a sequence of
 529 non-linearities without exponentially increasing circuit depth (albeit at the cost of an exponentially
 530 worse and exponentially decaying error-dependency). Combining such approaches may let quantum
 531 computers coherently accelerate architectures with depths of e.g., up to 25. Alternatively, one could
 532 combine sequences of coherent multi-layer architectural blocks with intermittent tomography to reset
 533 the depth cost, in essence fusing the techniques presented in our paper with those used in the prior
 534 work. It would also be worthwhile to explore accelerating UNet based architectures, as many of
 535 our techniques directly apply, and a distilled UNet-based diffusion model could potentially be quite
 536 shallow. Finally, while this work assumes our networks are trained classically, it would be interesting
 537 to explore how the techniques we develop could also be used to help accelerate training.

540 REFERENCES
541

542 Amira Abbas, Robbie King, Hsin-Yuan Huang, William J. Huggins, Ramis Movassagh, Dar Gilboa,
543 and Jarrod McClean. On quantum backpropagation, information reuse, and cheating measurement
544 collapse. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.),
545 *Advances in Neural Information Processing Systems*, volume 36, pp. 44792–44819. Curran Asso-
546 ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/hash/8c3caa2f725c8e2a55ecd600563d172-Abstract.html.

547

548 Kazi Main Uddin Ahmed, Math HJ Bollen, and Manuel Alvarez. A review of data centers energy
549 consumption and reliability modeling. *IEEE access*, 9:152536–152563, 2021. URL <https://doi.org/10.1109/ACCESS.2021.3125092>.

551

552 Jonathan Allcock, Chang-Yu Hsieh, Iordanis Kerenidis, and Shengyu Zhang. Quantum algorithms
553 for feedforward neural networks. *ACM Trans. Quantum Comput.*, 1(1), October 2020. URL
554 <https://doi.org/10.1145/3411466>.

555

556 Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization
557 in overparameterized neural networks, going beyond two layers. In H. Wallach,
558 H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), *Ad-*
559 *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc.,
560 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/hash/62dad6e273d32235ae02b7d321578ee8-Abstract.html.

561

562 Dong An, Akwum Onwunta, and Gengzhi Yang. Fast-forwarding quantum algorithms for linear
563 dissipative differential equations, 2024. URL <https://arxiv.org/abs/2410.13189>.

564

565 Eric R. Anschuetz and Bobak T. Kiani. Quantum variational algorithms are swamped with
566 traps. *Nature Communications*, 13(1), December 2022. URL <https://doi.org/10.1038/s41467-022-35364-5>.

567

568 Ryan Babbush, Jarrod R. McClean, Michael Newman, Craig Gidney, Sergio Boixo, and Hartmut
569 Neven. Focus beyond quadratic speedups for error-corrected quantum advantage. *PRX Quantum*,
570 2:010103, Mar 2021. URL <https://link.aps.org/doi/10.1103/PRXQuantum.2.010103>.

571

572 Marcello Benedetti, Delfina Garcia-Pintos, Oscar Perdomo, Vicente Leyton-Ortega, Yunseong Nam,
573 and Alejandro Perdomo-Ortiz. A generative modeling approach for benchmarking and training
574 shallow quantum circuits. *npj Quantum Information*, 5(1), May 2019a. URL <https://doi.org/10.1038/s41534-019-0157-8>.

575

576 Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini. Parameterized quantum circuits
577 as machine learning models. *Quantum Sci. Technol.*, 4(4):043001, November 2019b. URL
578 <http://doi.org/10.1088/2058-9565/ab4eb5>.

579

580 Pablo Bermejo, Paolo Braccia, Manuel S. Rudolph, Zoë Holmes, Lukasz Cincio, and M. Cerezo.
581 Quantum convolutional neural networks are (effectively) classically simulable, 2024. URL <https://arxiv.org/abs/2408.12739>.

582

583 Dominic W. Berry and Pedro C. S. Costa. Quantum algorithm for time-dependent differential
584 equations using dyson series. *Quantum*, 8:1369, June 2024. URL <https://doi.org/10.22331/q-2024-06-13-1369>.

585

586 Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd.
587 Quantum machine learning. *Nature*, 549(7671):195–202, 2016. URL <https://doi.org/10.1038/nature23474>.

588

589 Lennart Bittel and Martin Kliesch. Training variational quantum algorithms is np-hard. *Phys.*
590 *Rev. Lett.*, 127:120502, Sep 2021. URL <https://link.aps.org/doi/10.1103/PhysRevLett.127.120502>.

591

594 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
 595 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
 596 wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
 597 Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
 598 teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
 599 dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
 600 learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Ad-
 601 vances in Neural Information Processing Systems*, volume 33, pp. 1877–1901. Curran Asso-
 602 ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

603

604 Daan Camps and Roel Van Beeumen. Approximate quantum circuit synthesis using block encodings.
 605 *Phys. Rev. A*, 102:052411, Nov 2020. URL <https://link.aps.org/doi/10.1103/PhysRevA.102.052411>.

606

607 Daan Camps, Lin Lin, Roel Van Beeumen, and Chao Yang. Explicit quantum circuits for block
 608 encodings of certain sparse matrices. *SIAM J. Matrix Anal. Appl.*, 45(1):801–827, 2024. URL
 609 <https://doi.org/10.1137/22M1484298>.

610

611 Yudong Cao, Anargyros Papageorgiou, Iasonas Petras, Joseph Traub, and Sabre Kais. Quantum
 612 algorithm and circuit design solving the poisson equation. *New Journal of Physics*, 15(1):013021,
 613 January 2013. URL <https://doi.org/10.1088/1367-2630/15/1/013021>.

614

615 Aaron Carroll and Gernot Heiser. An analysis of power consumption in a smartphone. In *Proceedings
 616 of the 2010 USENIX Conference on USENIX Annual Technical Conference*, USENIXATC’10,
 617 pp. 21, USA, 2010. USENIX Association. URL <https://dl.acm.org/doi/10.5555/1855840.1855861>.

618

619 M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii,
 620 Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J. Coles. Variational
 621 quantum algorithms. *Nat. Rev. Phys.*, 3(9):625–644, August 2021. URL <http://doi.org/10.1038/s42254-021-00348-9>.

622

623 M. Cerezo, Martin Larocca, Diego García-Martín, N. L. Diaz, Paolo Braccia, Enrico Fontana,
 624 Manuel S. Rudolph, Pablo Bermejo, Aroosa Ijaz, Supanut Thanasilp, Eric R. Anschuetz,
 625 and Zoë Holmes. Does provable absence of barren plateaus imply classical simulabil-
 626 ity? *Nature Communications*, 16(1), August 2025. URL <https://doi.org/10.1038/s41467-025-63099-6>.

627

628 Shantanav Chakraborty, Aditya Morolia, and Anurudh Peduri. Quantum regularized least squares.
 629 *Quantum*, 7:988, April 2023. URL <https://doi.org/10.22331/q-2023-04-27-988>.

630

631 Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. Model compression and acceleration for deep
 632 neural networks: The principles, progress, and challenges. *IEEE Signal Processing Magazine*, 35
 633 (1):126–136, 2018. URL <https://doi.org/10.1109/SPM.2017.2765695>.

634

635 El Amine Cherrat, Iordanis Kerenidis, Natansh Mathur, Jonas Landman, Martin Strahm, and
 636 Yun Yvonna Li. Quantum vision transformers. *Quantum*, 8:1265, February 2024. URL
 637 <https://doi.org/10.22331/q-2024-02-22-1265>.

638

639 Nai-Hui Chia, András Pal Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and Chunhao Wang.
 640 Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum ma-
 641 chine learning. *Journal of the ACM*, 69(5):1–72, October 2022. URL <https://doi.org/10.1145/3549524>.

642

643 Andrew M. Childs and Nathan Wiebe. Hamiltonian simulation using linear combinations of unitary
 644 operations. *Quantum Information and Computation*, 12(11 & 12):901–924, November 2012. URL
 645 <https://doi.org/10.26421/QIC12.11-12-1>.

646

647 Andrew M Childs, Jin-Peng Liu, and Aaron Ostrander. High-precision quantum algorithms for
 648 partial differential equations. *Quantum*, 5:574, 2021. URL <https://doi.org/10.22331/q-2021-11-10-574>.

648 Iris Cong, Soonwon Choi, and Mikhail D. Lukin. Quantum convolutional neural networks.
 649 *Nature Physics*, 15(12):1273–1278, August 2019. URL <http://doi.org/10.1038/s41567-019-0648-8>.
 650

651 D. Coppersmith. An approximate fourier transform useful in quantum factoring, 2002. URL
 652 <https://arxiv.org/abs/quant-ph/0201067>.
 653

654 Pedro C. S. Costa, Philipp Schleich, Mauro E. S. Morales, and Dominic W. Berry. Further improving
 655 quantum algorithms for nonlinear differential equations via higher-order methods and rescal-
 656 ing. *npj Quantum Information*, 11(1), August 2025. URL <https://doi.org/10.1038/s41534-025-01084-z>.
 657

658 Marcus Cramer, Martin B. Plenio, Steven T. Flammia, Rolando Somma, David Gross, Stephen D.
 659 Bartlett, Olivier Landon-Cardinal, David Poulin, and Yi-Kai Liu. Efficient quantum state tomog-
 660 raphy. *Nature Communications*, 1(1), December 2010. URL <https://doi.org/10.1038/ncomms1147>.
 661

662 Alexander M. Dalzell, András Gilyén, Connor T. Hann, Sam McArdle, Grant Salton, Quynh T.
 663 Nguyen, Aleksander Kubica, and Fernando G. S. L. Brandão. A distillation-teleportation protocol
 664 for fault-tolerant qram, 2025a. URL <https://arxiv.org/abs/2505.20265>.
 665

666 Alexander M. Dalzell, Sam McArdle, Mario Berta, Przemysław Bienias, Chi-Fang Chen, András
 667 Gilyén, Connor T. Hann, Michael J. Kastoryano, Emil T. Khabiboulline, Aleksander Kubica,
 668 Grant Salton, Samson Wang, and Fernando G. S. L. Brandão. Quantum algorithms: A survey of
 669 applications and end-to-end complexities, April 2025b. URL <https://doi.org/10.1017/9781009639651>.
 670

671 Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need:
 672 pure attention loses rank doubly exponentially with depth. In Marina Meila and Tong Zhang
 673 (eds.), *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of
 674 *Proceedings of Machine Learning Research*, pp. 2793–2803. PMLR, 18–24 Jul 2021. URL
 675 <https://proceedings.mlr.press/v139/dong21a.html>.
 676

677 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 678 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 679 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
 680 In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=YicbFdNTTy>.
 681

682 Thomas G. Draper. Addition on a quantum computer, 2000. URL <https://arxiv.org/abs/quant-ph/0008033>.
 683

684 Yuxuan Du, Xinbiao Wang, Naixu Guo, Zhan Yu, Yang Qian, Kaining Zhang, Min-Hsiu Hsieh,
 685 Patrick Rebentrost, and Dacheng Tao. *A Gentle Introduction to Quantum Machine Learning*.
 686 Springer Nature Singapore, 2025. doi: 10.1007/978-981-95-1284-3. URL <https://doi.org/10.1007/978-981-95-1284-3>.
 687

688 Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power provisioning for a warehouse-
 689 sized computer. *SIGARCH Comput. Archit. News*, 35(2):13–23, June 2007. URL <https://doi.org/10.1145/1273440.1250665>.
 690

691 Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Moham-
 692 madamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz, Julian Schrittweis, Grzegorz
 693 Swirszczy, David Silver, Demis Hassabis, and Pushmeet Kohli. Discovering faster matrix multipli-
 694 cation algorithms with reinforcement learning. *Nature*, 610(7930):47–53, October 2022. URL
 695 <https://doi.org/10.1038/s41586-022-05172-4>.
 696

697 Richard P. Feynman. Simulating physics with computers. *International Journal of Theoretical
 698 Physics*, 21(6–7):467–488, June 1982. URL <https://doi.org/10.1007/BF02650179>.
 699

700 Richard P. Feynman. Quantum mechanical computers. *Foundations of Physics*, 16(6):507–531, June
 701 1986. URL <https://doi.org/10.1007/BF01886518>.

702 Sevag Gharibian and François Le Gall. Dequantizing the quantum singular value transformation:
 703 Hardness and applications to quantum chemistry and the quantum pcp conjecture. *SIAM Journal*
 704 *on Computing*, 52(4):1009–1038, 2023. URL <https://doi.org/10.1137/22M1513721>.
 705

706 András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular value transformation
 707 and beyond: exponential improvements for quantum matrix arithmetics. In *Proceedings of the*
 708 *51st Annual ACM SIGACT Symposium on Theory of Computing*, STOC 2019, pp. 193–204, New
 709 York, NY, USA, 2019. Association for Computing Machinery. URL <https://doi.org/10.1145/3313276.3316366>.
 710

711 Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Architectures for a quantum random access
 712 memory. *Phys. Rev. A*, 78:052310, Nov 2008a. URL <https://link.aps.org/doi/10.1103/PhysRevA.78.052310>.
 713

714 Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum random access memory. *Phys.*
 715 *Rev. Lett.*, 100:160501, Apr 2008b. doi: 10.1103/PhysRevLett.100.160501. URL <https://link.aps.org/doi/10.1103/PhysRevLett.100.160501>.
 716

717 Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep Learning*. MIT Press, 2016. URL
 718 <http://www.deeplearningbook.org>.
 719

720 Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J. Cree. Regularisation of neural
 721 networks by enforcing lipschitz continuity. *Machine Learning*, 110(2):393–416, December 2020.
 722 URL <https://doi.org/10.1007/s10994-020-05929-w>.
 723

724 Lov Grover and Terry Rudolph. Creating superpositions that correspond to efficiently integrable
 725 probability distributions, 2002. URL <https://arxiv.org/abs/quant-ph/0208112>.
 726

727 Naixu Guo, Kosuke Mitarai, and Keisuke Fujii. Nonlinear transformation of complex amplitudes
 728 via quantum singular value transformation. *Phys. Rev. Res.*, 6:043227, December 2024a. URL
 729 <https://link.aps.org/doi/10.1103/PhysRevResearch.6.043227>.
 730

731 Naixu Guo, Zhan Yu, Matthew Choi, Yizhan Han, Aman Agrawal, Kouhei Nakaji, Alán Aspuru-
 732 Guzik, and Patrick Rebentrost. Quantum transformer: Accelerating model inference via quantum
 733 linear algebra, 2024b. URL <https://arxiv.org/abs/2402.16714>.
 734

735 Connor T Hann. *Practicality of quantum random access memory*. PhD thesis, Yale University, 2021.
 736 URL https://elischolar.library.yale.edu/gsas_dissertations/346.
 737

738 Connor T. Hann, Gideon Lee, S.M. Girvin, and Liang Jiang. Resilience of quantum random access
 739 memory to generic noise. *PRX Quantum*, 2:020311, Apr 2021. URL <https://link.aps.org/doi/10.1103/PRXQuantum.2.020311>.
 740

741 Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems of
 742 equations. *Phys. Rev. Lett.*, 103:150502, October 2009. URL <https://link.aps.org/doi/10.1103/PhysRevLett.103.150502>.
 743

744 Vojtěch Havlíček, Antonio D. Córcoles, Kristan Temme, Aram W. Harrow, Abhinav Kandala,
 745 Jerry M. Chow, and Jay M. Gambetta. Supervised learning with quantum-enhanced feature
 746 spaces. *Nature*, 567(7747):209–212, March 2019. URL <https://doi.org/10.1038/s41586-019-0980-2>.
 747

748 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 749 recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*
 750 (*CVPR*), pp. 770–778, 2016. URL <https://doi.org/10.1109/CVPR.2016.90>.
 751

752 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
 753 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-*
 754 *ral Information Processing Systems*, volume 33, pp. 6840–6851. Curran Associates, Inc.,
 755 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html.
 756

756 Fang-Yu Hong, Yang Xiang, Zhi-Yan Zhu, Li-zhen Jiang, and Liang-neng Wu. Robust quantum
 757 random access memory. *Phys. Rev. A*, 86:010306, Jul 2012. URL <https://link.aps.org/doi/10.1103/PhysRevA.86.010306>.

759

760 Po-Wei Huang and Patrick Rebentrost. Post-variational quantum neural networks, 2024. URL
 761 <https://arxiv.org/abs/2307.10560>.

762

763 Petr Ivashkov, Po-Wei Huang, Kelvin Koor, Lirandë Pira, and Patrick Rebentrost. Qkan: Quantum
 764 kolmogorov-arnold networks, 2024. URL <https://arxiv.org/abs/2410.04435>.

765

766 Samuel Jaques and Arthur G. Rattew. Qram: A survey and critique, 2023. URL <https://arxiv.org/abs/2305.10310>.

767

768 David Jennings, Matteo Lostaglio, Robert B Lowrie, Sam Pallister, and Andrew T Sornborger.
 769 The cost of solving linear differential equations on a quantum computer: fast-forwarding to
 770 explicit resource counts. *Quantum*, 8:1553, 2024. URL <https://doi.org/10.22331/q-2024-12-10-1553>.

771

772 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
 773 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland,
 774 Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
 775 Paredes, Stanislav Nikolov, Rishabh Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
 776 Ellen Clancy, Michał Zieliński, Martin Steinegger, Michałina Pacholska, Tamas Berghammer,
 777 Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu,
 778 Pushmeet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with al-
 779 phafold. *Nature*, 596(7873):583–589, July 2021. URL <https://doi.org/10.1038/s41586-021-03819-2>.

780

781 Ashish Kapoor, Nathan Wiebe, and Krysta Svore. Quantum perceptron models. In
 782 D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), *Advances
 783 in Neural Information Processing Systems*, volume 29. Curran Associates, Inc.,
 784 2016. URL <https://proceedings.neurips.cc/paper/2016/hash/d47268e9db2e9aa3827bba3afb7ff94a-Abstract.html>.

785

786

787 Iordanis Kerenidis and Anupam Prakash. Quantum recommendation systems. In *8th Innovations
 788 in Theoretical Computer Science Conference (ITCS 2017)*, volume 67 of *Leibniz International
 789 Proceedings in Informatics (LIPIcs)*, pp. 49:1–49:21. Schloss Dagstuhl–Leibniz-Zentrum fuer
 790 Informatik, 2017. URL <https://doi.org/10.4230/LIPIcs.ITU.2017.49>.

791

792 Iordanis Kerenidis and Anupam Prakash. Quantum gradient descent for linear systems and least
 793 squares. *Phys. Rev. A*, 101(2), February 2020. URL <https://link.aps.org/doi/10.1103/PhysRevA.101.022316>.

794

795 Iordanis Kerenidis, Jonas Landman, and Anupam Prakash. Quantum algorithms for deep convolu-
 796 tional neural networks. In *International Conference on Learning Representations*, 2020. URL
 797 <https://openreview.net/forum?id=Hygab1rKDS>.

798

799 Hari Krovi. Improved quantum algorithms for linear and nonlinear differential equations. *Quantum*,
 800 7:913, February 2023. URL <https://doi.org/10.22331/q-2023-02-02-913>.

801

802 Martín Larocca, Supanut Thanasilp, Samson Wang, Kunal Sharma, Jacob Biamonte, Patrick J.
 803 Coles, Lukasz Cincio, Jarrod R. McClean, Zoë Holmes, and M. Cerezo. Barren plateaus in
 804 variational quantum computing. *Nature Reviews Physics*, 7(4):174–189, March 2025. URL
 805 <https://doi.org/10.1038/s42254-025-00813-9>.

806

807 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *Nature*, 521(7553):436–444,
 808 2015. URL <https://doi.org/10.1038/nature14539>.

809

810 Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. Bilinear cnn models for fine-grained
 811 visual recognition. In *2015 IEEE International Conference on Computer Vision (ICCV)*, pp. 1449–
 812 1457. IEEE, December 2015. URL <https://doi.org/10.1109/ICCV.2015.170>.

810 Jin-Peng Liu, Herman Øie Kolden, Hari K Krovi, Nuno F Loureiro, Konstantina Trivisa, and
 811 Andrew M Childs. Efficient quantum algorithm for dissipative nonlinear differential equations.
 812 *Proceedings of the National Academy of Sciences*, 118(35):e2026805118, 2021a. URL <https://www.pnas.org/doi/abs/10.1073/pnas.2026805118>.

813
 814 Jin-Peng Liu, Dong An, Di Fang, Jiasu Wang, Guang Hao Low, and Stephen Jordan. Efficient quantum
 815 algorithm for nonlinear reaction-diffusion equations and energy estimation. *Communications*
 816 in *Mathematical Physics*, 404(2):963–1020, 2023. URL <https://link.springer.com/article/10.1007/s00220-023-04857-9>.

817
 818 Junyu Liu, Minzhao Liu, Jin-Peng Liu, Ziyu Ye, Yunfei Wang, Yuri Alexeev, Jens Eisert, and
 819 Liang Jiang. Towards provably efficient quantum algorithms for large-scale machine-learning
 820 models. *Nature Communications*, 15:434, 2024. URL <https://doi.org/10.1038/s41467-023-43957-x>.

821
 822 Yunchao Liu, Srinivasan Arunachalam, and Kristan Temme. A rigorous and robust quantum speed-up
 823 in supervised machine learning. *Nature Physics*, 17:1013–1017, 2021b. URL <https://doi.org/10.1038/s41567-021-01287-z>.

824
 825 Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum principal component analysis. *Nature*
 826 *Physics*, 10(9):631–633, July 2014. URL <https://doi.org/10.1038/nphys3029>.

827
 828 Guang Hao Low and Isaac L. Chuang. Hamiltonian simulation by uniform spectral amplification,
 829 2017. URL <https://arxiv.org/abs/1707.05391>.

830
 831 Aqeel Mahesri and Vibhore Vardhan. Power consumption breakdown on a modern laptop. In
 832 *Power-Aware Computer Systems*, pp. 165–180. Springer Berlin Heidelberg, 2005. URL https://doi.org/10.1007/11574859_12.

833
 834 Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut Neven.
 835 Barren plateaus in quantum neural network training landscapes. *Nature Communications*, 9(1),
 836 November 2018. URL <https://doi.org/10.1038/s41467-018-07090-4>.

837
 838 Hela Mhiri, Ricard Puig, Sacha Lerch, Manuel S. Rudolph, Thiparat Chotibut, Supanut Thanasilp,
 839 and Zoë Holmes. A unifying account of warm start guarantees for patches of quantum landscapes,
 840 2025. URL <https://arxiv.org/abs/2502.07889>.

841
 842 Kosuke Mitarai, Masahiro Kitagawa, and Keisuke Fujii. Quantum analog-digital conversion. *Phys.*
 843 *Rev. A*, 99:012301, Jan 2019. URL <https://link.aps.org/doi/10.1103/PhysRevA.99.012301>.

844
 845 Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
 846 generative adversarial networks. In *International Conference on Learning Representations*, 2018.
 847 URL <https://openreview.net/forum?id=B1QRgziT->.

848
 849 Ashley Montanaro. Quantum algorithms: an overview. *npj Quantum Information*, 2(1), January 2016.
 850 URL <https://doi.org/10.1038/npjqi.2015.23>.

851
 852 Gordon E. Moore. Cramming more components onto integrated circuits. *Electronics*, 38(8):114–117,
 853 April 1965. URL <https://ieeexplore.ieee.org/document/4785860>.

854
 855 Danial Motlagh and Nathan Wiebe. Generalized quantum signal processing. *PRX Quantum*, 5:
 856 020368, Jun 2024. doi: 10.1103/PRXQuantum.5.020368. URL <https://link.aps.org/doi/10.1103/PRXQuantum.5.020368>.

857
 858 Michael A. Nielsen and Isaac L. Chuang. *Quantum Computation and Quantum Information*. Cam-
 859 bridge University Press, 2010. URL <https://doi.org/10.1017/CBO9780511976667>.

860
 861 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 862 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
 863 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
 deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and

864 R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Curran Asso-
 865 ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html.
 866

867 Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love,
 868 Alán Aspuru-Guzik, and Jeremy L. O’Brien. A variational eigenvalue solver on a photonic
 869 quantum processor. *Nature Communications*, 5:4213, 2014. URL <https://doi.org/10.1038/ncomms5213>.
 870

871

872 Martin Plesch and Časlav Brukner. Quantum-state preparation with universal gate decompositions.
 873 *Phys. Rev. A*, 83:032302, March 2011. URL <https://link.aps.org/doi/10.1103/PhysRevA.83.032302>.
 874

875

876 Anupam Prakash. *Quantum algorithms for linear algebra and machine learning*. PhD thesis,
 877 University of California, Berkeley, 2014. URL <https://digicoll.lib.berkeley.edu/record/136504>.
 878

879 John Preskill. Quantum computing in the nisq era and beyond. *Quantum*, 2:79, August 2018. URL
 880 <https://doi.org/10.22331/q-2018-08-06-79>.
 881

882 Arthur G. Rattew and Bálint Koczor. Preparing arbitrary continuous functions in quantum registers
 883 with logarithmic complexity, 2022. URL <https://arxiv.org/abs/2205.00519>.
 884

885 Arthur G. Rattew and Patrick Rebentrost. Non-linear transformations of quantum amplitudes:
 886 Exponential improvement, generalization, and applications, 2023. URL <https://arxiv.org/abs/2309.09839>.
 887

888 Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum support vector machine for big
 889 data classification. *Phys. Rev. Lett.*, 113:130503, September 2014. URL <https://link.aps.org/doi/10.1103/PhysRevLett.113.130503>.
 890

891 Patrick Rebentrost, Thomas R. Bromley, Christian Weedbrook, and Seth Lloyd. Quantum hopfield
 892 neural network. *Phys. Rev. A*, 98:042308, October 2018. URL <https://link.aps.org/doi/10.1103/PhysRevA.98.042308>.
 893

894

895 Manuel S. Rudolph, Sacha Lerch, Supanut Thanasilp, Oriel Kiss, Oxana Shaya, Sofia Vallecorsa,
 896 Michele Grossi, and Zoë Holmes. Trainability barriers and opportunities in quantum generative
 897 modeling. *npj Quantum Information*, 10(1), November 2024. URL <https://doi.org/10.1038/s41534-024-00902-0>.
 898

899

900 Sushant Sachdeva and Nisheeth K Vishnoi. Faster algorithms via approximation theory. *Foundations
 901 and Trends® in Theoretical Computer Science*, 9(2):125–210, 2014. URL <https://doi.org/10.1561/0400000065>.
 902

903 Mehdi Saeedi and Massoud Pedram. Linear-depth quantum circuits for n -qubit toffoli gates with
 904 no ancilla. *Phys. Rev. A*, 87:062318, Jun 2013. URL <https://link.aps.org/doi/10.1103/PhysRevA.87.062318>.
 905

906

907 Maria Schuld and Nathan Killoran. Quantum machine learning in feature hilbert spaces. *Phys.
 908 Rev. Lett.*, 122:040504, February 2019. URL <https://link.aps.org/doi/10.1103/PhysRevLett.122.040504>.
 909

910 Maria Schuld and Francesco Petruccione. *Machine Learning with Quantum Computers*. Springer In-
 911 ternational Publishing, 2021. URL <https://doi.org/10.1007/978-3-030-83098-4>.
 912

913 Hanie Sedghi, Vineet Gupta, and Philip M. Long. The singular values of convolutional layers. In
 914 *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=rJevYoA9Fm>.
 915

916 Zhong-Xia Shang, Naixu Guo, Dong An, and Qi Zhao. Designing a nearly optimal quantum algorithm
 917 for linear differential equations via lindbladians. *Phys. Rev. Lett.*, 135:120604, Sep 2025. URL
<https://link.aps.org/doi/10.1103/cvl19-97qg>.

918 David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
 919 Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
 920 Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
 921 Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with
 922 deep neural networks and tree search. *Nature*, 529:484–489, 2016. URL <https://doi.org/10.1038/nature16961>.
 923

924 Ewin Tang. A quantum-inspired classical algorithm for recommendation systems. In *Proceedings of*
 925 *the 51st Annual ACM SIGACT Symposium on Theory of Computing*, STOC 2019, pp. 217–228,
 926 New York, NY, USA, 2019. Association for Computing Machinery. URL <https://doi.org/10.1145/3313276.3316310>.
 927

928 Supanut Thanasilp, Samson Wang, M. Cerezo, and Zoë Holmes. Exponential concentration in
 929 quantum kernel methods. *Nature Communications*, 15(1), June 2024. URL <https://doi.org/10.1038/s41467-024-49287-w>.
 930

931 Joran van Apeldoorn, Arjan Cornelissen, András Gilyén, and Giacomo Nannicini. Quantum tomogra-
 932 phy using state-preparation unitaries. In *Proceedings of the 2023 Annual ACM-SIAM Symposium*
 933 *on Discrete Algorithms (SODA)*, pp. 1265–1318. Society for Industrial and Applied Mathematics,
 934 January 2023. URL <https://doi.org/10.1137/1.9781611977554.ch47>.
 935

936 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 937 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
 938 Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Ad-*
 939 *vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
 940 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fb053c1c4a845aa-Abstract.html.
 941

942 Kaito Wada, Naoki Yamamoto, and Nobuyuki Yoshioka. Heisenberg-limited adaptive gradient
 943 estimation for multiple observables. *PRX Quantum*, 6:020308, Apr 2025. URL <https://link.aps.org/doi/10.1103/PRXQuantum.6.020308>.
 944

945 Yunfei Wang, Ruoxi Jiang, Yingda Fan, Xiaowei Jia, Jens Eisert, Junyu Liu, and Jin-Peng Liu.
 946 Towards efficient quantum algorithms for diffusion probability models, 2025. URL <https://arxiv.org/abs/2502.14252>.
 947

948 Nathan Wiebe, Daniel Braun, and Seth Lloyd. Quantum algorithm for data fitting. *Phys. Rev. Lett.*,
 949 109:050505, Aug 2012. URL <https://link.aps.org/doi/10.1103/PhysRevLett.109.050505>.
 950

951 Nathan Wiebe, Ashish Kapoor, and Krysta M. Svore. Quantum deep learning. *Quantum Information*
 952 *and Computation*, 16(7 & 8):541–587, May 2016. URL <https://doi.org/10.26421/QIC16.7-8-1>.
 953

954 Hsuan-Cheng Wu, Jingyao Wang, and Xiantao Li. Quantum algorithms for nonlinear dynamics:
 955 Revisiting carleman linearization with no dissipative conditions. *SIAM J. Sci. Comput.*, 47(2):
 956 A943–A970, 2025. URL <https://doi.org/10.1137/24M1665799>.
 957

958 Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
 959 transformations for deep neural networks. In *2017 IEEE Conference on Computer Vision and*
 960 *Pattern Recognition (CVPR)*, pp. 5987–5995, 2017. URL <https://doi.org/10.1109/CVPR.2017.634>.
 961

962 Siyi Yang, Naixu Guo, Miklos Santha, and Patrick Rebentrost. Quantum alphatron: quantum
 963 advantage for learning with kernels and noise. *Quantum*, 7:1174, November 2023. URL <https://doi.org/10.22331/q-2023-11-08-1174>.
 964

965 Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the generalizability
 966 of deep learning, 2017. URL <https://arxiv.org/abs/1705.10941>.
 967

968 Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In *Proceedings of the British Ma-*
 969 *chine Vision Conference 2016*, BMVC 2016, pp. 87.1–87.12. British Machine Vision Association,
 970 2016. URL <https://doi.org/10.5244/C.30.87>.
 971

972 TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL
973

974 In Appendix A we present a summary of Quantum Random Access Memory (QRAM), which we
975 subsequently use. In Appendix B we present a number of existing techniques which we require
976 to manipulate vectors and matrices with quantum computers, and then use them to develop a
977 number of new useful results for quantum matrix-vector arithmetic. In Appendix C, we use the
978 techniques developed in Appendix B to construct quantum-implementations of key architectural
979 blocks. In Appendix D, we discuss the feasibility of QRAM. In Appendix E we use the architectural
980 blocks obtained in Appendix C to derive end-to-end complexities for a number of architectures under
981 different QRAM assumptions.

982
983 A QUANTUM RANDOM ACCESS MEMORY (QRAM)
984

985 Quantum Random Access Memory (Giovannetti et al., 2008b) is a widely assumed mechanism in
986 the quantum computing literature for accessing data in a quantum computer. In this paper, we make
987 a range of QRAM assumptions under different regimes of assumed feasibility. With the aim of
988 enabling practical end-to-end speed-ups, it is important to explicitly state the different assumptions
989 and consider the feasibility of each of these regimes.

990 In this section, we will formally define QRAM, and state the assumed complexities. In Appendix D,
991 we dive into a deeper discussion of the feasibility of our various QRAM assumptions, with the aim
992 of providing a clear understanding of what sorts of end-to-end speed-ups our results can offer in
993 practice.

994 **Definition A.1** (QRAM for Classical Data). *Let $N = 2^n$ and $D = 2^d$. Let $|i\rangle_n$ be any n -qubit
995 standard basis vector, and let $x_i \in [D]$. Then, a QRAM with $O(dN \log N)$ total qubits can implement
996 the mapping,*

$$997 U|i\rangle_n|0\rangle_d = |i\rangle_n|x_i\rangle_d \quad (\text{A.1})$$

998 with $O(d \log N)$ circuit depth.
999

1000 As mentioned in a number of sources, e.g., Hann et al. (2021); Giovannetti et al. (2008a) an N qubit
1001 QRAM can be implemented with $O(\log N)$ depth complexity. Consequently, performing a sequence
1002 of d of these (to implement each of the d -bits in each memory register), a circuit depth complexity of
1003 $O(d \log N)$ trivially follows.

1004 **Definition A.2** (QRAM for Quantum Data (Prakash, 2014; Kerenidis & Prakash, 2017; Kerenidis
1005 et al., 2020)). *Let $N = 2^n$, $M = 2^m$. Let $|i\rangle_n$ be any n -qubit standard basis vector. Allow $|\psi_i\rangle_m$ to
1006 be an arbitrary m -qubit normalized quantum states. Then, a QRAM with $\tilde{O}(MN)$ total qubits, and
1007 $\tilde{O}(MN)$ classical pre-processing to construct the data-structure, can implement the mapping,*

$$1008 U|i\rangle_n|0\rangle_m = |i\rangle_n|\psi_i\rangle_m \quad (\text{A.2})$$

1009 with $O(\log^2(NM))$ circuit depth.
1010

1011 Importantly, as per Prakash (2014); Kerenidis & Prakash (2017); Kerenidis et al. (2020) QRAM for
1012 quantum data can be implemented by a circuit (based on Grover & Rudolph (2002)) with depth and
1013 width $O(\text{polylog}(MN))$ with access to a QRAM data structure (as per Definition A.1) containing
1014 all the entries of each state in the quantum data (along with $O(\log M)$ copies for each of the sets of
1015 partial norms). Thus, if QRAM for classical data is feasible (as discussed in Appendix D), QRAM
1016 for quantum data is as well (with pre-processing to construct the appropriate data-structures).

1017 In this work, we will use QRAM to describe QRAM for both quantum and classical data, and will
1018 make the distinction clear when it is relevant.
1019

1020 B QUANTUM MATRIX-VECTOR ARITHMETIC
1021

1022 In this section, we formally derive a number of tools for quantum matrix-vector arithmetic.
1023

1024 **Lemma B.1** (Product of block encodings (Gilyén et al., 2019)). *If U is an (α, a, δ) -block-encoding
1025 of an s -qubit operator A , and V is an (β, b, ϵ) -block-encoding of an s -qubit operator B then
($I_b \otimes U$)($I_a \otimes V$) is an $(\alpha\beta, a + b, \alpha\epsilon + \beta\delta)$ -block-encoding of AB .*

1026 In Lemma B.1 we adopt the tensor product notation used in Gilyén et al. (2019); the tensor product
 1027 in this lemma is used differently than it is used anywhere else in this paper.
 1028

1029 We now present a standard result (see Lemma 1 of Camps & Van Beeumen (2020) or Lemma 21
 1030 of Chakraborty et al. (2023)), and we include the proof for completeness, as it is the basis of a
 1031 subsequent proof Lemma 3. In particular, our derivation closely follows that of Lemma 1 of Camps
 1032 & Van Beeumen (2020).
 1033

Lemma B.2 (Tensor Product of Block-Encoded Operators). *Given a unitary U_A which is an (α, a, ϵ_0) -block-encoding for n -qubit operator A with $O(T_A)$ circuit complexity, and a unitary U_B which is a (β, b, ϵ_1) -block-encoding for m -qubit operator B with $O(T_B)$ circuit complexity, we can obtain an $(\alpha\beta, a+b, \epsilon_0\beta + \epsilon_1\alpha + \epsilon_0\epsilon_1)$ -block-encoding for $A \otimes B$ with $O(\max(T_A, T_B) + \max(n, b))$ circuit complexity.*

1038 *Proof.* The main idea is that $U_A \otimes U_B$ almost directly implements a block-encoding of $A \otimes B$, but
 1039 the ancillas and the main computation registers are in the wrong order. To correct this, we need to
 1040 swap the ancilla register of U_B with the main register of U_A .
 1041

1042 Consequently, define the operator Π such that it swaps the n -qubit register with the b -qubit register
 1043 (and leaves the other registers unchanged), so that all the ancilla registers precede the main registers.
 1044 If $n \geq b$, Π can be implemented by a sequence of $O(n/b)$ swaps, with each swap swapping
 1045 $O(b)$ qubits in parallel. If $n < b$, then it can be implemented with $O(b/n)$ swaps. Thus, Π has
 1046 a circuit depth bounded by $O(\max(n/b, b/n)) \in O(\max(n, b))$. Then, $\Pi(|0\rangle_{a+b} \otimes I_{n+m}) =$
 1047 $(|0\rangle_a \otimes I_n) \otimes (|0\rangle_b \otimes I_m)$, and $(\langle 0|_{a+b} \otimes I_{n+m})\Pi^\dagger = (\langle 0|_a \otimes I_n) \otimes (\langle 0|_b \otimes I_m)$.
 1048

1049 Following Camps & Van Beeumen (2020), define $\tilde{A} := (\langle 0|_a \otimes I_n)U_A(|0\rangle_a \otimes I_n)$, and $\tilde{B} :=$
 1050 $(\langle 0|_b \otimes I_m)U_B(|0\rangle_b \otimes I_m)$. Let $E_A := A - \alpha\tilde{A}$, and let $E_B := B - \beta\tilde{B}$. Define $V := \Pi^\dagger(U_A \otimes U_B)\Pi$.
 1051 Then, $A \otimes B = (\alpha\tilde{A} + E_A) \otimes (\beta\tilde{B} \otimes E_B)$, and $(\langle 0|_{a+b} \otimes I_{n+m})V(|0\rangle_{a+b} \otimes I_{n+m}) = \tilde{A} \otimes \tilde{B}$, so
 1052

$$\|A \otimes B - \alpha\beta(\langle 0|_{a+b} \otimes I_{n+m})V(|0\rangle_{a+b} \otimes I_{n+m})\|_2 \quad (\text{B.1})$$

$$= \|(\alpha\tilde{A} + E_A) \otimes (\beta\tilde{B} \otimes E_B) - \alpha\beta\tilde{A} \otimes \tilde{B}\|_2 \quad (\text{B.2})$$

$$\leq \epsilon_0\beta + \epsilon_1\alpha + \epsilon_0\epsilon_1. \quad (\text{B.3})$$

□

1058 We now present a result from the literature allowing a block-encoding to have all of its singular values
 1059 scaled by a constant value. We present the result nearly verbatim from Lemma 5 of Wada et al. (2025)
 1060 (with trivial modifications to make it easier to invoke in our context), which presents the results of
 1061 Low & Chuang (2017); Gilyén et al. (2019) cleanly in the language of block-encodings.
 1062

Lemma B.3 (Uniform Singular Value Amplification (Wada et al., 2025; Low & Chuang, 2017; Gilyén
 1063 et al., 2019)). *Let $\epsilon, \delta \in (0, 1/2)$, and let $\gamma > 1$. Let U_A be an $(1, a, 0)$ -block-encoding of the n -qubit
 1064 operator A with $O(T)$ circuit depth. Suppose $\|A\|_2 \leq (1 - \delta)/\gamma$. Then, we can obtain a quantum
 1065 circuit V which is a $(1, a + 1, \epsilon)$ -block-encoding for γA with $O(\frac{\gamma}{\delta} \log(\gamma/\epsilon)(T + a))$ circuit depth,
 1066 and with $O(\text{poly}(\frac{\gamma}{\delta} \log(\gamma/\epsilon)))$ classical computation to determine the QSVT rotation angles.*
 1067

1068 *Proof.* This is taken directly from Wada et al. (2025); Low & Chuang (2017); Gilyén et al. (2019),
 1069 simply noting that an a -controlled X gate can be implemented by a sequence of $O(a)$ single and
 1070 two-qubit gates. □
 1071

1073 We now present a simple result which is just a special case of uniform singular value amplification
 1074 (Wada et al., 2025; Low & Chuang, 2017; Gilyén et al., 2019) in the case where all the singular
 1075 values of an encoded operator are either 0 or $1/2$. This is done following the ideas of oblivious
 1076 amplitude amplification (see Gilyén et al. (2019)).
 1077

Lemma B.4 ($\frac{1}{2}$ Oblivious Amplitude Amplification). *We are given a matrix $A \in \mathbb{C}^{N \times N}$, with
 1078 singular values either 1 or 0. Assume we have access to U_A a $(2, a, 0)$ -BE of A with $O(T)$ circuit
 1079 depth. One can construct $(1, a + 1, 0)$ -BE of A with $O(T)$ circuit depth, and with 3 calls to a
 controlled- U circuit.*

1080 *Proof.* Note that $T_3(x) = 4x^3 - 3x$ satisfies the condition that $|T_3(x)| \leq 1$ for $x \in [-1, 1]$ and
 1081 $T_3(\frac{1}{2}) = -1$. Therefore, one can achieve the task by implementing the function $-T_3(x)$ via QSVT
 1082 and the block encoding. The first kind of the Chebyshev polynomial can be directly achieved without
 1083 any classical processing to determine angle rotations, so one can construct the block encoding with
 1084 no error. \square

1085

1086 For completeness, we now re-derive an existing result on the linear combination of block-encoded
 1087 matrices, directly following Gilyén et al. (2019) (which presents the result of Childs & Wiebe (2012)
 1088 in the context of block-encodings).

1089 **Lemma B.5** (Linear Combination of Block-Encodings (Childs & Wiebe, 2012; Gilyén et al., 2019)).
 1090 Suppose we are given a set of $D = 2^d$ unitaries $\{U_i\}_i$ such that each U_i is an (α, a, ϵ) -block-
 1091 encoding for n qubit operator A_i , and each U_i has a total of $O(T_0)$ single and two qubit gates.
 1092 Define the vector $\mathbf{b} \in \mathbb{C}^D$ such that $\mathbf{b} = (b_0 \ b_1 \ \dots \ b_{D-1})^T$. Define $|b\rangle_d = \sum_{j=0}^D \sqrt{b_j} |j\rangle_d$ and
 1093 $\beta := \|b\rangle_d\|_2^2 = \|\mathbf{b}\|_1$. We are given the d -qubit unitary U_b , with $O(T_1)$ single and two qubit gates,
 1094 such that $U_b|0\rangle_d = |b\rangle_d / \|b\rangle_d\|_2$. Define $A := \sum_{j=0}^{D-1} b_j A_j$. Then, we can obtain a unitary V with
 1095 $O(dDT_0 + T_1)$ circuit depth which is an $(\alpha\beta, a + d, \alpha\beta\epsilon)$ -block-encoding for A .
 1096

1097

1098 *Proof.* For each $j \in [D]$, let $\tilde{A}_j := (\langle 0|_a \otimes I_n)U_j(|0\rangle_a \otimes I_n)$, and let $E_j := A_j - \alpha\tilde{A}_j$. Define
 1099 $S := \sum_{j=0}^{D-1} |j\rangle\langle j|_d \otimes U_j$. Note that S can be implemented by a sequence of D multi-controlled U_j
 1100 operators. Note that by using Saeedi & Pedram (2013), a d controlled gate targeting 1 or 2 qubits can
 1101 be decomposed into a sequence of $O(d)$ single and two qubit gates. Consequently, each d -controlled
 1102 U_j has $O(dT_0)$ circuit depth in terms of single and two qubit gates. Thus, S consists of a total of
 1103 $O(dDT_0)$ single and two qubit gates. Then, define $V := (U_b^\dagger \otimes I_{a+n})S(U_b \otimes I_{a+n})$.

1104

1105 Noting that $(\langle 0|_d \otimes I_{a+n})V(|0\rangle_d \otimes I_{a+n}) = \frac{1}{\beta} \sum_{j=0}^{D-1} b_j U_j$. Using the fact that $|0\rangle_{a+d} \otimes I_n =$
 1106 $(|0\rangle_d \otimes I_{a+n})(|0\rangle_a \otimes I_n)$, we then obtain

$$1107 \langle 0|_{a+d} \otimes I_n) V(|0\rangle_{a+d} \otimes I_n) = \frac{1}{\beta} (\langle 0|_a \otimes I_n) \left(\sum_{j=0}^{D-1} b_j U_j \right) (|0\rangle_a \otimes I_n) = \frac{1}{\beta} \sum_{j=0}^{D-1} b_j \tilde{A}_j. \quad (\text{B.4})$$

1110

1111 Consequently,

$$1112 \|\mathbf{A} - \alpha\beta(\langle 0|_{a+d} \otimes I_n) V(|0\rangle_{a+d} \otimes I_n)\|_2 = \left\| \sum_{j=0}^{D-1} b_j (\alpha\tilde{A}_j + E_j) - \sum_{j=0}^{D-1} \alpha b_j \tilde{A}_j \right\|_2 \quad (\text{B.5})$$

$$1113 = \left\| \sum_{j=0}^{D-1} b_j \alpha E_j \right\|_2 \leq \alpha \sum_{j=0}^{D-1} |b_j| \|E_j\|_2 \quad (\text{B.6})$$

$$1114 \leq \alpha\beta\epsilon. \quad (\text{B.7})$$

1115

1116 Thus, V gives a $(\alpha\beta, a, \alpha\beta\epsilon)$ -block-encoding for A , and has $O(dDT_0 + T_1)$ circuit depth. \square

1117

1118 The following is a standard result which has been used in various contexts, and is included for
 1119 completeness.

1120

1121 **Lemma B.6** (Block Encoding of Rank 1 Projector of Basis Vectors). Let $n \in \mathbb{N}_{\geq 0}$, and let $N = 2^n$.
 1122 Define $i \in [N]$ and $j \in [N]$. Then, we can get a unitary U which is a $(1, 2, 0)$ -block-encoding of the
 1123 n qubit operator $|i\rangle\langle j|$. Moreover, U has $O(n)$ circuit depth.

1124

1125 *Proof.* Following Jaques & Rattew (2023), a $(1, 2, 0)$ block-encoding of the matrix $|0\rangle\langle 0|$, call it
 1126 V , can be obtained with $O(n)$ circuit complexity. This follows by constructing a $(1, 0, 0)$ block-
 1127 encoding of the Grover reflection operator, $I - 2|0\rangle\langle 0|$, and taking a linear combination with I
 1128 via the sum of block-encoding result of Gilyén et al. (2019). The circuit complexity is dominated
 1129 by reflection operator, which can be implemented by applying a $n - 1$ controlled XZX gate on
 1130 the most significant qubit, controlled on the 0 state of the other $n - 1$ qubits. Using Saeedi &
 1131 Pedram (2013) this can be decomposed into a sequence of $O(n)$ two-qubit gates. Decompose
 1132

1133

1134 i and j into bits as, $i = i_0 i_1 \dots i_{n-1}$, and $j = j_0 j_1 \dots j_{n-1}$. We now define two operators,
1135 $M_i := X^{i_0} \otimes X^{i_1} \otimes \dots \otimes X^{i_{n-1}}$ and $M_j := X^{j_0} \otimes X^{j_1} \otimes \dots \otimes X^{j_{n-1}}$. Clearly, $M_i |0\rangle\langle 0| M_j = |i\rangle\langle j|$.
1136 Then, since $(I_2 \otimes M_i)V(I_2 \otimes M_j) = \begin{pmatrix} |i\rangle\langle j| & \cdot \\ \cdot & \cdot \end{pmatrix}$. Thus, $(I_2 \otimes M_i)V(I_2 \otimes M_j)$ is a $(1, 2, 0)$ block-
1137 encoding for $|i\rangle\langle j|$. \square
1138

1140 We now present a simple result which helps intuitively visualize VEs as encoding vectors in a
1141 subspace.
1142

1143 **Lemma B.7** (Intuitive Picture of VE as a Vector Subspace Encoding). *Let U_ψ be an (α, a, ϵ) -VE
1144 for $|\psi\rangle_n$. Define $|E_\psi\rangle_n := |\psi\rangle_n - \alpha(\langle 0|_a \otimes I_n)U_\psi|0\rangle_{a+n}$. Define the a -qubit operator $p_j^a := |j\rangle\langle j|$.
1145 Then,*

$$1146 U_\psi|0\rangle_{a+n} = \frac{|0\rangle_a|\psi\rangle_n - |0\rangle_a|E_\psi\rangle_n}{\alpha} + \sum_{j=1}^{2^a-1} (p_j^a \otimes I_n)U_\psi|0\rangle_{a+n} = \begin{pmatrix} \frac{|\psi\rangle_n - |E_\psi\rangle_n}{\alpha} \\ \vdots \end{pmatrix}. \quad (\text{B.8})$$

1150 *Proof.* $|E_\psi\rangle_n = |\psi\rangle_n - \alpha(\langle 0|_a \otimes I_n)U_\psi|0\rangle_{a+n}$ implies that $|0\rangle_a|E_\psi\rangle_n = |0\rangle_a|\psi\rangle_n - \alpha(p_0^j \otimes$
1151 $I_n)U_\psi|0\rangle_{a+n}$. The result follows trivially by algebraic manipulation of $U_\psi|0\rangle_{a+n} = (\sum_{j=0}^{2^a-1} p_j^a \otimes$
1152 $I_n)U_\psi|0\rangle_{a+n}$. \square
1153

1154 Intuitively, in the absence of error, the first 2^n entries of $U_\psi|0\rangle_{a+n}$ will contain the sub-normalized
1155 vector $|\psi\rangle_n/\alpha$.
1156

1157 We now state the following result from Rattew & Rebentrost (2023) nearly verbatim, slightly improv-
1158 ing the complexity. The following result is a tool essentially implementing ℓ_2 layer normalization,
1159 follows directly from oblivious amplitude amplification (see e.g., Gilyén et al. (2019)), and is taken
1160 nearly verbatim from Rattew & Rebentrost (2023).

1161 **Lemma B.8** (Vector Normalization, Lemma 18 of Rattew & Rebentrost (2023)). *Let $\epsilon_0 \in [0, 1/2]$,
1162 $\alpha \geq 1$, $a \in \mathbb{N}$, $\epsilon_1 > 0$. Let α' be a known bound such that $\alpha' \geq \alpha$. Given a unitary U_ψ , a (α, a, ϵ_0) -
1163 VE for the ℓ_2 -normalized quantum state $|\psi\rangle_n$ with circuit complexity $O(T_\psi)$, we can construct a
1164 $(1, a+4, 2(\epsilon_0 + \epsilon_1))$ -VE for $|\psi\rangle_n$ with circuit complexity $O((T_\psi + a + n)\alpha' \log(1/\epsilon_1))$ and with
1165 $O(\alpha' \log(1/\epsilon_1))$ queries to a U_ψ and U_ψ^\dagger circuit.*
1166

1167 This implements vector normalization by boosting the scaling factor so the norm of the encoded
1168 vector is 1, and all the padding entries are 0 (up to logarithmic error).
1169

1170 *Proof.* Define $|\phi\rangle_n := (\langle 0|_a \otimes I_n)U_\psi|0\rangle_{a+n}$, $\mathcal{N}_\phi := \|\phi\rangle_n\|_2$, $|\Phi\rangle_n := |\phi\rangle_n/\mathcal{N}_\phi$. Then, U_ψ is
1171 equivalently a $(\mathcal{N}_\phi, a, 0)$ -VE for $|\phi\rangle_n/\mathcal{N}_\phi$. Using Lemma B.6, we can get U_0 a $(1, 2, 0)$ -block-
1172 encoding of the $n+a$ qubit projector $|0\rangle\langle 0|$ with $O(n+a)$ circuit depth. Then, $V = (I_2 \otimes U_\psi)U_0$ is
1173 a $(1, 2, 0)$ -block-encoding for $U_\psi|0\rangle\langle 0|$, with $O(T_\psi + a + n)$ circuit complexity. Noting that $(\langle 0|_2 \otimes$
1174 $I_{a+n})V(|0\rangle_2 \otimes I_{a+n}) = U_\psi|0\rangle\langle 0|$, then $(\langle 0|_{2+a} \otimes I_n)V(|0\rangle_{2+a} \otimes I_n) = (\langle 0|_a \otimes I_n)U_\psi|0\rangle\langle 0|(|0\rangle_a \otimes$
1175 $I_n) = |\phi\rangle\langle 0|_a$, so

$$1176 \|\phi\rangle\langle 0|_a - \langle 0|_{2+a} \otimes I_n)V(|0\rangle_{2+a} \otimes I_n)\|_2 = 0. \quad (\text{B.9})$$

1177 Thus, we have a $(1, a+2, 0)$ -block-encoding of $|\phi\rangle\langle 0|_a = \mathcal{N}_\phi|\Phi\rangle\langle 0|$. This object has singular value
1178 \mathcal{N}_ϕ . Thus, we want to apply a polynomial approximation to this block-encoding, such that the error
1179 of the polynomial approximation is at most ϵ_1 on the interval $[\mathcal{N}_\phi, 1]$. From Corollary 6 of Low &
1180 Chuang (2017), we know that there exists an odd polynomial $P_k(x)$ with degree $k \in O(\frac{1}{\tau} \log(1/\epsilon_1))$
1181 such that

$$1183 \max_{x \in [-1, -\frac{\tau}{2}] \cup [\tau/2, 1]} |P_k(x) - \text{sign}(x)| \leq \epsilon_1 \quad (\text{B.10})$$

1184 and $\max_{x \in [-1, 1]} |P_k(x)| \leq 1$. Since $\mathcal{N}_\phi \geq \frac{1}{2\alpha} \geq \frac{1}{2\alpha'}$, we can set $\tau = \frac{1}{2\alpha'}$, guaranteeing that
1185 $P(\mathcal{N}_\phi) \geq 1 - \epsilon_1$. Consequently, we can invoke quantum singular value transformation (QSVT)
1186 (Gilyén et al., 2019) with P_k , yielding V_f a $(1, a+4, \epsilon_1)$ -block-encoding for $P(\mathcal{N}_\phi|\Phi\rangle\langle 0|) = c|\Phi\rangle\langle 0|$,
1187

1188 where $1 \geq c \geq 1 - \epsilon_1$. Moreover, V_f has $O(\frac{1}{\alpha'} \log(1/\epsilon_1)(T_\psi + a + n))$ circuit complexity. Noting
 1189 that

$$\| |\psi\rangle\langle 0| - P(\mathcal{N}_\phi|\Phi\rangle\langle 0|) \|_2 = \| |\psi\rangle\langle 0| - |\Phi\rangle\langle 0| + |\Phi\rangle\langle 0| - c|\Phi\rangle\langle 0| \|_2 \quad (\text{B.11})$$

$$\leq \| |\psi\rangle\langle 0| - |\Phi\rangle\langle 0| \|_2 + \| |\Phi\rangle\langle 0| - c|\Phi\rangle\langle 0| \|_2 \quad (\text{B.12})$$

$$\leq \| |\psi\rangle_n - |\Phi\rangle_n \|_2 + \epsilon_1. \quad (\text{B.13})$$

1194 Moreover,

$$\| |\psi\rangle_n - |\Phi\rangle_n \|_2 \leq \| |\psi\rangle_n - \alpha|\phi\rangle_n \|_2 + \| \alpha|\phi\rangle_n - \frac{1}{\mathcal{N}_\phi}|\phi\rangle_n \|_2 \quad (\text{B.14})$$

$$\leq \epsilon_0 + \frac{1}{\mathcal{N}_\phi} \| \alpha\mathcal{N}_\phi|\phi\rangle_n - |\phi\rangle_n \| = \epsilon_0 + \frac{|\alpha\mathcal{N}_\phi - 1|}{\mathcal{N}_\phi} \| |\phi\rangle_n \|_2 \quad (\text{B.15})$$

$$\leq \epsilon_0 + |\alpha\mathcal{N}_\phi - 1|. \quad (\text{B.16})$$

1201 Moreover, using the reverse triangle inequality with $\| |\psi\rangle_n - \alpha|\phi\rangle_n \|_2 \leq \epsilon_0$, we get $|1 - \alpha \| |\phi\rangle_n \|_2| =$
 1202 $|1 - \alpha\mathcal{N}_\phi| \leq \epsilon_1$, which implies that $1 - \epsilon_0 \leq \alpha\mathcal{N}_\phi \leq 1 + \epsilon_0$. Consequently, $|\alpha\mathcal{N}_\phi - 1| \leq \epsilon_0$, and so

$$\| |\psi\rangle_n - |\Phi\rangle_n \|_2 \leq 2\epsilon_0. \quad (\text{B.17})$$

1205 Thus,

$$\| |\psi\rangle\langle 0| - P(\mathcal{N}_\phi|\Phi\rangle\langle 0|) \|_2 \leq 2\epsilon_0 + \epsilon_1. \quad (\text{B.18})$$

1208 Moreover, since V_f is a $(1, a + 4, \epsilon_1)$ -block-encoding for $P(\mathcal{N}_\phi|\Phi\rangle\langle 0|)$,

$$\| P(\mathcal{N}_\phi|\Phi\rangle\langle 0|) - (\langle 0|_{a+4} \otimes I_n) V_f (|0\rangle_{a+4} \otimes I_n) \|_2 \leq \epsilon_1. \quad (\text{B.19})$$

1211 Thus,

$$\| |\psi\rangle\langle 0| - (\langle 0|_{a+4} \otimes I_n) V_f (|0\rangle_{a+4} \otimes I_n) \|_2 \leq 2(\epsilon_0 + \epsilon_1). \quad (\text{B.20})$$

1213 \square

1214 Sometimes it is necessary to increase the norm of the vector encoded in the subspace of a VE. This
 1215 is equivalent to multiplying all of the entries in the encoded vector by a constant with value greater
 1216 than or equal to one. The following lemma achieves the opposite: it allows the norm of the encoded
 1217 vector to be shrunk by an arbitrarily large amount. This is equivalent to dividing all the entries in the
 1218 encoded vector by a constant greater than or equal to one. It is worth noting that the following result
 1219 is trivial and can almost certainly be further optimized, e.g., by removing the additional ancillary
 1220 qubits added.

1221 **Lemma B.9** (Vector De-Amplification). *Let $\tau \geq 1$, $\alpha \geq 1$, $\epsilon \geq 0$. Given U_ψ an (α, a, ϵ) -VE for
 1222 $|\psi\rangle_n$, with circuit complexity $O(T)$, we can obtain U'_ψ an $(\alpha\tau, a + 2, \epsilon)$ -VE for $|\psi\rangle_n$ with circuit
 1223 complexity $O(T + a)$.*

1225

1226 *Proof.* Let $|\phi_j\rangle_n := (\langle 0|_a \otimes I_n) U_\psi |0\rangle_{a+n}$. Then, note that $U_\psi |0\rangle_{a+n} = \sum_{j=0}^{2^a-1} |j\rangle_a \otimes |\phi_j\rangle_n$.
 1227 By Definition 3, we know that $\| |\psi\rangle_n - \alpha|\phi_0\rangle_n \| \leq \epsilon$.

1228

1229 We introduce two single-qubit ancillas as the most significant bits, and then apply a multiple-controlled
 1230 X gate (with a controls each activated by the 0 state of each of the previous a ancilla qubits) targeting
 1231 the first newly added ancilla qubit. Using Saeedi & Pedram (2013) this can be implemented with
 1232 $O(a)$ two-qubit gates. We then apply a controlled R_{1/τ^2} (as per Definition B.1) gate targeting the
 1233 second new ancilla qubit, controlled on the first new ancilla. This yields the state,

$$|1\rangle_1 \left(\frac{1}{\tau} |0\rangle_1 + \sqrt{1 - \frac{1}{\tau^2}} |1\rangle_1 \right) |0\rangle_a |\phi_0\rangle_n + |0\rangle_1 |0\rangle_1 \sum_{j=1}^{2^a-1} |j\rangle_a |\phi_j\rangle_n. \quad (\text{B.21})$$

1234

1235 We then apply a X gate to the first ancilla qubit, and we call the $2 + a$ -qubit unitary containing all
 1236 the preceding operations V . Then, $U'_\psi := (V \otimes I_n)(I_2 \otimes U_\psi)$. Simple analysis thus shows that
 1237 $\langle 0|_{2+a} \otimes I_n) U'_\psi |0\rangle_{2+a+n} = |\phi_0\rangle_n / \tau$. Then,

1238

$$\| |\psi\rangle_n - \alpha\tau (\langle 0|_{2+a} \otimes I_n) U'_\psi |0\rangle_{2+a+n} \|_2 = \| |\psi\rangle_n - \alpha|\phi_0\rangle_n \| \leq \epsilon. \quad (\text{B.22})$$

1239

1240 \square

Figure 3: **Circuit for addition of VE encoded vectors.** Given two unitary matrices, U_ψ which is a (α, a, ϵ_0) -VE for the n -qubit state $|\psi\rangle$, and U_ϕ which is a (β, b, ϵ_1) -VE for the n -qubit state $|\phi\rangle$, define $c := \max(a, b)$. We define \tilde{U}_ψ by appropriately tensoring U_ψ with I_{c-a} and we define \tilde{U}_ϕ by appropriately tensoring U_ϕ with I_{c-b} , such that \tilde{U}_ψ and \tilde{U}_ϕ both act on $n + c$ qubits. Then, the given circuit yields a VE of the sum of the encoded vectors, as shown in Lemma 1.

Definition B.1 (Real Rotation Single Qubit Gate). *Let $0 \leq \tau \leq 1$. Then, define the following single-qubit gate:*

$$R_\tau := \begin{pmatrix} \sqrt{\tau} & -\sqrt{1-\tau} \\ \sqrt{1-\tau} & \sqrt{\tau} \end{pmatrix}. \quad (\text{B.23})$$

Proof of Lemma 1 (Vector Sum). This result follows using a common techniques, see e.g., LCU (Childs & Wiebe, 2012), or the sum of block-encodings result (Gilyén et al., 2019). As per Figure 3, we will augment U_ψ and U_ϕ so that they both act on $c = \max(a + b)$ ancilla qubits. Then, define the $n + c$ qubit states, $|\tilde{\psi}\rangle_{n+c} := U_\psi|0\rangle_{n+c}$. We will drop the subscripts on these states for the rest of the proof, as their dimension is clear from the context. This block-encoding will be obtained with the circuit shown in Figure 3, and so we will now analyze the action of that circuit. First, we start with the state $|0\rangle_{1+n+c}$, which we will write as $|0\rangle|0\rangle$, where the first register has one qubit, and the second register has the remaining $n + c$ qubits. We then apply R_τ (as defined in Definition B.1) to the first qubit, yielding the state $(\sqrt{\tau}|0\rangle + \sqrt{1-\tau}|1\rangle)|0\rangle$. Next, we apply the controlled U_ψ and U_ϕ gates, yielding $\sqrt{\tau}|0\rangle|\tilde{\psi}\rangle + \sqrt{1-\tau}|1\rangle|\tilde{\phi}\rangle$. Next, we apply $R_\tau^\dagger = \begin{pmatrix} \sqrt{\tau} & \sqrt{1-\tau} \\ -\sqrt{1-\tau} & \sqrt{\tau} \end{pmatrix}$ on the first qubit, yielding the output of the new VE, $V|0\rangle = |0\rangle(\tau|\tilde{\psi}\rangle + (1-\tau)|\tilde{\phi}\rangle) + \sqrt{\tau(1-\tau)}|1\rangle(|\tilde{\phi}\rangle - |\tilde{\psi}\rangle)$. Define $|E_\psi\rangle := |\psi\rangle - \alpha(\langle 0|^{(c)} \otimes I_n)|\tilde{\psi}\rangle$ and note that $\| |E_\psi\rangle \|_2 \leq \epsilon_0$. Similarly define $|E_\phi\rangle$, and note that $\| |E_\phi\rangle \|_2 \leq \epsilon_1$. As a result, we can determine the properties of this VE by bounding the following,

$$\left\| |\bar{\Gamma}\rangle - \frac{1}{\mathcal{N}}(\langle 0|^{(1+c)} \otimes I_n)V|0\rangle_{1+c+n} \right\|_2 \quad (\text{B.24})$$

$$= \left\| |\bar{\Gamma}\rangle - \frac{1}{\mathcal{N}}(\langle 0|^{(c)} \otimes I_n)(\tau|\tilde{\psi}\rangle + (1-\tau)|\tilde{\phi}\rangle) \right\|_2 \quad (\text{B.25})$$

$$= \left\| |\bar{\Gamma}\rangle - \frac{1}{\mathcal{N}} \left(\frac{\tau}{\alpha}(|\psi\rangle - |E_\psi\rangle) + \frac{1-\tau}{\beta}(|\phi\rangle - |E_\phi\rangle) \right) \right\|_2 \quad (\text{B.26})$$

$$= \left\| \frac{1}{\mathcal{N}} \left(\frac{\tau}{\alpha}|E_\psi\rangle + \frac{1-\tau}{\beta}|E_\phi\rangle \right) \right\|_2 \leq \frac{1}{\mathcal{N}} \left(\frac{\tau\epsilon_0}{\alpha} + \frac{(1-\tau)\epsilon_1}{\beta} \right) \quad (\text{B.27})$$

$$\leq \frac{1}{\mathcal{N}} \left(\frac{\epsilon_0}{\alpha} + \frac{\epsilon_1}{\beta} \right) \leq \frac{\epsilon_0 + \epsilon_1}{\mathcal{N}}. \quad (\text{B.28})$$

where the final inequality comes from the definition of a VE imposing that $\alpha \geq 1$ and $\beta \geq 1$. Thus, the unitary circuit V is a $(\mathcal{N}^{-1}, 1 + a + b, \mathcal{N}^{-1}(\epsilon_0 + \epsilon_1))$ -VE for $|\bar{\Gamma}\rangle$. \square

Proof of Lemma 2 (Matrix Vector Product). We now require a result allowing for matrix-vector products with our vector-encodings. This result is essentially a special case of the product of the standard product of block-encodings result (Lemma 53 of Gilyén et al. (2019)). As a result, the following proof closely follows that in Gilyén et al. (2019).

In this lemma, again following the notation of Gilyén et al. (2019) for tensor products, it is assumed that U_A and U_ψ act trivially on the other's ancillas. To be explicit, the tensor products in $(I_b \otimes$

1296 $U_A)(I_a \otimes U_\psi)$ use a special definition only in this lemma. Let $\mathcal{N} := \|A|\psi\rangle_n\|_2$. We wish to
 1297 upper-bound,
 1298

$$1299 \xi := \left\| \frac{A|\psi\rangle_n}{\mathcal{N}} - \frac{\alpha\beta}{\mathcal{N}} (\langle 0|_{a+b} \otimes I_n)(I_b \otimes U_A)(I_a \otimes U_\psi)|0\rangle_{a+b+n} \right\|_2 \quad (\text{B.29})$$

$$1300 = \frac{1}{\mathcal{N}} \|A|\psi\rangle_n - \alpha\beta(\langle 0|_{a+b} \otimes I_n)(I_b \otimes U_A)(I_a \otimes U_\psi)(|0\rangle_{a+b} \otimes I_n)|0\rangle_n\|_2 \quad (\text{B.30})$$

1303 Then, directly from the proof of Lemma 53 in Gilyén et al. (2019),
 1304

$$1305 \xi = \frac{1}{\mathcal{N}} \|A|\psi\rangle_n - \alpha\beta[(\langle 0|_a \otimes I_n)U_A(|0\rangle_a \otimes I_n)][(\langle 0|_b \otimes I_n)U_\psi(|0\rangle_b \otimes I_n)]|0\rangle_n\|_2 \quad (\text{B.31})$$

1307 Let $\tilde{A} := \alpha(\langle 0|_a \otimes I_n)U_A(|0\rangle_a \otimes I_n)$ and let $|\tilde{\psi}\rangle := \beta(\langle 0|_b \otimes I_n)U_\psi(|0\rangle_{b+n})$. Then,
 1308

$$1309 \xi = \frac{1}{\mathcal{N}} \|A|\psi\rangle_n - \tilde{A}|\tilde{\psi}\rangle_n\|_2 = \frac{1}{\mathcal{N}} \|A|\psi\rangle_n - \tilde{A}|\psi\rangle_n + \tilde{A}|\psi\rangle_n - \tilde{A}|\tilde{\psi}\rangle_n\|_2 \quad (\text{B.32})$$

$$1311 \leq \frac{1}{\mathcal{N}} \left(\|A - \tilde{A}\|_2 + \|\tilde{A}\|_2 \|\psi\rangle_n - |\tilde{\psi}\rangle_n\|_2 \right) \quad (\text{B.33})$$

1313 Noting that $\|\tilde{A}\|_2 \leq \alpha$, we then get
 1314

$$1315 \xi \leq (\epsilon_0 + \alpha\epsilon_1)/\mathcal{N}. \quad (\text{B.34})$$

1317 Consequently, $(I_b \otimes U_A)(I_a \otimes U_\psi)$ gives a $(\alpha\beta/\mathcal{N}, a+b, (\epsilon_0 + \alpha\epsilon_1)/\mathcal{N})$ -VE for $A|\psi\rangle_n/\mathcal{N}$.
 1318 \square
 1319

1320 In the following lemma we derive a technical result handling the case where you have a vector
 1321 encoding for some vector $|\psi\rangle$, and another vector of interest $|\phi\rangle$ is sub-encoded as $|\psi\rangle = \begin{pmatrix} |\phi\rangle/\beta \\ \cdot \end{pmatrix}$.
 1322

1323 Our result also handles the case where each vector is imperfectly encoded (i.e., encoded with error).
 1324

1325 **Lemma B.10** (Vector Sub-Encodings). *Let m, n be integers such that $m > n$. Let U_ψ be an
 1326 (α, a, ϵ) -VE for $|\psi\rangle_m$, and let $|\psi\rangle_m \approx V_\phi|0\rangle_m$ (precisely, $\|\psi\rangle_m - V_\phi|0\rangle_m\|_2 \leq \gamma$), where V_ϕ is a
 1327 $(\beta, m-n, \delta)$ -VE for $|\phi\rangle_n$. Then, U_ψ is an $(\alpha\beta, a+m-n, \delta+\beta(\epsilon+\gamma))$ -VE for $|\phi\rangle_n$.*

1328 *Proof.* Let $b = m - n$. First, define $|E_\psi\rangle_m := |\psi\rangle_m - \alpha(\langle 0|_a \otimes I_m)U_\psi|0\rangle_{a+m}$, and $|E_\phi\rangle_n :=$
 1329 $|\phi\rangle_n - \alpha(\langle 0|_b \otimes I_n)U_\psi|0\rangle_{b+n}$. By Definition 3, $\|E_\psi\rangle_m\|_2 \leq \epsilon$ and $\|E_\phi\rangle_n\|_2 \leq \delta$. Let $|E_v\rangle_m :=$
 1330 $|\psi\rangle_m - V_\phi|0\rangle_m$. Now observe,

$$1331 \langle 0|_b \otimes I_n) (\langle 0|_a \otimes I_m) U_\psi |0\rangle_{a+m} = (\langle 0|_b \otimes I_n) (|\psi\rangle_m - |E_\psi\rangle_m)/\alpha \quad (\text{B.35})$$

$$1333 = (\langle 0|_b \otimes I_n) (V_\phi|0\rangle_m + |E_v\rangle_m - |E_\psi\rangle_m)/\alpha \quad (\text{B.36})$$

$$1334 = ((|\phi\rangle_n - |E_\phi\rangle_n)/\beta + (\langle 0|_b \otimes I_n)(|E_v\rangle_m - |E_\psi\rangle))/\alpha. \quad (\text{B.37})$$

1336 Consequently, since $(\langle 0|_b \otimes I_n)(\langle 0|_a \otimes I_m) = \langle 0|_{a+b} \otimes I_n$,

$$1337 \|\phi\rangle_n - \alpha\beta(\langle 0|_{a+b} \otimes I_n)U_\psi|0\rangle_{a+b+n}\|_2 \quad (\text{B.38})$$

$$1339 \leq \|E_\phi\rangle_n\|_2 + \beta\|E_\psi\rangle_m\|_2 + \beta\|E_v\rangle_m\|_2 \leq \delta + \beta(\epsilon + \gamma). \quad (\text{B.39})$$

1340 \square
 1341
 1342 **Lemma B.11** (Tracing Out Qubits in Vector Sub-Encodings). *Let U be an (α, a, ϵ) -VE for $|\phi\rangle_n$.
 1343 Then, U is an $(\alpha, a+b, \epsilon)$ -VE for $|\psi\rangle_n$.*

1344 *Proof.* Let $|E\rangle_{b+n} := |0\rangle_b|\psi\rangle_n - \alpha(\langle 0|_a \otimes I_{n+b})U|0\rangle_{a+b+n}$. Since $\langle 0|_{a+b} \otimes I_n = (\langle 0|_b \otimes I_n)(\langle 0|_a \otimes I_{b+n})$, $\langle 0|_{a+b} \otimes I_n U |0\rangle_{a+b+n} = \frac{1}{\alpha}(|\psi\rangle_n - (\langle 0|_b \otimes I_n)|E\rangle_{b+n})$. Thus,

$$1345 \| |\psi\rangle_n - \alpha(\langle 0|_{a+b} \otimes I_n)U|0\rangle_{a+b+n}\|_2 = \|(\langle 0|_b \otimes I_n)|E\rangle_{b+n}\|_2 \leq \epsilon. \quad (\text{B.40})$$

1346 \square
 1347

1350 **Proof of Lemma 3 (Vector Tensor Product).** This result closely follows the derivation of the tensor
 1351 product of block-encodings (Lemma B.2), which was a rederivation of Lemma 1 of Camps &
 1352 Van Beeumen (2020).

1353 U_ψ acts on an a -qubit ancilla register and a n -qubit main register, while U_ϕ acts on an b -qubit ancilla
 1354 register and a m -qubit main register.

1355 As per Lemma B.2, define Π to swap the n -qubit register with the b -qubit register acting trivially on
 1356 the other two registers. Again, Π has a circuit depth bounded by $O(\max(n/b, b/n)) \in O(\max(n, b))$.
 1357 Then, $(\langle 0|_{a+b} \otimes I_{n+m})\Pi^\dagger = (\langle 0|_a \otimes I_n) \otimes (\langle 0|_b \otimes I_m)$. Let $V = \Pi^\dagger(U_\psi \otimes U_\phi)$. Let $|E_\psi\rangle_n =$
 1358 $|\psi\rangle_n - \alpha(\langle 0|_a \otimes I_n)U_\psi|0\rangle_{a+n}$ and $|E_\phi\rangle_m = |\phi\rangle_m - \beta(\langle 0|_b \otimes I_m)U_\phi|0\rangle_{b+m}$. Then,

$$1360 \quad (\langle 0|_{a+b} \otimes I_{n+m})\Pi^\dagger(U_\psi \otimes U_\phi)|0\rangle_{a+b+n+m} = \frac{1}{\alpha\beta}(|\psi\rangle_n - |E_\psi\rangle_n) \otimes (|\phi\rangle_m - |E_\phi\rangle_m), \quad (\text{B.41})$$

1361 and so,

$$1362 \quad \|\langle 0|_n|\phi\rangle_m - \alpha\beta(\langle 0|_{a+b} \otimes I_{n+m})\Pi(U_\psi \otimes U_\phi)|0\rangle_{a+b+n+m}\|_2 \leq \epsilon + \delta + \epsilon\delta. \quad (\text{B.42})$$

1363 \square

1364 **Proof of Lemma 4 (Vector Concatenation).** We now present the proof of a simple result on the
 1365 concatenation of vectors stored in VEs. This result follows from a simple modification of LCU
 1366 (Childs & Wiebe, 2012). In essence, given a set of $D = 2^d$ vectors $\{|\psi_j\rangle_n\}_j$, we first create vector
 1367 encodings of $\{|j\rangle_d|\psi_j\rangle_n\}_j$ and then take the resulting sum of the encoded vectors following LCU,
 1368 yielding an encoding of $(\langle \psi_0|_n \dots \langle \psi_{D-1}|_n)^\dagger$.

1369 For all j , define $|E_{\psi_j}\rangle_n := |\psi_j\rangle_n - \alpha(\langle 0|_a \otimes I_n)U_i|0\rangle_{a+n}$.

1370 First, let j be d bits, and let $j = j_0 j_1 \dots j_{d-1}$. Define $X_j := X^{j_0} \otimes X^{j_1} \otimes \dots \otimes X^{j^{d-1}}$. Note that
 1371 $|j\rangle_d = X_j|0\rangle_d$, and thus that X_j is a $(1, 0, 0)$ -VE for $|j\rangle_d$. Then, we can invoke Lemma 3 with U_j
 1372 and X_j to obtain V_j , an (α_j, a, ϵ) -VE for $|j\rangle_d|\psi_j\rangle_n$ with $O(T + n)$ circuit complexity. Moreover, by
 1373 inspecting Lemma 3, we find that $(\langle 0|_a \otimes I_{n+d})V_j|0\rangle_{a+d+n} = \frac{1}{\alpha_j}(|j\rangle_d|\psi_j\rangle_n - |j\rangle_d|E_{\psi_j}\rangle_n)$.

1374 Additionally, define $S := \sum_{j=0}^{D-1} |j\rangle\langle j|_d \otimes V_j$. This can be implemented by a sequence of $O(D)$
 1375 multi-controlled gates, each enacting V_j when the control register is $|j\rangle_d$ (in the standard fashion of
 1376 LCU (Childs & Wiebe, 2012)). First, note that by using Saeedi & Pedram (2013) a multiple-controlled
 1377 gate with $O(d)$ controls can be split into a sequence of $O(d)$ single and two-qubit gates. By splitting
 1378 each of the d control qubits into $a + d + n$ copies (with $O(\log(a + d + n))$ depth), we can control each
 1379 gate in each layer of U_j in parallel with $O(d)$ circuit depth. Since these ancillas can be uncomputed
 1380 and traced out, we ignore them in the complexity analysis. Thus, each multi-controlled V_j gate can be
 1381 decomposed into a sequence of $O(dT)$ single and two-qubit gates. Thus, S has a total circuit depth
 1382 of $O(dDT)$. Let $\hat{H} := H^{\otimes d} \otimes I_{d+n+a}$. Using $\langle 0|_{a+d} \otimes I_{n+d} = (\langle 0|_d \otimes I_{n+d})(I_d \otimes \langle 0|_a \otimes I_{d+a})$,

$$1383 \quad (\langle 0|_{d+a} \otimes I_{n+d})\hat{H}S\hat{H}|0\rangle_{2d+a+n} \quad (\text{B.43})$$

$$1384 \quad = (\langle +|_d \otimes I_{n+d})(I_d \otimes \langle 0|_a \otimes I_{n+d}) \sum_{j=0}^{D-1} (|j\rangle\langle j|_d \otimes V_j)|+\rangle_d|0\rangle_{a+d+n} \quad (\text{B.44})$$

$$1385 \quad = \frac{1}{D} \sum_{j=0}^{D-1} \frac{|j\rangle_d|\psi_j\rangle_d - |j\rangle_d|E_{\psi_j}\rangle_n}{\alpha_j}. \quad (\text{B.45})$$

1386 Then, noting that $\mathcal{N}^2 = \sum_{j=0}^{D-1} \frac{1}{\alpha_j^2}$, and that $\left\| \sum_{j=0}^{D-1} |j\rangle_d|E_{\psi_j}\rangle_n / \alpha_j \right\|_2 \leq \mathcal{N}\epsilon$,

$$1387 \quad \left\| \frac{|\Psi\rangle_{d+n}}{\mathcal{N}} - \frac{D}{\mathcal{N}}(\langle 0|_{d+a} \otimes I_{n+d})\hat{H}S\hat{H}|0\rangle_{2d+a+n} \right\|_2 = \frac{1}{\mathcal{N}} \left\| \sum_{j=0}^{D-1} |j\rangle_d|E_{\psi_j}\rangle_n / \alpha_j \right\|_2 \leq \epsilon. \quad (\text{B.46})$$

1388 Thus, $\hat{H}S\hat{H}$ is a $(D/\mathcal{N}, d + a, \epsilon)$ for $\frac{|\Psi\rangle_{d+n}}{\mathcal{N}}$ with $O(dDT)$ circuit complexity. \square

1404 B.1 GENERAL MATRIX-VECTOR-SQUARED PRODUCT
1405

1406 In this subsection, we will derive a procedure which given an *arbitrary* matrix W and quantum
1407 state $|\psi\rangle$, allows for a state proportional to the product of $W(|\psi\rangle)^2$ to be obtained with complexity
1408 *independent* of the Frobenius norm (and thus rank), and sparsity, of W . To the best of our knowledge,
1409 this is the first result which allows such a product without either a rank or sparsity condition on
1410 W . The key insight is to avoid ever constructing a block-encoding of the operator W , and directly
1411 query its columns weighted by the entries of the vector it is being applied to. In particular, at
1412 a high-level we construct two objects. Define the columns of $W = (\mathbf{w}_0 \dots \mathbf{w}_{N-1})$, define
1413 the column norms $a_j := \|\mathbf{w}_j\|_2$, and the normalized versions of the columns $|\mathbf{w}_j\rangle_n = \mathbf{w}_j/a_j$.
1414 Additionally, define the state we are applying it to as $|\psi\rangle_n = \sum_j \psi_j |j\rangle_n$. First, we construct the
1415 normalized state $\sum_j \psi_j |j\rangle_n |\mathbf{w}_j\rangle_n$. Clearly, this object has no Frobenius norm dependence. We
1416 would like to map all the vectors in the first register to the $|0\rangle$ state so that we have something
1417 resembling the matrix-vector product, and to do this we construct another operator. Note that the
1418 matrix $Q = \begin{pmatrix} a_0 I_n & \dots & a_{N-1} I_n \\ \mathbf{0} & & \end{pmatrix}$ (i.e., the first N rows are non-zero, and the rest are all zero)
1419 when applied to $|\phi\rangle_{2n} = \sum_j \psi_j |j\rangle_n |\mathbf{w}_j\rangle_n$ yields $Q|\phi\rangle_{2n} = |0\rangle_n \otimes (W|\psi\rangle_n)$. However, this object
1420 has a spectral norm $\Omega(\|W\|_F)$. Instead, we define $M := \begin{pmatrix} a_0 \psi_0 I_n & \dots & a_{N-1} \psi_{N-1} I_n \\ \mathbf{0} & & \end{pmatrix}$ and note
1421 that M can be shown to have $\|M\|_2 \leq 1$, and moreover, we subsequently show how a block-encoding
1422 of this operator can be efficiently obtained. Consequently, since $M|\phi\rangle_{2n} = |0\rangle_n \otimes (W(|\psi\rangle_n)^2)$, the
1423 result follows. The rest of this section simply derives the ingredients necessary to rigorously prove
1424 this intuition.

1425 **Definition B.2** ($R_Y(t)$ Gate). *Let $t \in \mathbb{R}$, and let Y be the standard single-qubit Pauli- Y gate. Then,
1426 define*

$$1427 R_Y(t) := e^{-itY} = \cos(t)I - i \sin(t)Y = \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix}. \quad (B.47)$$

1428 For completeness, we will now present a standard result allowing one to transfer digitally represented
1429 information to the amplitudes of a quantum state.

1430 **Lemma B.12** ($CR_Y(t)$ Gate). *Let $t \in \mathbb{R}$. Let Y be a standard Pauli- Y gate. Let $|a\rangle_d$ be a d -bit
1431 standard basis vector, and let $|\psi\rangle_1$ be an arbitrary single-qubit quantum state. Then, we can define
1432 the gate $CR_Y(t)$ by the following action,*

$$1433 CR_Y(t)|\psi\rangle_1|a\rangle_d = (e^{-iatY}|\psi\rangle_1)|a\rangle_d. \quad (B.48)$$

1434 *In the event that $|\psi\rangle_1 = |0\rangle_1$, this action can be simplified to*

$$1435 CR_Y(t)|0\rangle_1|a\rangle_d = (\cos(at)|0\rangle_1 + \sin(at)|1\rangle_1)|a\rangle_d. \quad (B.49)$$

1436 *Moreover, the $CR_Y(t)$ gate is implemented with $O(d)$ circuit depth.*

1437 *Proof.* This is a standard result. This proof is included for completeness, and follows the one
1438 in Rattew & Koczor (2022). Let $D = 2^d$. First, note that $CR_Y(t) = \sum_{a=0}^{D-1} e^{-iatY} \otimes |a\rangle\langle a|$.
1439 Additionally, let $a = a_{d-1}a_{d-2}\dots a_1a_0 = a_{d-1}2^{d-1} + \dots + a_12 + a_0$. Then,

$$1440 e^{-iatY} = e^{-i(a_{d-1}2^{d-1} + \dots + a_12 + a_0)tY} = e^{-ia_{d-1}2^{d-1}tY} \dots e^{-ia_1tY} e^{-ia_0tY}. \quad (B.50)$$

1441 Then, $CR_Y(t)$ can be implemented by applying a sequence of d controlled $e^{-i2^j tY}$ gates (Definition
1442 B.2), targeting the first register, controlled on the j^{th} bit of the second register. \square

1443 We now present a result on obtaining a block-encoding of an arbitrary diagonal matrix whose entries
1444 are stored in QRAM. This is essentially a special case of Lemma 48 of Gilyén et al. (2019), but by
1445 considering this special case moderate improvements in complexity can be obtained.

1446 **Lemma B.13** (Quantum Block-Encoding of Diagonal Matrices from QRAM). *Let $N = 2^n$. We
1447 are given a set of N real coefficients, $\{a_j\}_j$ such that $\forall j, |a_j| \leq 1$. Assume that each a_j can
1448 be represented exactly in a binary encoding with d -bits of precision, and define $D = 2^d$. Define*

b_j := arccos(a_j)D/π, and for simplicity assume that each b_j can also be implemented with exactly d-bits of precision⁴, and note that b_j ∈ [D]. Assume that we are given an oracle, implemented via QRAM, such that U|0⟩_d|j⟩_n = |b_j⟩_d|j⟩_n. Then, we can obtain U_A, a (1, d + 1, 0)-block-encoding for A = diag(a₀, …, a_{N-1}), with O(dn) circuit depth.

Proof. Define the circuit $V := (I_1 \otimes U^\dagger)(CR_Y(\frac{\pi}{D}) \otimes I_n)(I_1 \otimes U)$, with $CR_Y(\frac{\pi}{D})$ defined as per Lemma B.12. First, since for any $|\phi\rangle$ and basis vector $|j\rangle$, $|\phi\rangle \otimes |j\rangle \langle j| = (|\phi\rangle|j\rangle)\langle j|$, observe that

$$(I_1 \otimes U)(|0\rangle_{d+1} \otimes I_n) = \sum_{j=0}^{N-1} [(I_1 \otimes U)|0\rangle_1|0\rangle_d|j\rangle_n] \langle j|_n = \sum_{j=0}^{N-1} (|0\rangle_1|b_j\rangle_d|j\rangle_n) \langle j|_n. \quad (\text{B.51})$$

Then, since $\cos(b_j \frac{\pi}{D}) = \arccos(a_j)$,

$$(CR_Y(\frac{\pi}{D}) \otimes I_n)(I_1 \otimes U)(|0\rangle_{d+1} \otimes I_n) = \sum_{j=0}^{N-1} \left((a_j|0\rangle_1 + \sqrt{1 - a_j^2}|1\rangle_1)|b_j\rangle_d|j\rangle_n \right) \langle j|_n. \quad (\text{B.52})$$

Then, since $(|0\rangle_{d+1} \otimes I_n)(I_1 \otimes U^\dagger) = [(I_1 \otimes U)(|0\rangle_{d+1} \otimes I_n)]^\dagger = \sum_{j=0}^{N-1} |j\rangle_n (|0\rangle_1 \langle b_j|_d \langle j|_n)$, we readily find that

$$(|0\rangle_{d+1} \otimes I_n)V(|0\rangle_{d+1} \otimes I_n) = \sum_{j=0}^{N-1} a_j|j\rangle \langle j| = \text{diag}(a_0, \dots, a_{N-1}) = A. \quad (\text{B.53})$$

Thus, V is a (1, d + 1, 0)-block-encoding for A . The circuit depth of implementing U is the depth of making a QRAM query, and is thus $O(d \log N) = O(nd)$ (see Definition A.1). The cost of implementing the CR_Y gate is simply $O(d)$ as per Lemma B.12, and thus the overall circuit complexity of this block-encoding is $O(nd)$. \square

In the case where each $a_j \in \mathbb{C}$, the complex and real parts need to be specified separately. A diagonal block-encoding of the real and imaginary parts can then be obtained using Lemma B.13, and can then be summed by adding an ancilla to obtain a (2, d + 2, 0)-block-encoding with the same overall circuit complexity. One might wonder why, given a QRAM assumption, a state-preparation unitary yielding a state proportional to $\sum_j a_j|j\rangle$ can't be used instead, in combination with the diagonal block-encoding of state amplitudes result of Rattew & Rebentrost (2023). If each a_j represent the column norm of some matrix W , doing so would result in a normalization factor of $\left\| \sum_j a_j|j\rangle \right\|_2 = \sqrt{\sum_j |a_j|^2} = \|W\|_F$, yielding a Frobenius norm-dependence which this approach avoids.

The following data-structure is useful in situations where you are willing to pay a pre-processing cost linear (up to polylogarithmic factors) in the number of non-zero matrix elements, but want a fast algorithm at runtime. This is the case with accelerating neural network inference. The following data structure is very similar to the one given in Kerenidis & Prakash (2017).

Definition B.3 (Preprocessed Matrix QRAM Data Structure). *Let $N = 2^n$, and let $D = 2^d$.*

Let $W \in \mathbb{C}^{N \times N}$ and let $\|W\|_2 \leq 1$. Let the columns of W be represented as $W = (\mathbf{w}_0 \dots \mathbf{w}_{N-1})$. Additionally, define $|w_j\rangle = \mathbf{w}_j / \|\mathbf{w}_j\|_2$, and $a_j = \|\mathbf{w}_j\|$. Let $b_j := \arccos(a_j)D/\pi$. For simplicity, we assume that b_j can be exactly written with d-bits, and thus that b_j will be an integer between $[0, D - 1]$. We say we have access to a Preprocessed QRAM Data Structure for W if we have a QRAM oracle U_W (as per Definition A.2) such that

$$U_W|j\rangle_n|0\rangle_n = |j\rangle_n|w_j\rangle_n, \quad (\text{B.54})$$

and we also have access to a QRAM yielding the mapping,

$$U_A|0\rangle_d|j\rangle_n = |b_j\rangle_d|j\rangle_n. \quad (\text{B.55})$$

U_W can be implemented with $O(\log^2 N)$ circuit depth, and with $\tilde{O}(N^2)$ total qubits (as per Definition A.2). U_A can be implemented with $O(d \log N)$ circuit depth, and with $\tilde{O}(dN)$ total qubits (as per Definition A.1).

⁴In practice this will result in an additional logarithmic source of error, which we are neglecting, as it is akin to finite-precision arithmetic error which is usually neglected in classical algorithm analysis.

1512 We are now ready to present a somewhat surprising result on matrix-vector multiplication with
 1513 arbitrary (potentially full-rank and dense) matrices and the element-wise square of a given vector.
 1514 The following uses ideas similar to importance-sampling.

1515 **Theorem B.1** (Product of Arbitrary Matrix with a Vector Element-wise Squared). *Let $N = 2^n$.
 1516 We are given a matrix $W \in \mathbb{C}^{N \times N}$ through the data-structure in Definition B.3. Let d be the
 1517 number of bits required to represent the function of the column norms of W , b_j , as per Definition B.3.
 1518 Additionally, we are given the unitary U_ψ with circuit complexity $O(T_\psi)$, a (α, a, ϵ) -VE for the
 1519 quantum state $|\psi\rangle_n$. Define the function $g : \mathbb{C} \mapsto \mathbb{R}$ as $g(x) = |x|^2$, and $\mathcal{N} := \|Wg(|\psi\rangle_n)\|_2$. Then
 1520 we can construct the unitary U_f which is a $(\frac{\alpha^2}{\mathcal{N}}, 2a + d + 3 + n, \frac{2\alpha\epsilon}{\mathcal{N}})$ -VE for $Wg(|\psi\rangle_n)/\mathcal{N}$, and
 1521 has a circuit depth of $O(T_\psi + dn + n^2)$.*

1522
 1523 *Proof.* Noting that $a_j = \|W|j\rangle\|_2$, it is easy to show $\|W\|_2 \leq 1 \implies \forall j, a_j \leq 1$; $a_j = \|W|j\rangle\|_2 \leq$
 1524 $\max_{\mathbf{x}: \|\mathbf{x}\|_2=1} \|W\mathbf{x}\|_2 = \|W\|_2 \leq 1$. Consequently, by Lemma B.13 we can immediately get U_A , a
 1525 $(1, d + 1, 0)$ -block-encoding for $A = \text{diag}(a_0, \dots, a_{N-1})$ with $O(dn)$ circuit depth.

1526 Let $|\psi_1\rangle_n := A|\psi\rangle_n = \sum_{j=0}^{N-1} a_j \psi_j |j\rangle_n$, $\mathcal{N}_1 := \|\psi_1\|_2$. By Lemma 2, we can combine U_A
 1527 and U_ψ to obtain V_1 , a $(\alpha/\mathcal{N}_1, a + d + 1, \epsilon/\mathcal{N}_1)$ -VE for $|\psi_1\rangle_n/\mathcal{N}_1$. This has circuit complexity
 1528 $O(T_\psi + dn)$.

1529 By Lemma B.6, we can get U_0 , a $(1, 2, 0)$ -block-encoding for the $n + a + d + 1$ -qubit projector $|0\rangle\langle 0|$.
 1530 Let $|E_{\psi_1}\rangle_n := \frac{|\psi_1\rangle}{\mathcal{N}_1} - \frac{\alpha}{\mathcal{N}_1}(\langle 0|_{a+d+1} \otimes I_n)V_1(|0\rangle_{n+a+d+1})$. Then, by Definition 3, $\|E_{\psi_1}\|_2 \leq$
 1531 ϵ/\mathcal{N}_1 . Moreover, $\langle 0|_{a+d+1} \otimes I_n)V_1(|0\rangle_{n+a+d+1}) = \frac{1}{\alpha}(|\psi_1\rangle_n - \mathcal{N}_1|E_{\psi_1}\rangle_n)$. Then, observe that
 1532 $V_2 := U_0(I_2 \otimes V_1^\dagger)$ is a $(1, 2, 0)$ -block-encoding for $|0\rangle\langle 0|V_1^\dagger$. Let $c = a + d + 1$. Noting that
 1533 $(|0\rangle_{c+2} \otimes I_n) = (|0\rangle_2 \otimes I_{c+n})(|0\rangle_c \otimes I_n)$, then,

$$(\langle 0|_{c+2} \otimes I_n)V_2(|0\rangle_{c+2} \otimes I_n) = (\langle 0|_c \otimes I_n)(\langle 0|_2 \otimes I_{c+n})V_2(|0\rangle_2 \otimes I_{c+n})(|0\rangle_c \otimes I_n) \quad (\text{B.56})$$

$$= (\langle 0|_c \otimes I_n)|0\rangle\langle 0|V_1^\dagger(|0\rangle_c \otimes I_n) \quad (\text{B.57})$$

$$= \frac{1}{\alpha}(|0\rangle_n(\langle \psi_1|_n - \mathcal{N}_1\langle E_{\psi_1}|_n)). \quad (\text{B.58})$$

1534 The third inequality follows by noting that $(\langle 0|_c \otimes I_n)|0\rangle_{n+c} = |0\rangle_n$, and that by Definition 2,
 1535 $(\langle 0|_2 \otimes I_{c+n})V_2|0\rangle_2 \otimes I_{c+n}) = |0\rangle\langle 0|V_1^\dagger$. Then, letting $|0\rangle\langle \psi_1|$ be a $2^n \times 2^n$ projector,

$$\||0\rangle\langle \psi_1| - \alpha(\langle 0|_{c+2} \otimes I_n)V_2(|0\rangle_{c+2} \otimes I_n)\|_2 = \mathcal{N}_1\||0\rangle\langle E_{\psi_1}|\|_2 \leq \epsilon. \quad (\text{B.59})$$

1536 Consequently, V_2 is a $(\alpha, a + d + 3, \epsilon)$ -block-encoding for the $2^n \times 2^n$ projector $|0\rangle\langle \psi_1|$. Moreover,
 1537 the circuit complexity of V_2 is dominated by the circuit complexity of V_1 , and thus is $O(T_\psi + dn)$.
 1538 Then, $V_3 := V_2 \otimes I_n$ is a $(\alpha, a + d + 3, \epsilon)$ -block-encoding for $(|0\rangle\langle \psi_1|) \otimes I_n$.

1539 Let U_W be defined as in Definition B.3, i.e., it enacts $U_W|j\rangle_n|0\rangle_n = |j\rangle_n|w_j\rangle_n$.

1540 Define $|\phi\rangle_{2n} := \sum_{j=0}^{N-1} \psi_j |j\rangle_n |w_j\rangle_n$.

1541 Then, let $S := (I_a \otimes U_W)(U_\psi \otimes I_n)$. We will now show that S is an (α, a, ϵ) -VE for $|\phi\rangle_{2n}$.

1542 Let $|E_\psi\rangle_n := |\psi\rangle_n - \alpha(\langle 0|_a \otimes I_n)U_\psi|0\rangle_{a+n}$, thus, $(\langle 0|_a \otimes I_n)U_\psi|0\rangle_{a+n} = \frac{1}{\alpha}(|\psi\rangle_n - |E_\psi\rangle_n)$

1543 Moreover, define the a -qubit projector, $p_j^a := |j\rangle\langle j|$. Then, $I_{a+n} = \sum_{j=0}^{2^a-1} p_j^a \otimes I_n$. Finally, define
 1544 $|\gamma_j\rangle_n := (\langle j|_a \otimes I_n)U_\psi|0\rangle_{a+n}$. Of course,

$$U_\psi|0\rangle_{a+n} = \left(\sum_{j=0}^{2^a-1} p_j^a \otimes I_n \right) U_\psi|0\rangle_{a+n} = \frac{1}{\alpha}(|0\rangle_a(|\psi\rangle_n - |E_\psi\rangle_n)) + \sum_{j=1}^{2^a-1} |j\rangle_a |\gamma_j\rangle_n. \quad (\text{B.60})$$

1545 Consequently,

$$(\langle 0|_a \otimes I_{2n})S|0\rangle_{a+2n} = (\langle 0|_a \otimes I_{2n})(I_a \otimes U_W)(U_\psi \otimes I_n)|0\rangle_{a+2n} \quad (\text{B.61})$$

$$= (\langle 0|_a \otimes U_W) \left[\frac{1}{\alpha}(|0\rangle_a(|\psi\rangle_n - |E_\psi\rangle_n)) + \sum_{j=1}^{2^a-1} |j\rangle_a |\gamma_j\rangle_n \right] |0\rangle_n \quad (\text{B.62})$$

$$= \frac{1}{\alpha}(|\phi\rangle_{2n} - U_W|E_\psi\rangle_n|0\rangle_n). \quad (\text{B.63})$$

1566 Thus,

$$1568 \quad \|\phi\rangle_{2n} - \alpha(\langle 0|_a \otimes I_{2n})S|0\rangle_{a+2n}\|_2 = \|U_W|E_\psi\rangle_n|0\rangle_n\|_2 \leq \epsilon. \quad (\text{B.64})$$

1569 Thus, S is an (α, a, ϵ) -VE for $|\phi\rangle_{2n}$. Moreover, the circuit complexity of S comes from summing
1570 the circuit complexity of U_ψ and U_W . As per Definition B.3, the circuit complexity of U_W is $O(n^2)$,
1571 giving an overall circuit complexity for S of $O(T_\psi + n^2)$.
1572

1573 Define $|\Gamma\rangle_n := Wg(|\psi\rangle_n)$, and note that

$$1574 \quad [(|0\rangle\langle\psi_1|) \otimes I_n]|\phi\rangle_{2n} = |0\rangle_n \sum_{j=0}^{N-1} |\psi_j|^2 a_j |w_j\rangle_n = |0\rangle_n |\Gamma\rangle_n. \quad (\text{B.65})$$

1577 We now have V_3 , a $(\alpha, a + d + 3, \epsilon)$ -block-encoding for $(|0\rangle\langle\psi_1|) \otimes I_n$, and S an (α, a, ϵ) -VE for
1578 $|\phi\rangle_{2n}$. We will now invoke Lemma 2 to take the product of the matrix encoded in V_3 with the vector
1579 encoded in S , and then will invoke Lemma B.11 to remove the $|0\rangle_n$ tensored register. This yields U_f ,
1580 an $(\frac{\alpha^2}{N}, 2a + d + 3 + n, \frac{2\alpha\epsilon}{N})$ -VE for $|\Gamma\rangle_n/\mathcal{N}$ with circuit complexity $O(T_\psi + dn + n^2)$. \square
1581

1582 B.2 CONVOLUTION BLOCK-ENCODING

1584 In this section, we will first provide a matrix-form of a 2D multi-filter convolution (with stride 1
1585 and 0 padding to ensure the input and outputs have the same dimension). We then derive a quantum
1586 block-encoding of the matrix form of the convolution.
1587

1588 As a note, some popular deep learning frameworks such as PyTorch (Paszke et al., 2019) actually
1589 implement cross-correlation rather than convolution. However, in the pre-processing stage, our con-
1590 volutional block-encoding immediately gives a cross-correlation block-encoding by simply switching
1591 the Q operator (Definition B.6) with a Q^T operator. Finally, in this section, we assume that all addition
1592 on basis vectors is mod the dimension of the vector. I.e., for integers i, j , $|i+j\rangle_n = |(i+j) \bmod N\rangle_n$
1593 (with $N = 2^n$).
1594

Definition B.4 (Permutation Matrix). *Define the following N dimensional unitary permutation
1595 matrix that maps an input basis vector i to the basis vector $(i + 1) \bmod N$.*

$$1596 \quad P := \sum_{i=0}^N |i+1\rangle\langle i| = \begin{pmatrix} 0 & 0 & 0 & \dots & 1 \\ 1 & 0 & 0 & & 0 \\ 0 & 1 & 0 & & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}. \quad (\text{B.66})$$

1602 **Definition B.5** (R_Z Phase Gate). *Define the single-qubit phase gate, $R_Z(t) := e^{itZ} = \begin{pmatrix} e^{it} & 0 \\ 0 & e^{-it} \end{pmatrix}$.*
1603

1604 We now derive a block-encoding of the permutation matrix P acting on m qubits. We include this
1605 result for completeness, and similar results may be found in the literature (see e.g., Motlagh &
1606 Wiebe (2024), where they derive a 1D circulant convolution via QSP, or Camps et al. (2024)). Our
1607 implementation of P^m is identical to a $+m$ adder implemented with QFT, see e.g., Draper (2000).
1608

1609 **Lemma B.14** (Permutation Matrix Block-Encoding). *Let $m \in \mathbb{N}_{>0}$. Let $N = 2^n$. The m^{th}
1610 power of the permutation matrix P is given by $P^m = \sum_{j=0}^{N-1} |j+m\rangle\langle j|$. Then, we can get a
1611 $(1, 1, 0)$ -block-encoding with $O(n^2)$ circuit complexity for P^m .*
1612

1613 *Proof.* Drawing inspiration from Motlagh & Wiebe (2024); Sedghi et al. (2019), let $F := QFT$
1614 represent the Quantum Fourier Transform on n qubits. Define $\omega_N^j := e^{2\pi ij/N}$. Noting that $F =$
1615 $\frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \omega_N^{ij} |i\rangle\langle j|$, it is easy to show that $P^m F |j\rangle = \omega_N^{-mj} F |j\rangle$. Consequently, we can
1616 write $P^m = F D F^{-1}$, where $D = \text{diag}(\omega_N^0, \omega_N^{-m}, \dots, \omega_N^{-m(N-1)})$. Thus, by getting a block-
1617 encoding of D , we can implement P^m by taking a product of $F D F^{-1}$. Let $|j\rangle_n$ be a basis vector,
1618 and let $j = 2^{n-1}j_{n-1} + \dots + 2^1j_1 + 2^0j_0$. We will now give a unitary V_m which implements the
1619 mapping $V_m |0\rangle_1 |j\rangle_n = \omega_N^{-jm} |0\rangle_1 |j\rangle_n$. Noting that $\omega_N^{-jm} = e^{-2\pi ijm/N} = \prod_{l=0}^{n-1} e^{-2\pi i m(2^{jl} j_l)/N}$,

we can apply a sequence of n controlled $R_Z(t)$ gates, where the l^{th} gate is controlled on bit j_l and applies $R_Z(m2^{j_l}/N)$ on the ancilla qubit. This implements the desired mapping, and can be easily shown to be a $(1, 1, 0)$ -block-encoding for D . The Quantum Fourier Transform (Coppersmith, 2002) can be implemented with $O(n^2)$ circuit complexity (Nielsen & Chuang, 2010), and so we can get a trivial $(1, 0, 0)$ -block-encoding for both F and F^\dagger . Thus, $(I_1 \otimes F)V_m(I_1 \otimes F^\dagger)$ is a $(1, 1, 0)$ -block-encoding for P^m , with $O(n^2)$ circuit depth. Its worth noting that since the ancilla qubit in V_m is separable after the computation, this could be equivalently considered a $(1, 0, 0)$ -block-encoding. \square

Definition B.6 (Discrete Unilateral Shift Operator). *Define Q to be the N -dimensional discrete unilateral shift operator,*

$$Q := \sum_{j=0}^{N-2} |j+1\rangle\langle j| = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & & 0 & 0 \\ 0 & 1 & & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}. \quad (\text{B.67})$$

This is just the permutation matrix P without wrap-around.

Lemma B.15 (Block-Encoding of Q). *Let $N = 2^n$. Define Q as per Definition B.6. Then, we can obtain a $(1, 4, 0)$ -block-encoding for Q with $O(n^2)$ circuit complexity.*

Proof. By Lemma B.14, we can obtain a U_P a $(1, 1, 0)$ -block-encoding of $P = \sum_{j=0}^{N-1} |j+1\rangle\langle 1|$ with $O(n^2)$ circuit complexity. By Lemma B.6, we can obtain V a $(1, 2, 0)$ -block-encoding of the n -qubit projector $|0\rangle\langle N-1|$ with $O(n)$ circuit depth. Following LCU (Childs & Wiebe, 2012; Gilyén et al., 2019), we can get the sum of these two block-encodings, introducing an additional ancilla, with the circuit $U_f := (H \otimes I_{2+n})(|0\rangle\langle 0|_1 \otimes I_1 \otimes U_P - |1\rangle\langle 1|_1 \otimes V)(H \otimes I_{2+n})$. Then, U_f is a $(1, 3, 0)$ -block-encoding for $\frac{1}{2}(P - |0\rangle\langle N-1|) = \frac{1}{2}Q$, with $O(n^2)$ circuit complexity. Noting that $Q^\dagger Q = I_n - |N-1\rangle\langle N-1|$, it is clear that $\|Q\|_2 \leq 1$. Moreover, since all the singular values of $Q/2$ are either 0 or $1/2$, we can invoke Lemma B.4, a special case of oblivious amplitude amplification (Gilyén et al., 2019), to immediately convert this to a $(1, 4, 0)$ -block-encoding for Q with only 3 calls to U_f . \square

Lemma B.16 (Block-Encoding of Q^m). *Let $m \in \mathbb{N}_{>0}$ and let $N = 2^n$. Define the N -dimensional operator Q as per Definition B.6. Then, we can obtain a $(1, 4m, 0)$ -block-encoding of Q^m with $O(mn^2)$ circuit complexity.*

Proof. As per Lemma B.15, we can obtain U_Q a $(1, 4, 0)$ -block-encoding for Q with $O(n^2)$ circuit complexity. Invoking Lemma 53 (Product of Block-Encoded Matrices) of Gilyén et al. (2019) with U_Q m times directly yields a $(1, 4m, 0)$ -block-encoding of Q^m with $O(mn^2)$ circuit complexity.⁵ \square

Now, we present a standard well-known result giving the matrix form of a 2D multi-filter convolution (see e.g., Sedghi et al. (2019); Kerenidis et al. (2020)).

Lemma B.17 (Matrix Form of 2D Multi-Filter Convolution). *Let $M = 2^m$, let $n = 2m$, let $N = 2^n$, and let $D = 2^d$. Let $C = 2^c$ represent the number of input and output channels. Let X represent the rank-3 input tensor, which in vectorized form (stored in column-major order for each input channel) is given by, $|X\rangle_{n+c} = \sum_{i=0}^{C-1} \sum_{j=0}^{M-1} \sum_{k=0}^{M-1} X_{i,j,k} |i\rangle_c |j\rangle_m |k\rangle_m$. I.e., $|X\rangle_{n+c}$ is of dimension $M^2C = NC$. Define $\tilde{X}_{i,j,k} = X_{i,j,k}$ if $j \geq 0$ and $k \geq 0$, and $\tilde{X}_{i,j,k} = 0$ otherwise. We can define the convolutional kernel K to be a rank-4 tensor containing each of the $C, C \times D \times D$ filters⁶, where the first index represents the output channel, the second index represent the input channel, the third index represents the row index, and the fourth index represents the column index. Then, entry y, z of the x^{th} output channel after convolution with K is given by,*

$$[X * K]_{x,y,z} := \sum_{j=0}^{C-1} \sum_{k=0}^{D-1} \sum_{l=0}^{D-1} K_{x,j,k,l} \tilde{X}_{j,z-k,y-l}. \quad (\text{B.68})$$

⁵This can likely be optimizing by using QSVT (Gilyén et al., 2019).

⁶If the number of channels is 1 (i.e., $C = 1$), then the kernel is $D \times D$ dimensional.

1674 Defining \mathcal{C} as per Definition B.6, we can give the matrix form of the convolution,
 1675

$$1676 \quad \mathcal{C} := \sum_{i=0}^{C-1} \sum_{j=0}^{C-1} \sum_{k=0}^{D-1} \sum_{l=0}^{D-1} K_{i,j,k,l} (|i\rangle\langle j|_c \otimes Q^l \otimes Q^k). \quad (\text{B.69})$$

1679 I.e., $\mathcal{C}|X\rangle_{n+c} = \text{vec}(X * K)$.
 1680

1681 *Proof.* We will verify that \mathcal{C} indeed implements the mapping specified in Equation (B.68) by comput-
 1682 ing the following, $\langle x|_c \langle y|_m \langle z|_m \mathcal{C}|X\rangle_{n+c}$. Note that for all $i < l$, $\langle i|Q^l = 0$, and that for all $i \geq l$,
 1683 $\langle i|Q^l = \langle i-l|$. Consequently, if $y - l \geq 0$, $z - k \geq 0$, then $\langle j|_c \otimes (\langle y|_m \langle z|_m Q^l \otimes Q^k)|X\rangle_{n+c} =$
 1684 $X_{j,z-k,y-l}$, and if $y - l < 0$ or $z - k < 0$ then $\langle j|_c \otimes (\langle y|_m \langle z|_m Q^l \otimes Q^k)|X\rangle_{n+c} = 0$. Thus,
 1685 $\langle j|_c \otimes (\langle y|_m \langle z|_m Q^l \otimes Q^k)|X\rangle_{n+c} = \tilde{X}_{j,z-k,y-l}$. Therefore,
 1686

$$1687 \quad \langle x|_c \langle y|_m \langle z|_m \sum_{j=0}^{C-1} K_{i,j,k,l} (|i\rangle\langle j|_c \otimes Q^l \otimes Q^k)|X\rangle_{n+c} = \sum_{j=0}^{C-1} K_{x,j,k,l} \tilde{X}_{j,z-k,y-l}. \quad (\text{B.70})$$

1690 As a result,
 1691

$$1692 \quad \langle x|_c \langle y|_m \langle z|_m \mathcal{C}|X\rangle_{n+c} = \sum_{j=0}^{C-1} \sum_{k=0}^{D-1} \sum_{l=0}^{D-1} K_{x,j,k,l} \tilde{X}_{j,z-k,y-l} = [X * K]_{x,y,z}. \quad (\text{B.71})$$

1695 \square
 1696

1697 **Proof of Lemma 5.** Define $|X\rangle_{n+c}$, K , and \mathcal{C} as per Lemma B.17. As a result, obtaining a block-
 1698 encoding of \mathcal{C} allows us to implement the desired 2D convolution in the vectorized setting.

1699 First, for a given i, j, k, l , we will show how to obtain a block-encoding of $K_{i,j,k,l} (|i\rangle\langle j|_c \otimes Q^l \otimes Q^k)$.
 1700 Using Lemma B.6, we can obtain $U_{i,j}$ a $(1, 2, 0)$ -block-encoding of the c -qubit projector $|i\rangle\langle j|_c$, with
 1701 $O(c)$ circuit depth. Then, using Lemma B.16, we can obtain U_{Q^l} a $(1, 4l, 0)$ -block-encoding of m
 1702 qubit Q^l with $O(lm^2)$ circuit complexity. We similarly obtain U_{Q^k} a $(1, 4k, 0)$ -block-encoding of
 1703 m qubit Q^k with $O(km^2)$ circuit complexity. We can then invoke Lemma B.2 with $U_{i,j}$ and U_{Q^l} ,
 1704 and again with U_{Q^k} , to obtain $U_{i,j,l,k}$, a $(1, 2 + 4l + 4k, 0)$ -block-encoding of $|i\rangle\langle j|_c \otimes Q^l \otimes Q^k$
 1705 with $O(c + Dm^2)$ circuit complexity. To make each operator act on the same number of qubits, we
 1706 will augment each with the appropriate number of tensored identities to yield a $(1, 2 + 8D, 0)$ -block-
 1707 encoding for the corresponding operator.
 1708

1709 Define $|K\rangle_{2c+2d} := \sum_{i=0}^{C-1} \sum_{j=0}^{C-1} \sum_{k=0}^{D-1} \sum_{l=0}^{D-1} K_{i,j,k,l} |i\rangle_c |j\rangle_c |k\rangle_d |l\rangle_d$, and define $|\sqrt{K}\rangle_{2c+2d} =$
 1710 $\sqrt{|K\rangle_{2c+2d}}$ (with the square-root applied element-wise). Then, define $\mathcal{N}_K := \|\sqrt{K}\rangle_{2c+2d}\|_2 =$
 1711 $\| |K\rangle_{2c+2d} \|_1^{1/2}$, and $|\bar{K}\rangle_{2c+2d} := |K\rangle_{2c+2d} / \mathcal{N}_K$. Noting that this vector is $C^2 D^2$ dimensional, we
 1712 can brute-force construct a unitary U_K , with a total of $O(C^2 D^2)$ single and two qubit gates, such that
 1713 $U_K |0\rangle_{2c+2d} = |\sqrt{K}\rangle_{2c+2d} / \mathcal{N}_K$ (Plesch & Brukner, 2011). We can then invoke Lemma B.5, obtaining
 1714 a $(\mathcal{N}_K^2, 2 + 8D + 2 \log(CD), 0)$ -block-encoding for \mathcal{C} with $O(cdC^2 D^3 m^2)$ circuit complexity.
 1715 This is equivalent to a $(1, 2 + 8D + 2 \log(CD), 0)$ -block-encoding for $\mathcal{C} / \| |K\rangle_{2c+2d} \|_1$. Since we
 1716 are concerned with accelerating inference, we will ignore classical pre-computation costs that must
 1717 only be paid one time to construct this datastructure. We can then invoke Lemma B.3, setting
 1718 $\gamma = \| |K\rangle_{2c+2d} \|_1 / 2 \|\mathcal{C}\|_2$ and $\delta = 1/2$, since $\|\mathcal{C} / \| |K\rangle_{2c+2d} \|_1\|_2 \leq \frac{1}{2} \frac{2\|\mathcal{C}\|_2}{\| |K\rangle_{2c+2d} \|_1}$. Neglecting
 1719 the logarithmic error-terms incurred by Lemma B.3 (as these will not dominate complexity), this
 1720 then yields a $(1, 3 + 8D + 2 \log(CD), 0)$ -block-encoding for $\frac{\mathcal{C}}{2\|\mathcal{C}\|_2}$ with $O(\frac{\| |K\rangle_{2c+2d} \|_1}{\|\mathcal{C}\|_2} cdC^2 D^3 m^2)$
 1721 circuit depth. We will now show that $\frac{\| |K\rangle_{2c+2d} \|_1}{\|\mathcal{C}\|_2} \leq DC^{3/2}$, and thus that the overall circuit depth is
 1722 bounded by $O(cdm^2 C^3 D^4)$.
 1723

1724 We will now upper-bound $\| |K\rangle_{2c+2d} \|_1$. Define the basis vector $|x\rangle_{c+2m} = |x_1\rangle_c |x_2\rangle_m |x_3\rangle_m$.
 1725 Then, the x^{th} row of \mathcal{C} is given by $\langle x|_{c+2m} \mathcal{C}$. Simple analysis shows that $\langle x|_{c+2m} \mathcal{C} =$
 1726 $\sum_{j=0}^{C-1} \sum_{k=0}^{D-1} \sum_{l=0}^{D-1} K_{x_1,j,k,l} \langle j|_c \otimes \langle x_2 - l|_m \otimes \langle x_3 - k|_m$, where $\langle x_2 - l|_m = 0$ if $x_2 - l < 0$

and $\langle x_3 - k |_m = 0$ if $x_3 - k = 0$. Then it can be readily shown that $\|\langle x |_{c+2m} \mathcal{C}\|_2^2 = \sum_{j=0}^{C-1} \sum_{k=0}^{D-1} \sum_{l=0}^{D-1} |K_{x_1, j, k, l}|^2$. For any operator A with $\|A\|_2 \leq 1$, the maximum column norm $\max_{|i\rangle} \|A|i\rangle\|_2 \leq \max_{|\psi\rangle: \|\psi\|_2=1} \|A|\psi\rangle\|_2 \leq 1$. Similarly, since $\|A\|_2 = \|A^\dagger\|_2$, the maximum row norm cannot exceed the spectral norm of the matrix. Therefore, any row of \mathcal{C} must have ℓ_2 -norm bounded by $\|\mathcal{C}\|_2$, thus, $\sum_{j=0}^{C-1} \sum_{k=0}^{D-1} \sum_{l=0}^{D-1} |K_{x_1, j, k, l}|^2 \leq \|\mathcal{C}\|_2^2$. Consequently, $\|K\rangle_{2c+2d}\|_2^2 = \sum_{i=0}^{C-1} \sum_{j=0}^{C-1} \sum_{k=0}^{D-1} \sum_{l=0}^{D-1} |K_{i, j, k, l}|^2 \leq C \|\mathcal{C}\|_2^2$. Moreover, for an n -dimensional vector \mathbf{x} , $\|\mathbf{x}\|_1 \leq \sqrt{n} \|\mathbf{x}\|_2$, and thus, $\|K\rangle_{2c+2d}\|_1 \leq \sqrt{C^2 D^2} \sqrt{C} \|\mathcal{C}\|_2 = DC^{3/2} \|\mathcal{C}\|_2$. Consequently, $\|K\rangle_{2c+2d}\|_1 / \|\mathcal{C}\|_2 \leq DC^{3/2}$. \square

To see a set of related block-encoding circuits, see Camps et al. (2024).

It is also worth noting that the preceding result can be made substantially more efficient by utilizing a circulant convolution to implement the non-circulant convolution. We will now quickly sketch this idea for future optimization. For simplicity, we assume that the convolution has one input channel and one output channel, and that the input is a rank-2 tensor (e.g., a black and white image). Let $M = 2^m$. Then, if the input image is $X \in \mathbb{R}^{M \times M}$, we can add 0 padding with the $M \times M$ projector, $|0\rangle\langle 0|_m \otimes X$. Then, enacting a circulant convolution on this augmented operator and projecting onto the zero-state of the first register yields the desired non-circulant convolution. Moreover, we can define a circulant $2D$ convolution as $[X * K]_{i,j} = \sum_{k=0}^{l-1} \sum_{l=0}^{d-1} K_{k,l} X_{i-k, j-l}$. The following sketch generalizes the 1D circulant convolution given in Motlagh & Wiebe (2024), and also follows the ideas discussed in Sedghi et al. (2019). Consequently, the operator $C := \sum_{i=0}^{d-1} \sum_{j=0}^d K_{i,j} P^j \otimes P^i$ implements $X * K$ in the vectorized setting (using a column-major vectorization for X). Let $\omega_M := \exp(2\pi i/M)$ be the M^{th} root of unity. Let $F := QFT$ represent the Quantum Fourier Transform on m qubits. It is easy to show that $P^k F|j\rangle = \omega_M^{-kj} F|j\rangle$. Thus, let $D := F^{-1} P F = \text{diag}(\omega_M^0, \omega_M^{-1}, \dots, \omega_M^{-(M-1)})$. Consequently, $P = F D F^{-1}$, and so $C = (F \otimes F) \left(\sum_{i=0}^{d-1} \sum_{j=0}^d K_{i,j} D^j \otimes D^i \right) (F^{-1} \otimes F^{-1})$. Clearly, since implementing the QFT is efficient on a quantum computer, the key to implementing C is in implementing a block-encoding of the diagonal matrix $\Gamma := \sum_{i=0}^{d-1} \sum_{j=0}^d K_{i,j} D^j \otimes D^i$. Noting that this is a 1-sparse matrix with efficiently computable entries, a technique such as Gilyén et al. (2019) can be immediately used to obtain the desired block-encoding (replacing QRAM assumptions with arithmetic oracles computing the locations and values of the non-zero elements). This can be further optimized by replacing the arithmetic with QRAM. In the multi-filter case, the diagonal matrix becomes a block-diagonal matrix (with blocks of height and width given by the number of input and output channels), and the sparse block-encoding techniques can still be used.

B.3 NON-LINEAR TRANSFORMATION OF VECTOR-ENCODINGS

We now present an essential result on transforming the amplitudes of a state encoded as a VE. This result is a direct translation of the ideas in the result given in Rattew & Rebentrost (2023) (which in turn builds on Guo et al. (2024a); Mitarai et al. (2019)) to the setting of VEs. While Rattew & Rebentrost (2023) also give a similar result in the setting of a VE (called an SPBE in that paper), they obtain it by treating the whole unitary VE as a state-preparation unitary, and then invoke their non-linear amplitude transformation (NLAT) result on that, which gives slightly worse complexity than just directly re-deriving the whole transformation result in the framework of VEs. We include the following for completeness and simplicity, and do not claim novelty on this result.

Lemma B.18 (NLAT of VE (Rattew & Rebentrost, 2023)). *Let $N = 2^n$. Let $0 \leq \epsilon_0 \leq 1$, and $\alpha \geq 1$. We are given a unitary matrix U_ψ which is an (α, a, ϵ_0) -VE for the n -qubit real quantum state $|\psi\rangle_n$ with circuit complexity $O(T)$, and a function $f: \mathbb{R} \mapsto \mathbb{R}$ with Lipschitz constant L such that $f(0) = 0$. Define ϵ_1 such that $0 < \epsilon_1 \leq L$. Define $\mathcal{N} := \|f(|\psi\rangle_n/\alpha)\|_2$. Define the interval of approximation $[-\tau, \tau]$, where $0 < \tau \leq 1$ which can be set to either $\tau = 1$ or any value such that $\tau \geq \frac{1+\epsilon_0}{\alpha}$ if a smaller region of approximation yields a better complexity. Define the polynomial $P: \mathbb{R} \mapsto \mathbb{R}$, such that with degree k , $\max_{x \in [-\tau, \tau]} |P(x) - f(x)| \leq \frac{L\epsilon_1}{2\sqrt{N}}$. Suppose we are given a bound $\tilde{\gamma}$ satisfying $\tilde{\gamma} \geq \max_{x \in [-1, 1]} |P(x)/x|$, and require that $P(0) = 0$. Then, we can obtain a unitary circuit U_f that is a $\left(\frac{4\tilde{\gamma}}{\mathcal{N}}, n + 2a + 4, \frac{L}{\mathcal{N}}(\epsilon_0 + \epsilon_1)\right)$ -VE for $f(|\psi\rangle_n/\alpha)/\mathcal{N}$, and which requires $O(k)$ calls to a controlled U_ψ and U_ψ^\dagger circuit, and has a total circuit depth of*

1782 $O(k(n + a + T))$. This circuit can be obtained with $O(\text{poly}(k, \log(\frac{\tilde{\gamma}}{N\epsilon_1})))$ classical time complexity.
 1783

1784 *Proof.* We will begin by considering the domain we require for the polynomial approximation.
 1785 Essentially, by noting that if $\alpha > 1$, the function is being applied to a sub-component of an ℓ_2 -
 1786 normalized vector, and thus the maximum value of its input will be strictly less than $\frac{1+\epsilon_0}{\alpha}$. In some
 1787 cases, this could yield a more efficient polynomial approximation, and so we will write our result
 1788 both in the setting where the interval of approximation is $[-1, 1]$ and $[-\frac{1+\epsilon_0}{\alpha}, \frac{1+\epsilon_0}{\alpha}]$. In particular,
 1789 the function will be applied to $(\langle 0|_a \otimes I_n)U_\psi|0\rangle_{a+n}$, and so we must upper-bound the maximum
 1790 amplitude in this quantity. Define $c \in \mathbb{R}$ such that $0 < c \leq 1$. Define the un-normalized vector
 1791 $|\phi\rangle_n := (\langle 0|_a \otimes I_n)U_\psi|0\rangle_{a+n}$. Define $|E_\psi\rangle_n := |\psi\rangle_n - \alpha|\phi\rangle_n$, and note that $\||\phi\rangle_n\|_2 \leq 1$, and thus
 1792 that $\frac{1}{\alpha} \|\psi\rangle_n - |E_\psi\rangle_n\|_2 \leq 1$. Additionally, by Definition 3, $\|E_\psi\rangle_n\|_2 \leq \epsilon_0$. Define $\{\phi_j\}_j$ such that
 1793 $|\phi\rangle_n = \sum_{j=1}^N \phi_j |j\rangle_n$. Thus, $|\phi_j| \leq \|\phi\rangle_n\|_2 \leq \frac{1}{\alpha}(1 + \epsilon_0)$. Define $c := \min(\frac{1}{\alpha}(1 + \epsilon_0), 1)$.
 1794

1795 Let $\mathcal{N}_\psi := \mathcal{N}$. Let $\mathcal{N}_P := \|P(|\psi\rangle/\alpha)\|_2$. Define the degree $k - 1$ polynomial $Q(x) := P(x)/x$,
 1796 and define ϵ_2 such that $\max_{x \in [-c, c]} |P(x) - f(x)| \leq \epsilon_2$.

1797 Using Lemma 6 of Rattew & Rebentrost (2023), we can get a $(1, a + n + 2, 0)$ -block-encoding
 1798 U_A of $A := \text{diag}(U_\psi|0\rangle_{a+n})$ with $O(a + n)$ circuit depth, and 6 additional calls to a controlled
 1799 U_ψ circuit. Invoking Theorem 56 of Gilyén et al. (2019) with $Q(x)/4\tilde{\gamma}$, we get the unitary U_Q , a
 1800 $(1, a + n + 4, \delta)$ -block-encoding for $Q(A)/4\tilde{\gamma}$, requiring $O((a + n)k)$ single and two-qubit gates,
 1801 $O(k)$ calls to a controlled U_A circuit, and $O(\text{poly}(k, \log(1/\epsilon)))$ classical computation to determine
 1802 the QSVT rotation angles to implement the degree k polynomial. We can equivalently call U_Q a
 1803 $(1, a + n + 4, 0)$ -block-encoding for some matrix V , such that $\|V - Q(A)/4\tilde{\gamma}\|_2 \leq \delta$. Additionally,
 1804 define $E_Q := V - Q(A)/4\tilde{\gamma}$. Since for any vector \mathbf{x} , $Q(\text{diag}(\mathbf{x}))\mathbf{x} = P(\mathbf{x})$, we get, $VU_\psi|0\rangle_{a+n} =$
 1805 $\frac{P(U_\psi|0\rangle_{a+n})}{4\tilde{\gamma}} + EVU_\psi|0\rangle_{a+n}$. Additionally, noting that $(\langle 0|_a \otimes I_n)P(\mathbf{x}) = P((\langle 0|_a \otimes I_n)\mathbf{x})$, and that
 1806 $(\langle 0|_a \otimes I_n)U_\psi|0\rangle_{a+n} = |\phi\rangle_n$, we get $(\langle 0|_a \otimes I_n)VU_\psi|0\rangle_{a+n} = \frac{P(|\phi\rangle_n)}{4\tilde{\gamma}} + (\langle 0|_a \otimes I_n)EVU_\psi|0\rangle_{a+n}$.
 1807 Define $\tilde{U}_\psi := I_{a+n+4} \otimes U_\psi$.

1808 First, note that $\tilde{U}_\psi|0\rangle_{2a+2n+4} = (|0\rangle_{n+a+4} \otimes I_{a+n})U_\psi|0\rangle_{a+n}$. Then, note that $(\langle 0|_{n+2a+4} \otimes$
 1809 $I_n) = (\langle 0|_a \otimes I_n)(|0\rangle_{n+a+4} \otimes I_{a+n})$. Consequently, by Definition 2, since $(\langle 0|_{n+a+4} \otimes$
 1810 $I_{a+n})U_Q(|0\rangle_{n+a+4} \otimes I_{a+n}) = V$,

$$(\langle 0|_{n+2a+4} \otimes I_n)U_Q\tilde{U}_\psi|0\rangle_{2n+2a+4} = (\langle 0|_a \otimes I_n)VU_\psi|0\rangle_{a+n} \quad (\text{B.72})$$

$$= \frac{P(|\phi\rangle_n)}{4\tilde{\gamma}} + (\langle 0|_a \otimes I_n)EVU_\psi|0\rangle_{a+n}. \quad (\text{B.73})$$

1811 We will now show that $U_Q\tilde{U}_\psi$ is a VE for $\frac{1}{\mathcal{N}_\psi} f(|\psi\rangle_n/\alpha)$. Precisely, we must upper-bound,
 1812

$$\xi_1 := \left\| \frac{1}{\mathcal{N}_\psi} f(|\psi\rangle_n/\alpha) - \frac{4\tilde{\gamma}}{\mathcal{N}_\psi} (\langle 0|_{n+2a+4} \otimes I_n)U_Q\tilde{U}_\psi|0\rangle_{2n+2a+4} \right\|_2 \quad (\text{B.74})$$

$$\leq \frac{1}{\mathcal{N}_\psi} (\|f(|\psi\rangle_n/\alpha) - P(|\phi\rangle_n)\|_2 + 4\tilde{\gamma} \|\langle 0|_a \otimes I_n)EVU_\psi|0\rangle_{a+n}\|_2). \quad (\text{B.75})$$

1813 Let $\langle j|E_\psi\rangle := e_j$. We will now prove a sequence of simple facts. Since $|f(x) - f(x + b)| \leq$
 1814 $L|b|$, and using $|\phi\rangle_n = \frac{|\psi\rangle_n - |E_\psi\rangle_n}{\alpha}$, we have that $\|f(|\psi\rangle_n/\alpha) - f(|\phi\rangle_n)\|_2^2 = \sum_{j=1}^N |f(\psi_j) -$
 1815 $f((\psi_j - e_j)/\alpha)|^2 \leq \frac{L^2}{\alpha^2} \sum_{j=1}^N |e_j|^2 = \frac{L^2}{\alpha^2} \|E_\psi\rangle_n\|_2^2 \leq \frac{L^2\epsilon_0}{\alpha^2}$. Then, $\|f(|\phi\rangle_n) - P(|\phi\rangle_n)\|_2^2 =$
 1816 $\sum_{j=1}^N |f(\phi_j) - P(\phi_j)|^2 \leq \max_{x \in [-c, c]} |f(x) - P(x)|^2 N \leq \epsilon_2^2 N$. Then,

$$\|f(|\psi\rangle_n/\alpha) - P(|\phi\rangle_n)\|_2 = \|f(|\psi\rangle_n/\alpha) - f(|\phi\rangle_n) + f(|\phi\rangle_n) - P(|\phi\rangle_n)\|_2 \quad (\text{B.76})$$

$$\leq \frac{L\epsilon_0}{\alpha} + \epsilon_2\sqrt{N}. \quad (\text{B.77})$$

1817 At this point, the proof branches into two cases. The first case is where we simply use the uniform
 1818 approximation to the function on the entire interval $[-1, 1]$. The second case, which should only be
 1819 used when approximating the function on $[-\tau, \tau]$ yields a better asymptotic approximation, will be
 1820 proven after.

Noting that $\|(\langle 0|_a \otimes I_n)E_VU_\psi|0\rangle_{a+n}\|_2 \leq \delta$, we can now get the overall bound of

$$\xi_1 \leq \frac{1}{\mathcal{N}_\psi} \left(\frac{L\epsilon_0}{\alpha} + \epsilon_2 \sqrt{N} + 4\tilde{\gamma}\delta \right) \leq \frac{1}{\mathcal{N}_\psi} \left(L\epsilon_0 + \epsilon_2 \sqrt{N} + 4\tilde{\gamma}\delta \right). \quad (\text{B.78})$$

Thus, we have shown that $U_Q\tilde{U}_\psi$ is a $(\frac{4\tilde{\gamma}}{\mathcal{N}_\psi}, 2a+n+4, \frac{1}{\mathcal{N}_\psi}(L\epsilon_0+\epsilon_2\sqrt{N}+4\tilde{\gamma}\delta))$ -VE for $\frac{1}{\mathcal{N}_\psi}f(|\psi\rangle_n/\alpha)$. To get the overall error-bound, we will set $\epsilon_2\sqrt{N} = L\epsilon_1/2$, and $4\tilde{\gamma}\delta = L\epsilon_1/2$, yielding $\epsilon_2 = \frac{L\epsilon_1}{2\sqrt{N}}$, and $\delta = \frac{L\epsilon_1}{8\tilde{\gamma}}$. This gives a $(\frac{4\tilde{\gamma}}{\mathcal{N}_\psi}, 2a+n+4, \frac{L}{\mathcal{N}_\psi}(\epsilon_0+\epsilon_1))$ -VE for $\frac{1}{\mathcal{N}_\psi}f(|\psi\rangle_n/\alpha)$, and requires $O(k)$ calls to a controlled U_ψ and U_ψ^\dagger circuit, and has a total circuit depth of $O(k(n+a+T))$. This circuit can be obtained with $O(\text{poly}(k, \log(\frac{\tilde{\gamma}}{L\epsilon_1})))$ classical time complexity. \square

To make the preceding result easier to use, we provide a special case for transformation by the error function, and again do not claim novelty.

Lemma B.19 (Application of $\text{erf}(\nu x)$ to a Vector Encoding). *Let $N = 2^n$, let $\nu \geq 1/2$, let $1 \geq \epsilon_0 \geq 0$ and let $0 < \epsilon_1 \leq 2$. We are given a unitary matrix U_ψ with circuit complexity $O(T)$ which is an (α, a, ϵ_0) -VE for the n -qubit quantum state $|\psi\rangle_n$, and we are also given the error function $f_\nu(x) = \text{erf}(\nu x)$. Let $\mathcal{N} := \|f_\nu(|\psi\rangle_n/\alpha)\|_2$. Then, we can obtain a $(\frac{16\nu}{\sqrt{\pi}\mathcal{N}}, 2a+n+4, 2\nu\alpha(\epsilon_0+\epsilon_1))$ -VE for $f_\nu(|\psi\rangle_n/\alpha)/\mathcal{N}$, with $O(\nu \log(\frac{\sqrt{N}}{\epsilon_1}))$ queries to a controlled U_ψ and U_ψ^\dagger circuit, and with a total circuit depth of $O(\nu \log(\frac{\sqrt{N}}{\epsilon_1})(a+n+T))$. Moreover, $\mathcal{N} \geq \frac{1}{2\alpha}$.*

Proof. From Lemma F.1, we know that the Lipschitz constant L of $\text{erf}(\nu x)$ is $L = \frac{2\nu}{\sqrt{\pi}}$.

Define $c = O(1/\alpha)$. Using Lemma F.1, we can obtain a degree $k \in O(\nu \log(\nu/\alpha\epsilon'))$ polynomial $P_{k,\nu}$ such that $P_{k,\nu}(0) = 0$ and $\max_{x \in [-c, c]} |P_{k,\nu}(x) - f_\nu(x)| \leq \epsilon'$. Since we need $\epsilon' \leq \frac{L\epsilon_1}{2\sqrt{N}}$, we can set $\epsilon' = \frac{\nu\epsilon_1}{10\sqrt{N}}$ in accordance with Lemma B.18, we have a degree $k \in O(\nu \log(\frac{\sqrt{N}}{\epsilon_1}))$ polynomial approximation.

From Lemma F.1, for $\nu \geq 1/2$, we know that $\forall x \in [-1, 0] \cup (0, 1], |\text{erf}(\nu x)| \geq |x/2|$. Consequently, $\mathcal{N}^2 = \sum_{j=1}^N |f(\psi_j/\alpha)|^2 \geq (\frac{1}{2\alpha})^2$. Additionally, we know that $\tilde{\gamma} = \max_{x \in [-1, 1]} |P_{k,\nu}(x)/x| \leq \frac{4\nu}{\sqrt{\pi}}$. Invoking Lemma B.18, setting with all of the above facts and setting $\tilde{\gamma} = \frac{4\nu}{\sqrt{\pi}}$ then gives the complexity. \square

C GENERAL ARCHITECTURAL BLOCKS

The architectural blocks we present in this paper are intended to demonstrate how the different operations on encoded matrices and vectors can be combined to coherently implement various architectures on quantum computers. There is a rich set of possibilities, and we are only exploring a small but elucidating set.

Two of the most important concepts governing the complexity of the quantum implementation of any classical architecture are: (1) the number of non-linear activation layers, and (2) the ℓ_2 norm of the vectorized input tensor as it propagates through the network.

In order for a unitary matrix (a linear operator) to enact a non-linear transformation on a vector, its definition must depend on the vector it is being applied to. Consequently, techniques which enact non-linear transformations on state-amplitudes (e.g., Rattew & Rebentrost (2023); Guo et al. (2024a)) must have circuit definitions which depend on the vector-encoding circuit they are being applied to. Thus, if the unitary circuit implementing the transformation requires *even two* calls to the input vector encoding, then the circuit complexity will grow exponentially with the number of non-linear activations. Consequently, wide but shallow multi-layer architectures are ideal for quantum acceleration. Finally, an alternative to fully coherent quantum acceleration is to periodically read-out the vector in intermediate layers of the network. As discussed in the introduction, several quantum computing papers have proposed this approach. However, in general, since reading out a quantum state incurs a dimension-dependent cost (Cramer et al., 2010; van Apeldoorn et al., 2023) (and incurs

1890 polynomial error-dependence) this either imposes significant constraints on the types of architectures
 1891 that can be accelerated (requiring frequent mappings to very low-dimensional spaces where readout
 1892 is cheaper), or incur asymptotically dominating error accumulation. Nevertheless, there are certain
 1893 settings where periodic state readout may be desirable, and our techniques are fully compatible with
 1894 these ideas.

1895 The second key concept governing the complexity of a quantum implementation of an architecture
 1896 relates to the norm of the encoded vector as it propagates through the network. Whenever a sample is
 1897 drawn from an encoded vector, a cost inversely proportional to the norm of the encoded vector must
 1898 be paid. Similarly, whenever an encoded vector is normalized, an inverse norm-cost must be paid.
 1899 Consequently, to obtain provable end-to-end complexity results, we need to be able to lower-bound
 1900 the norm of the encoded vector whenever we apply a layer norm (or draw a sample from the output
 1901 of the network). A key tool in doing this is the skip connection, as it allows the norm from the
 1902 previous layer to be preserved in the output of the next layer. Additionally, if the weight layers are
 1903 normalized (i.e., if W represents the matrix form of any parameter layer, then $\|W\|_2 \leq 1$), and the
 1904 activation function is scaled so that its Lipschitz constant on the interval $[-1, 1]$ is at most 1, this
 1905 results in provable norm-preservation bounds. Requiring weight-layers to be sub-normalized has
 1906 been extensively explored in the classical deep learning literature (Miyato et al., 2018; Yoshida &
 1907 Miyato, 2017; Gouk et al., 2020), as sub-normalization can help prevent network norm explosion as
 1908 deeper networks are trained.

1909 It is worth briefly noting that, in certain cases, the sub-normalization condition on the weight layers
 1910 can be removed (i.e., for matrix W , $0 \leq \|W\|_2 \leq c$ where $c \geq 1$). This is done by implementing
 1911 $W/\|W\|_2$, and then scaling the input of the subsequent activation function by $\|W\|_2$. If using the
 1912 error function activation, this increases the cost of the polynomial approximation by an amount
 1913 proportional to c . We do not consider this regime as it makes it more challenging to prove norm
 1914 preservation properties after the skip connection, but stress that quantum computers can actually
 1915 implement such regimes. Numerical studies examining norm preservation for such networks could
 1916 shed light into their efficiency.

1917 We will now formally define our ℓ_2 -norm squared pooling; this is essentially just an ℓ_2 -norm pooling
 1918 operation followed by an element-wise square. Throughout we will assume that dimensions neatly
 1919 line-up, noting that if they don't padding can be used to easily and efficiently ensure alignment.

1920 **Definition C.1** (Squared ℓ_2 Norm Pooling). *Given an N -dimensional vector $|\phi\rangle = \sum_{j=1}^N \phi_j |j\rangle$, and
 1921 a positive integer C such that N is divisible by C , define $f_j := (j-1)\frac{N}{C} + 1$. Then, we define ℓ_2 -norm
 1922 squared pooling by $\text{pool}_C(|\phi\rangle) := \sum_{j=1}^C \sum_{l=f_j}^{j\frac{N}{C}} \phi_l^2 |j\rangle$, where $\{|j\rangle\}$ is the set of C -dimensional basis
 1923 vectors.*

1924 **Lemma C.1** (Error Propagated Through ℓ_2 Norm Squared Pooling). *Define the N -dimensional
 1925 vectors $|\phi\rangle$ and $|\tilde{\phi}\rangle$, such that $\|\phi - \tilde{\phi}\|_2 \leq \epsilon$. Then, defining a positive integer C such that N is di-
 1926 visible by C , and defining pool_C as per Definition C.1, we have that $\|\text{pool}_C(|\phi\rangle) - \text{pool}_C(|\tilde{\phi}\rangle)\|_2 \leq$
 1927 $\frac{2N\epsilon}{\sqrt{C}}$.*

1928 *Proof.* Let $|\phi\rangle = \sum_{j=1}^N \phi_j |j\rangle$, and let $|\tilde{\phi}\rangle = \sum_{j=1}^N \tilde{\phi}_j |j\rangle$. Then, $\|\phi - \tilde{\phi}\|_2 \leq \epsilon$ implies that
 1929 $\forall j, |\phi_j - \tilde{\phi}_j| \leq \epsilon$. Then, additionally using that $|\phi_j + \tilde{\phi}_j| \leq 2$,

$$1930 \|\text{pool}_C(|\phi\rangle) - \text{pool}_C(|\tilde{\phi}\rangle)\|_2^2 = \sum_{j=1}^C \left(\sum_{l=f_j}^{j\frac{N}{C}} (\phi_l - \tilde{\phi}_l)(\phi_l + \tilde{\phi}_l) \right)^2 \leq 4 \sum_{j=1}^C \left(\frac{N\epsilon}{C} \right)^2 = \frac{4N^2\epsilon^2}{C}. \quad (\text{C.1})$$

1931 **Proof of Lemma 6.** The parameter κ in the lemma is designed for situations where we don't have a
 1932 perfect block-encoding of the matrix we would like. For instance, in cases where we want to apply
 1933 some matrix A , but we are only able to get a block-encoding of $A/2$. We can fix this when applying
 1934 the activation function by scaling its input to remove the $1/2$ factor.

Figure 4: Full-rank linear-pooling output block.

Figure 5: This figure shows the final output architectural block used in our neural networks for Regimes 1 and 2. Here, $g(x) = x^2$ and W is a sub-normalized (potentially full-rank and dense) matrix.

Let $\nu := 4\kappa/5$. Let $|\phi_1\rangle_n := W|\psi\rangle_n/\kappa$, $\mathcal{N}_1 := \|\langle\phi_1\rangle_n\|_2$, and $|\Phi_1\rangle_n := |\phi_1\rangle_n/\mathcal{N}_1$. Using Lemma 2 we get U_1 a $(\mathcal{N}_1^{-1}, a+b, \epsilon_0 \mathcal{N}_1^{-1})$ -VE for $|\Phi_1\rangle_n$ with $O(T_1 + T_2)$ circuit complexity.

Let $|\phi_2\rangle_n := f(W|\psi\rangle_n)$, $\mathcal{N}_2 := \|\langle\phi_2\rangle_n\|_2$, and $|\Phi_2\rangle_n := |\phi_2\rangle_n/\mathcal{N}_2$. Define $0 < \epsilon_1 \leq 1$. Invoking Lemma B.19 with U_1 and $f(\kappa x) = \text{erf}(4\kappa x/5) = \text{erf}(\nu x)$, we obtain U_2 a $(\frac{16\nu}{\sqrt{\pi}\mathcal{N}_2}, 2(a+b) + n + 4, 2\nu\mathcal{N}_1^{-1}(\epsilon_0 + \epsilon_1))$ -VE for $f(|\Phi_1\rangle_n\mathcal{N}_1)/\|f(|\Phi_1\rangle_n\mathcal{N}_1)\|_2 = |\Phi_2\rangle_n$. U_2 has circuit complexity $O(\nu \log(\frac{\sqrt{N}}{\epsilon_1})(a+b+n+T_1+T_2))$.

So as to invoke Lemma 1 to implement the skip connection and obtain a state proportional to $|\psi_f\rangle_n$, we will need to factor out a common factor of $\frac{\sqrt{\pi}}{16\nu}$. Consequently, we invoke Lemma B.9 on U_ψ to obtain U'_ψ a $(\frac{16\nu}{\sqrt{\pi}}, a+2, \epsilon_0)$ -VE for $|\psi\rangle_n$ with $O(T_1 + a)$ circuit complexity.

Define $|\gamma\rangle_n := \frac{\sqrt{\pi}}{32\nu}(|\psi\rangle_n + |\Phi_2\rangle_n\mathcal{N}_2) = \frac{\sqrt{\pi}}{32\nu}(|\psi\rangle_n + f(W|\psi\rangle_n))$, $\mathcal{N}_\gamma := \|\langle\gamma\rangle_n\|_2$ and $|\Gamma\rangle_n := |\gamma\rangle_n/\mathcal{N}_\gamma$. Then, we can invoke Lemma 1 (setting $\tau = 1/2$) with U'_ψ and U_2 , yielding U_3 a $(\mathcal{N}_\gamma^{-1}, 2(a+b) + n + 5, \mathcal{N}_\gamma^{-1}[\frac{\epsilon_0\sqrt{\pi}}{16\nu} + \frac{\mathcal{N}_2\sqrt{\pi}}{16\nu}(2\nu\mathcal{N}_1^{-1}(\epsilon_0 + \epsilon_1))])$ -VE for $|\Gamma\rangle_n$, with circuit complexity $O(\nu \log(\frac{\sqrt{N}}{\epsilon_1})(a+b+n+T_1+T_2))$. We will now simplify the error component of this VE statement.

First, define $|x\rangle_n = \sum_i x_i |i\rangle_n = W|\psi\rangle_n$. Then, using the fact that $f(x) = \text{erf}(4x/5)$ has a Lipschitz-constant of $\frac{8}{5\sqrt{\pi}}$ (as per Lemma B.19), $\mathcal{N}_2^2 = \|f(W|\psi\rangle_n)\|_2^2 \leq \sum_i |f(x_i)|^2 \leq (\frac{8}{5\sqrt{\pi}})^2 \sum_i |x_i|^2 = (\frac{8}{5\sqrt{\pi}})^2 \|W|\psi\rangle_n\|_2^2$. Since $\|W\|_2 \leq 1$, $\|W|\psi\rangle_n\|_2 \leq 1$, and thus $\mathcal{N}_2 \leq \frac{8}{5\sqrt{\pi}} \leq 0.91$. Next, we must lower-bound \mathcal{N}_γ . Thus, $\mathcal{N}_\gamma^2 = (\frac{\sqrt{\pi}}{32\nu})^2 (1 + \mathcal{N}_2^2 + 2\mathcal{N}_2 \langle \Phi_2 | \psi \rangle) \geq (\frac{\sqrt{\pi}}{32\nu})^2 (1 - \mathcal{N}_2)^2 \geq (\frac{\sqrt{\pi}}{32\nu})^2 (0.09)^2$. Consequently, using that $\nu \leq 8/5$ (since $\kappa \leq 2$) we get that $\mathcal{N}_\gamma \geq 1/400$. Additionally, it is straight-forward to show that $\mathcal{N}_2/\mathcal{N}_1 \leq 0.91\kappa \leq 2$. Inserting all of these values and performing simple algebra, we find that U_3 is equivalently a $(\mathcal{N}_\gamma^{-1}, 2(a+b) + n + 5, 355(\epsilon_0 + \epsilon_1))$ -VE for $|\Gamma\rangle_n$.

Let $0 < \epsilon_2 \leq 1$. Then, invoking Lemma B.8, we get U_f , a $(1, 2(a+b) + n + 9, 2(355(\epsilon_0 + \epsilon_1) + \epsilon_2))$ -VE for $|\Gamma\rangle_n$, with circuit complexity $O(\log(\frac{\sqrt{N}}{\epsilon_1}) \log(\frac{1}{\epsilon_2})(a+b+n+T_1+T_2))$. If we let $\epsilon_2 = \epsilon_1$, then we can simplify this to a $(1, 2(a+b) + n + 9, 712(\epsilon_0 + \epsilon_1))$ -VE with circuit complexity $O(\log(\frac{\sqrt{N}}{\epsilon_1}) \log(\frac{1}{\epsilon_1})(a+b+n+T_1+T_2))$. \square

Proof of Lemma 7. This result comes from repeatedly invoking Lemma 6, with the output of each application becoming the input of the next.

We will first give a bound on the total number of ancilla qubits of the block-encoding giving the final output after k residual block layers. Let $a_0 = a$. $c = 2b + n + 9$. After one application of the residual block, the number of ancillas is given by $a_1 = 2a_0 + c$. Then, the general form for the number of ancillas is given by the recurrence $a_i = 2a_{i-1} + c$. We can obtain an upper-bound by

1998 instead setting $a_i = 2(a_{i-1} + c)$. Clearly, $a_i = 2^i(a + c) = 2^i(a + 2b + n + 9)$. Thus, we have a
 1999 $(1, 2^k(a + 2b + n + 9), \epsilon)$ -block-encoding.
 2000

2001 We will now determine a bound on the resulting error, ϵ . Note that the i^{th} residual block introduces
 2002 a new error-parameter ϵ_i which controls the error in the activation function and the normalization
 2003 of that block. After the first iteration, the error δ_1 is given by $\delta_1 = 712(\epsilon_0 + \epsilon_1)$. After the second
 2004 iteration, the error from the previous iteration becomes the new ϵ_0 , and so the error after the second
 2005 iteration is given by $\delta_2 = 712(\delta_1 + \epsilon_2)$. We can set $\epsilon_i = \delta_{i-1}$, giving the general form of the error
 2006 after the i^{th} residual layer of $\delta_i = 1424\delta_{i-1} = 724 \cdot 1424^{i-1}\epsilon_1 = 1424^i\epsilon_1/2$. Noting that we want
 2007 a final error of at most ϵ , we must set $\delta_k \leq \epsilon$. I.e., we can set $\epsilon = 1424^k\epsilon_1/2 \implies \epsilon_1 = 2\epsilon/1424^k$.
 2008 Thus, for $i > 1$, each $\epsilon_i = \delta_{i-1} = 1424^i\epsilon_1/2 = \frac{1424^i}{1424^k}\epsilon = \epsilon/1424^{k-i}$.
 2009

2010 Define $h(\epsilon_i) := \log(\sqrt{N}/\epsilon_i) \log(1/\epsilon_i)$. Let the circuit complexity of the block-encoding after
 2011 applying i residual blocks be $O(R_i)$. Noting that $R_1 \in O(h(\epsilon_1)(a_0 + b + n + T_1 + T_2))$, R_i
 2012 asymptotically dominates T_1, T_2, a_{i-1}, n and b . Then, the circuit complexity after block $i + 1$
 2013 will be $O(h(\epsilon_{i+1})(a_i + b + n + R_i + T_1)) \in O(h(\epsilon_{i+1})(a_i + R_i))$. Then, we can simplify to
 2014 find that $R_k \in O((a_k + R_1) \prod_{i=1}^k h(\epsilon_i)) \in O((2^k(a + 2b + n) + T_1 + T_2) \prod_{i=1}^k h(\epsilon/1424^{k-i}))$.
 2015 Noting that $\prod_{i=1}^k h(\epsilon_i) \in O((\prod_{i=1}^k \log(\sqrt{N}/\epsilon_i))^2)$, $\prod_{i=1}^k h(\epsilon/1424^{k-i}) \in O((\prod_{i=1}^k (k - i + \log(\sqrt{N}/\epsilon_i)))^2) \in O((k + \log(\sqrt{N}/\epsilon))^{2k})$. Since k is an asymptotic constant, $O(k + \log(\sqrt{N}/\epsilon)) \in$
 2016 $O(\log(\sqrt{N}/\epsilon))$, and so $\prod_{i=1}^k h(\epsilon/1424^{k-i}) \in O(\log(\sqrt{N}/\epsilon)^{2k})$. Thus, the overall circuit com-
 2017 plexity is given by $O(\log(\sqrt{N}/\epsilon)^{2k}(a + 2b + n + T_1 + T_2))$.
 2018

□

2019 **Lemma C.2 (Full-Rank Linear Pooling Output Block).** *Consider the architecture block shown
 2020 in Figure 5. Let the dimension of the input vector be $N = 2^n$, and let the dimension of the output of
 2021 the network block be $C = 2^c$ (i.e., the number of classes). Let the output of the network be given by
 2022 the vector $|y\rangle_c$. Suppose we have U_ψ an $(1, a, \epsilon_0)$ -VE for the N -dimensional input vector $|\psi\rangle_n = \mathbf{x}$
 2023 with $O(T_{\epsilon_0})$ circuit complexity. Here, T_{ϵ_0} makes explicit that the complexity of the input circuit will
 2024 be dependent on the desired error of the vector encoding of the layer input to this architectural block.
 2025 Suppose we are given access to an arbitrary matrix W such that $\|W\|_2 \leq 1$ as per Theorem B.1.
 2026 Then, if the weight on the skip-path is $\tau = 0.51$, we can draw a sample from a vector $|\tilde{\phi}\rangle_c$ such that
 2027 $\left\| |\tilde{\phi}\rangle_c - |y\rangle_c \right\|_2 \leq \epsilon$ with $O(\log(\frac{N}{\sqrt{C}\epsilon})(T_{\epsilon_0} + a + n^2))$ circuit complexity and with $O(a + n)$ total
 2028 ancilla qubits.
 2029*

2030 *Proof.* Let d represent the number of bits in part of the QRAM encoding of W , as per Theorem B.1.
 2031 Note that d is assumed to be an asymptotic constant. Let $|\phi_1\rangle_n := Wg(|\psi\rangle_n)$, $\mathcal{N}_1 := \|\phi_1\rangle_n\|$ and
 2032 $|\Phi_1\rangle_n := |\phi_1\rangle_n/\mathcal{N}_1$. Using Theorem B.1, we can get a $(\mathcal{N}_1^{-1}, 2a + d + 3 + n, 2\epsilon_0\mathcal{N}_1^{-1})$ -VE for
 2033 $|\Phi_1\rangle_n$ with $O(T_{\epsilon_0} + dn + n^2)$ circuit complexity. Here d is a constant specifying the precision in the
 2034 representation of the elements of the matrix stored as per Definition B.3.
 2035

2036 Let $|\gamma\rangle_n := \tau|\psi\rangle_n + (1 - \tau)|\Phi_1\rangle_n\mathcal{N}_1 = \tau|\psi\rangle_n + (1 - \tau)Wg(|\psi\rangle_n)$, and let $\mathcal{N}_\gamma := \|\gamma\rangle_n\|_2$.
 2037

2038 Then, Lemma 1 yields V_2 a $(\mathcal{N}_\gamma^{-1}, 2a + d + 4 + n, 3\epsilon_0\mathcal{N}_\gamma^{-1})$ -VE for $|\gamma\rangle_n/\mathcal{N}_\gamma$ with $O(T_{\epsilon_0} + dn + n^2)$
 2039 circuit complexity.

2040 We will now lower-bound \mathcal{N}_γ . The main idea is that if you are summing two vectors, one with norm
 2041 1, and the other with norm at most 1, if you put arbitrarily more mass on the constant-norm vector (δ),
 2042 you are guaranteed that the vectors cannot fully cancel out, and thus that some norm is preserved in the
 2043 sum. Note that $\mathcal{N}_1 = \|Wg(|\psi\rangle_n)\|_2 \leq \|W\|_2 \left\| \sum_j \psi_j^2 |j\rangle_n \right\|_2 \leq \left\| \sum_j \psi_j |j\rangle_n \right\|_2 = 1$. Consequently,
 2044 $|\langle\psi|\Phi_1\rangle| \leq 1$, and so
 2045

$$\mathcal{N}_\gamma^2 = \|\tau|\psi\rangle_n + (1 - \tau)|\Phi_1\rangle_n\mathcal{N}_1\|_2^2 = \tau^2 + (1 - \tau)^2\mathcal{N}_1^2 + 2\tau(1 - \tau)\mathcal{N}_1\langle\psi|\Phi_1\rangle \quad (C.2)$$

$$\geq \tau^2 + (1 - \tau)^2\mathcal{N}_1^2 + 2\tau(1 - \tau) = (\tau - (1 - \tau)\mathcal{N}_1)^2. \quad (C.3)$$

2046 For some parameter $\delta \in [0, 1]$, assuming that $\tau = (1 + \delta)/2$, we then get that $\mathcal{N}_\gamma \geq \delta$.
 2047

2048 Then, define $\epsilon_1 \in (0, 1]$. We can then invoke Lemma B.8 yielding V_3 a $(1, 2a + d + 8 + n, \frac{6\epsilon_0}{\delta} + 2\epsilon_1)$ -
 2049 VE for $|\gamma\rangle_n/\mathcal{N}_\gamma$ with $O(\frac{1}{\delta} \log(1/\epsilon_1)(T_{\epsilon_0} + a + dn + n^2))$ circuit complexity.
 2050

2052 Define pool_C as per Definition C.1. Noting that $\text{pool}_C(|\gamma\rangle_n/\mathcal{N}_\gamma) = |y\rangle_c$.
 2053
 2054 We can equivalently define some ℓ_2 -normalized state $|\tilde{\Gamma}\rangle_n$ such that V_3 is a $(1, 2a + d + 8 + n, 0)$ -VE
 2055 for $|\tilde{\Gamma}\rangle_n$. Then, since $\left\| |\tilde{\Gamma}\rangle_n - \frac{|\gamma\rangle_n}{\mathcal{N}_\gamma} \right\|_2 \leq \frac{6\epsilon_0}{\delta} + 2\epsilon_1$, we can invoke Lemma C.1 which shows that
 2056
 2057 $\left\| \text{pool}_C(|\tilde{\Gamma}\rangle_n) - |y\rangle_c \right\|_2 \leq \frac{2N}{\sqrt{C}} \left(\frac{6\epsilon_0}{\delta} + 2\epsilon_1 \right)$.
 2058
 2059 Consequently, to get an error of at most ϵ , we set $\frac{2N}{\sqrt{C}} \left(\frac{6\epsilon_0}{\delta} + 2\epsilon_1 \right) = \epsilon$, by setting $\epsilon_1 = \frac{\sqrt{C}\epsilon}{8N}$ and
 2060 $\epsilon_0 = \frac{\epsilon\sqrt{C}\delta}{24N}$. Then, we can simply draw a sample ϵ -close to $|y\rangle_c$ in ℓ_2 -norm distance by sampling the
 2061 state prepared by V_3 and then assigning it to the appropriate bin.
 2062
 2063 Setting $\delta = 0.02$ gives $\tau = 0.51$. Then, V_3 is a $(1, 2a + d + 8 + n, \epsilon)$ -VE for $|\gamma\rangle_n/\mathcal{N}_\gamma$ with
 2064 $O(\log(\frac{N}{\sqrt{C}\epsilon})(T_{\epsilon_0} + a + dn + n^2))$ circuit complexity. Consequently, we can draw a sample from some
 2065 vector $|\tilde{\phi}\rangle_c$ such that $\left\| |\tilde{\phi}\rangle_c - |y\rangle_c \right\|_2 \leq \epsilon$ with $O(\log(\frac{N}{\sqrt{C}\epsilon})(T_{\epsilon_0} + a + dn + n^2)) \in O(\log(\frac{N}{\sqrt{C}\epsilon})(T_{\epsilon_0} +$
 2066 $a + n^2))$ circuit complexity, and with $O(a + n)$ ancilla qubits, noting that d is an asymptotic
 2067 constant. \square
 2068
 2069

D FEASIBILITY OF QRAM ASSUMPTIONS

2072 In this section, we consider the feasibility of different QRAM assumptions to help motivate our
 2073 discussion in Appendix E. In Section D.1 we consider the feasibility of our QRAM assumptions.
 2074 In Section D.2 we summarize how arbitrary quantum states can be prepared by using a QRAM
 2075 data-structure, in service of our subsequent discussion of the different architectural regimes.

D.1 PASSIVE AND ACTIVE QRAM

2076 It is clear that, if a fault-tolerant quantum computer can be constructed, that a QRAM based on
 2077 the various quantum circuit constructions (see Jaques & Rattew (2023); Giovannetti et al. (2008a);
 2078 Hann (2021)) can be directly implemented. Moreover, these circuit constructions have log-depth
 2079 access costs. However, as laid out in Jaques & Rattew (2023), the fundamental issue regarding the
 2080 practicality of QRAM comes down to the opportunity cost of the total energy required to implement
 2081 a query to the QRAM. Precisely, given a QRAM with N bits of memory, a QRAM is considered
 2082 *passive* if and only if each query to the QRAM requires $o(N)$ *total* energy input. If the query instead
 2083 requires $\Omega(N)$ energy input (even if the time complexity is $O(\text{polylog}(N))$) then the QRAM is
 2084 *active*. Importantly, this means that any QRAM implemented in the error-corrected circuit-model
 2085 must be active, as each qubit requires $O(1)$ classical resources to run the error-correction, resulting
 2086 in an $\Omega(N)$ total energy cost per QRAM query. Even if error-correction is not used, if enacting
 2087 the gates in the system requires constant energy input (e.g., by enacting the gates as laser pulses)
 2088 then the QRAM will be active. If the QRAM is active, then Jaques & Rattew (2023) show that
 2089 a wide-range of quantum linear algebra applications lose quantum speedup. Moreover, there are
 2090 additional challenges such as how a noisy (non-error corrected) quantum memory could be interfaced
 2091 with an error-corrected quantum processor.
 2092
 2093

2094 However, as noted in Jaques & Rattew (2023) there is some hope in practice, and we will now outline
 2095 their arguments. As an example, consider classical Dynamic Random Access Memory (DRAM).
 2096 DRAM requires a constant power draw for each bit in memory, and thus an N -bit memory requires
 2097 $\Omega(N)$ energy input. This makes DRAM active. Nevertheless, because the energy expenditure of
 2098 DRAM is often dwarfed by the energy expenditure of the CPU accessing it, it is usually treated
 2099 as being a passive component in classical algorithm design. For instance, Carroll & Heiser (2010)
 2100 demonstrates that for mobile phones, “RAM power is insignificant in real workloads”, and Mahesri
 2101 & Vardhan (2005) draws a similar conclusion for laptops. At larger server-scales, the asymptotics
 2102 of active memory become more noticeable, but memory still usually draws less power than the
 2103 controlling CPU (Ahmed et al., 2021; Fan et al., 2007). Analogously, consider a regime where a
 2104 QRAM is active, but its constant energy costs are extremely small relative to the energy costs of
 2105 the error-corrected quantum computer it is being interfaced with. Given the *substantial* expected
 2106 overheads of quantum error-correction (Babbush et al., 2021), the ratio of energy consumption for an
 2107 error-corrected QPU to an active QRAM could be even more favourable than in the classical setting.

Then, if there is some way to interface this noisy device with the error-corrected QPU, for moderate scales (e.g., terabytes of memory), it is conceivable that the QRAM could be practically treated as passive. We will call this a “practically passive QRAM”. Nevertheless, even though practically passive QRAMs are asymptotically active, they are unlikely to allow full error-correction without losing their constant advantages (unless, for some reason, the structure of QRAM allows for extremely efficient custom-made error-correcting codes). Consequently, it is important that the QRAM implementation is resilient to errors. Indeed QRAMs based on the bucket-brigade architecture (Giovannetti et al., 2008b), are intrinsically *exponentially* (in terms of the number of memory registers) robust to errors (Hann et al., 2021; Hann, 2021; Hong et al., 2012).

In this paper, for simplicity, when making a QRAM assumption we treat the QRAM as passive. We stress that substantially more work is needed to fully understand the feasibility of QRAM, but that it is plausible that the QRAM assumptions made in this paper could be physically realized in practice. In particular, assuming that truly passive QRAM is impossible, we outline the following questions (building on Jaques & Rattew (2023)) which could result in our results being practically useful. How can a noisy QRAM system be interfaced with an error-corrected quantum computer? If such an interface is possible, how do errors in the QRAM propagate through the error-correction in the QPU? Recent promising work (Dalzell et al., 2025a) provides answers to these two preceding questions, and offers a path forward for research aiming to construct practically passive and useful QRAM. Additional questions which need to be investigated to help realize a practically passive QRAM include some of the following. What is the ratio in energy consumption for plausible practically passive QRAM systems to the energy consumption of the controlling fault-tolerant QPUs for different error-correcting codes? Given potential active (practically passive) QRAM architectures, what is the total expected energy consumption for different sized memories?

D.2 INPUT PREPARATION VIA QRAM

The data-structure due to Kerenidis & Prakash (2017) can allow for an arbitrary quantum state to be prepared, so long as the state amplitudes are made available through a specific QRAM data-structure.

Lemma D.1 (Input Data QRAM Data-Structure (Kerenidis & Prakash, 2017)). *Let $N = 2^n$. Given a vector $\mathbf{x} \in \mathbb{R}^N$, we can define a data-structure utilizing a QRAM with $\tilde{O}(N)$ total qubits⁷ storing \mathbf{x} . Then: (1) the cost to update (insert, delete, or modify) an entry x_j is $O(n^2)$, (2) using the QRAM data-structure, the state $|\mathbf{x}\rangle = \mathbf{x} / \|\mathbf{x}\|_2$ can be prepared by a circuit with depth $O(n^2)$, acting on $O(n)$ qubits.*

This is just a special case of the more general result in Kerenidis & Prakash (2017) giving a similar data-structure for arbitrary matrices (which we presented as QRAM for quantum data in Appendix A). Intuitively, the state can be prepared by following Grover-Rudolph (Grover & Rudolph, 2002), using the QRAM data structure containing the tree of binary partial norms of the vector to compute the controlled rotation angles for each additional qubit.

E ARCHITECTURES IN DIFFERENT REGIMES

As summarized in the main text, the results presented thus far can be used to construct a range of architectures in a number of different settings. In particular, we consider three regimes characterized by the QRAM assumptions they make. In the first regime, we assume that both the input to the network and the weights in the network are made available via QRAM. In the second regime, we assume that the network may use QRAM (since its QRAM data-structure may be pre-computed prior to inference-time), but that the input to the network is received classically and entirely on-the-fly, and thus that the input cannot be provided with QRAM (so a cost linear in the dimension of the input must be paid to load it into the quantum computer). In the third regime, we assume no QRAM. We will now expand on the arguments presented in the main text in greater detail.

E.1 REGIME 1: INPUT AND NETWORK USE QRAM

Here we expand on the argument presented in Section 4.1.

⁷Neglecting the finite precision error due to storing vector elements (and their partial squared sums) in binary representations

2160 **Online Input Construction** Noting that as per Section D.2 QRAM data-structures can be efficiently
 2161 updated, we note that there are a number of settings where it might be realistic for the input vector to
 2162 be provided via QRAM. For example, in any setting where inference needs to be repeatedly performed
 2163 on a slowly-changing input (e.g., in an interactive chat with an autoregressive LLM, where each
 2164 output token becomes part of the new input), or where the input is the result of some other quantum
 2165 algorithm. For example, in the context of auto-regressive interactive LLM (where the output would
 2166 be a probability distribution over tokens instead of classes), the initial vector \mathbf{x} might be an encoding
 2167 of the hidden prompt to the network (and so the associated data-structure can be pre-computed). As a
 2168 user queries the LLM, a small number of tokens are added to \mathbf{x} , and these updates can be efficiently
 2169 performed to the data structure. Then, the network is run, and the new output token is added to \mathbf{x} ,
 2170 again efficiently. This process can then continue to repeat, and so the cost of loading the data is
 2171 either entirely precomputed, or amortized on-the-fly. We can envision similar applications in the
 2172 classification of video, where a very large, but slowly-changing, video needs to be analysed one frame
 2173 at a time. Here, a cost would need to be paid proportional to the number of changing pixels between
 2174 each frame, and so the input data-structure could be efficiently updated. Additional settings where it
 2175 might be reasonable for the input to be provided efficiently could be if the input corresponds to some
 2176 combination of continuous function (via Rattew & Koczor (2022)), or if it was prepared as the output
 2177 of some other quantum algorithm.

2178 **Receptive Field** To understand the importance of the final linear layer in the architecture for this
 2179 regime, we must first summarize the receptive field problem of multi-layer convolutional architectures.

2180 For simplicity, consider a 2D convolution with one input channel and one output channel, and consider
 2181 a sequence of k such convolutional layers. Let the kernel be $D \times D$. Since a convolutional layer
 2182 can map the information in location i, j to, at the furthest, the location $i + D, j + D$, after k layers
 2183 the information in any given entry will come from local information in the input at most $\approx kD$
 2184 pixels away. Consequently, the final layer which is input to the output linear-layer-residual block
 2185 will contain features with kD local information, which the linear layer then combines in a global
 2186 fashion. We conjecture that having a full-rank layer at this stage is more effective for merging the
 2187 local information than a similar dimension, but low-rank, linear layer. Since the cost of the quantum
 2188 algorithm grows exponentially with depth, without the final linear layer, with such an architecture no
 2189 learning could occur which requires global information from the input image.

2190 Moreover, there are other approaches which could be taken to make the local information globally
 2191 accessible to the earlier convolutional layers, potentially improving the power of such quantum-
 2192 amenable architectures in practice. For instance, after a set number of convolutional layers, a
 2193 linear layer could be added to make local information global (however, this damages the nice
 2194 algebraic properties of convolutional layers). Alternatively, a sequence of convolutions can be
 2195 implemented in each residual block (without activation functions between them) as this would not
 2196 increase the complexity exponentially, potentially allowing for many more convolutions in sequence.
 2197 Most appealingly, a solution can be found in the popular classical architecture of bilinear neural
 2198 networks (Lin et al., 2015) (which forms the basis of the architecture presented for Regime 2). Here,
 2199 paths of convolutional-based residual blocks are passed into a Kronecker product, which is followed
 2200 by more layers. Via Lemma 3, we can efficiently do this in a quantum computer. Since the Kronecker
 2201 product makes all local information globally available, it immediately solves the receptive field
 2202 problem. However, while a Kronecker product makes local information globally accessible, it loses
 2203 positional information. This can be resolved by enacting a positional encoding along one of the
 2204 paths of the network prior to the product, e.g., as is done when Tokenizing the inputs to transformer
 2205 architectures (Vaswani et al., 2017).

2206 **Dequantization** A number of quantum algorithms which were believed to have exponential speed-
 2207 ups over their classical counterparts lost their exponential speedup after new classical randomized
 2208 algorithms were developed which mirrored the quantum input assumptions. For example, see the
 2209 works of Kerenidis & Prakash (2017) and Tang (2019). Indeed, it seems likely that, as was the case
 2210 with the quantum CNN implementation in Kerenidis et al. (2020), that the convolutional residual
 2211 blocks in our architectures could be dequantized (even though they make no QRAM assumptions).
 2212 However, our new techniques enables the final linear-residual block to contain an arbitrary full-
 2213 rank and dense matrix. Since known dequantization techniques require the matrix to be either
 low-rank (Chia et al., 2022; Tang, 2019) or sparse (with certain strong caveats) (Gharibian & Le Gall,

2214 2023), existing techniques appear insufficient to dequantize our full architecture. Moreover, as
 2215 previously discussed, removing the final linear layer introduces receptive field problems, highlighting
 2216 that it is not a purely artificial addition to the network. Nevertheless, it would be interesting to
 2217 exploring dequantizing the architecture without the final linear layer (or perhaps replacing it with a
 2218 low-rank one), and this could result in some interesting techniques to classical accelerate inference
 2219 for certain architectures.

2220

2221 E.2 REGIME 2: NETWORK STORED IN QRAM, INPUT LOADED WITHOUT QRAM

2222

2223 See the discussion in Section 4.1.

2224

2225 E.3 REGIME 3: No QRAM

2226

2227 To reiterate, in this regime, both the matrix weights and the network input are not given by QRAM.
 2228 We will now prove the complexity of the Regime 3 architecture shown in Figure 1 (c), as discussed
 2229 in Section 4.1. We note that there are many simple modifications which could be made to this
 2230 architecture, for example by having a final low-rank linear layer with $O(N)$ parameters. Adopt the
 2231 notation used in Theorem 2. Let the input be a $4 \times M \times M$ tensor, and define $N = M^2$, $n = \log_2(N)$,
 2232 $m = \log_2(M)$. Thus, the vectorized input is of dimension $O(N)$. Let d be the number of paths into
 2233 the input tensor (i.e., the latent dimension will be $O(N^d)$), as per Figure 1 (c). T_X is the access cost
 2234 of the input; in the QRAM-free regime we assume a worst-case of $T_X \in O(N)$. Let C be the number
 2235 of output classes (or set of possible output tokens).

2236 Assume $d = 2$. Let $\delta > 0$ be an error parameter used only in the proof. Directly from the proof
 2237 of Theorem 2, we have U_{conv} , a $(1, 2^k(63 + n), \delta)$ -VE (vector encoding) for the ℓ_2 -normalized output
 2238 of the k convolutional/residual block layers. U_{conv} has $O(\log(N/\delta)^{2k}(n^2 + T_X))$ circuit depth. Note
 2239 that in that proof, N corresponds to the vectorized dimension of the latent space (i.e., if there is 1 input
 2240 and output channel, N corresponds to the dimension of the vector acted upon by the matrix-form of
 2241 the 2D convolution), and thus corresponds to N^d here.

2242 Let $|\phi\rangle$ represent the exact vector output after the sequence of k convolutional layers. This VE
 2243 corresponds to a state $|\tilde{\phi}\rangle$ such that $\|\phi\rangle - |\tilde{\phi}\rangle\|_2 \leq \delta$. Consequently, by Lemma C.1, sampling
 2244 this VE (and applying the binning-protocol) yields a sample from a vector $\text{pool}_C(|\tilde{\phi}\rangle)$ such that
 2245 $\|\text{pool}_C(|\phi\rangle) - \text{pool}_C(|\tilde{\phi}\rangle)\|_2 \leq \frac{2N^2\delta}{\sqrt{C}}$. Noting that the correct output of the network is given by
 2246 $\mathbf{y} = \text{pool}_C(|\phi\rangle)$, we can get an overall error of ϵ , such that the vector we sample from satisfies
 2247 $\|\mathbf{y} - \text{pool}_C(|\tilde{\phi}\rangle)\|_2 \leq \epsilon$ by setting $\epsilon = \frac{2N^2\delta}{\sqrt{C}} \implies \delta = \frac{\epsilon\sqrt{C}}{2N^2}$. By plugging this into the circuit
 2248 complexity of U_{conv} , and noting that here we assume we pay the full input dimension cost (since there
 2249 is no QRAM), $T_X \in O(N)$, and so this simplifies to $O(N \log(N^3/\epsilon\sqrt{C})^{2k}) \in \tilde{O}(N \log(1/\epsilon)^{2k})$
 2250 total circuit cost. As stated in the main text, since the dimension of the vector acted on by the 2D
 2251 convolution is $O(N^2)$ (when $d=2$), the classical cost to compute this is $\Omega(N^2)$: showing a **quadratic**
 2252 **speedup over an exact classical implementation**. The speedup can be made asymptotically larger
 2253 by increasing d .

2254

2255 **Possible Limitations** Here we will outline some of the possible limitations of the architecture
 2256 shown in Figure 1 (c). Since there is no final linear layer (in the architecture as directly presented),
 2257 the receptive field problems outlined in Section 4.1 may appear to apply. However, by virtue of taking
 2258 the tensor product of the input paths, local information becomes immediately globally accessible
 2259 circumventing this limitation. Moreover, another way that local information could made global is
 2260 from the processing that occurs along each path prior to the tensor product, since there is no limit on
 2261 the classical processing that can occur (so long as the total compute is linear in the dimension of the
 2262 input).

2263 Moreover, our argument against dequantization in the first regime (see Section 4.1) relies on the
 2264 final dense and full-rank linear layer. However, since this layer is not feasible without QRAM, this
 2265 argument does not apply here. However, as we are only suggesting a polynomial speedup in Regime
 2266 3, we do not expect a dequantized algorithm to completely close the performance gap past quadratic,
 2267 as we benefit from amplitude amplification. However, exploring dequantized algorithms based on the
 2268 ideas in this paper appears to be interesting subsequent work.

Finally, if the network only contains the convolutional layers, it will likely be very under-parameterized making training challenging (see e.g., Allen-Zhu et al. (2019) for a discussion on overparameterized neural networks). However, where the dimension of the vectorized input is N , it would be easy to add $O(N)$ parameters, either in the classical paths prior to the tensor product, or as a final low-rank residual output block (prior to the ℓ_2 -norm-pooling), so long as the number of parameters in that block are $O(N)$.

Alternative: Parameterized Quantum Circuits as Network Layers Alternatively, one could use parameterized quantum circuits as network layers (Peruzzo et al., 2014; Benedetti et al., 2019b; Cerezo et al., 2021), as the number of parameters in such circuits are usually polylogarithmic in the dimension of the operator. However, such circuits are often hard to train even on classical machines, due to under-parameterization, the barren plateau problem (McClean et al., 2018; Larocca et al., 2025), and the exponential amount of bad local minima in the optimization landscape (Anscheutz & Kiani, 2022). However, given good enough initializations and warm start assumptions (Mhiri et al., 2025), it may still possible to train such architectures, leading to potential speed-ups in inference.

Other Possible Sources of Speedup In some cases, where the input can be efficiently prepared without paying a dimension-dependent cost (e.g., the input comes from quantum states which are easy to prepare, either via some other quantum algorithm, or via techniques like Rattew & Koczor (2022)) it may be possible to obtain better than quadratic speedups. However, we leave this as a topic for future investigation.

F TECHNICAL RESULTS

We now report a result on the efficient polynomial approximation to the error function due to Low & Chuang (2017), which builds on the results of Sachdeva & Vishnoi (2014). This result is an improvement over the approximation obtained by an integration of the series expansion for the Gaussian distribution.

Lemma F.1 (Polynomial Approximation to Error Function due to Corollary 4 of Low & Chuang (2017)). *Let $m \geq 1/2$, $1 \geq \epsilon > 0$. There exists a degree $k \in O(m \log(1/\epsilon))$ polynomial $P_{k,m}(x)$ such that*

$$P_{k,m}(x) := \frac{2me^{-m^2/2}}{\sqrt{\pi}} \left(I_0(m^2/2)x + \sum_{j=1}^{(k-1)/2} I_j(m^2/2)(-1)^j \left(\frac{T_{2j+1}(x)}{2j+1} - \frac{T_{2j-1}(x)}{2j-1} \right) \right) \quad (\text{F.1})$$

and $\max_{x \in [-1,1]} |\text{erf}(mx) - P_{k,m}(x)| \leq \epsilon$. Let $1 \geq c > 0$. Alternatively, if $k \in O(m \log(mc/\epsilon))$, then $\max_{x \in [-c,c]} |\text{erf}(mx) - P_{k,m}(x)| \leq \epsilon$. Additionally, for all k , $\max_{x \in [-1,1]} |P_{k,m}(x)/x| \leq \frac{4m}{\sqrt{\pi}}$, and $P_{k,m}(0) = 0$. Finally, $\min_{x \in [-1,1]} |\text{erf}(mx)/x| \geq 1/2$, and $\text{erf}(mx)$ has Lipschitz constant $L = \frac{2m}{\sqrt{\pi}}$,

Proof. For the case where $\max_{x \in [-1,1]} |\text{erf}(mx) - P_{k,m}(x)| \leq \epsilon$, the result on the polynomial approximation is directly taken from Low & Chuang (2017). We will now prove the bound when the function is constrained to the interval $[-c, c]$. Let $\epsilon_1 := \max_{x \in [-c,c]} |\text{erf}(mx) - P_{k,m}(x)|$. From Equation (71) of Corollary 4 of Low & Chuang (2017), for a degree k polynomial approximation, we have the following error-bound,

$$\epsilon_1 \leq \frac{2me^{-m^2/2}}{\sqrt{\pi}} \left| \sum_{j=(k+1)/2}^{\infty} I_j(m^2/2)(-1)^j \left(\frac{T_{2j+1}(x)}{2j+1} - \frac{T_{2j-1}(x)}{2j-1} \right) \right|. \quad (\text{F.2})$$

Using the identity $\left(\frac{T_{2j+1}(x)}{2j+1} - \frac{T_{2j-1}(x)}{2j-1} \right) = 2 \int_0^x T_{2j}(t) dt$, and using the fact that all Chebyshev polynomials of the form T_{2j} are even, we can get the bound that $2 \left| \frac{T_{2j+1}(x)}{2j+1} - \frac{T_{2j-1}(x)}{2j-1} \right| \leq 2 \int_0^{|x|} |T_{2j}(t)| dt \leq 2|x| \leq 2 \max_{x \in [-c,c]} |x| = 2c$, since $\max_{x \in [-1,1]} |T_{2j}(x)| \leq 1$.

2322 Then, applying the triangle inequality, Equation (F.2) becomes,
 2323

$$2324 \epsilon_1 \leq \frac{4cm e^{-m^2/2}}{\sqrt{\pi}} \sum_{j=(k+1)/2}^{\infty} |I_j(m^2/2)|. \quad (F.3)$$

2327 Define $\epsilon_{gauss,\gamma,k}$ as per Corollary 3 of Low & Chuang (2017). Define some $\epsilon' > 0$.
 2328 Note that $\epsilon_{gauss,\gamma,k} = 2e^{-\gamma^2/2} \sum_{j=\frac{n}{2}+1}^{\infty} |I_j(\gamma^2/2)|$, and that $\epsilon_{gauss,\gamma,k} \leq \epsilon'$ if $k \in$
 2329 $O(\sqrt{(\gamma^2 + \log(1/\epsilon')) \log(1/\epsilon')})$. Thus, $\epsilon_1 \leq \frac{2cm\epsilon'}{\sqrt{\pi}}$. To get an overall error-bound of at most
 2330 ϵ , we can set $\frac{2cm\epsilon'}{\sqrt{\pi}} = \epsilon$, and so $\epsilon' = \frac{\sqrt{\pi}\epsilon}{2cm}$. Thus, if we set $k \in O(m \log(\frac{cm}{\epsilon}))$, we are guaranteed
 2331 that $\max_{x \in [-c, c]} |P_{k,m}(x) - \text{erf}(mx)| \leq \epsilon$.
 2332

2333 Next, $\frac{d}{dx} \text{erf}(mx) = \frac{2m}{\sqrt{\pi}} e^{-(mx)^2}$, and consequently the maximum value of the derivative of the
 2334 function is when $x = 0$, i.e., $\max_{x \in [-1, 1]} |\frac{d}{dx} \text{erf}(mx)| = \frac{2m}{\sqrt{\pi}}$.
 2335

2336 We will now prove that $|P_{k,m}(x)/x| \leq \frac{4m}{\sqrt{\pi}}$ and $\min_{x \in [-1, 1]} |\text{erf}(mx)/x| \geq 1/2$.
 2337

2338 Noting that $P_{k,m}(0) = 0$, (since for $x = 0$, $T_{2j}(x) = \cos((2j+1) \arccos(0)) = \cos((2j+1)\pi/2) = 0$), by Lipschitz continuity we have that $|P_{k,m}(x)/x| \leq |\frac{d}{dx} P_{k,m}(x)|$. Noting that
 2339 $\frac{d}{dx} \frac{1}{2} \left(\frac{T_{2j+1}(x)}{2j+1} - \frac{T_{2j-1}(x)}{2j-1} \right) = T_{2j}(x)$,
 2340

$$2341 \max_{x \in [-1, 1]} |P_{k,m}(x)/x| \leq \max_{x \in [-1, 1]} \left| \frac{d}{dx} P_{k,m}(x) \right| \quad (F.4)$$

$$2342 = \max_{x \in [-1, 1]} \left| \frac{2me^{-m^2/2}}{\sqrt{\pi}} \left(I_0(m^2/2) + 2 \sum_{j=1}^{(k-1)/2} I_j(m^2/2) (-1)^j T_{2j}(x) \right) \right|. \quad (F.5)$$

2343 A common identity for modified Bessel functions of the first kind states for $t \neq 0$, $e^{\frac{1}{2}yt(t^{-1})} =$
 2344 $\sum_{j=-\infty}^{\infty} t^j I_j(y)$. Setting $t = 1$, we find $e^y = \sum_{j=-\infty}^{\infty} I_j(y)$. Moreover, since $I_j(y) \geq 0$ for all
 2345 $y > 0$, $\sum_{j=1}^{(k-1)/2} I_j(m^2/2) \leq e^{m^2/2}$. Thus, using that $\max_{x \in [-1, 1]} |T_{2j}(x)| \leq 1$,
 2346

$$2347 \max_{x \in [-1, 1]} |P_{k,m}(x)/x| \leq \frac{4me^{-m^2/2}}{\sqrt{\pi}} \sum_{j=1}^{(k-1)/2} I_j(m^2/2) \leq \frac{4m}{\sqrt{\pi}}. \quad (F.6)$$

2348 Thus, it is clear that this upper-bound is independent of the degree of the polynomial approximation,
 2349 and thus applies to the whole interval $x \in [-1, 1]$ and not just $x \in [-c, c]$.
 2350

2351 Finally, we must show that $\min_{x \in [-1, 1]} |\text{erf}(mx)/x| \geq 1/2$. First, note that $|\text{erf}(mx)/x|$ is
 2352 symmetrical, so we can simply consider the interval $x \in [0, 1]$. Moreover, it is monotonically
 2353 decreasing, so we can take the endpoint $\min_{x \in [-1, 1]} |\text{erf}(mx)/x| = \text{erf}(m)$. Since $m \geq 1/2$,
 2354 $\text{erf}(m) \geq \text{erf}(1/2) \approx 0.52 > 1/2$. \square
 2355

2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375