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ABSTRACT

Fault-tolerant Quantum Processing Units (QPUs) promise to deliver exponential
speed-ups in select computational tasks, yet their integration into modern deep
learning pipelines remains unclear. In this work, we take a step towards bridging
this gap by presenting the first fully-coherent quantum implementation of a multi-
layer neural network with non-linear activation functions. Our constructions mirror
widely used deep learning architectures based on ResNet, and consist of residual
blocks with multi-filter 2D convolutions, sigmoid activations, skip-connections,
and layer normalizations. We analyse the complexity of inference for networks
under three quantum data access regimes. Without any assumptions, we establish a
quadratic speedup over classical methods for shallow bilinear-style networks. With
efficient quantum access to the weights, we obtain a quartic speedup over classical
methods. With efficient quantum access to both the inputs and the network weights,
we prove that a network with an N -dimensional vectorized input, k residual block
layers, and a final residual-linear-pooling layer can be implemented with an error
of ϵ with O(polylog(N/ϵ)k) inference cost.

1 INTRODUCTION

Within the past decade, deep learning methods (LeCun et al., 2015; Goodfellow et al., 2016) have
become the mainstream methodology to tackling problems in machine learning and generative
artificial intelligence, including tasks in computer vision (He et al., 2016; Ho et al., 2020; Dosovitskiy
et al., 2021), natural language processing (Vaswani et al., 2017; Brown et al., 2020) and various
other tasks with increasing applicability (Silver et al., 2016; Jumper et al., 2021; Fawzi et al., 2022).
This progress is partly facilitated by advances in GPUs, which offer speed-ups for parallelizable
operations such as matrix-vector arithmetic. However, as we approach the physical limits of Moore’s
law (Moore, 1965), the continuous upscaling of CPUs and GPUs may begin to plateau. Consequently,
a natural question is whether quantum computing (Feynman, 1982; 1986; Nielsen & Chuang, 2010)
and potential quantum processing units (QPUs) can offer further acceleration for deep learning.

The field of quantum machine learning (QML) (Biamonte et al., 2016; Schuld & Petruccione, 2021;
Du et al., 2025), investigates this possibility. QML can broadly be separated into two main paradigms:
(1) quantum algorithms tailored to the structure of near-term quantum hardware (Preskill, 2018) under
assumptions of limited quantum resources, and (2) using quantum subroutines to obtain provable
speed-ups for existing machine learning models, typical requiring large amounts of quantum resources
necessitating error-corrected fault-tolerant quantum computers.

In the first paradigm, proposals of quantum neural networks (QNN) based on variational quantum
algorithms (VQA) (Peruzzo et al., 2014; Cerezo et al., 2021) train parametrized quantum circuits
(PQC) (Benedetti et al., 2019b) in an analogue to multi-layer neural networks. However, these
algorithms face trainability issues in the form of poor local minima (Bittel & Kliesch, 2021; An-
schuetz & Kiani, 2022) and vanishing gradients, or barren plateaus (McClean et al., 2018; Larocca
et al., 2025). Moreover, techniques mitigating these issues often result in the algorithms being
classically simulable (Cerezo et al., 2025; Bermejo et al., 2024). While alternate approaches such
as quantum kernel methods (Havlíček et al., 2019; Schuld & Killoran, 2019) and others have been
proposed (Benedetti et al., 2019a; Huang & Rebentrost, 2024), they often face similar trainability
issues (Thanasilp et al., 2024; Rudolph et al., 2024).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Erf

N
orm

alize

Flatten

Square

Linear

L2 Pool

N
orm

alize

Square

“Cat”

2D  
Conv

N
orm

alize

Erf

N
orm

alize

Flatten

Square

Linear

L2 Pool

N
orm

alize

Square

“Cat”

2D  
Conv

N
orm

alize

Neural Net
… d×

Concatenate
(b)

(a)

L2 Pool

N
orm

alize

Square

“Cat”

(c)

… d×

k×

k×

Erf

N
orm

alize

Flatten
2D  
Conv

N
orm

alize

k×
Neural Net

Neural Net

Neural Net

Erf

N
orm

alize

Flatten

Square

Linear

L2 Pool

N
orm

alize

Square

“Cat”

2D  
Conv

N
orm

alize

Erf

N
orm

alize

Flatten

Square

Linear

L2 Pool

N
orm

alize

Square

“Cat”

2D  
Conv

N
orm

alize

Neural Net

… d×

Concatenate
(b)

(a)

L2 Pool

N
orm

alize

Square

“Cat”

(c)

… d×

k×

k×

Erf

N
orm

alize

Flatten

2D  
Conv

N
orm

alize

k×
Neural Net

Neural Net

Neural Net

Figure 1: Architecture for Convolutional Neural Networks. This figure shows the architectures we
consider with provable quantum complexity guarantees for inference under three regimes of quantum
data access assumptions. (a) Depicts the architecture where both the inputs and network weights are
provided in an efficient quantum data structure. (b) Only the network weights are provided in an
efficient quantum data structure. (c) No input assumptions are made. In all architectures, the input is
assumed to be a rank-3 tensor (e.g., images with 4 channels).

The second paradigm focuses on the use of quantum subroutines (Harrow et al., 2009; Montanaro,
2016; Gilyén et al., 2019; Dalzell et al., 2025b) to provide asymptotic speed-ups in the underly-
ing linear algebra of classical machine learning models, e.g., in matrix inversion, matrix-vector
arithmetic, and sampling. Applications include support vector machines (Rebentrost et al., 2014),
regression (Wiebe et al., 2012), feedforward neural networks (Allcock et al., 2020), convolutional
neural networks (Kerenidis et al., 2020), transformers (Guo et al., 2024b), and other models (Lloyd
et al., 2014; Wiebe et al., 2016; Rebentrost et al., 2018; Kapoor et al., 2016; Cherrat et al., 2024; Liu
et al., 2021b; Yang et al., 2023; Ivashkov et al., 2024; Wang et al., 2025). Other works have also
explored speeding up classical neural network training and inference (Kerenidis & Prakash, 2020;
Abbas et al., 2023; Liu et al., 2024).

Main Contributions. In this paper, we propose a method that can be used to accelerate inference
for multilayer residual networks (ResNets) (He et al., 2016) on quantum computers, given their
significance in enabling deep networks (Xie et al., 2017; Dong et al., 2021). We provide core
quantum subroutines and techniques for regularized multi-filter 2D convolutions, sigmoid activations,
skip-connections, and layer normalizations – all of which we show can be coherently implemented
on quantum computers. We list the main contributions as follows.

• In Section 2, we further develop a modular vector-encoding framework for quantum matrix-vector
arithmetic. This is a special case of quantum block-encodings, with many useful properties.

• In Section 2.3, we derive a novel quantum algorithm for the multiplication of arbitrary full-rank and
dense matrices with the element-wise square of a given vector, without incurring a rank-dependence.
To the best of our knowledge, this is the first result which allows a quantum algorithm to utilize an
arbitrary full-rank and dense matrix without a Frobenius norm complexity dependence.

• In Section 2.4, we provide a novel QRAM-free block-encoding for 2D multi-filter convolutions.

• In Section 4, to the best of our knowledge, we derive the first coherent quantum implementations
of multi-layer neural networks with non-linear activations. We provide rigorous end-to-end
complexity proofs for inference under three QRAM regimes:

– Regime 1 (inputs and weights provided via QRAM): Assuming QRAM access to both inputs
and weights, for a network with k non-linear activations acting on N -dimensional inputs we
prove Õ(polylog(N/ϵ)k) inference cost. Moreover, we argue that existing techniques are
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insufficient to dequantize this result.
– Regime 2 (weights provided via QRAM): When a cost linear in the dimension of the input

must be paid (i.e., no QRAM for the input), but the network weights are stored in QRAM, we
prove a quartic speedup over exact classical implementations for shallow architectures.

– Regime 3 (no QRAM): In the absence of any QRAM, we prove a quadratic speedup over an
exact classical implementation.

The relevant architectures in each regime can be seen in Figure 1. We derive a number of techniques
and algorithms which have broad utility in implementing machine learning architectures on quantum
computers. However, our main focus is on accelerating inference for classification, with our formal
problem statement given in Definition 1. At a high-level, we assume that we are given a trained
neural network which, given an input, outputs a probability distribution over possible outputs (e.g.,
over image classes). The goal is to draw a sample from this output distribution (thereby assigning a
class to the input). We introduce an error parameter ϵ, which allows the algorithm to sample from a
distribution whose ℓ2 norm distance from the true distribution is bounded by at most ϵ.
Definition 1 (The Approximate Sampling-Based Classification Problem). Let 0 ≤ ϵ ≤ 1. Given
a neural network represented by function h : RD 7→ RC (i.e. with D-dimensional inputs and
C-dimensional outputs) which returns a probability distribution as its output (i.e., for any x ∈ RD,
y := h(x) is all non-negative, and ∥y∥1 = 1), then the sampling-based classification problem is to
return a sample from some probability vector ŷ such that ∥y − ŷ∥2 ≤ ϵ.

For example, in the case of CIFAR-10, D = 3× 32× 32 = 3072, and C = 10. Then, given some
input x ∈ R3072, y ∈ R10 the entries of y correspond to the probability of assigning a given class
(e.g., class i is assigned with probability yi, etc). This problem statement also naturally captures
other applications, such as autoregressive next-token prediction, where the output distribution would
instead be over the set of possible tokens rather than classes.

Comparison to Prior Work. In prior work, to achieve multi-layer architectures in feedforward
and convolutional neural networks as well as transformers, intermediate measurements for inner
products (Allcock et al., 2020) or quantum state tomography that read out the entire state (Kerenidis
et al., 2020; Guo et al., 2024b) are required to extract information out to classical computers where
data is required to be re-encoded into the quantum circuit for computation in the next layer, breaking
the coherence of the quantum architecture and limiting potential speed-ups. We compare against
the prior work in Table 1. To the best of our knowledge, our work provides the first fully coherent
quantum implementation of classical multi-layer neural networks . Further, our work is also the first
in works that accelerate classical deep learning algorithms to present an architecture which does not
use QRAM. Moreover, we demonstrate that careful tracking on bounds of the vector norm (as it
propagates through the forward-pass of a given network) is required to prevent arbitrary decay of
the norm in multilayer structures, and subsequent unbounded runtimes. We provide rigorous proofs
and develop tools to prove this norm preservation in our architectural blocks. Further, we make the
observation that residual skip connections that enable deep networks classically are fundamental
to the norm stability and preservation, enabling us to provide an efficient and coherent multilayer
architecture not present in prior work.

Introduction to Quantum Computing. Quantum computation can provide asymptotic speed-
ups over their classical counterparts (Nielsen & Chuang, 2010) by utilizing quantum phenomena.
Quantum bits, or qubits, form the basic unit for computation, and can host a superposition of states
expressed as a two-dimensional complex vector (or ket) |ψ⟩ = α|0⟩+ β|1⟩ where |α|2 + |β|2 = 1.
With n qubits, we can create a superposed state over 2n bit strings |i⟩, each with a different amplitude
and expressed as |ψ⟩ =

∑2n−1
i=0 vi|i⟩, where

∑2n−1
i=0 |vi|2 = 1. That is, an n-qubit quantum state is a

2n-dimensional ℓ2-normalized complex vector. Quantum computers achieve computation through
applying a circuit consisting of one-or-two-qubit logical gates (Feynman, 1986) on qubits. Quantum
circuits can be contracted and represented as a single unitary operation.

Notation. We use standard big and small O notations for asymptotics, using Õ to hide polylogarith-
mic factors. The notation [N ] represents the set of integers 0, ..., N − 1. We use kets to represent
arbitrary (not necessarily normalized vectors). Logarithms are assumed to be base-2 unless otherwise
stated. The subscript on the ket denotes the number of qubits it acts on (i.e., the log of the dimension),
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Architecture Coherent
Multi-
Layer

Coherent
Non-

Linearity

QRAM-
Free

Norm
Preser-
vation

Polylog
1/ϵ

Polylog
N

Cong et al. (2019)∗ CNN Inspired
PQC ✗ ✗ ✓ ✓ N/A N/A

Allcock et al. (2020) Feed-forward ✗ ✗ ✗ ✗ ✗ ✗
Kerenidis et al. (2020) CNN ✗ ✗ ✗ ✗ ✗ ✗
Guo et al. (2024b) Transformer ✗ ✓ ✗ ✗ ✗ ✗
Our work - Regime 1 Residual CNN ✓ ✓ ✗ ✓ ✓ ✓

Our work - Regime 2 Bilinear
Residual CNN ✓ ✓ ✗ ✓ ✓ ✗

Our work - Regime 3 Bilinear
Residual CNN ✓ ✓ ✓ ✓ ✓ ✗

Table 1: Comparison with prior work. We briefly explain the meaning of each column. Coherent
multi-layer refers to the construction of multi-layer architectures separated by non-linear activation
functions without tomography. Coherent non-linearity refers to the implementation of non-linear
transformations on the quantum computer without readout. Norm preservation refers to the preser-
vation of vector norms throughout the network forward pass. Next, each quantum implementation
of a classical architecture incurs some error over the exact classical implementation, and as such an
entry ✓ in the polylog 1/ϵ column indicates a O(polylog(1/ϵ)) error-dependence, whilst a ✗ entry
indicates a O(poly(1/ϵ)) error-dependence. Finally, polylog N refers to polylogarithmic complexity
in the input dimension N . ∗Note: the architecture presented in Cong et al. (2019), is inspired by
CNNs but is based on parameterized quantum circuits (PQC). As they do not aim to accelerate an
existing classical architecture, it is not possible to provide an entry in the polylog ϵ column. Moreover,
they do not provide complexities when considering classical input data, and so we do not give an
entry in the column corresponding to polylog N .

thus |ψ⟩n ∈ C2n . When we assume a ket is normalized, we will explicitly state that it is. The one
exception is with the definition of a vector-encoding (as defined subsequently in Definition 3). For
example, an (1, a, ϵ)-VE for |ψ⟩n implicitly implies that ∥|ψ⟩n∥2 = 1, and so we will not explicitly
state the normalization of the encoded vector every time we introduce a VE. A bra is defined as
the conjugate transpose of a ket, ⟨ψ|n = |ψ⟩†n. We use the notation In to refer to an n-qubit (i.e.,
2n-dimensional) identity matrix. We define the Kronecker product with the symbol ⊗, and will
sometimes refer to this as a tensor product. We define basis functions both in vector notation and in ket
notation, i.e., |j⟩ ≡ ej . E.g., |0⟩ = e0 = (1 0 . . . 0)

T . When we define a function f on scalars,
i.e., f : C 7→ C, given a vector x ∈ CN we sometimes use the notation f(x) :=

∑N−1
j=0 f(xj)ej ,

i.e., f(x) denotes an element-wise application of f to x.

2 QUANTUM MATRIX-VECTOR ARITHMETIC

In this section, we define and motivate the tools necessary to perform quantum matrix-vector
arithmetic. These subroutines are essential for our subsequent results implementing classical neural
networks on quantum computers. In Section 2.1, we provide a summary of quantum block-encodings
and quantum vector encodings. Novel contributions in this section: In Section 2.2, we further
develop the framework of vector-encodings, introducing straight-forward new quantum algorithms
for vectors encoded as VEs, enabling vector sums, matrix-vector products, tensor products, and vector
concatenations. In Section 2.3, we present a novel algorithm which applies an arbitrary full-rank and
dense matrix to the element-wise square of a vector, without incurring a Frobenius norm dependence.
Finally, in Section 2.4, we give a novel QRAM-free block-encoding for 2D multi-filter convolutions.

2.1 QUANTUM BLOCK-ENCODINGS AND VECTOR-ENCODINGS

A widely used tool in quantum algorithm design is the block-encoding (Gilyén et al., 2019), which
can be viewed as a way to encode and manipulate matrices in quantum algorithms. A block-encoding
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is a unitary matrix U , specified by a quantum circuit, whose top left block contains a matrix Ã (such
that ∥Ã∥2 ≤ 1) which is a scaled approximation to some matrix A. We give the formal definition in
the following.

Definition 2 (Block encoding (Gilyén et al., 2019)). Suppose that A is a 2s × 2s matrix, α, ϵ ∈ R+

and a ∈ N, then we say that the 2s+a × 2s+a unitary matrix U is an (α, a, ϵ)-block-encoding of A, if

∥A− α(⟨0|⊗a ⊗ I)U(|0⟩⊗a ⊗ I)∥ ≤ ϵ. (1)

Essentially, noting that ⟨0|⊗a⊗I = (I 0 . . . 0), we see that ⟨0|⊗a⊗I selects the first 2s rows of
U , and then |0⟩⊗a⊗I selects the first 2s columns of (⟨0|⊗a⊗I)U , meaning that (⟨0|⊗a⊗I)U(|0⟩⊗a⊗
I) is simply the top-left 2s × 2s block of U . Indeed, if ϵ = 0, then A/α = (⟨0|⊗a ⊗ I)U(|0⟩⊗a ⊗ I).
Additionally, α can be viewed as an upper-bound on the normalization factor of A, e.g., if ϵ = 0, then
∥A/α∥2 ≤ 1. Any matrix encoded in a sub-block of a unitary matrix cannot have norm exceeding 1.

Analogously to how a quantum block-encoding encodes a general matrix in the top left block of a
unitary, we can embed arbitrary (sub-normalized) N -dimensional vectors in the first N rows of a
larger vector corresponding to a normalized quantum state.

This naturally leads to the following definition of quantum vector-encodings (VEs), the definition of
which we take nearly verbatim from Rattew & Rebentrost (2023), where they were called SPBEs.

Definition 3 (Vector-Encoding (VE) (Rattew & Rebentrost, 2023)). Let α ≥ 1, a ∈ N, and ϵ ≥ 0.
We call the 2a+n × 2a+n unitary matrix Uψ an (α, a, ϵ)−VE for the 2n-dimensional quantum state
|ψ⟩n, if

∥|ψ⟩n − α (⟨0|a ⊗ In)Uψ|0⟩a+n∥2 ≤ ϵ. (2)

Note that (⟨0|a ⊗ In)Uψ|0⟩a+n corresponds to the exact vector encoded by Uψ , specifically encoded
in the first 2n rows of the first column of Uψ . The parameter α is a measure of the norm of the encoded
vector, e.g., if ϵ = 0 then ∥(⟨0|a ⊗ In)Uψ|0⟩a+n∥2 = 1/α. One of the most essential components of
working with matrix-vector arithmetic in quantum algorithms is tracking the norm of the encoded
vectors throughout the algorithm, as the quantum complexity is usually inversely proportional to the
norm of the encoded vector. Vector encodings give a methodical way to track encoded vector norms
when implementing various matrix-arithmetic operations on the encoded vectors.

In summary, block-encodings provide a formal framework for working with matrices in quantum
algorithms, and vector-encodings provide a formal way for working with vectors.

2.2 NEW OPERATIONS ON VECTOR ENCODINGS

To enable our results on architectural blocks, we had to develop primitive operations on vector-
encodings. These results are straight-forward modifications of existing techniques into the VE
framework, but are necessary to allow easy tracking of the norm of encoded vectors, which is a
crucial parameter dictating the complexity of quantum neural network accelerations.

Lemma 1 (Vector Sum, Proof in Appendix B). Let 0 ≤ τ ≤ 1. We are given unitary circuits Uψ and
Uϕ which are (α, a, ϵ0) and (β, b, ϵ1) VEs for |ψ⟩n and |ϕ⟩n, respectively. Define c := max(a, b),
|Γ⟩n := τ

α |ψ⟩n + (1−τ)
β |ϕ⟩n, N := ∥|Γ⟩n∥2 and |Γ⟩n := |Γ⟩n/N . Then, using one controlled Uψ

circuit, one controlled Uϕ circuit, and two additional single-qubit gates, we can construct a unitary
matrix V such that V is a (N−1, c+ 1, ( ϵ0α + ϵ1

β )/N )-VE for |Γ⟩.

Lemma 2 (Matrix-Vector Product, Proof in Appendix B). We are given an (α, a, ϵ0)-block-encoding
UA for the n-qubit operator A, and Uψ a (β, b, ϵ1)-VE for the ℓ2-normalized n-qubit quantum state
|ψ⟩. Let N := ∥A|ψ⟩n∥2. Uψ has Tψ circuit complexity, and UA has TA circuit complexity. Then,
we can obtain an a+ b+ n qubit unitary U with O(Tψ + TA) circuit complexity such that U is an
(αβ/N , a+ b, (ϵ0 + αϵ1)/N )-VE for the quantum state state A|ψ⟩n/N .

Lemma 3 (Tensor Product of Vector Encodings, Proof in Appendix B). Given Uψ an (α, a, ϵ)-VE for
|ψ⟩n with O(Tψ) circuit complexity, and Uϕ an (β, b, δ)-VE for |ϕ⟩m with O(Tϕ) circuit complexity,
then we can obtain the circuit V which is an (αβ, a + b, ϵ + δ + ϵδ)-VE for |ψ⟩n ⊗ |ϕ⟩m with
O(max(Tψ, Tϕ) + max(n, b)) circuit depth.
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Lemma 4 (Concatenation of Vector Encodings, Proof in Appendix B). Let D = 2d, N = 2n, and
0 ≤ ϵ < 1. Assume that d ≤ n. Suppose we are given a set of D unitary circuits, {Ui}i∈[d] such
that each Ui is an (αi, a, ϵ)-VE for the quantum state |ψi⟩n with O(T ) circuit complexity. 1 Let
|Ψ⟩d+n =

∑D−1
j=0 |j⟩d|ψj⟩/αj , and let N := ∥|Ψ⟩d+n∥2 =

√∑D−1
j=0

1
α2
j

. Then, we can obtain a

(D/N , d+ a, ϵ) for |Ψ⟩d+n
N with O(dDT ) circuit complexity.

2.3 MATRIX VECTOR SQUARED PRODUCT

We are now ready to present the first key result of this section, showing how given a matrix W (with
∥W∥2 ≤ 1) and a vector encoding of x, we can obtain a vector encoding of W (x)2. The key idea
is to avoid obtaining a quantum block-encoding of the operator W (which in general requires W
to be either low-rank, or sparse (Gilyén et al., 2019)). We then implement the product by using
importance-weighting to coherently combine the columns of W weighted by the corresponding
elements of the input vector, and then apply the result to a modified version of the input vector.
Theorem 1 (Product of Arbitrary Matrix with a Vector Element-wise Squared, Informal). Let
N = 2n. We are given a matrix W ∈ CN×N , provided via a pre-processed efficient quantum
accessible data-structure. Additionally, we are given the unitary Uψ with circuit complexity O(Tψ),
a (α, a, ϵ)-VE for the quantum state |ψ⟩n. Define the function g : C 7→ R as g(x) = |x|2, and
N := ∥Wg(|ψ⟩n)∥2. Then we can construct the unitary Uf which is a (α

2

N , 2a+ 2n+ 3, 2αϵN )-VE
for Wg(|ψ⟩n)/N , and has O(Tψ + n2) circuit depth.2

This result is stated formally and proven as Theorem B.1 in the Appendix, and we formally define one
possible implementation of the quantum accessible data-structure assumption in Definition B.3. To use
this to prepare the quantum state Wg(|ψ⟩n)/N , the vector normalization result (Lemma B.8) can be
directly applied to the output VE yielded by Theorem 1, preparing the state with Õ(α2(Tψ +n2)/N )
circuit complexity. This is the first such result without a Frobenius norm dependence on A.

We will now informally sketch the proof of this procedure. First, define the columns of W as
W = (w0 . . . wN−1). Define the normalized version as |wj⟩ = wj/ ∥wj∥2, and define aj :=
∥wj∥2. We assume access to three objects. (1) A block-encoding of A := diag(a0, . . . , aN1

).
(2) An oracle implementing UW |0⟩|j⟩ = |wj⟩|j⟩. (3) A vector-encoding for |ψ⟩ =

∑
j ψj |j⟩.

Then, by using our vector-encoding circuit, we can get an encoding of |ϕ⟩ :=
∑
j ψj |j⟩|wj⟩ =

(ψ0⟨w0| . . . ψN−1⟨w1|)†. Then, using our block-encoding of A, we can efficiently get a block-

encoding of
(
a0ψ0In . . . aN1ψN−1In

0

)
(where In is a 2n dimensional identity matrix, and

only the first N rows are non-zero). We can then use the product of matrix-encoding with vector

encoding result to take the product of
(
a0ψ0In . . . aN1

ψN−1In
0

)
with |ϕ⟩ yielding the desired

vector-encoding.

2.4 QRAM-FREE QUANTUM ENCODING OF 2D MULTI-FILTER CONVOLUTIONS

While the matrix-form of a 2D convolution has been given many times before in the literature, to the
best of our knowledge the following is the first result giving a block-encoding of a QRAM-free 2D
multi-filter convolution. We also stress that the following result can be highly optimized, especially if
QRAM is used. We leave such optimizations to future work. The full proof is provided in Section B.2.
Lemma 5 (QRAM-Free Block-Encoding of 2D Convolution With Filters). Let M = 2m, let
n = 2m, let N = 2n, and let D = 2d. Define the matrix form of the 2D multi-filter convolution
operation, C ∈ RCM2×CM2

, as per Lemma B.17. Here, C represents the number of input and
output channels, and D represents the dimension of the kernel over rows and columns (i.e., the
kernel is a rank−4 tensor containing C, C ×D ×D filters). Then, after performing some one-time
classical pre-computation, we can obtain a (1, 3 + 8D + 2 log(CD), 0)- block-encoding of C

2∥C∥2

with O(m2C3D4 log(C) log(D)) circuit depth.
1If D is not a power of 2, padding can be added.
2For simplicity, here we are assuming that the parameter d (as defined in Theorem B.1) is set to n.
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Figure 2: Generic Residual Architectural Block. This diagram illustrates the structure of a typical
residual block used in deep neural networks. The input vector x is transformed through a sequence
of operations: a learnable linear transformation W , a non-linear activation function f , and a residual
(skip) connection that adds the original input to the transformed signal. The output is then passed
through a normalization layer (norm).

While the degrees on the number of channels and the filter size D seem large, the filter size is
usually quite small in practice (e.g., often 3). Moreover, there are straight-forward optimizations of
this result which can substantially reduce the degrees on both C and D. Convolutional layers are
excellent candidates for QRAM-free implementation, since the number of parameters they contain
are usually much smaller than the dimension of the vectorized tensors which they act upon. Indeed,
we essentially obtain Lemma 5 by efficiently constructing a block-encoding of the matrix-form of
the highly-structured object corresponding to each parameter in the convolutional kernel, and then
taking a linear combination of the result. This explains why the complexity of our procedure is
polylogarithmic in the dimension, whilst being polynomial in the number of parameters. This is
in contrast to exact classical algorithms which have polynomial dimension-dependence. Moreover,
our result can be substantially optimized further, potentially by exploiting the fact that circulant
convolutions are diagonalized by the Fourier transform.

3 ARCHITECTURAL BLOCKS

In this section we will derive two key architectural blocks, a residual block, and a multi-layer residual
block, which allow our subsequent complexity claims. We present an additional architectural block
building on these in Appendix C, but do not include it in the main text as it is not essential for
understanding the key complexity details of such quantum implementations.
Lemma 6 (General Skip Norm Block). Let ϵ1 ∈ (0, 1]. Let κ ∈ [1, 2]. Consider the architecture
shown in Figure 2. Let N = 2n. We are given the unitary Uψ a (1, a, ϵ0)-VE for |ψ⟩n with circuit
complexity O(T1), and are given the unitary UW a (1, b, 0)-block-encoding for the n-qubit operator
W/κ with circuit complexity O(T2) such that ∥W∥2 ≤ 1. Define f(x) := erf(4x/5), |ψf ⟩n :=
|ψ⟩n+f(W |ψ⟩n), and N := ∥|ψf ⟩n∥2. Then, we can obtain a (1, 2(a+b)+n+9, 712(ϵ0 + ϵ1))-VE
for |ψf ⟩n/N with circuit complexity O(log(

√
N
ϵ1

) log( 1
ϵ1
)(a+ b+ n+ T1 + T2)).3

The rigorous proof of this result is provided in Appendix C, but it essentially follows from using
our preceding results on matrix-vector multiplication, vector sums, and the extant results on layer
normalization and applications of the error-function. The key insight enabling this proof is that in
a residual block such as the one we have described, the forward norm of the vector is efficiently
lower-bounded prior to every normalization layer. Without such skip connection, and the techniques
we developed for working with vector-encodings (which enable effective tracking of the norm of
a vector propagating through a network), the norm at the end of such a block could be arbitrarily
small, leading to complexities which could be on the order of ≈ Nk (or even unbounded) for k-layer
architectures – completely intractable even for constant depth networks. As a consequence, we are
able to prove the following result for multi-layer residual blocks.
Lemma 7 (Sequence of k Residual Blocks). Let N = 2n. Suppose we are given a unitary Uψ with
circuit complexity O(T1) such that it is a (1, a, 0)-VE for |ψ⟩n. Let k be an asymptotic constant.
Suppose we have a sequence of k residual blocks (as per Lemma 6), with weights implemented by k
unitaries {UWi

}i such that UWi
(with circuit complexity O(T2)) is a (1, b, 0)-block-encoding for the

n-qubit operator Wi/2, and ∀i, ∥Wi∥2 ≤ 1. Then, we can prepare a (1, 2k(a+ 2b+ n+ 9), ϵ)-VE
for the output of the k residual blocks with O(log(

√
N/ϵ)2k(a+ 2b+ n+ T1 + T2)) circuit depth.

3We implicitly assume that ∥W |ψ⟩n∥ > 0, which is a reasonable assumption for any input which comes
from the same distribution as the training data.
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This result is proven in Appendix C, and follows by repeatedly invoking Lemma 6 with its output as
the next input. It appears that the complexity of this result as a function of the number of layers k is
a fundamental limitation of any quantum algorithm. As described in greater detail in Appendix C,
for a unitary matrix (a linear operator) to enact a non-linear transformation on a vector, its definition
must in general be input-dependent. Consequently, unless Lemma 6 can be implemented with only
a single copy of its input, it seems unlikely that this complexity can be avoided. This suggests
that quantum computers are best suited for accelerating the wide and shallow regime, which is
a popular regime for classical inference accelerators (since wide networks can be parallelized on
classical hardware, but depth cannot be parallelized). Classically, with the aim of accelerating both
inference and training, there are a range of techniques for compressing neural networks (Cheng
et al., 2018). Moreover, classically, deep neural networks are much harder to accelerate than their
shallow and wide counterparts (you can parallelize matrix-multiplications, but not consecutive
layers). Consequently, there are a number of classical architectures striving for shallow networks
(e.g. Zagoruyko & Komodakis (2016)) which can serve as sources of inspiration for designing
architectures best suited for quantum acceleration. We discuss this in greater detail in Appendix C.

4 ARCHITECTURES

We will now use the architectural blocks derived above to prove the quantum complexity in inference
for the architectures shown in Figure 1 (a), which is then used to prove the complexity of the
architecture in panel (b). A corollary is used to prove the complexity of the architecture in panel (c).

In all 3 regimes, the key architectural block shared in common is the sequence of k residual convolu-
tional blocks, which is enacted by combining Lemma 5 and Lemma 7. The architectures then only
differ in how the input tensor is transformed, and in how the output of the k residual convolutional
blocks is processed. Consequently, we will now provide high-level intuition for the important se-
quence of k residual convolution blocks. First, Lemma 7 is simply obtained by chaining the result
for a single residual block (given by Lemma 6) k times, using the output of each invocation as the
input for the next. Lemma 6 itself is implemented by enacting each of the vector-encoding operations
corresponding to the operations shown in Figure 2: matrix-vector multiplication via Lemma 2, non-
linear activation via Lemma B.19, vector sum via Lemma 1, and vector normalization via Lemma B.8.
Noting that Lemma B.19 and Lemma B.8 are straight-forward improvements over the results from
prior work, we delegate them to the appendix. It is also worth noting that our selection of the erf
activation function is not restrictive, and was selected for analytical convenience. This could easily be
swapped with other activation functions compatible with Lemma B.18, e.g., GELU or tanh. Finally,
the last key piece of intuition regards the dimension of the specific vectorized tensor which is input to
the sequence of k residual blocks. In Regime 1, this tensor is simply a fixed concatenation of the
input tensor, and consequently for an input with vectorized dimension O(N) has dimension O(N).
In Regimes 2 and 3, the input tensor is mapped through a tensor product d times, resulting in an input
to the residual block sequence of dimension O(N2) (when d = 2).

Thus, our results in all 3 data-access regimes all follow from the general result, formally stated below:

Theorem 2 (General Multilayer Convolutional Network with Skip Connections). Let M = 2m,
N = 2n =M2. Consider the neural network architecture shown in Figure 1 (a). Let the inputX be a
rank−3 tensor of dimension 4×M×M (with an R, G, B and null channel, where the null channel has
all 0s). Assume that ∥vec(X)∥2 = 1, and that we have access to a unitary UX that is a (1, 0, 0)-VE
for the input in column-major layout |X⟩2+2m =

∑4
i=0

∑M−1
j=0

∑M−1
k=0 Xi,k,j |i⟩2|j⟩m|k⟩m. Assume

that UX has O(TX) circuit complexity. As shown in the figure, we have a sequence of k residual
convolutional layers, where each convolutional layer has 16 input channels, 16 output channels (i.e.,
16 filters) with filter width and height 3. I.e., each convolutional layer has 16× 16× 3× 3 = 2304
parameters. Assume that there is 0 padding so the input and outputs always have the same dimension,
and that there is a stride of 1. Suppose each convolutional layer has been regularized, so that its
spectral norm is at most 1. LetW represent theN×N full-rank linear layer applied in the final output
block of the network, and assume that ∥W∥2 ≤ 1. Let C represent the number of output classes, and
assume that C = 2c (padding can be added otherwise). Let the overall network be represented by the
function h : R4×M×M 7→ RC . Let y = h(X) (and note that ∥y∥1 = 1, and y ∈ RC). Then, with
O(log(

√
N/ϵ)2k+1(TX + n2)) total circuit depth, and with O(2kn) ancillary qubits, we can draw a

sample from an ℓ1-normalized C-dimensional vector ỹ such that ∥y − ỹ∥2 ≤ ϵ.
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Proof. We have a 4 channel input and we want to map this to a 16 channel in-
put (by concatenating |X⟩2+2m vector with itself 4 times). Let |X⟩4+2m :=
1√
4
(⟨X|2+2m ⟨X|2+2m ⟨X|2+2m ⟨X|2+2m)

T . We can invoke Lemma 4 with UX four times,
obtaining a (1, 0, 0)-VE for |X⟩4+2m with O(TX) circuit complexity. Using Lemma 5, for each
of the i = 0, ..., k − 1 convolutions, we can obtain a (1, 27, 0)-block-encoding for Ci/2 ∥Ci∥2 (the
matrix form of the corresponding convolution) with O(m2) circuit depth. Consequently, we can
invoke Lemma 7 to obtain Uconv a (1, 2k(63+n), ϵ)-VE for the ℓ2-normalized output of the sequence
of k residual blocks. Moreover, Uconv has O(log(

√
N/ϵ)2k(n+ TX +m2)) circuit depth. Then, we

can invoke Lemma C.2 with Uconv to draw a sample from some probability vector ỹ ∈ RC such that
∥ỹ − y∥2 ≤ ϵ withO(log(

√
N/ϵ)2k+1(TX+n2)) circuit depth and withO(2kn) ancilla qubits.

An important point to consider is that in order for a unitary matrix (or more generally, any linear
operator) to enact a non-linear transformation, its definition must depend on the vector it is being
applied to. For instance, consider the simple example where we are given a vector x, and we define
A := diag(x). Then,Ax = (x)2 (with the square applied element-wise) which is clearly a non-linear
transformation. Consequently, our algorithm for Theorem 2 adaptively (and efficiently) constructs a
new circuit on the fly for each new input – this is accounted for in the result statement.

4.1 KEY RESULTS UNDER DIFFERING QUANTUM DATA ACCESS ASSUMPTIONS

The feasibility of quantum random access memory, the primary method assumed in the literature for
accessing classical data in quantum algorithms, is widely debated in the literature (Jaques & Rattew,
2023). However, recent work (Dalzell et al., 2025a) provides a promising path forward, addressing
many of the limitations raised in Jaques & Rattew (2023). Regardless, algorithms papers often fail
to meaningfully address the memory assumptions they make, and so we include a comprehensive
discussion of it in Appendix D highlighting the feasibility of the technology, and that importantly
our QRAM assumptions are no stronger than the usual made in such algorithms papers. The key
concept discussed in Appendix D is that any algorithm utilizing a QRAM device must consider the
classical opportunity cost of using that device, which dictates the constraints placed on realizing a
useful QRAM (e.g., for such purposes the physical QRAM device cannot simply be implemented in
the circuit model).

Regime 1: Input and Network Use QRAM. The primary purpose of the architecture we presented
in Regime 1 is to show that quantum computers can implement multi-layer neural networks based on
real architectures coherently, with reasonable input assumptions, and with cost polylogarithmic in the
dimension of the network. As per the main-text, in this regime we assume that the matrix weights
(in particular for the final full-rank linear layer) and vectorized input are provided via QRAM. The
architecture for this regime is shown in Figure 1 (a). Let the dimension of the vectorized input be
O(N). Since the input is provided via QRAM, TX as defined in Theorem 2 is TX ∈ O(polylog(N))
(see, Section D.2). Thus, for a constant number of layers k, the cost to perform inference (in
accordance with Definition 1) becomes O(polylog(

√
N/ϵ)k). Please see Section E.1 for a detailed

discussion outlining important application areas where such input assumptions are practical (namely,
where the input can be constructed in an amortized fashion online). Moreover, in Section E.1 we
also discuss considerations relating the receptive field of such architectures, and argue that existing
techniques are insufficient to dequantize this result.

Regime 2: Network Stored in QRAM, Input Loaded Without QRAM. The architecture in
this regime is shown in Figure 1 (b). The architecture contains d paths of purely classical neural
networks, which each operate on O(N) dimensional (vectorized) inputs. These classical architectures
are assumed to have Õ(N) time complexity in terms of the input. These separate paths are then
normalized, converted to quantum states, and then the Kronecker product of the result is taken. The
result is fed into exactly the same architecture as in Regime 1. This architecture is inspired by bilinear
neural networks (Lin et al., 2015). Consequently, to determine the cost of this architecture, we can
again invoke Theorem 2. Here, we need to pay an Õ(N) cost to load each of the input paths in as
a quantum state (via brute-force (Plesch & Brukner, 2011)),TX ∈ O(N). Consequently, we obtain
an overall algorithmic complexity of O(N log(N

d/2

ϵ )2k), which for constant k and d, simplifies to

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Õ(N log(1/ϵ)2k). When d = 2, the dimension after the tensor product is N2. Consequently, the final
linear layer contains a matrix multiplication of an N2 ×N2 matrix with an N2 dimensional vector,
which takes Ω(N4) time. Consequently, for a constant k, this architecture produces a quartic
speedup for the inference problem defined in Definition 1 over exact classical computation.
When d = 1, the speedup due to the final layer is instead quadratic. This speedup can be increased by
setting d to larger values.

Regime 3: No QRAM. This architecture is identical to the one presented in Regime 2, only
dropping the final full-rank linear block. In Section E.3 we show that the architecture in Figure 1 (c)
can perform inference with a total O(N log(1/ϵ)2k) circuit complexity. Since the dimension of the
vector acted on by the 2D convolution is O(N2) (when d=2), the classical cost to compute this is
Ω(N2): showing a quadratic speedup over an exact classical implementation. The speedup can
be made asymptotically larger by increasing d. We have a more detailed discussion of this regime
in Section E.3.

5 CONCLUSION

This work proposes a modular framework for accelerating classical deep learning inference using
fault-tolerant quantum subroutines. Our approach offers direct quantum implementations of important
neural network architectural blocks (such as convolutions, activation functions, normalization layers,
and residual connections), and uses structured primitives such as quantum block-encodings.

In summary, we provide a number of novel theoretical contributions. We further develop the VE
framework for quantum vector encodings. We derive a novel quantum algorithm for the multiplication
of an arbitrary dense and full-rank matrix with the element-wise square of a given vector, which to
the best of our knowledge, is the first such result which does not incur a Frobenius norm (and thus
rank) complexity dependence. We provide a novel QRAM-free block-encoding of multi-filter 2D
convolutions. We then prove the first end-to-end complexity guarantees for the coherent quantum
acceleration of multi-layer neural network inference, under three QRAM regimes. In the first regime,
we give complexity which is polylogarithmic in both the dimension of the input, and the number of
parameters in the network. In the second, we show a quartic speedup over exact classical computation.
In the third, we show a quadratic speedup.

6 FUTURE WORK

To the best of our knowledge, this is the first paper to implement multi-layer neural networks
coherently on a quantum computer, and as such, many important open directions of research remain.
Moreover, progress towards achieving a practically passive QRAM is important for realizing the
speedups in the first two regimes. Moreover, exploring the connection between this work and
the techniques utilized in scientific computing (e.g., quantum differential equation solvers, finite
difference methods, etc (Cao et al., 2013; Montanaro, 2016; Childs et al., 2021; Berry & Costa,
2024; Jennings et al., 2024; An et al., 2024; Shang et al., 2025; Liu et al., 2021a; 2023; Krovi,
2023; Costa et al., 2025; Wu et al., 2025)) would be interesting. Most importantly, we wonder if
it is possible to coherently enact sequences of non-linear transformations without an exponentially
increasing circuit depth (and with polylogarithmic error-dependence), thereby allowing very deep
multi-layer architectures to be quantized, but we suspect that this may be provably impossible (at least
in general). Furthermore, it is conceivable that an approach enacting the non-linear transformations
coherently with techniques based on QPE (Mitarai et al., 2019) might be able to enact a sequence of
non-linearities without exponentially increasing circuit depth (albeit at the cost of an exponentially
worse and exponentially decaying error-dependency). Combining such approaches may let quantum
computers coherently accelerate architectures with depths of e.g., up to 25. Alternatively, one could
combine sequences of coherent multi-layer architectural blocks with intermittent tomography to reset
the depth cost, in essence fusing the techniques presented in our paper with those used in the prior
work. It would also be worthwhile to explore accelerating UNet based architectures, as many of
our techniques directly apply, and a distilled UNet-based diffusion model could potentially be quite
shallow. Finally, while this work assumes our networks are trained classically, it would be interesting
to explore how the techniques we develop could also be used to help accelerate training.
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TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

In Appendix A we present a summary of Quantum Random Access Memory (QRAM), which we
subsequently use. In Appendix B we present a number of existing techniques which we require
to manipulate vectors and matrices with quantum computers, and then use them to develop a
number of new useful results for quantum matrix-vector arithmetic. In Appendix C, we use the
techniques developed in Appendix B to construct quantum-implementations of key architectural
blocks. In Appendix D, we discuss the feasibility of QRAM. In Appendix E we use the architectural
blocks obtained in Appendix C to derive end-to-end complexities for a number of architectures under
different QRAM assumptions.

A QUANTUM RANDOM ACCESS MEMORY (QRAM)

Quantum Random Access Memory (Giovannetti et al., 2008b) is a widely assumed mechanism in
the quantum computing literature for accessing data in a quantum computer. In this paper, we make
a range of QRAM assumptions under different regimes of assumed feasibility. With the aim of
enabling practical end-to-end speed-ups, it is important to explicitly state the different assumptions
and consider the feasibility of each of these regimes.

In this section, we will formally define QRAM, and state the assumed complexities. In Appendix D,
we dive into a deeper discussion of the feasibility of our various QRAM assumptions, with the aim
of providing a clear understanding of what sorts of end-to-end speed-ups our results can offer in
practice.
Definition A.1 (QRAM for Classical Data). Let N = 2n and D = 2d. Let |i⟩n be any n-qubit
standard basis vector, and let xi ∈ [D]. Then, a QRAM withO(dN logN) total qubits can implement
the mapping,

U |i⟩n|0⟩d = |i⟩n|xi⟩d (A.1)

with O(d logN) circuit depth.

As mentioned in a number of sources, e.g., Hann et al. (2021); Giovannetti et al. (2008a) an N qubit
QRAM can be implemented with O(logN) depth complexity. Consequently, performing a sequence
of d of these (to implement each of the d-bits in each memory register), a circuit depth complexity of
O(d logN) trivially follows.
Definition A.2 (QRAM for Quantum Data (Prakash, 2014; Kerenidis & Prakash, 2017; Kerenidis
et al., 2020)). Let N = 2n, M = 2m. Let |i⟩n be any n-qubit standard basis vector. Allow |ψi⟩m to
be an arbitrary m-qubit normalized quantum states. Then, a QRAM with Õ(MN) total qubits, and
Õ(MN) classical pre-processing to construct the data-structure, can implement the mapping,

U |i⟩n|0⟩m = |i⟩n|ψi⟩m (A.2)

with O(log2(NM)) circuit depth.

Importantly, as per Prakash (2014); Kerenidis & Prakash (2017); Kerenidis et al. (2020) QRAM for
quantum data can be implemented by a circuit (based on Grover & Rudolph (2002)) with depth and
width O(polylog(MN)) with access to a QRAM data structure (as per Definition A.1) containing
all the entries of each state in the quantum data (along with O(logM) copies for each of the sets of
partial norms). Thus, if QRAM for classical data is feasible (as discussed in Appendix D), QRAM
for quantum data is as well (with pre-processing to construct the appropriate data-structures).

In this work, we will use QRAM to describe QRAM for both quantum and classical data, and will
make the distinction clear when it is relevant.

B QUANTUM MATRIX-VECTOR ARITHMETIC

In this section, we formally derive a number of tools for quantum matrix-vector arithmetic.
Lemma B.1 (Product of block encodings (Gilyén et al., 2019)). If U is an (α, a, δ)-block-encoding
of an s-qubit operator A, and V is an (β, b, ϵ)-block-encoding of an s-qubit operator B then
(Ib ⊗ U)(Ia ⊗ V ) is an (αβ, a+ b, αϵ+ βδ)-block-encoding of AB.
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In Lemma B.1 we adopt the tensor product notation used in Gilyén et al. (2019); the tensor product
in this lemma is used differently than it is used anywhere else in this paper.

We now present a standard result (see Lemma 1 of Camps & Van Beeumen (2020) or Lemma 21
of Chakraborty et al. (2023)), and we include the proof for completeness, as it is the basis of a
subsequent proof Lemma 3. In particular, our derivation closely follows that of Lemma 1 of Camps
& Van Beeumen (2020).

Lemma B.2 (Tensor Product of Block-Encoded Operators). Given a unitaryUA which is an (α, a, ϵ0)-
block-encoding for n-qubit operator A with O(TA) circuit complexity, and a unitary UB which is a
(β, b, ϵ1)-block-encoding for m-qubit operator B with O(TB) circuit complexity, we can obtain an
(αβ, a+ b, ϵ0β+ ϵ1α+ ϵ0ϵ1)-block-encoding for A⊗B with O(max(TA, TB)+max(n, b)) circuit
complexity.

Proof. The main idea is that UA ⊗ UB almost directly implements a block-encoding of A⊗B, but
the ancillas and the main computation registers are in the wrong order. To correct this, we need to
swap the ancilla register of UB with the main register of UA.

Consequently, define the operator Π such that it swaps the n-qubit register with the b-qubit register
(and leaves the other registers unchanged), so that all the ancilla registers precede the main registers.
If n ≥ b, Π can be implemented by a sequence of O(n/b) swaps, with each swap swapping
O(b) qubits in parallel. If n < b, then it can be implemented with O(b/n) swaps. Thus, Π has
a circuit depth bounded by O(max(n/b, b/n)) ∈ O(max(n, b)). Then, Π(|0⟩a+b ⊗ In+m) =
(|0⟩a ⊗ In)⊗ (|0⟩b ⊗ Im), and (⟨0|a+b ⊗ In+m)Π† = (⟨0|a ⊗ In)⊗ (⟨0|b ⊗ Im).

Following Camps & Van Beeumen (2020), define Ã := (⟨0|a ⊗ In)UA(|0⟩a ⊗ In), and B̃ :=

(⟨0|b⊗Im)UB(|0⟩b⊗Im). LetEA := A−αÃ, and letEB := B−βB̃. Define V := Π†(UA⊗UB)Π.
Then, A⊗B = (αÃ+ EA)⊗ (βB̃ ⊗ EB), and (⟨0|a+b ⊗ In+m)V (|0⟩a+b ⊗ In+m) = Ã⊗ B̃, so

∥A⊗B − αβ(⟨0|a+b ⊗ In+m)V (|0⟩a+b ⊗ In+m)∥2 (B.1)

=
∥∥∥(αÃ+ EA)⊗ (βB̃ ⊗ EB)− αβÃ⊗ B̃

∥∥∥
2

(B.2)

≤ ϵ0β + ϵ1α+ ϵ0ϵ1. (B.3)

We now present a result from the literature allowing a block-encoding to have all of its singular values
scaled by a constant value. We present the result nearly verbatim from Lemma 5 of Wada et al. (2025)
(with trivial modifications to make it easier to invoke in our context), which presents the results of
Low & Chuang (2017); Gilyén et al. (2019) cleanly in the language of block-encodings.

Lemma B.3 (Uniform Singular Value Amplification (Wada et al., 2025; Low & Chuang, 2017; Gilyén
et al., 2019)). Let ϵ, δ ∈ (0, 1/2), and let γ > 1. Let UA be an (1, a, 0)-block-encoding of the n-qubit
operator A with O(T ) circuit depth. Suppose ∥A∥2 ≤ (1− δ)/γ. Then, we can obtain a quantum
circuit V which is a (1, a+ 1, ϵ)-block-encoding for γA with O(γδ log(γ/ϵ)(T + a)) circuit depth,
and with O(poly(γδ log(γ/ϵ))) classical computation to determine the QSVT rotation angles.

Proof. This is taken directly from Wada et al. (2025); Low & Chuang (2017); Gilyén et al. (2019),
simply noting that an a-controlled X gate can be implemented by a sequence of O(a) single and
two-qubit gates.

We now present a simple result which is just a special case of uniform singular value amplifica-
tion (Wada et al., 2025; Low & Chuang, 2017; Gilyén et al., 2019) in the case where all the singular
values of an encoded operator are either 0 or 1/2. This is done following the ideas of oblivious
amplitude amplification (see Gilyén et al. (2019)).

Lemma B.4 ( 12 Oblivious Amplitude Amplification). We are given a matrix A ∈ CN×N , with
singular values either 1 or 0. Assume we have access to UA a (2, a, 0)-BE of A with O(T ) circuit
depth. One can construct (1, a + 1, 0)-BE of A with O(T ) circuit depth, and with 3 calls to a
controlled-U circuit.
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Proof. Note that T3(x) = 4x3 − 3x satisfies the condition that |T3(x)| ≤ 1 for x ∈ [−1, 1] and
T3(

1
2 ) = −1. Therefore, one can achieve the task by implementing the function −T3(x) via QSVT

and the block encoding. The first kind of the Chebyshev polynomial can be directly achieved without
any classical processing to determine angle rotations, so one can construct the block encoding with
no error.

For completeness, we now re-derive an existing result on the linear combination of block-encoded
matrices, directly following Gilyén et al. (2019) (which presents the result of Childs & Wiebe (2012)
in the context of block-encodings).
Lemma B.5 (Linear Combination of Block-Encodings (Childs & Wiebe, 2012; Gilyén et al., 2019)).
Suppose we are given a set of D = 2d unitaries {Ui}i such that each Ui is an (α, a, ϵ)-block-
encoding for n qubit operator Ai, and each Ui has a total of O(T0) single and two qubit gates.
Define the vector b ∈ CD such that b = (b0 b1 . . . bD−1)

T . Define |b⟩d =
∑D
j=0

√
bj |j⟩d and

β := ∥|b⟩d∥22 = ∥b∥1. We are given the d-qubit unitary Ub, with O(T1) single and two qubit gates,
such that Ub|0⟩d = |b⟩d/ ∥|b⟩d∥2. Define A :=

∑D−1
j=0 bjAj . Then, we can obtain a unitary V with

O(dDT0 + T1) circuit depth which is an (αβ, a+ d, αβϵ)-block-encoding for A.

Proof. For each j ∈ [D], let Ãj := (⟨0|a ⊗ In)Uj(|0⟩a ⊗ In), and let Ej := Aj − αÃj . Define
S :=

∑D−1
j=0 |j⟩⟨j|d ⊗ Uj . Note that S can be implemented by a sequence of D multi-controlled Uj

operators. Note that by using Saeedi & Pedram (2013), a d controlled gate targeting 1 or 2 qubits can
be decomposed into a sequence of O(d) single and two qubit gates. Consequently, each d-controlled
Uj has O(dT0) circuit depth in terms of single and two qubit gates. Thus, S consists of a total of
O(dDT0) single and two qubit gates. Then, define V := (U†

b ⊗ Ia+n)S(Ub ⊗ Ia+n).

Noting that (⟨0|d ⊗ Ia+n)V (|0⟩d ⊗ Ia+n) = 1
β

∑D−1
j=0 bjUj . Using the fact that |0⟩a+d ⊗ In =

(|0⟩d ⊗ Ia+n)(|0⟩a ⊗ In), we then obtain

(⟨0|a+d ⊗ In)V (|0⟩a+d ⊗ In) =
1

β
(⟨0|a ⊗ In)(

D−1∑
j=0

bjUj)(|0⟩a ⊗ In) =
1

β

D−1∑
j=0

bjÃj . (B.4)

Consequently,

∥A− αβ(⟨0|a+d ⊗ In)V (|0⟩a+d ⊗ In)∥2 =

∥∥∥∥∥∥
D−1∑
j=0

bj(αÃj + Ej)−
D−1∑
j=0

αbjÃj

∥∥∥∥∥∥
2

(B.5)

=

∥∥∥∥∥∥
D−1∑
j=0

bjαEj

∥∥∥∥∥∥
2

≤ α

D−1∑
j=0

|bj | ∥Ej∥2 (B.6)

≤ αβϵ. (B.7)

Thus, V gives a (αβ, a, αβϵ)-block-encoding for A, and has O(dDT0 + T1) circuit depth.

The following is a standard result which has been used in various contexts, and is included for
completeness.
Lemma B.6 (Block Encoding of Rank 1 Projector of Basis Vectors). Let n ∈ N≥0, and let N = 2n.
Define i ∈ [N ] and j ∈ [N ]. Then, we can get a unitary U which is a (1, 2, 0)-block-encoding of the
n qubit operator |i⟩⟨j|. Moreover, U has O(n) circuit depth.

Proof. Following Jaques & Rattew (2023), a (1, 2, 0) block-encoding of the matrix |0⟩⟨0|, call it
V , can be obtained with O(n) circuit complexity. This follows by constructing a (1, 0, 0) block-
encoding of the Grover reflection operator, I − 2|0⟩⟨0|, and taking a linear combination with I
via the sum of block-encoding result of Gilyén et al. (2019). The circuit complexity is dominated
by reflection operator, which can be implemented by applying a n − 1 controlled XZX gate on
the most significant qubit, controlled on the 0 state of the other n − 1 qubits. Using Saeedi &
Pedram (2013) this can be decomposed into a sequence of O(n) two-qubit gates. Decompose
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i and j into bits as, i = i0i1 . . . in−1, and j = j0j1 . . . jn−1. We now define two operators,
Mi := Xi0⊗Xi1⊗. . .⊗Xin−1 andMj := Xj0⊗Xj1⊗. . .⊗Xjn−1 . Clearly,Mi|0⟩⟨0|Mj = |i⟩⟨j|.

Then, since (I2 ⊗Mi)V (I2 ⊗Mj) =

(
|i⟩⟨j| ·
· ·

)
. Thus, (I2 ⊗Mi)V (I2 ⊗Mj) is a (1, 2, 0) block-

encoding for |i⟩⟨j|.

We now present a simple result which helps intuitively visualize VEs as encoding vectors in a
subspace.

Lemma B.7 (Intuitive Picture of VE as a Vector Subspace Encoding). Let Uψ be an (α, a, ϵ)-VE
for |ψ⟩n. Define |Eψ⟩n := |ψ⟩n − α(⟨0|a ⊗ In)Uψ|0⟩a+n. Define the a-qubit operator paj := |j⟩⟨j|.
Then,

Uψ|0⟩a+n =
|0⟩a|ψ⟩n − |0⟩a|Eψ⟩n

α
+

2a−1∑
j=1

(paj ⊗ In)Uψ|0⟩a+n =

( |ψ⟩n−|Eψ⟩n
α
...

)
. (B.8)

Proof. |Eψ⟩n = |ψ⟩n − α(⟨0|a ⊗ In)Uψ|0⟩a+n implies that |0⟩a|Eψ⟩n = |0⟩a|ψ⟩n − α(pj0 ⊗
In)Uψ|0⟩a+n. The result follows trivially by algebraic maniuplation of Uψ|0⟩a+n = (

∑2a−1
j=0 paj ⊗

In)Uψ|0⟩a+n.

Intuitively, in the absence of error, the first 2n entries of Uψ|0⟩a+n will contain the sub-normalized
vector |ψ⟩n/α.

We now state the following result from Rattew & Rebentrost (2023) nearly verbatim, slightly improv-
ing the complexity. The following result is a tool essentially implementing ℓ2 layer normalization,
follows directly from oblivious amplitude amplification (see e.g., Gilyén et al. (2019)), and is taken
nearly verbatim from Rattew & Rebentrost (2023).

Lemma B.8 (Vector Normalization, Lemma 18 of Rattew & Rebentrost (2023)). Let ϵ0 ∈ [0, 1/2],
α ≥ 1, a ∈ N, ϵ1 > 0. Let α′ be a known bound such that α′ ≥ α. Given a unitary Uψ, a (α, a, ϵ0)-
VE for the ℓ2-normalized quantum state |ψ⟩n with circuit complexity O(Tψ), we can construct a
(1, a + 4, 2(ϵ0 + ϵ1))-VE for |ψ⟩n with circuit complexity O((Tψ + a + n)α′ log(1/ϵ1)) and with
O(α′ log(1/ϵ1)) queries to a Uψ and U†

ψ circuit.

This implements vector normalization by boosting the scaling factor so the norm of the encoded
vector is 1, and all the padding entries are 0 (up to logarithmic error).

Proof. Define |ϕ⟩n := (⟨0|a ⊗ In)Uψ|0⟩a+n, Nϕ := ∥|ϕ⟩n∥2, |Φ⟩n := |ϕ⟩n/Nϕ. Then, Uψ is
equivalently a (Nϕ, a, 0)-VE for |ϕ⟩n/Nϕ. Using Lemma B.6, we can get U0 a (1, 2, 0)-block-
encoding of the n+ a qubit projector |0⟩⟨0| with O(n+ a) circuit depth. Then, V = (I2 ⊗Uψ)U0 is
a (1, 2, 0)-block-encoding for Uψ|0⟩⟨0|, with O(Tψ + a+ n) circuit complexity. Noting that (⟨0|2 ⊗
Ia+n)V (|0⟩2⊗Ia+n) = Uψ|0⟩⟨0|, then (⟨0|2+a⊗In)V (|0⟩2+a⊗In) = (⟨0|a⊗In)Uψ|0⟩⟨0|(|0⟩a⊗
In) = |ϕ⟩⟨0|a, so

∥|ϕ⟩⟨0|a − ⟨0|2+a ⊗ In)V (|0⟩2+a ⊗ In)∥2 = 0. (B.9)

Thus, we have a (1, a+ 2, 0)-block-encoding of |ϕ⟩⟨0|a = Nϕ|Φ⟩⟨0|. This object has singular value
Nϕ. Thus, we want to apply a polynomial approximation to this block-encoding, such that the error
of the polynomial approximation is at most ϵ1 on the interval [Nϕ, 1]. From Corollary 6 of Low &
Chuang (2017), we know that there exists an odd polynomial Pk(x) with degree k ∈ O( 1τ log(1/ϵ1))
such that

max
x∈[−1,− τ

2 ]∪[τ/2,1]
|Pk(x)− sign(x)| ≤ ϵ1 (B.10)

and maxx∈[−1,1] |Pk(x)| ≤ 1. Since Nϕ ≥ 1
2α ≥ 1

2α′ , we can set τ = 1
2α′ , guaranteeing that

P (Nϕ) ≥ 1 − ϵ1. Consequently, we can invoke quantum singular value transformation (QSVT)
(Gilyén et al., 2019) with Pk, yielding Vf a (1, a+4, ϵ1)-block-encoding for P (Nϕ|Φ⟩⟨0|) = c|Φ⟩⟨0|,
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where 1 ≥ c ≥ 1− ϵ1. Moreover, Vf has O( 1
α′ log(1/ϵ1)(Tψ + a+ n)) circuit complexity. Noting

that

∥|ψ⟩⟨0| − P (Nϕ|Φ⟩⟨0|)∥2 = ∥|ψ⟩⟨0| − |Φ⟩⟨0|+ |Φ⟩⟨0| − c|Φ⟩⟨0|∥2 (B.11)
≤ ∥|ψ⟩⟨0| − |Φ⟩⟨0|∥2 + ∥|Φ⟩⟨0| − c|Φ⟩⟨0|∥2 (B.12)
≤ ∥|ψ⟩n − |Φ⟩n∥2 + ϵ1. (B.13)

Moreover,

∥|ψ⟩n − |Φ⟩n∥2 ≤∥|ψ⟩n − α|ϕ⟩n∥2 + ∥α|ϕ⟩n − 1

Nϕ
|ϕ⟩n∥2 (B.14)

≤ϵ0 +
1

Nϕ
∥αNϕ|ϕ⟩n − |ϕ⟩n∥ = ϵ0 +

|αNϕ − 1|
Nϕ

∥|ϕ⟩n∥2 (B.15)

≤ϵ0 + |αNϕ − 1|. (B.16)

Moreover, using the reverse triangle inequality with ∥|ψ⟩n − α|ϕ⟩n∥2 ≤ ϵ0, we get |1−α ∥|ϕ⟩n∥2 | =
|1−αNϕ| ≤ ϵ1, which implies that 1− ϵ0 ≤ αNϕ ≤ 1+ ϵ0. Consequently, |αNϕ− 1| ≤ ϵ0, and so

∥|ψ⟩n − |Φ⟩n∥2 ≤ 2ϵ0. (B.17)

Thus,

∥|ψ⟩⟨0| − P (Nϕ|Φ⟩⟨0|)∥2 ≤ 2ϵ0 + ϵ1. (B.18)

Moreover, since Vf is a (1, a+ 4, ϵ1)-block-encoding for P (Nϕ|Φ⟩⟨0|),
∥P (Nϕ|Φ⟩⟨0|)− (⟨0|a+4 ⊗ In)Vf (|0⟩a+4 ⊗ In)∥2 ≤ ϵ1. (B.19)

Thus,

∥|ψ⟩⟨0| − (⟨0|a+4 ⊗ In)Vf (|0⟩a+4 ⊗ In)∥2 ≤ 2(ϵ0 + ϵ1). (B.20)

Sometimes it is necessary to increase the norm of the vector encoded in the subspace of a VE. This
is equivalent to multiplying all of the entries in the encoded vector by a constant with value greater
than or equal to one. The following lemma achieves the opposite: it allows the norm of the encoded
vector to be shrunk by an arbitrarily large amount. This is equivalent to dividing all the entries in the
encoded vector by a constant greater than or equal to one. It is worth noting that the following result
is trivial and can almost certainly be further optimized, e.g., by removing the additional ancillary
qubits added.
Lemma B.9 (Vector De-Amplification). Let τ ≥ 1, α ≥ 1, ϵ ≥ 0. Given Uψ an (α, a, ϵ)-VE for
|ψ⟩n, with circuit complexity O(T ), we can obtain U ′

ψ an (ατ, a + 2, ϵ)-VE for |ψ⟩n with circuit
complexity O(T + a).

Proof. Let |ϕj⟩n := (⟨0|a ⊗ In)Uψ|0⟩a+n. Then, note that Uψ|0⟩a+n =
∑2a−1
j=0 |j⟩a ⊗ |ϕj⟩n.

By Definition 3, we know that ∥|ψ⟩n − α|ϕ0⟩n∥ ≤ ϵ.

We introduce two single-qubit ancillas as the most significant bits, and then apply a multiple-controlled
X gate (with a controls each activated by the 0 state of each of the previous a ancilla qubits) targeting
the first newly added ancilla qubit. Using Saeedi & Pedram (2013) this can be implemented with
O(a) two-qubit gates. We then apply a controlled R1/τ2 (as per Definition B.1) gate targeting the
second new ancilla qubit, controlled on the first new ancilla. This yields the state,

|1⟩1(
1

τ
|0⟩1 +

√
1− 1

τ2
|1⟩1)|0⟩a|ϕ0⟩n + |0⟩1|0⟩1

2a−1∑
j=1

|j⟩a|ϕj⟩n. (B.21)

We then apply a X gate to the first ancilla qubit, and we call the 2 + a-qubit unitary containing all
the preceding operations V . Then, U ′

ψ := (V ⊗ In)(I2 ⊗ Uψ). Simple analysis thus shows that
(⟨0|2+a ⊗ In)U

′
ψ|0⟩2+a+n = |ϕ0⟩n/τ . Then,∥∥|ψ⟩n − ατ(⟨0|2+a ⊗ In)U

′
ψ|0⟩2+a+n

∥∥
2
= ∥|ψ⟩n − α|ϕ0⟩n∥ ≤ ϵ. (B.22)
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Figure 3: Circuit for addition of VE encoded vectors. Given two unitary matrices, Uψ which is
a (α, a, ϵ0)-VE for the n-qubit state |ψ⟩, and Uϕ which is a (β, b, ϵ1)-VE for the n-qubit state |ϕ⟩,
define c := max(a, b). We define Ũψ by appropriately tensoring Uψ with Ic−a and we define Ũϕ by
appropriately tensoring Uϕ with Ic−b, such that Ũψ and Ũϕ both act on n+ c qubits. Then, the given
circuit yields a VE of the sum of the encoded vectors, as shown in Lemma 1.

Definition B.1 (Real Rotation Single Qubit Gate). Let 0 ≤ τ ≤ 1. Then, define the following
single-qubit gate:

Rτ :=

( √
τ −

√
1− τ√

1− τ
√
τ ,

)
. (B.23)

Proof of Lemma 1 (Vector Sum). This result follows using a common techniques, see e.g.,
LCU (Childs & Wiebe, 2012), or the sum of block-encodings result (Gilyén et al., 2019). As
per Figure 3, we will augment Uψ and Uϕ so that they both act on c = max(a + b) ancilla qubits.
Then, define the n+ c qubit states, |ψ̃⟩n+c := Uψ|0⟩n+c. We will drop the subscripts on these states
for the rest of the proof, as their dimension is clear from the context. This block-encoding will be
obtained with the circuit shown in Figure 3, and so we will now analyze the action of that circuit. First,
we start with the state |0⟩1+n+c, which we will write as |0⟩|0⟩, where the first register has one qubit,
and the second register has the remaining n+c qubits. We then applyRτ (as defined in Definition B.1)
to the first qubit, yielding the state (

√
τ |0⟩+

√
1− τ |1⟩)|0⟩. Next, we apply the controlled Uψ and Uϕ

gates, yielding,
√
τ |0⟩|ψ̃⟩+

√
1− τ |1⟩|ϕ̃⟩. Next, we apply R†

τ =

( √
τ

√
1− τ

−
√
1− τ

√
τ

)
on the first

qubit, yielding the output of the new VE, V |0⟩ = |0⟩(τ |ψ̃⟩+(1−τ)|ϕ̃⟩)+
√
τ(1− τ)|1⟩(|ϕ̃⟩−|ψ̃⟩).

Define |Eψ⟩ := |ψ⟩ − α(⟨0|⊗(c) ⊗ In)|ψ̃⟩ and note that ∥|Eψ⟩∥2 ≤ ϵ0. Similarly define |Eϕ⟩, and
note that ∥|Eϕ⟩∥2 ≤ ϵ1. As a result, we can determine the properties of this VE by bounding the
following, ∥∥∥∥|Γ⟩ − 1

N
(⟨0|⊗(1+c) ⊗ In)V |0⟩1+c+n

∥∥∥∥
2

(B.24)

=

∥∥∥∥|Γ⟩ − 1

N
(⟨0|⊗c ⊗ In)(τ |ψ̃⟩+ (1− τ)|ϕ̃⟩)

∥∥∥∥
2

(B.25)

=

∥∥∥∥|Γ⟩ − 1

N

(
τ

α
(|ψ⟩ − |Eψ⟩) +

1− τ

β
(|ϕ⟩ − |Eϕ⟩)

)∥∥∥∥
2

(B.26)

=

∥∥∥∥ 1

N

(
τ

α
|Eψ⟩+

1− τ

β
|Eϕ⟩

)∥∥∥∥
2

≤ 1

N

(
τϵ0
α

+
(1− τ)ϵ1

β

)
(B.27)

≤ 1

N

(
ϵ0
α

+
ϵ1
β

)
≤ ϵ0 + ϵ1

N
. (B.28)

where the final inequality comes from the definition of a VE imposing that α ≥ 1 and β ≥ 1. Thus,
the unitary circuit V is a (N−1, 1 + a+ b,N−1(ϵ0 + ϵ1))-VE for |Γ⟩.

Proof of Lemma 2 (Matrix Vector Product). We now require a result allowing for matrix-vector
products with our vector-encodings. This result is essentially a special case of the product of the
standard product of block-encodings result (Lemma 53 of Gilyén et al. (2019)). As a result, the
following proof closely follows that in Gilyén et al. (2019).

In this lemma, again following the notation of Gilyén et al. (2019) for tensor products, it is assumed
that UA and Uψ act trivially on the other’s ancillas. To be explicit, the tensor products in (Ib ⊗
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UA)(Ia ⊗ Uψ) use a special definition only in this lemma. Let N := ∥A|ψ⟩n∥2. We wish to
upper-bound,

ξ :=

∥∥∥∥A|ψ⟩nN
− αβ

N
(⟨0|a+b ⊗ In)(Ib ⊗ UA)(Ia ⊗ Uψ)|0⟩a+b+n

∥∥∥∥
2

(B.29)

=
1

N
∥A|ψ⟩n − αβ(⟨0|a+b ⊗ In)(Ib ⊗ UA)(Ia ⊗ Uψ)(|0⟩a+b ⊗ In)|0⟩n∥2 (B.30)

Then, directly from the proof of Lemma 53 in Gilyén et al. (2019),

ξ =
1

N
∥A|ψ⟩n − αβ [(⟨0|a ⊗ In)UA(|0⟩a ⊗ In)] [(⟨0|b ⊗ In)Uψ(|0⟩b ⊗ In)] |0⟩n∥2 (B.31)

Let Ã := α(⟨0|a ⊗ In)UA(|0⟩a ⊗ In) and let |ψ̃⟩ := β(⟨0|b ⊗ In)Uψ(|0⟩b+n). Then,

ξ =
1

N

∥∥∥A|ψ⟩n − Ã|ψ̃⟩n
∥∥∥
2
=

1

N

∥∥∥A|ψ⟩n − Ã|ψ⟩n + Ã|ψ⟩n − Ã|ψ̃⟩n
∥∥∥
2

(B.32)

≤ 1

N

(∥∥∥A− Ã
∥∥∥
2
+
∥∥∥Ã∥∥∥

2

∥∥∥|ψ⟩n − |ψ̃⟩n
∥∥∥
2

)
(B.33)

Noting that
∥∥∥Ã∥∥∥

2
≤ α, we then get

ξ ≤ (ϵ0 + αϵ1)/N . (B.34)

Consequently, (Ib ⊗ UA)(Ia ⊗ Uψ) gives a (αβ/N , a+ b, (ϵ0 + αϵ1)/N )-VE for A|ψ⟩n/N .

In the following lemma we derive a technical result handling the case where you have a vector

encoding for some vector |ψ⟩, and another vector of interest |ϕ⟩ is sub-encoded as |ψ⟩ =
(
|ϕ⟩/β

·

)
.

Our result also handles the case where each vector is imperfectly encoded (i.e., encoded with error).

Lemma B.10 (Vector Sub-Encodings). Let m,n be integers such that m > n. Let Uψ be an
(α, a, ϵ)-VE for |ψ⟩m, and let |ψ⟩m ≈ Vϕ|0⟩m (precisely, ∥|ψ⟩m − Vϕ|0⟩m∥2 ≤ γ), where Vϕ is a
(β,m− n, δ)-VE for |ϕ⟩n. Then, Uψ is an (αβ, a+m− n, δ + β(ϵ+ γ))-VE for |ϕ⟩n.

Proof. Let b = m − n. First, define |Eψ⟩m := |ψ⟩m − α (⟨0|a ⊗ Im)Uψ|0⟩a+m, and |Eϕ⟩n :=
|ϕ⟩n − α (⟨0|b ⊗ In)Uψ|0⟩b+n. By Definition 3, ∥|Eψ⟩m∥2 ≤ ϵ and ∥|Eϕ⟩n∥2 ≤ δ. Let |Ev⟩m :=
|ψ⟩m − Vϕ|0⟩m. Now observe,

(⟨0|b ⊗ In) (⟨0|a ⊗ Im)Uψ|0⟩a+m = (⟨0|b ⊗ In) (|ψ⟩m − |Eψ⟩m)/α (B.35)
= (⟨0|b ⊗ In) (Vϕ|0⟩m + |Ev⟩m − |Eψ⟩m)/α (B.36)
= ((|ϕ⟩n − |Eϕ⟩n)/β + (⟨0|b ⊗ In)(|Ev⟩m − |Eψ⟩)) /α.

(B.37)

Consequently, since (⟨0|b ⊗ In)(⟨0|a ⊗ Im) = ⟨0|a+b ⊗ In,

∥|ϕ⟩n − αβ(|0⟩a+b ⊗ In)Uψ|0⟩a+b+n∥2 (B.38)
≤ ∥|Eϕ⟩n∥2 + β ∥|Eψ⟩m∥2 + β ∥|Ev⟩m∥2 ≤ δ + β(ϵ+ γ). (B.39)

Lemma B.11 (Tracing Out Qubits in Vector Sub-Encodings). Let U be an (α, a, ϵ)-VE for |0⟩b|ψ⟩n.
Then, U is an (α, a+ b, ϵ)-VE for |ψ⟩n.

Proof. Let |E⟩b+n := |0⟩b|ψ⟩n−α(⟨0|a⊗In+b)U |0⟩a+b+n. Since ⟨0|a+b⊗In = (⟨0|b⊗In)(⟨0|a⊗
Ib+n), (⟨0|a+b ⊗ In)U |0⟩a+b+n = 1

α (|ψ⟩n − (⟨0|b ⊗ In)|E⟩b+n). Thus,

∥|ψ⟩n − α(⟨0|a+b ⊗ In)U |0⟩a+b+n∥2 = ∥(⟨0|b ⊗ In)|E⟩b+n∥2 ≤ ϵ. (B.40)
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Proof of Lemma 3 (Vector Tensor Product). This result closely follows the derivation of the tensor
product of block-encodings (Lemma B.2), which was a rederivation of Lemma 1 of Camps &
Van Beeumen (2020).

Uψ acts on an a-qubit ancilla register and a n-qubit main register, while Uϕ acts on an b-qubit ancilla
register and a m-qubit main register.

As per Lemma B.2, define Π to swap the n-qubit register with the b-qubit register acting trivially on
the other two registers. Again, Π has a circuit depth bounded byO(max(n/b, b/n)) ∈ O(max(n, b)).
Then, (⟨0|a+b ⊗ In+m)Π† = (⟨0|a ⊗ In) ⊗ (⟨0|b ⊗ Im). Let V = Π†(Uψ ⊗ Uϕ). Let |Eψ⟩n =
|ψ⟩n − α(⟨0|a ⊗ In)Uψ|0⟩a+n and |Eϕ⟩m = |ϕ⟩m − β(⟨0|b ⊗ Im)Uϕ|0⟩b+m. Then,

(⟨0|a+b ⊗ In+m)Π†(Uψ ⊗ Uϕ)|0⟩a+b+n+m =
1

αβ
(|ψ⟩n − |Eψ⟩n)⊗ (|ϕ⟩m − |Eϕ⟩m), (B.41)

and so,

∥|ψ⟩n|ϕ⟩m − αβ(⟨0|a+b ⊗ In+m)Π(Uψ ⊗ Uϕ)|0⟩a+b+n+m∥2 ≤ ϵ+ δ + ϵδ. (B.42)

Proof of Lemma 4 (Vector Concatenation). We now present the proof of a simple result on the
concatenation of vectors stored in VEs. This result follows from a simple modification of LCU
(Childs & Wiebe, 2012). In essence, given a set of D = 2d vectors {|ψj⟩n}j , we first create vector
encodings of {|j⟩d|ψj⟩n}j and then take the resulting sum of the encoded vectors following LCU,
yielding an encoding of (⟨ψ0|n . . . ⟨ψD−1|n)†.

For all j, define |Eψj ⟩n := |ψj⟩n − α(⟨0|a ⊗ In)Ui|0⟩a+n.

First, let j be d bits, and let j = j0j1 . . . jd−1. Define Xj := Xj0 ⊗Xj1 ⊗ . . .⊗Xjd−1

. Note that
|j⟩d = Xj |0⟩d, and thus that Xj is a (1, 0, 0)-VE for |j⟩d. Then, we can invoke Lemma 3 with Uj
and Xj to obtain Vj , an (αj , a, ϵ)-VE for |j⟩d|ψj⟩n with O(T + n) circuit complexity. Moreover, by
inspecting Lemma 3, we find that (⟨0|a ⊗ In+d)Vj |0⟩a+d+n = 1

αj
(|j⟩d|ψj⟩n − |j⟩d|Eψj ⟩n).

Additionally, define S :=
∑D−1
j=0 |j⟩⟨j|d ⊗ Vj . This can be implemented by a sequence of O(D)

multi-controlled gates, each enacting Vj when the control register is |j⟩d (in the standard fashion of
LCU (Childs & Wiebe, 2012)). First, note that by using Saeedi & Pedram (2013) a multiple-controlled
gate with O(d) controls can be split into a sequence of O(d) single and two-qubit gates. By splitting
each of the d control qubits into a+d+n copies (withO(log(a+d+n)) depth), we can control each
gate in each layer of Uj in parallel with O(d) circuit depth. Since these ancillas can be uncomputed
and traced out, we ignore them in the complexity analysis. Thus, each multi-controlled Vj gate can be
decomposed into a sequence of O(dT ) single and two-qubit gates. Thus, S has a total circuit depth
of O(dDT ). Let Ĥ := H⊗d ⊗ Id+n+a. Using ⟨0|a+d ⊗ In+d = (⟨0|d ⊗ In+d)(Id ⊗ ⟨0|a ⊗ Id+a),

(⟨0|d+a ⊗ In+d)ĤSĤ|0⟩2d+a+n (B.43)

= (⟨+|d ⊗ In+d)(Id ⊗ ⟨0|a ⊗ In+d)

D−1∑
j=0

(|j⟩⟨j|d ⊗ Vj)|+⟩d|0⟩a+d+n (B.44)

=
1

D

D−1∑
j=0

|j⟩d|ψj⟩d − |j⟩d|Eψj ⟩n
αj

. (B.45)

Then, noting that N 2 =
∑D−1
j=0

1
α2
j

, and that
∥∥∥∑D−1

j=0 |j⟩d|Eψj ⟩n/αj
∥∥∥
2
≤ N ϵ,

∥∥∥∥ |Ψ⟩d+n
N

− D

N
(⟨0|d+a ⊗ In+d)ĤSĤ|0⟩2d+a+n

∥∥∥∥
2

=
1

N

∥∥∥∥∥∥
D−1∑
j=0

|j⟩d|Eψj ⟩n/αj

∥∥∥∥∥∥
2

≤ ϵ. (B.46)

Thus, ĤSĤ is a (D/N , d+ a, ϵ) for |Ψ⟩d+n
N with O(dDT ) circuit complexity.
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B.1 GENERAL MATRIX-VECTOR-SQUARED PRODUCT

In this subsection, we will derive a procedure which given an arbitrary matrix W and quantum
state |ψ⟩, allows for a state proportional to the product of W (|ψ⟩)2 to be obtained with complexity
independent of the Frobenius norm (and thus rank), and sparsity, of W . To the best of our knowledge,
this is the first result which allows such a product without either a rank or sparsity condition on
W . The key insight is to avoid ever constructing a block-encoding of the operator W , and directly
query its columns weighted by the entries of the vector it is being applied to. In particular, at
a high-level we construct two objects. Define the columns of W = (w0 . . . wN−1), define
the column norms aj := ∥wj∥2, and the normalized versions of the columns |wj⟩n = wj/aj .
Additionally, define the state we are applying it to as |ψ⟩n =

∑
j ψj |j⟩n. First, we construct the

normalized state
∑
j ψj |j⟩n|wj⟩n. Clearly, this object has no Frobenius norm dependence. We

would like to map all the vectors in the first register to the |0⟩ state so that we have something
resembling the matrix-vector product, and to do this we construct another operator. Note that the

matrix Q =

(
a0In . . . aN−1In

0

)
(i.e., the first N rows are non-zero, and the rest are all zero)

when applied to |ϕ⟩2n =
∑
j ψj |j⟩n|wj⟩n yields Q|ϕ⟩2n = |0⟩n ⊗ (W |ψ⟩n). However, this object

has a spectral norm Ω(∥W∥F ). Instead, we define M :=

(
a0ψ0In . . . aN−1ψN−1In

0

)
and note

thatM can be shown to have ∥M∥2 ≤ 1, and moreover, we subsequently show how a block-encoding
of this operator can be efficiently obtained. Consequently, since M |ϕ⟩2n = |0⟩n ⊗ (W (|ψ⟩n)2), the
result follows. The rest of this section simply derives the ingredients necessary to rigorously prove
this intuition.
Definition B.2 (RY (t) Gate). Let t ∈ R, and let Y be the standard single-qubit Pauli-Y gate. Then,
define

RY (t) := e−itY = cos(t)I − i sin(t)Y =

(
cos(t) − sin(t)
sin(t) cos(t)

)
. (B.47)

For completeness, we will now present a standard result allowing one to transfer digitally represented
information to the amplitudes of a quantum state.
Lemma B.12 (CRY (t) Gate). Let t ∈ R. Let Y be a standard Pauli-Y gate. Let |a⟩d be a d-bit
standard basis vector, and let |ψ⟩1 be an arbitrary single-qubit quantum state. Then, we can define
the gate CRY (t) by the following action,

CRY (t)|ψ⟩1|a⟩d = (e−iatY |ψ⟩1)|a⟩d. (B.48)

In the event that |ψ⟩1 = |0⟩1, this action can be simplified to

CRY (t)|0⟩1|a⟩d = (cos(at)|0⟩1 + sin(at)|1⟩1)|a⟩d. (B.49)

Moreover, the CRY (t) gate is implemented with O(d) circuit depth.

Proof. This is a standard result. This proof is included for completeness, and follows the one
in Rattew & Koczor (2022). Let D = 2d. First, note that CRY (t) =

∑D−1
a=0 e

−iatY ⊗ |a⟩⟨a|.
Additionally, let a = ad−1ad−2 . . . a1a0 = ad−12

d−1 + ...+ a12 + a0. Then,

e−iatY = e−i(ad−12
d−1+...+a12+a0)tY = e−iad−12

d−1tY · . . . · e−ia1tY e−ia0tY . (B.50)

Then, CRY (t) can be implemented by applying a sequence of d controlled e−i2
jtY gates (Defini-

tion B.2), targeting the first register, controlled on the jth bit of the second register.

We now present a result on obtaining a block-encoding of an arbitrary diagonal matrix whose entries
are stored in QRAM. This is essentially a special case of Lemma 48 of Gilyén et al. (2019), but by
considering this special case moderate improvements in complexity can be obtained.
Lemma B.13 (Quantum Block-Encoding of Diagonal Matrices from QRAM). Let N = 2n. We
are given a set of N real coefficients, {aj}j such that ∀j, |aj | ≤ 1. Assume that each aj can
be represented exactly in a binary encoding with d-bits of precision, and define D = 2d. Define
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bj := arccos(aj)D/π, and for simplicity assume that each bj can also be implemented with exactly
d-bits of precision4, and note that bj ∈ [D]. Assume that we are given an oracle, implemented via
QRAM, such that U |0⟩d|j⟩n = |bj⟩d|j⟩n. Then, we can obtain UA, a (1, d+ 1, 0)-block-encoding
for A = diag(a0, . . . , aN−1), with O(dn) circuit depth.

Proof. Define the circuit V := (I1 ⊗ U†)(CRY (
π
D ) ⊗ In)(I1 ⊗ U), with CRY ( πD ) defined as

per Lemma B.12. First, since for any |ϕ⟩ and basis vector |j⟩, |ϕ⟩⊗ |j⟩⟨j| = (|ϕ⟩|j⟩)⟨j|, observe that

(I1 ⊗ U)(|0⟩d+1 ⊗ In) =

N−1∑
j=0

[(I1 ⊗ U)|0⟩1|0⟩d|j⟩n] ⟨j|n =

N−1∑
j=0

(|0⟩1|bj⟩d|j⟩n)⟨j|n. (B.51)

Then, since cos(bj
π
D ) = arccos(aj),

(CRY (
π

D
)⊗ In)(I1 ⊗ U)(|0⟩d+1 ⊗ In) =

N−1∑
j=0

(
(aj |0⟩1 +

√
1− a2j |1⟩1)|bj⟩d|j⟩n

)
⟨j|n.

(B.52)

Then, since (⟨0|d+1 ⊗ In)(I1 ⊗ U†) = [(I1 ⊗ U)(|0⟩d+1 ⊗ In)]
† =

∑N−1
j=0 |j⟩n(⟨0|1⟨bj |d⟨j|n), we

readily find that

(⟨0|d+1 ⊗ In)V (|0⟩d+1 ⊗ In) =

N−1∑
j=0

aj |j⟩⟨j| = diag(a0, . . . , aN−1) = A. (B.53)

Thus, V is a (1, d + 1, 0)-block-encoding for A. The circuit depth of implementing U is the
depth of making a QRAM query, and is thus O(d logN) = O(nd) (see Definition A.1). The cost
of implementing the CRY gate is simply O(d) as per Lemma B.12, and thus the overall circuit
complexity of this block-encoding is O(nd).

In the case where each aj ∈ C, the complex and real parts need to be specified separately. A
diagonal block-encoding of the real and imaginary parts can then be obtained using Lemma B.13,
and can then be summed by adding an ancilla to obtain a (2, d+ 2, 0)-block-encoding with the same
overall circuit complexity. One might wonder why, given a QRAM assumption, a state-preparation
unitary yielding a state proportional to

∑
j aj |j⟩ can’t be used instead, in combination with the

diagonal block-encoding of state amplitudes result of Rattew & Rebentrost (2023). If each aj
represent the column norm of some matrix W , doing so would result in a normalization factor of∥∥∥∑j aj |j⟩

∥∥∥
2
=
√∑

j |aj |2 = ∥W∥F , yielding a Frobenius norm-dependence which this approach
avoids.

The following data-structure is useful in situations where you are willing to pay a pre-processing cost
linear (up to polylogarithmic factors) in the number of non-zero matrix elements, but want a fast
algorithm at runtime. This is the case with accelerating neural network inference. The following data
structure is very similar to the one given in Kerenidis & Prakash (2017).
Definition B.3 (Preprocessed Matrix QRAM Data Structure). Let N = 2n, and let D = 2d.

Let W ∈ CN×N and let ∥W∥2 ≤ 1. Let the columns of W be represented as W =
(w0 . . . wN−1). Additionally, define |wj⟩ = wj/ ∥wj∥2, and aj = ∥wj∥. Let bj :=
arccos(aj)D/π. For simplicity, we assume that bj can be exactly written with d-bits, and thus
that bj will be an integer between [0, D − 1]. We say we have access to a Preprocessed QRAM Data
Structure for W if we have a QRAM oracle UW (as per Definition A.2) such that

UW |j⟩n|0⟩n = |j⟩n|wj⟩n, (B.54)
and we also have access to a QRAM yielding the mapping,

UA|0⟩d|j⟩n = |bj⟩d|j⟩n. (B.55)

UW can be implemented with O(log2N) circuit depth, and with Õ(N2) total qubits (as per Defini-
tion A.2). UA can be implemented with O(d logN) circuit depth, and with Õ(dN) total qubits (as
per Definition A.1).

4In practice this will result in an additional logarithmic source of error, which we are neglecting, as it is akin
to finite-precision arithmetic error which is usually neglected in classical algorithm analysis.
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We are now ready to present a somewhat surprising result on matrix-vector multiplication with
arbitrary (potentially full-rank and dense) matrices and the element-wise square of a given vector.
The following uses ideas similar to importance-sampling.
Theorem B.1 (Product of Arbitrary Matrix with a Vector Element-wise Squared). Let N = 2n.
We are given a matrix W ∈ CN×N through the data-structure in Definition B.3. Let d be the
number of bits required to represent the function of the column norms of W , bj , as per Definition B.3.
Additionally, we are given the unitary Uψ with circuit complexity O(Tψ), a (α, a, ϵ)-VE for the
quantum state |ψ⟩n. Define the function g : C 7→ R as g(x) = |x|2, and N := ∥Wg(|ψ⟩n)∥2. Then
we can construct the unitary Uf which is a (α

2

N , 2a + d + 3 + n, 2αϵN )-VE for Wg(|ψ⟩n)/N , and
has a circuit depth of O(Tψ + dn+ n2).

Proof. Noting that aj = ∥W |j⟩∥2, it is easy to show ∥W∥2 ≤ 1 =⇒ ∀j, aj ≤ 1; aj = ∥W |j⟩∥2 ≤
maxx:∥x∥2=1 ∥Wx∥2 = ∥W∥2 ≤ 1. Consequently, by Lemma B.13 we can immediately get UA, a
(1, d+ 1, 0)-block-encoding for A = diag(a0, . . . , aN−1) with O(dn) circuit depth.

Let |ψ1⟩n := A|ψ⟩n =
∑N−1
j=0 ajψj |j⟩n, N1 := ∥|ψ1⟩n∥2. By Lemma 2, we can combine UA

and Uψ to obtain V1, a (α/N1, a + d + 1, ϵ/N1)-VE for |ψ1⟩n/N1. This has circuit complexity
O(Tψ + dn).

By Lemma B.6, we can get U0, a (1, 2, 0)-block-encoding for the n+a+d+1-qubit projector |0⟩⟨0|.
Let |Eψ1

⟩n := |ψ1⟩
N1

− α
N1

(⟨0|a+d+1 ⊗ In)V1(|0⟩n+a+d+1). Then, by Definition 3, ∥|Eψ1
⟩n∥2 ≤

ϵ/N1. Moreover, ⟨0|a+d+1 ⊗ In)V1(|0⟩n+a+d+1) = 1
α (|ψ1⟩n − N1|Eψ1

⟩n). Then, observe that
V2 := U0(I2 ⊗ V †

1 ) is a (1, 2, 0)-block-encoding for |0⟩⟨0|V †
1 . Let c = a + d + 1. Noting that

(|0⟩c+2 ⊗ In) = (|0⟩2 ⊗ Ic+n)(|0⟩c ⊗ In), then,
(⟨0|c+2 ⊗ In)V2(|0⟩c+2 ⊗ In) = (⟨0|c ⊗ In)(⟨0|2 ⊗ Ic+n)V2(|0⟩2 ⊗ Ic+n)(|0⟩c ⊗ In) (B.56)

= (⟨0|c ⊗ In)|0⟩⟨0|V †
1 (|0⟩c ⊗ In) (B.57)

=
1

α
(|0⟩n(⟨ψ1|n −N1⟨Eψ1

|n)) . (B.58)

The third inequality follows by noting that (⟨0|c ⊗ In)|0⟩n+c = |0⟩n, and that by Definition 2,
(⟨0|2 ⊗ Ic+n)V2|0⟩2 ⊗ Ic+n) = |0⟩⟨0|V †

1 . Then, letting |0⟩⟨ψ1| be a 2n × 2n projector,
∥|0⟩⟨ψ1| − α(⟨0|c+2 ⊗ In)V2(|0⟩c+2 ⊗ In)∥2 = N1 ∥|0⟩⟨Eψ1

|∥2 ≤ ϵ. (B.59)
Consequently, V2 is a (α, a+ d+ 3, ϵ)-block-encoding for the 2n × 2n projector |0⟩⟨ψ1|. Moreover,
the circuit complexity of V2 is dominated by the circuit complexity of V1, and thus is O(Tψ + dn).
Then, V3 := V2 ⊗ In is a (α, a+ d+ 3, ϵ)-block-encoding for (|0⟩⟨ψ1|)⊗ In.

Let UW be defined as in Definition B.3, i.e., it enacts UW |j⟩n|0⟩n = |j⟩n|wj⟩n.

Define |ϕ⟩2n :=
∑N−1
j=0 ψj |j⟩n|wj⟩n.

Then, let S := (Ia ⊗ UW )(Uψ ⊗ In). We will now show that S is an (α, a, ϵ)-VE for |ϕ⟩2n.

Let |Eψ⟩n := |ψ⟩n − α(⟨0|a ⊗ In)Uψ|0⟩a+n, thus, (⟨0|a ⊗ In)Uψ|0⟩a+n = 1
α (|ψ⟩n − |Eψ⟩n)

Moreover, define the a-qubit projector, paj := |j⟩⟨j|. Then, Ia+n =
∑2a−1
j=0 paj ⊗ In. Finally, define

|γj⟩n := (⟨j|a ⊗ In)Uψ|0⟩a+n. Of course,

Uψ|0⟩a+n =

2a−1∑
j=0

paj ⊗ In

Uψ|0⟩a+n =
1

α
(|0⟩a(|ψ⟩n − |Eψ⟩n)) +

2a−1∑
j=1

|j⟩a|γj⟩n. (B.60)

Consequently,
(⟨0|a ⊗ I2n)S|0⟩a+2n = (⟨0|a ⊗ I2n)(Ia ⊗ UW )(Uψ ⊗ In)|0⟩a+2n (B.61)

= (⟨0|a ⊗ UW )

 1

α
(|0⟩a(|ψ⟩n − |Eψ⟩n)) +

2a−1∑
j=1

|j⟩a|γj⟩n

 |0⟩n (B.62)

=
1

α
(|ϕ⟩2n − UW |Eψ⟩n|0⟩n) . (B.63)
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Thus,

∥|ϕ⟩2n − α(⟨0|a ⊗ I2n)S|0⟩a+2n∥2 = ∥UW |Eψ⟩n|0⟩n∥2 ≤ ϵ. (B.64)

Thus, S is an (α, a, ϵ)-VE for |ϕ⟩2n. Moreover, the circuit complexity of S comes from summing
the circuit complexity of Uψ and UW . As per Definition B.3, the circuit complexity of UW is O(n2),
giving an overall circuit complexity for S of O(Tψ + n2).

Define |Γ⟩n :=Wg(|ψ⟩n), and note that

[(|0⟩⟨ψ1|)⊗ In]|ϕ⟩2n = |0⟩n
N−1∑
j=0

|ψj |2aj |wj⟩n = |0⟩n|Γ⟩n. (B.65)

We now have V3, a (α, a+ d+ 3, ϵ)-block-encoding for (|0⟩⟨ψ1|)⊗ In, and S an (α, a, ϵ)-VE for
|ϕ⟩2n. We will now invoke Lemma 2 to take the product of the matrix encoded in V3 with the vector
encoded in S, and then will invoke Lemma B.11 to remove the |0⟩n tensored register. This yields Uf ,
an (α

2

N , 2a+ d+ 3 + n, 2αϵN )-VE for |Γ⟩n/N with circuit complexity O(Tψ + dn+ n2).

B.2 CONVOLUTION BLOCK-ENCODING

In this section, we will first provide a matrix-form of a 2D multi-filter convolution (with stride 1
and 0 padding to ensure the input and outputs have the same dimension). We then derive a quantum
block-encoding of the matrix form of the convolution.

As a note, some popular deep learning frameworks such as PyTorch (Paszke et al., 2019) actually
implement cross-correlation rather than convolution. However, in the pre-processing stage, our con-
volutional block-encoding immediately gives a cross-correlation block-encoding by simply switching
theQ operator (Definition B.6) with aQT operator. Finally, in this section, we assume that all addition
on basis vectors is mod the dimension of the vector. I.e., for integers i, j, |i+j⟩n = |(i+j) mod N⟩n
(with N = 2n).

Definition B.4 (Permutation Matrix). Define the following N dimensional unitary permutation
matrix that maps an input basis vector i to the basis vector (i+ 1) mod N .

P :=

N∑
i=0

|i+ 1⟩⟨i| =


0 0 0 . . . 1
1 0 0 0
0 1 0 0
...

. . .
...

0 0 0 . . . 0

 . (B.66)

Definition B.5 (RZ Phase Gate). Define the single-qubit phase gate, RZ(t) := eitZ =

(
eit 0
0 e−it

)
.

We now derive a block-encoding of the permutation matrix P acting on m qubits. We include this
result for completeness, and similar results may be found in the literature (see e.g., Motlagh &
Wiebe (2024), where they derive a 1D circulant convolution via QSP, or Camps et al. (2024)). Our
implementation of Pm is identical to a +m adder implemented with QFT, see e.g., Draper (2000).

Lemma B.14 (Permutation Matrix Block-Encoding). Let m ∈ N>0. Let N = 2n. The mth

power of the permutation matrix P is given by Pm =
∑N−1
j=0 |j + m⟩⟨j|. Then, we can get a

(1, 1, 0)-block-encoding with O(n2) circuit complexity for Pm.

Proof. Drawing inspiration from Motlagh & Wiebe (2024); Sedghi et al. (2019), let F := QFT

represent the Quantum Fourier Transform on n qubits. Define ωjN := e2πij/N . Noting that F =
1√
N

∑N−1
i=0

∑N−1
j=0 ωijN |i⟩⟨j|, it is easy to show that PmF |j⟩ = ω−mj

N F |j⟩. Consequently, we can

write Pm = FDF−1, where D = diag(ω0
N , ω

−m
N , . . . , ω

−m(N−1)
N ). Thus, by getting a block-

encoding of D, we can implement Pm by taking a product of FDF−1. Let |j⟩n be a basis vector,
and let j = 2n−1jn−1 + . . .+ 21j1 + 20j0. We will now give a unitary Vm which implements the
mapping Vm|0⟩1|j⟩n = ω−jm

N |0⟩1|j⟩n. Noting that ω−jm
N = e−2πijm/N =

∏n−1
l=0 e

−2πim(2jl jl)/N ,
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we can apply a sequence of n controlled RZ(t) gates, where the lth gate is controlled on bit jl and
applies RZ(m2jl/N) on the ancilla qubit. This implements the desired mapping, and can be easily
shown to be a (1, 1, 0)-block-encoding for D. The Quantum Fourier Transform (Coppersmith, 2002)
can be implemented with O(n2) circuit complexity (Nielsen & Chuang, 2010), and so we can get a
trivial (1, 0, 0)-block-encoding for both F and F †. Thus, (I1 ⊗ F )Vm(I1 ⊗ F †) is a (1, 1, 0)-block-
encoding for Pm, with O(n2) circuit depth. Its worth noting that since the ancilla qubit in Vm is
separable after the computation, this could be equivalently considered a (1, 0, 0)-block-encoding.

Definition B.6 (Discrete Unilateral Shift Operator). Define Q to be the N -dimensional discrete
unilateral shift operator,

Q :=

N−2∑
j=0

|j + 1⟩⟨j| =


0 0 . . . 0 0
1 0 0 0
0 1 0 0
...

. . .
...

0 0 . . . 1 0

 . (B.67)

This is just the permutation matrix P without wrap-around.

Lemma B.15 (Block-Encoding of Q). Let N = 2n. Define Q as per Definition B.6. Then, we can
obtain a (1, 4, 0)-block-encoding for Q with O(n2) circuit complexity.

Proof. By Lemma B.14, we can obtain a UP a (1, 1, 0)-block-encoding of P =
∑N−1
j=0 |j + 1⟩⟨1|

with O(n2) circuit complexity. By Lemma B.6, we can obtain V a (1, 2, 0)-block-encoding of the
n-qubit projector |0⟩⟨N−1| withO(n) circuit depth. Following LCU (Childs & Wiebe, 2012; Gilyén
et al., 2019), we can get the sum of these two block-encodings, introducing an additional ancilla,
with the circuit Uf := (H ⊗ I2+n)(|0⟩⟨0|1 ⊗ I1 ⊗ UP − |1⟩⟨1|1 ⊗ V )(H ⊗ I2+n). Then, Uf is
a (1, 3, 0)-block-encoding for 1

2 (P − |0⟩⟨N − 1|) = 1
2Q, with O(n2) circuit complexity. Noting

that Q†Q = In − |N − 1⟩⟨N − 1|, it is clear that ∥Q∥2 ≤ 1. Moreover, since all the singular
values of Q/2 are either 0 or 1/2, we can invoke Lemma B.4, a special case of oblivious amplitude
amplification (Gilyén et al., 2019), to immediately convert this to a (1, 4, 0)-block-encoding for Q
with only 3 calls to Uf .

Lemma B.16 (Block-Encoding of Qm). Let m ∈ N>0 and let N = 2n. Define the N -dimensional
operator Q as per Definition B.6. Then, we can obtain a (1, 4m, 0)-block-encoding of Qm with
O(mn2) circuit complexity.

Proof. As per Lemma B.15, we can obtain UQ a (1, 4, 0)-block-encoding for Q with O(n2) circuit
complexity. Invoking Lemma 53 (Product of Block-Encoded Matrices) of Gilyén et al. (2019) withUQ
m times directly yields a (1, 4m, 0)-block-encoding of Qm with O(mn2) circuit complexity.5

Now, we present a standard well-known result giving the matrix form of a 2D multi-filter convolution
(see e.g., Sedghi et al. (2019); Kerenidis et al. (2020)).
Lemma B.17 (Matrix Form of 2D Multi-Filter Convolution). Let M = 2m, let n = 2m, let
N = 2n, and let D = 2d. Let C = 2c represent the number of input and output channels. Let X
represent the rank−3 input tensor, which in vectorized form (stored in column-major order for each
input channel) is given by, |X⟩n+c =

∑C−1
i=0

∑M−1
j=0

∑M−1
k=0 Xi,k,j |i⟩c|j⟩m|k⟩m. I.e., |X⟩n+c is of

dimension M2C = NC. Define X̃i,j,k = Xi,j,k if j ≥ 0 and k ≥ 0, and X̃i,j,k = 0 otherwise. We
can define the convolutional kernel K to be a rank-4 tensor containing each of the C, C ×D ×D
filters6, where the first index represents the output channel, the second index represent the input
channel, the third index represents the row index, and the fourth index represents the column index.
Then, entry y, z of the xth output channel after convolution with K is given by,

[X ∗K]x,y,z :=

C−1∑
j=0

D−1∑
k=0

D−1∑
l=0

Kx,j,k,lX̃j,z−k,y−l. (B.68)

5This can likely be optimizing by using QSVT (Gilyén et al., 2019).
6If the number of channels is 1 (i.e., C = 1), then the kernel is D ×D dimensional.
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Defining Q as per Definition B.6, we can give the matrix form of the convolution,

C :=

C−1∑
i=0

C−1∑
j=0

D−1∑
k=0

D−1∑
l=0

Ki,j,k,l(|i⟩⟨j|c ⊗Ql ⊗Qk). (B.69)

I.e., C|X⟩n+c = vec(X ∗K).

Proof. We will verify that C indeed implements the mapping specified in Equation (B.68) by comput-
ing the following, ⟨x|c⟨y|m⟨z|mC|X⟩n+c. Note that for all i < l, ⟨i|Ql = 0, and that for all i ≥ l,
⟨i|Ql = ⟨i− l|. Consequently, if y − l ≥ 0, z − k ≥ 0, then ⟨j|c ⊗ (⟨y|m⟨z|mQl ⊗Qk)|X⟩n+c =
Xj,z−k,y−l, and if y − l < 0 or z − k < 0 then ⟨j|c ⊗ (⟨y|m⟨z|mQl ⊗ Qk)|X⟩n+c = 0. Thus,
⟨j|c ⊗ (⟨y|m⟨z|mQl ⊗Qk)|X⟩n+c = X̃j,z−k,y−l. Therefore,

⟨x|c⟨y|m⟨z|m
C−1∑
j=0

Ki,j,k,l(|i⟩⟨j|c ⊗Ql ⊗Qk)|X⟩n+c =
C−1∑
j=0

Kx,j,k,lX̃j,z−k,y−l. (B.70)

As a result,

⟨x|c⟨y|m⟨z|mC|X⟩n+c =
C−1∑
j=0

D−1∑
k=0

D−1∑
l=0

Kx,j,k,lX̃j,z−k,y−l = [X ∗K]x,y,z. (B.71)

Proof of Lemma 5. Define |X⟩n+c, K, and C as per Lemma B.17. As a result, obtaining a block-
encoding of C allows us to implement the desired 2D convolution in the vectorized setting.

First, for a given i, j, k, l, we will show how to obtain a block-encoding ofKi,j,k,l(|i⟩⟨j|c⊗Ql⊗Qk).
Using Lemma B.6, we can obtain Ui,j a (1, 2, 0)-block-encoding of the c-qubit projector |i⟩⟨j|c, with
O(c) circuit depth. Then, using Lemma B.16, we can obtain UQl a (1, 4l, 0)-block-encoding of m
qubit Ql with O(lm2) circuit complexity. We similarly obtain UQk a (1, 4k, 0)-block-encoding of
m qubit Qk with O(km2) circuit complexity. We can then invoke Lemma B.2 with Ui,j and UQl ,
and again with UQk , to obtain Ui,j,l,k, a (1, 2 + 4l + 4k, 0)-block-encoding of |i⟩⟨j|c ⊗ Ql ⊗ Qk

with O(c+Dm2) circuit complexity. To make each operator act on the same number of qubits, we
will augment each with the appropriate number of tensored identities to yield a (1, 2 + 8D, 0)-block-
encoding for the corresponding operator.

Define |K⟩2c+2d :=
∑C−1
i=0

∑C−1
j=0

∑D−1
k=0

∑D−1
k=0 Ki,j,k,l|i⟩c|j⟩c|k⟩d|l⟩d, and define |

√
K⟩2c+2d =√

|K⟩2c+2d (with the square-root applied element-wise). Then, define NK :=
∥∥∥|√K⟩2c+2d

∥∥∥
2
=

∥|K⟩2c+2d∥1/21 , and |K⟩2c+2d := |K⟩2c+2d/NK . Noting that this vector is C2D2 dimensional, we
can brute-force construct a unitary UK , with a total of O(C2D2) single and two qubit gates, such that
UK |0⟩2c+2d = |

√
K⟩2c+2d/NK (Plesch & Brukner, 2011). We can then invoke Lemma B.5, obtain-

ing a (N 2
K , 2 + 8D + 2 log(CD), 0)-block-encoding for C with O(cdC2D3m2) circuit complexity.

This is equivalent to a (1, 2 + 8D + 2 log(CD), 0)-block-encoding for C/ ∥|K⟩2c+2d∥1. Since we
are concerned with accelerating inference, we will ignore classical pre-computation costs that must
only be paid one time to construct this datastructure. We can then invoke Lemma B.3, setting
γ = ∥|K⟩2c+2d∥1 /2 ∥C∥2 and δ = 1/2, since ∥C/ ∥|K⟩2c+2d∥1∥2 ≤ 1

2

2∥C∥2

∥|K⟩2c+2d∥1
. Neglecting

the logarithmic error-terms incurred by Lemma B.3 (as these will not dominate complexity), this
then yields a (1, 3+8D+2 log(CD), 0)-block-encoding for C

2∥C∥2
with O(

∥|K⟩2c+2d∥1

∥C∥2
cdC2D3m2)

circuit depth. We will now show that ∥|K⟩2c+2d∥1

∥C∥2
≤ DC3/2, and thus that the overall circuit depth is

bounded by O(cdm2C3D4).

We will now upper-bound ∥|K⟩2c+2d∥1. Define the basis vector |x⟩c+2m = |x1⟩c|x2⟩m|x3⟩m.
Then, the xth row of C is given by ⟨x|c+2mC. Simple analysis shows that ⟨x|c+2mC =∑C−1

j=0

∑D−1
k=0

∑D−1
l=0 Kx1,j,k,l⟨j|c ⊗ ⟨x2 − l|m ⊗ ⟨x3 − k|m, where ⟨x2 − l|m = 0 if x2 − l < 0
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and ⟨x3 − k|m = 0 if x3 − k = 0. Then it can be readily shown that ∥⟨x|c+2mC∥22 =∑C−1
j=0

∑D−1
k=0

∑D−1
l=0 |Kx1,j,k,l|2. For any operator A with ∥A∥2 ≤ 1, the maximum column

norm max|i⟩ ∥A|i⟩∥2 ≤ max|ψ⟩:∥|ψ⟩∥2=1 ∥A|i⟩∥2 ≤ 1. Similarly, since ∥A∥2 =
∥∥A†

∥∥
2
, the max-

imum row norm cannot exceed the spectral norm of the matrix. Therefore, any row of C must
have ℓ2-norm bounded by ∥C∥2, thus,

∑C−1
j=0

∑D−1
k=0

∑D−1
l=0 |Kx1,j,k,l|2 ≤ ∥C∥22. Consequently,

∥|K⟩2c+2d∥22 =
∑C−1
i=0

∑C−1
j=0

∑D−1
k=0

∑D−1
l=0 |Ki,j,k,l|2 ≤ C ∥C∥22. Moreover, for an n-dimensional

vector x, ∥x∥1 ≤
√
n ∥x∥2, and thus, ∥|K⟩2c+2d∥1 ≤

√
C2D2

√
C ∥C∥2 = DC3/2 ∥C∥2. Conse-

quently, ∥|K⟩2c+2d∥1 / ∥C∥2 ≤ DC3/2.

To see a set of related block-encoding circuits, see Camps et al. (2024).

It is also worth noting that the preceding result can be made substantially more efficient by utilizing a
circulant convolution to implement the non-circulant convolution. We will now quickly sketch this
idea for future optimization. For simplicity, we assume that the convolution has one input channel and
one output channel, and that the input is a rank-2 tensor (e.g., a black and white image). Let M = 2m.
Then, if the input image isX ∈ RM×M , we can add 0 padding with theM×M projector, |0⟩⟨0|m⊗X .
Then, enacting a circulant convolution on this augmented operator and projecting onto the zero-state
of the first register yields the desired non-circulant convolution. Moreover, we can define a circulant
2D convolution as [X ∗K]i,j =

∑l−1
k=0

∑d−1
l=0 Kk,lXi−k,j−l. The following sketch generalizes the

1D circulant convolution given in Motlagh & Wiebe (2024), and also follows the ideas discussed
in Sedghi et al. (2019). Consequently, the operator C :=

∑d−1
i=0

∑d
j=0Ki,jP

j ⊗ P i implements
X ∗K in the vectorized setting (using a column-major vectorization for X). Let ωM := exp(2πi/M)
be the M th root of unity. Let F := QFT represent the Quantum Fourier Transform on m qubits. It is
easy to show that P kF |j⟩ = ω−kj

M F |j⟩. Thus, let D := F−1PF = diag(ω0
M , ω

−1
M , . . . , ω

−(M−1)
M ).

Consequently, P = FDF−1, and so C = (F ⊗ F )
(∑d−1

i=0

∑d−1
j=0 Ki,jD

j ⊗Di
)
(F−1 ⊗ F−1).

Clearly, since implementing the QFT is efficient on a quantum computer, the key to implementing C
is in implementing a block-encoding of the diagonal matrix Γ :=

∑d−1
i=0

∑d−1
j=0 Ki,jD

j ⊗Di. Noting
that this is a 1-sparse matrix with efficiently computable entries, a technique such as Gilyén et al.
(2019) can be immediately used to obtain the desired block-encoding (replacing QRAM assumptions
with arithmetic oracles computing the locations and values of the non-zero elements). This can be
further optimized by replacing the arithmetic with QRAM. In the multi-filter case, the diagonal matrix
becomes a block-diagonal matrix (with blocks of height and width given by the number of input and
output channels), and the sparse block-encoding techniques can still be used.

B.3 NON-LINEAR TRANSFORMATION OF VECTOR-ENCODINGS

We now present an essential result on transforming the amplitudes of a state encoded as a VE. This
result is a direct translation of the ideas in the result given in Rattew & Rebentrost (2023) (which
in turn builds on Guo et al. (2024a); Mitarai et al. (2019)) to the setting of VEs. While Rattew &
Rebentrost (2023) also give a similar result in the setting of a VE (called an SPBE in that paper),
they obtain it by treating the whole unitary VE as a state-preparation unitary, and then invoke their
non-linear amplitude transformation (NLAT) result on that, which gives slightly worse complexity
than just directly re-deriving the whole transformation result in the framework of VEs. We include
the following for completeness and simplicity, and do not claim novelty on this result.
Lemma B.18 (NLAT of VE (Rattew & Rebentrost, 2023)). Let N = 2n. Let 0 ≤ ϵ0 ≤ 1, and
α ≥ 1. We are given a unitary matrix Uψ which is an (α, a, ϵ0)-VE for the n-qubit real quantum
state |ψ⟩n with circuit complexity O(T ), and a function f : R 7→ R with Lipschitz constant L
such that f(0) = 0. Define ϵ1 such that 0 < ϵ1 ≤ L. Define N := ∥f(|ψ⟩n/α)∥2. Define the
interval of approximation [−τ, τ ], where 0 < τ ≤ 1 which can be set to either τ = 1 or any value
such that τ ≥ 1+ϵ0

α if a smaller region of approximation yields a better complexity. Define the
polynomial P : R 7→ R, such that with degree k, maxx∈[−τ,τ ] |P (x) − f(x)| ≤ Lϵ1

2
√
N

. Suppose
we are given a bound γ̃ satisfying γ̃ ≥ maxx∈[−1,1] |P (x)/x|, and require that P (0) = 0. Then,

we can obtain a unitary circuit Uf that is a
(

4γ̃
N , n+ 2a+ 4, LN (ϵ0 + ϵ1)

)
-VE for f(|ψ⟩n/α)/N ,

and which requires O(k) calls to a controlled Uψ and U†
ψ circuit, and has a total circuit depth of
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O(k(n+ a+ T )). This circuit can be obtained with O(poly(k, log( γ̃
N ϵ1

))) classical time complexity.

Proof. We will begin by considering the domain we require for the polynomial approximation.
Essentially, by noting that if α > 1, the function is being applied to a sub-component of an ℓ2-
normalized vector, and thus the maximum value of its input will be strictly less than 1+ϵ0

α . In some
cases, this could yield a more efficient polynomial approximation, and so we will write our result
both in the setting where the interval of approximation is [−1, 1] and [− 1+ϵ0

α , 1+ϵ0α ]. In particular,
the function will be applied to (⟨0|a ⊗ In)Uψ|0⟩a+n, and so we must upper-bound the maximum
amplitude in this quantity. Define c ∈ R such that 0 < c ≤ 1. Define the un-normalized vector
|ϕ⟩n := (⟨0|a ⊗ In)Uψ|0⟩a+n. Define |Eψ⟩n := |ψ⟩n −α|ϕ⟩n, and note that ∥|ϕ⟩n∥2 ≤ 1, and thus
that 1

α ∥|ψ⟩n − |Eψ⟩n∥2 ≤ 1. Additionally, by Definition 3, ∥|Eψ⟩n∥2 ≤ ϵ0. Define {ϕj}j such that
|ϕ⟩n =

∑N
j=1 ϕj |j⟩n. Thus, |ϕj | ≤ ∥|ϕ⟩n∥2 ≤ 1

α (1 + ϵ0). Define c := min( 1
α (1 + ϵ0), 1).

Let Nψ := N . Let NP := ∥P (|ψ⟩/α)∥2. Define the degree k − 1 polynomial Q(x) := P (x)/x,
and define ϵ2 such that maxx∈[−c,c] |P (x)− f(x)| ≤ ϵ2.

Using Lemma 6 of Rattew & Rebentrost (2023), we can get a (1, a + n + 2, 0)-block-encoding
UA of A := diag(Uψ|0⟩a+n) with O(a + n) circuit depth, and 6 additional calls to a controlled
Uψ circuit. Invoking Theorem 56 of Gilyén et al. (2019) with Q(x)/4γ̃, we get the unitary UQ, a
(1, a+ n+ 4, δ)-block-encoding for Q(A)/4γ̃, requiring O((a+ n)k) single and two-qubit gates,
O(k) calls to a controlled UA circuit, and O(poly(k, log(1/ϵ))) classical computation to determine
the QSVT rotation angles to implement the degree k polynomial. We can equivalently call UQ a
(1, a+ n+ 4, 0)-block-encoding for some matrix V , such that ∥V −Q(A)/4γ̃∥2 ≤ δ. Additionally,
define EQ := V −Q(A)/4γ̃. Since for any vector x, Q(diag(x))x = P (x), we get, V Uψ|0⟩a+n =
P (Uψ|0⟩a+n)

4γ̃ +EV Uψ|0⟩a+n. Additionally, noting that (⟨0|a⊗In)P (x) = P ((⟨0|a⊗In)x), and that

(⟨0|a⊗ In)Uψ|0⟩a+n = |ϕ⟩n, we get (⟨0|a⊗ In)V Uψ|0⟩a+n = P (|ϕ⟩n)
4γ̃ +(⟨0|a⊗ In)EV Uψ|0⟩a+n.

Define Ũψ := Ia+n+4 ⊗ Uψ .

First, note that Ũψ|0⟩2a+2n+4 = (|0⟩n+a+4 ⊗ Ia+n)Uψ|0⟩a+n. Then, note that (⟨0|n+2a+4 ⊗
In) = (⟨0|a ⊗ In)(⟨0|n+a+4 ⊗ Ia+n). Consequently, by Definition 2, since (⟨0|n+a+4 ⊗
Ia+n)UQ(|0⟩n+a+4 ⊗ Ia+n) = V ,

(⟨0|n+2a+4 ⊗ In)UQŨψ|0⟩2n+2a+4 = (⟨0|a ⊗ In)V Uψ|0⟩a+n (B.72)

=
P (|ϕ⟩n)

4γ̃
+ (⟨0|a ⊗ In)EV Uψ|0⟩a+n. (B.73)

We will now show that UQŨψ is a VE for 1
Nψ f(|ψ⟩n/α). Precisely, we must upper-bound,

ξ1 :=

∥∥∥∥ 1

Nψ
f(|ψ⟩n/α)−

4γ̃

Nψ
(⟨0|n+2a+4 ⊗ In)UQŨψ|0⟩2n+2a+4

∥∥∥∥
2

(B.74)

≤ 1

Nψ

(
∥f(|ψ⟩n/α)− P (|ϕ⟩n)∥2 + 4γ̃ ∥(⟨0|a ⊗ In)EV Uψ|0⟩a+n∥2

)
. (B.75)

Let ⟨j|Eψ⟩ := ej . We will now prove a sequence of simple facts. Since |f(x) − f(x + b)| ≤
L|b|, and using |ϕ⟩n =

|ψ⟩n−|Eψ⟩n
α , we have that ∥f(|ψ⟩n/α)− f(|ϕ⟩n)∥22 =

∑N
i=j |f(ψj) −

f((ψj − ej)/α)|2 ≤ L2

α2

∑N
j=1 |ej |2 = L2

α2 ∥|Eψ⟩n∥22 ≤ L2ϵ0
α2 . Then, ∥f(|ϕ⟩n)− P (|ϕ⟩n)∥22 =∑N

j=1 |f(ϕj)− P (ϕj)|2 ≤ maxx∈[−c,c] |f(x)− P (x)|2N ≤ ϵ22N . Then,

∥f(|ψ⟩n/α)− P (|ϕ⟩n)∥2 = ∥f(|ψ⟩n/α)− f(|ϕ⟩n) + f(|ϕ⟩n)− P (|ϕ⟩n)∥2 (B.76)

≤ Lϵ0
α

+ ϵ2
√
N. (B.77)

At this point, the proof branches into two cases. The first case is where we simply use the uniform
approximation to the function on the entire interval [−1, 1]. The second case, which should only be
used when approximating the function on [−τ, τ ] yields a better asymptotic approximation, will be
proven after.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Noting that ∥(⟨0|a ⊗ In)EV Uψ|0⟩a+n∥2 ≤ δ, we can now get the overall bound of

ξ1 ≤ 1

Nψ

(
Lϵ0
α

+ ϵ2
√
N + 4γ̃δ

)
≤ 1

Nψ

(
Lϵ0 + ϵ2

√
N + 4γ̃δ

)
. (B.78)

Thus, we have shown thatUQŨψ is a ( 4γ̃
Nψ , 2a+n+4, 1

Nψ (Lϵ0+ϵ2
√
N+4γ̃δ))-VE for 1

Nψ f(|ψ⟩n/α).
To get the overall error-bound, we will set ϵ2

√
N = Lϵ1/2, and 4γ̃δ = Lϵ1/2, yielding ϵ2 = Lϵ1

2
√
N

,

and δ = Lϵ1
8γ̃ . This gives a ( 4γ̃

Nψ , 2a+ n+ 4, L
Nψ (ϵ0 + ϵ1))-VE for 1

Nψ f(|ψ⟩n/α), and requires O(k)

calls to a controlled Uψ and U†
ψ circuit, and has a total circuit depth of O(k(n+ a+ T )). This circuit

can be obtained with O(poly(k, log( γ̃
Lϵ1

))) classical time complexity.

To make the preceding result easier to use, we provide a special case for transformation by the error
function, and again do not claim novelty.

Lemma B.19 (Application of erf(νx) to a Vector Encoding). Let N = 2n, let ν ≥ 1/2, let 1 ≥ ϵ0 ≥
0 and let 0 < ϵ1 ≤ 2. We are given a unitary matrix Uψ with circuit complexity O(T ) which is an
(α, a, ϵ0)-VE for the n-qubit quantum state |ψ⟩n, and we are also given the error function fν(x) =

erf(νx). Let N := ∥fν(|ψ⟩n/α)∥2. Then, we can obtain a
(

16ν√
πN , 2a+ n+ 4, 2να(ϵ0 + ϵ1)

)
-VE

for fν(|ψ⟩n/α)/N , with O(ν log(
√
N
ϵ1

)) queries to a controlled Uψ and U†
ψ circuit, and with a total

circuit depth of O(ν log(
√
N
ϵ1

)(a+ n+ T )). Moreover, N ≥ 1
2α .

Proof. From Lemma F.1, we know that the Lipschitz constant L of erf(νx) is L = 2ν√
π

.

Define c = O(1/α). Using Lemma F.1, we can obtain a degree k ∈ O(ν log(ν/αϵ′)) polynomial
Pk,ν such that Pk,ν(0) = 0 and maxx∈[−c,c] |Pk,ν(x) − fν(x)| ≤ ϵ′. Since we need ϵ′ ≤ Lϵ1

2
√
N

,

we can set ϵ′ = νϵ1
10

√
N

in accordance with Lemma B.18, we have a degree k ∈ O(ν log(
√
N
ϵ1

))

polynomial approximation.

From Lemma F.1, for ν ≥ 1/2, we know that ∀x ∈ [−1, 0)∪(0, 1], | erf(νx)| ≥ |x/2|. Consequently,
N 2 =

∑N
j=1 |f(ψj/α)|2 ≥ ( 1

2α )
2. Additionally, we know that γ̃ = maxx∈[−1,1] |Pk,ν(x)/x| ≤ 4ν√

π
.

Invoking Lemma B.18, setting with all of the above facts and setting γ̃ = 4ν√
π

then gives the
complexity.

C GENERAL ARCHITECTURAL BLOCKS

The architectural blocks we present in this paper are intended to demonstrate how the different
operations on encoded matrices and vectors can be combined to coherently implement various
architectures on quantum computers. There is a rich set of possibilities, and we are only exploring a
small but elucidating set.

Two of the most important concepts governing the complexity of the quantum implementation of any
classical architecture are: (1) the number of non-linear activation layers, and (2) the ℓ2 norm of the
vectorized input tensor as it propagates through the network.

In order for a unitary matrix (a linear operator) to enact a non-linear transformation on a vector,
its definition must depend on the vector it is being applied to. Consequently, techniques which
enact non-linear transformations on state-amplitudes (e.g., Rattew & Rebentrost (2023); Guo et al.
(2024a)) must have circuit definitions which depend on the vector-encoding circuit they are being
applied to. Thus, if the unitary circuit implementing the transformation requires even two calls to
the input vector encoding, then the circuit complexity will grow exponentially with the number of
non-linear activations. Consequently, wide but shallow multi-layer architectures are ideal for quantum
acceleration. Finally, an alternative to fully coherent quantum acceleration is to periodically read-out
the vector in intermediate layers of the network. As discussed in the introduction, several quantum
computing papers have proposed this approach. However, in general, since reading out a quantum
state incurs a dimension-dependent cost (Cramer et al., 2010; van Apeldoorn et al., 2023) (and incurs
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polynomial error-dependence) this either imposes significant constraints on the types of architectures
that can be accelerated (requiring frequent mappings to very low-dimensional spaces where readout
is cheaper), or incur asymptotically dominating error accumulation. Nevertheless, there are certain
settings where periodic state readout may be desirable, and our techniques are fully compatible with
these ideas.

The second key concept governing the complexity of a quantum implementation of an architecture
relates to the norm of the encoded vector as it propagates through the network. Whenever a sample is
drawn from an encoded vector, a cost inversely proportional to the norm of the encoded vector must
be paid. Similarly, whenever an encoded vector is normalized, an inverse norm-cost must be paid.
Consequently, to obtain provable end-to-end complexity results, we need to be able to lower-bound
the norm of the encoded vector whenever we apply a layer norm (or draw a sample from the output
of the network). A key tool in doing this is the skip connection, as it allows the norm from the
previous layer to be preserved in the output of the next layer. Additionally, if the weight layers are
normalized (i.e., if W represents the matrix form of any parameter layer, then ∥W∥2 ≤ 1), and the
activation function is scaled so that its Lipschitz constant on the interval [−1, 1] is at most 1, this
results in provable norm-preservation bounds. Requiring weight-layers to be sub-normalized has
been extensively explored in the classical deep learning literature (Miyato et al., 2018; Yoshida &
Miyato, 2017; Gouk et al., 2020), as sub-normalization can help prevent network norm explosion as
deeper networks are trained.

It is worth briefly noting that, in certain cases, the sub-normalization condition on the weight layers
can be removed (i.e., for matrix W , 0 ≤ ∥W∥2 ≤ c where c ≥ 1). This is done by implementing
W/ ∥W∥2, and then scaling the input of the subsequent activation function by ∥W∥2. If using the
error function activation, this increases the cost of the polynomial approximation by an amount
proportional to c. We do not consider this regime as it makes it more challenging to prove norm
preservation properties after the skip connection, but stress that quantum computers can actually
implement such regimes. Numerical studies examining norm preservation for such networks could
shed light into their efficiency.

We will now formally define our ℓ2-norm squared pooling; this is essentially just an ℓ2-norm pooling
operation followed by an element-wise square. Throughout we will assume that dimensions neatly
line-up, noting that if they don’t padding can be used to easily and efficiently ensure alignment.

Definition C.1 (Squared ℓ2 Norm Pooling). Given an N -dimensional vector |ϕ⟩ =
∑N
j=1 ϕj |j⟩, and

a positive integerC such thatN is divisible byC, define fj := (j−1)NC +1. Then, we define ℓ2-norm

squared pooling by poolC(|ϕ⟩) :=
∑C
j=1

∑jNC
l=fj

ϕ2l |j⟩, where {|j⟩} is the set of C-dimensional basis
vectors.
Lemma C.1 (Error Propagated Through ℓ2 Norm Squared Pooling). Define the N -dimensional
vectors |ϕ⟩ and |ϕ̃⟩, such that

∥∥∥|ϕ⟩ − |ϕ̃⟩
∥∥∥
2
≤ ϵ. Then, defining a positive integer C such thatN is di-

visible by C, and defining poolC as per Definition C.1, we have that
∥∥∥poolC(|ϕ⟩)− poolC(|ϕ̃⟩)

∥∥∥
2
≤

2Nϵ√
C

.

Proof. Let |ϕ⟩ =
∑N
j=1 ϕj |j⟩, and let |ϕ̃⟩ =

∑N
j=1 ϕ̃j |j⟩. Then,

∥∥∥|ϕ⟩ − |ϕ̃⟩
∥∥∥
2
≤ ϵ implies that

∀j, |ϕj − ϕ̃j | ≤ ϵ. Then, additionally using that |ϕj + ϕ̃j | ≤ 2,

∥∥∥poolC(|ϕ⟩)− poolC(|ϕ̃⟩)
∥∥∥2
2
=

C∑
j=1

jN/C∑
l=fj

(ϕl − ϕ̃l)(ϕl + ϕ̃l)

2

≤ 4

C∑
j=1

(
Nϵ

C

)2

=
4N2ϵ2

C
.

(C.1)

Proof of Lemma 6. The parameter κ in the lemma is designed for situations where we don’t have a
perfect block-encoding of the matrix we would like. For instance, in cases where we want to apply
some matrix A, but we are only able to get a block-encoding of A/2. We can fix this when applying
the activation function by scaling its input to remove the 1/2 factor.
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Figure 4: Full-rank linear-pooling output block.

Figure 5: This figure shows the final output architectural block used in our neural networks for
Regimes 1 and 2. Here, g(x) = x2 and W is a sub-normalized (potentially full-rank and dense)
matrix.

Let ν := 4κ/5. Let |ϕ1⟩n :=W |ψ⟩n/κ, N1 := ∥|ϕ1⟩n∥2, and |Φ1⟩n := |ϕ1⟩n/N1. Using Lemma 2
we get U1 a (N−1

1 , a+ b, ϵ0N−1
1 )-VE for |Φ1⟩n with O(T1 + T2) circuit complexity.

Let |ϕ2⟩n := f(W |ψ⟩n)), N2 := ∥|ϕ2⟩n∥2, and |Φ2⟩n := |ϕ2⟩n/N2. Define 0 < ϵ1 ≤
1. Invoking Lemma B.19 with U1 and f(κx) = erf(4κx/5) = erf(νx), we obtain U2 a(

16ν√
πN2

, 2(a+ b) + n+ 4, 2νN−1
1 (ϵ0 + ϵ1)

)
-VE for f(|Φ1⟩nN1)/ ∥f(|Φ1⟩nN1)∥2 = |Φ2⟩n. U2

has circuit complexity O(ν log(
√
N
ϵ1

)(a+ b+ n+ T1 + T2)).

So as to invoke Lemma 1 to implement the skip connection and obtain a state proportional to |ψf ⟩n,
we will need to factor out a common factor of

√
π

16ν . Consequently, we invoke Lemma B.9 on Uψ to
obtain U ′

ψ a ( 16ν√
π
, a+ 2, ϵ0)-VE for |ψ⟩n with O(T1 + a) circuit complexity.

Define |γ⟩n :=
√
π

32ν (|ψ⟩n + |Φ2⟩nN2) =
√
π

32ν (|ψ⟩n + f(W |ψ⟩n)), Nγ := ∥|γ⟩n∥2 and |Γ⟩n :=
|γ⟩n/Nγ . Then, we can invoke Lemma 1 (setting τ = 1/2) with U ′

ψ and U2, yielding U3 a(
N−1
γ , 2(a+ b) + n+ 5, N−1

γ [ ϵ0
√
π

16ν + N2
√
π

16ν (2νN−1
1 (ϵ0 + ϵ1))]

)
-VE for |Γ⟩n, with circuit com-

plexity O(ν log(
√
N
ϵ1

)(a+ b+ n+ T1 + T2)). We will now simplify the error component of this VE
statement.

First, define |x⟩n =
∑
i xi|i⟩n = W |ψ⟩n. Then, using the fact that f(x) = erf(4x/5) has

a Lipschitz-constant of 8
5
√
π

(as per Lemma B.19), N 2
2 = ∥f(W |ψ⟩n)∥22 ≤

∑
i |f(xi)|2 ≤

( 8
5
√
π
)2
∑
i |xi|2 = ( 8

5
√
π
)2 ∥W |ψ⟩n∥22. Since ∥W∥2 ≤ 1, ∥W |ψ⟩n∥2 ≤ 1, and thus N2 ≤

8
5
√
π

≤ 0.91. Next, we must lower-bound Nγ . Thus, N 2
γ = (

√
π

32ν )
2
(
1 +N 2

2 + 2N2⟨Φ2|ψ⟩
)
≥

(
√
π

32ν )
2 (1−N2)

2 ≥ (
√
π

32ν )
2(0.09)2. Consequently, using that ν ≤ 8/5 (since κ ≤ 2) we get

that Nγ ≥ 1/400. Additionally, it is straight-forward to show that N2/N1 ≤ 0.91κ ≤ 2.
Inserting all of these values and performing simple algebra, we find that U3 is equivalently a(
N−1
γ , 2(a+ b) + n+ 5, 355(ϵ0 + ϵ1)

)
-VE for |Γ⟩n.

Let 0 < ϵ2 ≤ 1. Then, invoking Lemma B.8, we get Uf , a (1, 2(a+b)+n+9, 2(355(ϵ0+ϵ1)+ϵ2))-
VE for |Γ⟩n, with circuit complexity O(log(

√
N
ϵ1

) log( 1
ϵ2
)(a+ b+ n+ T1 + T2)). If we let ϵ2 = ϵ1,

then we can simplify this to a (1, 2(a + b) + n + 9, 712(ϵ0 + ϵ1))-VE with circuit complexity
O(log(

√
N
ϵ1

) log( 1
ϵ1
)(a+ b+ n+ T1 + T2)).

Proof of Lemma 7. This result comes from repeatedly invoking Lemma 6, with the output of each
application becoming the input of the next.

We will first give a bound on the total number of ancilla qubits of the block-encoding giving the
final output after k residual block layers. Let a0 = a. c = 2b + n + 9. After one application of
the residual block, the number of ancillas is given by a1 = 2a0 + c. Then, the general form for the
number of ancillas is given by the recurrence ai = 2ai−1 + c. We can obtain an upper-bound by
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instead setting ai = 2(ai−1 + c). Clearly, ai = 2i(a+ c) = 2i(a+ 2b+ n+ 9). Thus, we have a
(1, 2k(a+ 2b+ n+ 9), ϵ)-block-encoding.

We will now determine a bound on the resulting error, ϵ. Note that the ith residual block introduces
a new error-parameter ϵi which controls the error in the activation function and the normalization
of that block. After the first iteration, the error δ1 is given by δ1 = 712(ϵ0 + ϵ1). After the second
iteration, the error from the previous iteration becomes the new ϵ0, and so the error after the second
iteration is given by δ2 = 712(δ1 + ϵ2). We can set ϵi = δi−1, giving the general form of the error
after the ith residual layer of δi = 1424δi−1 = 724 · 1424i−1ϵ1 = 1424iϵ1/2. Noting that we want
a final error of at most ϵ, we must set δk ≤ ϵ. I.e., we can set ϵ = 1424kϵ1/2 =⇒ ϵ1 = 2ϵ/1424k.
Thus, for i > 1, each ϵi = δi−1 = 1424iϵ1/2 = 1424i

1424k
ϵ = ϵ/1424k−i.

Define h(ϵi) := log(
√
N/ϵi) log(1/ϵi). Let the circuit complexity of the block-encoding after

applying i residual blocks be O(Ri). Noting that R1 ∈ O(h(ϵ1)(a0 + b + n + T1 + T2)), Ri
asymptomatically dominates T1, T2, ai−1, n and b. Then, the circuit complexity after block i + 1
will be O(h(ϵi+1)(ai + b + n + Ri + T1)) ∈ O(h(ϵi+1)(ai + Ri)). Then, we can simplify to
find that Rk ∈ O((ak + R1)

∏k
i=1 h(ϵi)) ∈ O((2k(a + 2b + n) + T1 + T2)

∏k
i=1 h(ϵ/1424

k−i)).
Noting that

∏k
i=1 h(ϵi) ∈ O((

∏k
i=1 log(

√
N/ϵi))

2),
∏k
i=1 h(ϵ/1424

k−i)) ∈ O((
∏k
i=1(k − i +

log(
√
N/ϵi)))

2) ∈ O((k+log(
√
N/ϵ))2k). Since k is an asymptotic constant,O(k+log(

√
N/ϵ)) ∈

O(log(
√
N/ϵ)), and so

∏k
i=1 h(ϵ/1424

k−i)) ∈ O(log(
√
N/ϵ)2k). Thus, the overall circuit com-

plexity is given by O(log(
√
N/ϵ)2k(a+ 2b+ n+ T1 + T2)).

Lemma C.2 (Full-Rank Linear Pooling Output Block). Consider the architecture block shown
in Figure 5. Let the dimension of the input vector be N = 2n, and let the dimension of the output of
the network block be C = 2c (i.e., the number of classes). Let the output of the network be given by
the vector |y⟩c. Suppose we have Uψ an (1, a, ϵ0)-VE for the N -dimensional input vector |ψ⟩n = x
with O(Tϵ0) circuit complexity. Here, Tϵ0 makes explicit that the complexity of the input circuit will
be dependent on the desired error of the vector encoding of the layer input to this architectural block.
Suppose we are given access to an arbitrary matrix W such that ∥W∥2 ≤ 1 as per Theorem B.1.
Then, if the weight on the skip-path is τ = 0.51, we can draw a sample from a vector |ϕ̃⟩c such that∥∥∥|ϕ̃⟩c − |y⟩c

∥∥∥
2
≤ ϵ with O(log( N√

Cϵ
)(Tϵ0 + a + n2)) circuit complexity and with O(a + n) total

ancilla qubits.

Proof. Let d represent the number of bits in part of the QRAM encoding of W , as per Theorem B.1.
Note that d is assumed to be an asymptotic constant. Let |ϕ1⟩n :=Wg(|ψ⟩n), N1 := ∥|ϕ1⟩n∥ and
|Φ1⟩n := |ϕ1⟩n/N1. Using Theorem B.1, we can get a (N−1

1 , 2a + d + 3 + n, 2ϵ0N−1
1 )-VE for

|Φ1⟩n with O(Tϵ0 + dn+ n2) circuit complexity. Here d is a constant specifying the precision in the
representation of the elements of the matrix stored as per Definition B.3.

Let |γ⟩n := τ |ψ⟩n + (1− τ)|Φ1⟩nN1 = τ |ψ⟩n + (1− τ)Wg(|ψ⟩n), and let Nγ := ∥|γ⟩n∥2.

Then, Lemma 1 yields V2 a (N−1
γ , 2a+d+4+n, 3ϵ0N−1

γ )-VE for |γ⟩n/Nγ withO(Tϵ0 +dn+n
2)

circuit complexity.

We will now lower-bound Nγ . The main idea is that if you are summing two vectors, one with norm
1, and the other with norm at most 1, if you put arbitrarily more mass on the constant-norm vector (δ),
you are guaranteed that the vectors cannot fully cancel out, and thus that some norm is preserved in the
sum. Note that N1 = ∥Wg(|ψ⟩n)∥2 ≤ ∥W∥2

∥∥∥∑j ψ
2
j |j⟩n

∥∥∥
2
≤
∥∥∥∑j ψj |j⟩n

∥∥∥
2
= 1. Consequently,

|⟨ψ|Φ1⟩| ≤ 1, and so

N 2
γ = ∥τ |ψ⟩n + (1− τ)|Φ1⟩nN1∥22 = τ2 + (1− τ)2N 2

1 + 2τ(1− τ)N1⟨ψ|Φ1⟩ (C.2)

≥ τ2 + (1− τ)2N 2
1 + 2τ(1− τ) = (τ − (1− τ)N1)

2. (C.3)

For some parameter δ ∈ [0, 1], assuming that τ = (1 + δ)/2, we then get that Nγ ≥ δ.

Then, define ϵ1 ∈ (0, 1]. We can then invoke Lemma B.8 yielding V3 a (1, 2a+d+8+n, 6ϵ0δ +2ϵ1)-
VE for |γ⟩n/Nγ with O( 1δ log(1/ϵ1)(Tϵ0 + a+ dn+ n2)) circuit complexity.
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Define poolC as per Definition C.1. Noting that poolC(|γ⟩n/Nγ) = |y⟩c.

We can equivalently define some ℓ2-normalized state |Γ̃⟩n such that V3 is a (1, 2a+ d+8+n, 0)-VE
for |Γ̃⟩n. Then, since

∥∥∥|Γ̃⟩n − |γ⟩n
Nγ

∥∥∥
2
≤ 6ϵ0

δ + 2ϵ1, we can invoke Lemma C.1 which shows that∥∥∥poolC(|Γ̃⟩n)− |y⟩c
∥∥∥
2
≤ 2N√

C
( 6ϵ0δ + 2ϵ1).

Consequently, to get an error of at most ϵ, we set 2N√
C
( 6ϵ0δ + 2ϵ1) = ϵ, by setting ϵ1 =

√
Cϵ

8N and

ϵ0 = ϵ
√
Cδ

24N . Then, we can simply draw a sample ϵ-close to |y⟩c in ℓ2-norm distance by sampling the
state prepared by V3 and then assigning it to the appropriate bin.

Setting δ = 0.02 gives τ = 0.51. Then, V3 is a (1, 2a + d + 8 + n, ϵ)-VE for |γ⟩n/Nγ with
O(log( N√

Cϵ
)(Tϵ0 +a+dn+n

2)) circuit complexity. Consequently, we can draw a sample from some

vector |ϕ̃⟩c such that
∥∥∥|ϕ̃⟩c − |y⟩c

∥∥∥
2
≤ ϵwithO(log( N√

Cϵ
)(Tϵ0+a+dn+n

2)) ∈ O(log( N√
Cϵ

)(Tϵ0+

a + n2)) circuit complexity, and with O(a + n) ancilla qubits, noting that d is an asymptotic
constant.

D FEASIBILITY OF QRAM ASSUMPTIONS

In this section, we consider the feasibility of different QRAM assumptions to help motivate our
discussion in Appendix E. In Section D.1 we consider the feasibility of our QRAM assumptions.
In Section D.2 we summarize how arbitrary quantum states can be prepared by using a QRAM
data-structure, in service of our subsequent discussion of the different architectural regimes.

D.1 PASSIVE AND ACTIVE QRAM

It is clear that, if a fault-tolerant quantum computer can be constructed, that a QRAM based on
the various quantum circuit constructions (see Jaques & Rattew (2023); Giovannetti et al. (2008a);
Hann (2021)) can be directly implemented. Moreover, these circuit constructions have log-depth
access costs. However, as laid out in Jaques & Rattew (2023), the fundamental issue regarding the
practicality of QRAM comes down to the opportunity cost of the total energy required to implement
a query to the QRAM. Precisely, given a QRAM with N bits of memory, a QRAM is considered
passive if and only if each query to the QRAM requires o(N) total energy input. If the query instead
requires Ω(N) energy input (even if the time complexity is O(polylog(N))) then the QRAM is
active. Importantly, this means that any QRAM implemented in the error-corrected circuit-model
must be active, as each qubit requires O(1) classical resources to run the error-correction, resulting
in an Ω(N) total energy cost per QRAM query. Even if error-correction is not used, if enacting
the gates in the system requires constant energy input (e.g., by enacting the gates as laser pulses)
then the QRAM will be active. If the QRAM is active, then Jaques & Rattew (2023) show that
a wide-range of quantum linear algebra applications lose quantum speedup. Moreover, there are
additional challenges such as how a noisy (non-error corrected) quantum memory could be interfaced
with an error-corrected quantum processor.

However, as noted in Jaques & Rattew (2023) there is some hope in practice, and we will now outline
their arguments. As an example, consider classical Dynamic Random Access Memory (DRAM).
DRAM requires a constant power draw for each bit in memory, and thus an N -bit memory requires
Ω(N) energy input. This makes DRAM active. Nevertheless, because the energy expenditure of
DRAM is often dwarfed by the energy expenditure of the CPU accessing it, it is usually treated
as being a passive component in classical algorithm design. For instance, Carroll & Heiser (2010)
demonstrates that for mobile phones, “RAM power is insignificant in real workloads”, and Mahesri
& Vardhan (2005) draws a similar conclusion for laptops. At larger server-scales, the asymptotics
of active memory become more noticeable, but memory still usually draws less power than the
controlling CPU (Ahmed et al., 2021; Fan et al., 2007). Analogously, consider a regime where a
QRAM is active, but its constant energy costs are extremely small relative to the energy costs of
the error-corrected quantum computer it is being interfaced with. Given the substantial expected
overheads of quantum error-correction (Babbush et al., 2021), the ratio of energy consumption for an
error-corrected QPU to an active QRAM could be even more favourable than in the classical setting.
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Then, if there is some way to interface this noisy device with the error-corrected QPU, for moderate
scales (e.g., terabytes of memory), it is conceivable that the QRAM could be practically treated as
passive. We will call this a “practically passive QRAM”. Nevertheless, even though practically passive
QRAMs are asymptotically active, they are unlikely to allow full error-correction without losing their
constant advantages (unless, for some reason, the structure of QRAM allows for extremely efficient
custom-made error-correcting codes). Consequently, it is important that the QRAM implementation is
resilient to errors. Indeed QRAMs based on the bucket-brigade architecture (Giovannetti et al., 2008b),
are intrinsically exponentially (in terms of the number of memory registers) robust to errors (Hann
et al., 2021; Hann, 2021; Hong et al., 2012).

In this paper, for simplicity, when making a QRAM assumption we treat the QRAM as passive. We
stress that substantially more work is needed to fully understand the feasibility of QRAM, but that it
is plausible that the QRAM assumptions made in this paper could be physically realized in practice.
In particular, assuming that truly passive QRAM is impossible, we outline the following questions
(building on Jaques & Rattew (2023)) which could result in our results being practically useful. How
can a noisy QRAM system be interfaced with an error-corrected quantum computer? If such an
interface is possible, how do errors in the QRAM propagate through the error-correction in the QPU?
Recent promising work (Dalzell et al., 2025a) provides answers to these two preceding questions,
and offers a path forward for research aiming to construct practically passive and useful QRAM.
Additional questions which need to be investigated to help realize a practically passive QRAM
include some of the following. What is the ratio in energy consumption for plausible practically
passive QRAM systems to the energy consumption of the controlling fault-tolerant QPUs for different
error-correcting codes? Given potential active (practically passive) QRAM architectures, what is the
total expected energy consumption for different sized memories?

D.2 INPUT PREPARATION VIA QRAM

The data-structure due to Kerenidis & Prakash (2017) can allow for an arbitrary quantum state to be
prepared, so long as the state amplitudes are made available through a specific QRAM data-structure.
Lemma D.1 (Input Data QRAM Data-Structure (Kerenidis & Prakash, 2017)). Let N = 2n. Given a
vector x ∈ RN , we can define a data-structure utilizing a QRAM with Õ(N) total qubits 7 storing x.
Then: (1) the cost to update (insert, delete, or modify) an entry xj is O(n2), (2) using the QRAM
data-structure, the state |x⟩ = x/ ∥x∥2 can be prepared by a circuit with depth O(n2), acting on
O(n) qubits.

This is just a special case of the more general result in Kerenidis & Prakash (2017) giving a similar
data-structure for arbitrary matrices (which we presented as QRAM for quantum data in Appendix A).
Intuitively, the state can be prepared by following Grover-Rudolph (Grover & Rudolph, 2002), using
the QRAM data structure containing the tree of binary partial norms of the vector to compute the
controlled rotation angles for each additional qubit.

E ARCHITECTURES IN DIFFERENT REGIMES

As summarized in the main text, the results presented thus far can be used to construct a range of
architectures in a number of different settings. In particular, we consider three regimes characterized
by the QRAM assumptions they make. In the first regime, we assume that both the input to the
network and the weights in the network are made available via QRAM. In the second regime, we
assume that the network may use QRAM (since its QRAM data-structure may be pre-computed prior
to inference-time), but that the input to the network is received classically and entirely on-the-fly, and
thus that the input cannot be provided with QRAM (so a cost linear in the dimension of the input
must be paid to load it into the quantum computer). In the third regime, we assume no QRAM. We
will now expand on the arguments presented in the main text in greater detail.

E.1 REGIME 1: INPUT AND NETWORK USE QRAM

Here we expand on the argument presented in Section 4.1.
7Neglecting the finite precision error due to storing vector elements (and their partial squared sums) in binary

representations
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Online Input Construction Noting that as per Section D.2 QRAM data-structures can be efficiently
updated, we note that there are a number of settings where it might be realistic for the input vector to
be provided via QRAM. For example, in any setting where inference needs to be repeatedly performed
on a slowly-changing input (e.g., in an interactive chat with an autoregressive LLM, where each
output token becomes part of the new input), or where the input is the result of some other quantum
algorithm. For example, in the context of auto-regressive interactive LLM (where the output would
be a probability distribution over tokens instead of classes), the initial vector x might be an encoding
of the hidden prompt to the network (and so the associated data-structure can be pre-computed). As a
user queries the LLM, a small number of tokens are added to x, and these updates can be efficiently
performed to the data structure. Then, the network is run, and the new output token is added to x,
again efficiently. This process can then continue to repeat, and so the cost of loading the data is
either entirely precomputed, or amortized on-the-fly. We can envision similar applications in the
classification of video, where a very large, but slowly-changing, video needs to be analysed one frame
at a time. Here, a cost would need to be paid proportional to the number of changing pixels between
each frame, and so the input data-structure could be efficiently updated. Additional settings where it
might be reasonable for the input to be provided efficiently could be if the input corresponds to some
combination of continuous function (via Rattew & Koczor (2022)), or if it was prepared as the output
of some other quantum algorithm.

Receptive Field To understand the importance of the final linear layer in the architecture for this
regime, we must first summarize the receptive field problem of multi-layer convolutional architectures.

For simplicity, consider a 2D convolution with one input channel and one output channel, and consider
a sequence of k such convolutional layers. Let the kernel be D ×D. Since a convolutional layer
can map the information in location i, j to, at the furthest, the location i+D, j +D, after k layers
the information in any given entry will come from local information in the input at most ≈ kD
pixels away. Consequently, the final layer which is input to the output linear-layer-residual block
will contain features with kD local information, which the linear layer then combines in a global
fashion. We conjecture that having a full-rank layer at this stage is more effective for merging the
local information than a similar dimension, but low-rank, linear layer. Since the cost of the quantum
algorithm grows exponentially with depth, without the final linear layer, with such an architecture no
learning could occur which requires global information from the input image.

Moreover, there are other approaches which could be taken to make the local information globally
accessible to the earlier convolutional layers, potentially improving the power of such quantum-
amenable architectures in practice. For instance, after a set number of convolutional layers, a
linear layer could be added to make local information global (however, this damages the nice
algebraic properties of convolutional layers). Alternatively, a sequence of convolutions can be
implemented in each residual block (without activation functions between them) as this would not
increase the complexity exponentially, potentially allowing for many more convolutions in sequence.
Most appealingly, a solution can be found in the popular classical architecture of bilinear neural
networks (Lin et al., 2015) (which forms the basis of the architecture presented for Regime 2). Here,
paths of convolutional-based residual blocks are passed into a Kronecker product, which is followed
by more layers. Via Lemma 3, we can efficiently do this in a quantum computer. Since the Kronecker
product makes all local information globally available, it immediately solves the receptive field
problem. However, while a Kronecker product makes local information globally accessible, it loses
positional information. This can be resolved by enacting a positional encoding along one of the
paths of the network prior to the product, e.g., as is done when Tokenizing the inputs to transformer
architectures (Vaswani et al., 2017).

Dequantization A number of quantum algorithms which were believed to have exponential speed-
ups over their classical counterparts lost their exponential speedup after new classical randomized
algorithms were developed which mirrored the quantum input assumptions. For example, see the
works of Kerenidis & Prakash (2017) and Tang (2019). Indeed, it seems likely that, as was the case
with the quantum CNN implementation in Kerenidis et al. (2020), that the convolutional residual
blocks in our architectures could be dequantized (even though they make no QRAM assumptions).
However, our new techniques enables the final linear-residual block to contain an arbitrary full-
rank and dense matrix. Since known dequantization techniques require the matrix to be either
low-rank (Chia et al., 2022; Tang, 2019) or sparse (with certain strong caveats) (Gharibian & Le Gall,
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2023), existing techniques appear insufficient to dequantize our full architecture. Moreover, as
previously discussed, removing the final linear layer introduces receptive field problems, highlighting
that it is not a purely artificial addition to the network. Nevertheless, it would be interesting to
exploring dequantizing the architecture without the final linear layer (or perhaps replacing it with a
low-rank one), and this could result in some interesting techniques to classical accelerate inference
for certain architectures.

E.2 REGIME 2: NETWORK STORED IN QRAM, INPUT LOADED WITHOUT QRAM

See the discussion in Section 4.1.

E.3 REGIME 3: NO QRAM

To reiterate, in this regime, both the matrix weights and the network input are not given by QRAM.
We will now prove the complexity of the Regime 3 architecture shown in Figure 1 (c), as discussed
in Section 4.1. We note that there are many simple modifications which could be made to this
architecture, for example by having a final low-rank linear layer with O(N) parameters. Adopt the
notation used in Theorem 2. Let the input be a 4×M×M tensor, and defineN =M2, n = log2(N),
m = log2(M). Thus, the vectorized input is of dimension O(N). Let d be the number of paths into
the input tensor (i.e., the latent dimension will be O(Nd)), as per Figure 1 (c). TX is the access cost
of the input; in the QRAM-free regime we assume a worst-case of TX ∈ O(N). Let C be the number
of output classes (or set of possible output tokens).

Assume d = 2. Let δ > 0 be an error parameter used only in the proof. Directly from the proof
of Theorem 2, we have Uconv, a (1, 2k(63+n), δ)-VE (vector encoding) for the ℓ2-normalized output
of the k convolutional/residual block layers. Uconv has O(log(N/δ)2k(n2 + TX)) circuit depth. Note
that in that proof,N corresponds to the vectorized dimension of the latent space (i.e., if there is 1 input
and output channel, N corresponds to the dimension of the vector acted upon by the matrix-form of
the 2D convolution), and thus corresponds to Nd here.

Let |ϕ⟩ represent the exact vector output after the sequence of k convolutional layers. This VE
corresponds to a state |ϕ̃⟩ such that ∥|ϕ⟩ − |ϕ̃⟩∥2 ≤ δ. Consequently, by Lemma C.1, sampling
this VE (and applying the binning-protocol) yields a sample from a vector poolC(|ϕ̃⟩) such that
∥poolC(|ϕ⟩) − poolC(|ϕ̃⟩)∥2 ≤ 2N2δ√

C
. Noting that the correct output of the network is given by

y = poolC(|ϕ⟩), we can get an overall error of ϵ, such that the vector we sample from satisfies
∥y − poolC(|ϕ̃⟩)∥2 ≤ ϵ by setting ϵ = 2N2δ√

C
=⇒ δ = ϵ

√
C

2N2 . By plugging this into the circuit
complexity of Uconv, and noting that here we assume we pay the full input dimension cost (since there
is no QRAM), TX ∈ O(N), and so this simplifies to O(N log(N3/ϵ

√
C)2k) ∈ Õ(N log(1/ϵ)2k)

total circuit cost. As stated in the main text, since the dimension of the vector acted on by the 2D
convolution is O(N2) (when d=2), the classical cost to compute this is Ω(N2): showing a quadratic
speedup over an exact classical implementation. The speedup can be made asymptotically larger
by increasing d.

Possible Limitations Here we will outline some of the possible limitations of the architecture
shown in Figure 1 (c). Since there is no final linear layer (in the architecture as directly presented),
the receptive field problems outlined in Section 4.1 may appear to apply. However, by virtue of taking
the tensor product of the input paths, local information becomes immediately globally accessible
circumventing this limitation. Moreover, another way that local information could made global is
from the processing that occurs along each path prior to the tensor product, since there is no limit on
the classical processing that can occur (so long as the total compute is linear in the dimension of the
input).

Moreover, our argument against dequantization in the first regime (see Section 4.1) relies on the
final dense and full-rank linear layer. However, since this layer is not feasible without QRAM, this
argument does not apply here. However, as we are only suggesting a polynomial speedup in Regime
3, we do not expect a dequantized algorithm to completely close the performance gap past quadratic,
as we benefit from amplitude amplification. However, exploring dequantized algorithms based on the
ideas in this paper appears to be interesting subsequent work.
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Finally, if the network only contains the convolutional layers, it will likely be very under-
parameterized making training challenging (see e.g., Allen-Zhu et al. (2019) for a discussion
on overparameterized neural networks). However, where the dimension of the vectorized input is N ,
it would be easy to add O(N) parameters, either in the classical paths prior to the tensor product, or
as a final low-rank residual output block (prior to the ℓ2-norm-pooling), so long as the number of
parameters in that block are O(N).

Alternative: Parameterized Quantum Circuits as Network Layers Alternatively, one could
use parameterized quantum circuits as network layers (Peruzzo et al., 2014; Benedetti et al., 2019b;
Cerezo et al., 2021), as the number of parameters in such circuits are usually polylogarithmic in the
dimension of the operator. However, such circuits are often hard to train even on classical machines,
due to under-parameterization, the barren plateau problem (McClean et al., 2018; Larocca et al.,
2025), and the exponential amount of bad local minima in the optimization landscape (Anschuetz &
Kiani, 2022). However, given good enough initializations and warm start assumptions (Mhiri et al.,
2025), it may still possible to train such architectures, leading to potential speed-ups in inference.

Other Possible Sources of Speedup In some cases, where the input can be efficiently prepared
without paying a dimension-dependent cost (e.g., the input comes from quantum states which are
easy to prepare, either via some other quantum algorithm, or via techniques like Rattew & Koczor
(2022)) it may be possible to obtain better than quadratic speedups. However, we leave this as a topic
for future investigation.

F TECHNICAL RESULTS

We now report a result on the efficient polynomial approximation to the error function due to Low
& Chuang (2017), which builds on the results of Sachdeva & Vishnoi (2014). This result is an
improvement over the approximation obtained by an integration of the series expansion for the
Gaussian distribution.

Lemma F.1 (Polynomial Approximation to Error Function due to Corollary 4 of Low & Chuang
(2017)). Let m ≥ 1/2, 1 ≥ ϵ > 0. There exists a degree k ∈ O(m log(1/ϵ)) polynomial Pk,m(x)
such that

Pk,m(x) :=
2me−m

2/2

√
π

I0(m2/2)x+

(k−1)/2∑
j=1

Ij(m
2/2)(−1)j

(
T2j+1(x)

2j + 1
− T2j−1(x)

2j − 1

)
(F.1)

and maxx∈[−1,1] | erf(mx)− Pk,m(x)| ≤ ϵ. Let 1 ≥ c > 0. Alternatively, if k ∈ O(m log(mc/ϵ)),
then maxx∈[−c,c] | erf(mx)−Pk,m(x)| ≤ ϵ. Additionally, for all k, maxx∈[−1,1] |Pk,m(x)/x| ≤ 4m√

π
,

and Pk,m(0) = 0. Finally, minx∈[−1,1] | erf(mx)/x| ≥ 1/2, and erf(mx) has Lipschitz constant
L = 2m√

π
,

Proof. For the case where maxx∈[−1,1] | erf(mx) − Pk,m(x)| ≤ ϵ, the result on the polynomial
approximation is directly taken from Low & Chuang (2017). We will now prove the bound when the
function is constrained to the interval [−c, c]. Let ϵ1 := maxx∈[−c,c] | erf(mx) − Pk,m(x)|. From
Equation (71) of Corollary 4 of Low & Chuang (2017), for a degree k polynomial approximation, we
have the following error-bound,

ϵ1 ≤ 2me−m
2/2

√
π

∣∣∣∣∣∣
∞∑

j=(k+1)/2

Ij(m
2/2)(−1)j

(
T2j+1(x)

2j + 1
− T2j−1(x)

2j − 1

)∣∣∣∣∣∣ . (F.2)

Using the identity
(
T2j+1(x)
2j+1 − T2j−1(x)

2j−1

)
= 2

∫ x
0
T2j(t)dt, and using the fact that all Cheby-

shev polynomials of the form T2j are even, we can get the bound that 2
∣∣∣T2j+1(x)

2j+1 − T2j−1(x)
2j−1

∣∣∣ ≤
2
∫ |x|
0

|T2j(t)|dt ≤ 2|x| ≤ 2maxx∈[−c,c] |x| = 2c, since maxx∈[−1,1] |T2j(x)| ≤ 1.
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Then, applying the triangle inequality, Equation (F.2) becomes,

ϵ1 ≤ 4cme−m
2/2

√
π

∞∑
j=(k+1)/2

∣∣Ij(m2/2)
∣∣ . (F.3)

Define ϵgauss,γ,k as per Corollary 3 of Low & Chuang (2017). Define some ϵ′ > 0.
Note that ϵgauss,γ,k = 2e−γ

2/2
∑∞
j=n

2 +1 |Ij(γ2/2)|, and that ϵgauss,γ,k ≤ ϵ′ if k ∈
O(
√
(γ2 + log(1/ϵ′)) log(1/ϵ′)). Thus, ϵ1 ≤ 2cmϵ′√

π
. To get an overall error-bound of at most

ϵ, we can set 2cmϵ′√
π

= ϵ, and so ϵ′ =
√
πϵ

2cm . Thus, if we set k ∈ O(m log( cmϵ )), we are guaranteed
that maxx∈[−c,c] |Pk,m(x)− erf(mx)| ≤ ϵ.

Next, d
dx erf(mx) = 2m√

π
e−(mx)2 , and consequently the maximum value of the derivative of the

function is when x = 0, i.e., maxx∈[−1,1] | ddx erf(mx)| =
2m√
π

.

We will now prove that |Pk,m(x)/x| ≤ 4m√
π

and minx∈[−1,1] | erf(mx)/x| ≥ 1/2.

Noting that Pk,m(0) = 0, (since for x = 0, T2j(x) = cos((2j + 1) arccos(0)) = cos((2j +

1)π/2) = 0), by Lipschitz continuity we have that |Pk,m(x)/x| ≤ | ddxPk,m(x)|. Noting that
d
dx

1
2 (
T2j+1(x)
2j+1 − T2j−1(x)

2j−1 ) = T2j(x),

max
x∈[−1,1]

|Pk,m(x)/x| ≤ max
x∈[−1,1]

∣∣∣∣ ddxPk,m(x)

∣∣∣∣ (F.4)

= max
x∈[−1,1]

∣∣∣∣∣∣2me
−m2/2

√
π

I0(m2/2) + 2

(k−1)/2∑
j=1

Ij(m
2/2)(−1)jT2j(x)

∣∣∣∣∣∣ .
(F.5)

A common identity for modified Bessel functions of the first kind states for t ̸= 0, e
1
2y(t+t

−1) =∑∞
j=−∞ tjIj(y). Setting t = 1, we find ey =

∑∞
j=−∞ Ij(y). Moreover, since Ij(y) ≥ 0 for all

y > 0,
∑(k−1)/2
j=1 Ij(m

2/2) ≤ em
2/2. Thus, using that maxx∈[−1,1] |T2j(x)| ≤ 1,

max
x∈[−1,1]

|Pk,m(x)/x| ≤ 4me−m
2/2

√
π

(k−1)/2∑
j=1

Ij(m
2/2) ≤ 4m√

π
. (F.6)

Thus, it is clear that this upper-bound is independent of the degree of the polynomial approximation,
and thus applies to the whole interval x ∈ [−1, 1] and not just x ∈ [−c, c].
Finally, we must show that minx∈[−1,1] | erf(mx)/x| ≥ 1/2. First, note that | erf(mx)/x| is
symmetrical, so we can simply consider the interval x ∈ [0, 1]. Moreover, it is monotonically
decreasing, so we can take the endpoint minx∈[−1,1] | erf(mx)/x| = erf(m). Since m ≥ 1/2,
erf(m) ≥ erf(1/2) ≈ 0.52 > 1/2.
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