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ABSTRACT

Despite the popularity of Shapley Values in explaining neural text classification
models, computing them is prohibitive for large pretrained models due to a large
number of model evaluations as it needs to perform multiple model evaluations
over various perturbed text inputs. In practice, Shapley Values are often estimated
stochastically with a smaller number of model evaluations. However, we find
that the estimated Shapley Values are quite sensitive to random seeds—the top-
ranked features often have little overlap under two different seeds, especially on
examples with the longer input text. As a result, a much larger number of model
evaluations is needed to reduce the sensitivity to an acceptable level. To mitigate
the trade-off between stability and efficiency, we develop an amortized model that
directly predicts Shapley Values of each input feature without additional model
evaluation. It is trained on a set of examples with Shapley Values estimated from
a large number of model evaluations to ensure stability. Experimental results on
two text classification datasets demonstrate that, the proposed amortized model
can estimate black-box explanation scores in milliseconds per sample in inference
time and is up to 60 times more efficient than traditional methods.

1 INTRODUCTION

Many powerful natural language processing (NLP) models used in commercial systems only allow
users to access model outputs. When these systems are applied in high-stake domains, such as
healthcare, finance and law, it is essential to interpret how these models come to their decisions.
To this end, post-hoc black-box explanation methods have been proposed to identify the input fea-
tures that are most critical to model predictions (Ribeiro et al., 2016; Lundberg & Lee, 2017). A
famous class of post-hoc black-box local explanation methods leverages the Shapley Values (Shap-
ley, 1953) to identify important input features, such as Shapley Value Sampling (SVS) (Strumbelj
& Kononenko, 2010) and KernelSHAP (Lundberg & Lee, 2017). These methods typically start by
stochastically sampling a set of perturbations or permutations of the input (“perturbation samples”)
and summarize how the model outputs are changed. Then they will assign an explanation score for
each input feature to indicate its contribution to the output.

Despite the widespread usage of the post-hoc interpretation methods, we observe that when they
are applied to text data, the estimated explanation score for each token varies significantly based
on different random seeds of the sampling process. This issue becomes more severe when the
input sequence becomes longer and can only be partially mitigated by collecting a large number of
samples, which would induce unaffordable computational and time burdens. This instability and
sensitivity to randomness in the sampling process will lead to an unreliable interpretation of the
model predictions and hinder developers from understanding model behavior.

Figure 1 shows an example of interpreting a BERT-based sentiment classifier (Devlin et al., 2019)
on Yelp-Polarity dataset , a restaurant review dataset (Zhang et al., 2015) by KernelSHAP (Lund-
berg & Lee, 2017). The interpretation results vary significantly when using different random seeds
(see details in the caption). They are stable only when the number of perturbed samples increases
to more than 2,000. As KernelSHAP requires access to the output of the sentiment classifier for
each perturbed sample, the computation cost is enormously high. For example, it takes about 183
seconds to interpret each instance on Yelp-Polarity using the KernelSHAP implementation in Cap-
tum (Kokhlikyan et al., 2020) on A100 GPU.
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Figure 1: Heatmaps for two runs of KernelSHAP (Lundberg & Lee, 2017) that only differ in random
seeds for a fine-tuned BERT model (Morris et al., 2020) on Yelp-polarity, using 200 samples (approx.
3.47s per instance on average using single A100 GPU, more than 150 times slower than the forward
process of the target model). The darker each token is, the higher explanation score is. We observe
that the interpretation results are significantly different when using different seeds.

To achieve a better trade-off between efficiency and stability, we propose a simple yet effective
amortized model to approximate the model explanation scores. This is inspired by the observation
that different instances share a similar set of important words (e.g., in sentiment classification, emo-
tional words can be strong label indicators (Taboada et al., 2011)). Therefore, an amortized model
can leverage similar interpretation patterns across instances when predicting the explanation scores.
Specifically, we first collect pairs of inputs and their corresponding explanation scores based on the
text classifier. These explanation scores are used as references to train an amortized model. Note
that although we need to collect a large enough set to train a stable and precise amortized model,
the collection needs to be done only once. At inference time, our amortized model directly outputs
the explanation scores for new instances. We show that the amortized model generates consistent
results similar to the ones from running massive target model evaluations.

Our experiments on both MNLI and Yelp-Polarity datasets using BERT demonstrate the following:
1) Our amortized model achieves a better trade-off between stability and efficiency. It reduces the
computation time for a typical instance from about 3.47s per instance to less than 50ms1, which is 60
times faster. This comes with the one-time efforts to collect training data from stable interpretation
methods. 2) We further show that with only a few thousand training samples, the amortized model
achieves a stable estimation of reference scores. 3) Our model is robust to training time random-
ness (e.g., initialization, random seeds used for generating reference explanation scores in training
dataset) in reference explanation scores. The Spearman’s correlation between different runs is as
strong as 0.77 (for more expensive explanation methods KernelSHAP-2000, it is only 0.52 across
different runs); 4) In two downstream applications, our model is more faithful to the target model
behavior compared with much more computationally expensive baselines.

2 RELATED WORKS

Post-Hoc Local Explanation Methods Post-hoc local explanations are proposed to understand
the prediction process of neural models (Simonyan et al., 2014; Ribeiro et al., 2016; Lundberg &
Lee, 2017; Shrikumar et al., 2017) . They work by assigning an explanation score to each feature in
each individual instance (“local”) to indicate its contribution to the model predictions. In this paper,
we focus on studying KernelSHAP (Lundberg & Lee, 2017), an additive feature attribution method
that approximate the Shapley Value (Shapley, 1953) for each attribution. KernelSHAP explains

1On Yelp-Polarity dataset and using A100 GPU, we compare with typical KernelSHAP explanation methods
with 200 samples
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the model output by first sampling perturbations on inputs, then using the output difference on
perturbed inputs as contributions for perturbed features. The process repeats until the budget (the
number of perturbation samples) is used out. As we will show in the experiments, when considering
text classification involving long inputs, KernelSHAP requires a large number of model queries on
different perturbation samples to obtain reliable estimation.

There are other methods in NLP for interpretability. For example, gradient-based methods (Si-
monyan et al., 2014; Li et al., 2016), which use the gradient w.r.t. a single point for saliency compu-
tations. Reference-based methods (Shrikumar et al., 2017; Sundararajan et al., 2017), that consider
the model output difference between the original point and a reference point. Our amortized model
is a model-based method to approximate the Shapley Values.

Shapley Value Estimation While Shapley Value is a theoretical way to calculate input attribu-
tions, there are limitations when applying it in practice given its prohibitively high cost for com-
putation, especially when explaining prediction of long document in NLP. KernelSHAP works as
an efficient way to approximate Shapley Value. Previous work on estimating Shapley Value mainly
focus on accelerating the sampling process (Jethani et al., 2021; Covert & Lee, 2021) or removing
redundant features (Aas et al., 2021; Covert et al., 2021). In this work, we propose to combat this
challenge by training an amortized model for Shapley Value estimation.

Robustness of Local Explanation Methods Despite being widely adopted, there has been a long
discussion on the actual quality of explanation methods. Recently, people find that explanation
methods can assign substantially different attributions to similar inputs (Alvarez-Melis & Jaakkola,
2018; Ghorbani et al., 2019; Kindermans et al., 2019; Yeh et al., 2019; Slack et al., 2021; Yin
et al., 2022), i.e., they are not robust enough, which adds to the more essential concerns on how
faithful those explanation methods are (Doshi-Velez & Kim, 2017; Adebayo et al., 2018; Jacovi &
Goldberg, 2020). In addition to previous work focusing on robustness against input perturbations
for explanations, we demonstrate that even by just changing seeds, stochastic approximation of
Shapley Values can give weakly-correlated interpretations among different runs, unless spending a
huge amount of computational resources.

Amortized Explanation Methods Our method is similar to recent works on amortized explana-
tion models including CXPlain (Schwab & Karlen, 2019) and FastSHAP (Jethani et al., 2021)),
where they also aim to improve the computational efficiency of explanation methods. The key dif-
ferences here are: 1) We do not make strong causal assumption between explanation scores and
model behaviors; 2) We focus on text domains, where each feature is a discrete token and the same
dimension of the inputs no longer have the same semantics (More details in Section 5).

3 BACKGROUND

In this section, we will briefly review Shapley Values basics, with a special focus on its application
to the text classification task. Usually, Shapley Values papers work on tabular data / well-structured
data with a fixed set of features and each dimension has its specific semantics (e.g., ages, salaries).

Local explanation of black-box text classification models. In text classification tasks, inputs
are usually sequences of discrete tokens X = [w1, w2, . . . , wL]. Here L is the sequence length
for X and can vary across data. wj is the j-th token for X. The classification model MCLF takes
the input X and predict the label as ŷ = argmaxy∈Y MCLF (X) [y]. Local explanation methods
treat each data instance independently and compute an explanation score ϕ(j, y) for each token wj ,
representing the contribution of wj to a predicted label y. Usually, we care about the explanation
scores when y = ŷ.

Shapley Values. Shapley Values are concepts from game theory originally developed to assign
credits in cooperative games (Shapley, 1953; Strumbelj & Kononenko, 2010; Lundberg & Lee,
2017; Covert et al., 2021). Let s ∈ {0, 1}L be a masking of the input and define Xs

def
= {wi}i:si=1

as a perturbed inputs or perturbation under the masking s. In this paper, we follow the typical
practice (Ye et al., 2021; Ye & Durrett, 2022; Yin et al., 2022) to replace the masked token with
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[PAD]. Let |s| represent the number of non-zero terms in s. Shapley Values ϕSV(i, y) for token wi

(Shapley, 1953) can be computed by:

ϕSV(i, y) =
1

L

∑
s:si ̸=1

(
L− 1

|s|

)−1

(MCLF (Xs ∪ {wi}) [y]−MCLF (Xs) [y]) (1)

Intuitively, Shapley Values ϕSV(i, y) computes the marginal contributions to the output of the pre-
dictive model. The computational complexity for original Shapley Values is known to be NP-
hard (Deng & Papadimitriou, 1994) because we need to sum over all O(2L) masks and is thus
intractable to compute. In practice, we can only do approximation to efficiently compute Shapley
Values. Shapley Values Sampling (SVS) (Castro et al., 2009; Strumbelj & Kononenko, 2010) is a
widely-used Monte-Carlo estimation of Shapley Values:

ϕSVS(i, y) =
1

m

∑
σ∈Π(L)

[
MCLF

(
XS([σ]i−1∪{i})

)
[y]−MCLF

(
XS([σ]i−1)

)
[y]

]
(2)

Here [σ]i−1 represents the set of indices ranked lower than i in the ordering σ ∈ Π(L). S([σ]) maps
the set of indices [σ] to masking s ∈ {0, 1}L as si = 1[i ∈ [σ]]. m is the number of perturbation
samples used for computing SVS. SVS is an unbiased estimator and converges asymptotically at a
rate of O( 1√

m
) according to Central Limit Theorem (Mitchell et al., 2022).

KernelSHAP. Although SVS have successfully reduced the exponential time complexity to poly-
nomial, it still requires sampling permutations and needs to do sequential updates to traverse the
features following sampled orderings and compute the explanation scores, which is an apparent ef-
ficiency bottleneck. On this side, Lundberg & Lee (2017) introduce a more efficient approximation
named KernelSHAP, which allows doing updates in parallel and computing explanation scores for
all tokens at once using linear regression. That is achieved by showing that computing Shapley
Values is equivalent to solving the following optimization problem:

ϕKernelSHAP(·, y) ≈ argmin
ϕ(·,y)

1

m

∑
s(i)∼p(s)

[MCLF
(
Xs(i)

)
[y]− s⃗(i)Tϕ(·, y)]2 (3)

s.t. 1Tϕ(·, y) = MCLF (X) [y]−MCLF (∅) [y] (4)

where s⃗ is the vector corresponding to s mentioned above and p(s) is the Shapley Kernel p(s) =
L−1

( L
|s|)|s|(L−|s|)

. m is again the number of perturbation samples. Equation (4) is often called as

“sufficiency constraint”. We will use “SVS-m” and “KernelSHAP-m” in the rest of the paper to
indicate the sample size when we use SVS and KernelSHAP, respectively. In practice, the set of
perturbation samples will usually be determined by the random seed.

Here we can see that, the larger the number of perturbation samples is, the more model evaluations
are required for a single instance, which can be quite computationally expensive as we usually use a
multi-layer transformer as the explained model in text classification nowadays. Therefore the main
performance bottleneck is the number of model evaluations.

4 STABILITY OF LOCAL EXPLANATION

One of the most common applications of Shapley Values is feature selection, which selects the most
important features by following the ordering of Shapley Values. Usually, people use KernelSHAP
with an affordable number of perturbation samples (the typical numbers of perturbation samples
used are around 25, 200, 2000) to do this task. However, as we see in Figure 1, such ranking can
be quite sensitive to random seeds when we use the stochastic estimation of Shapley Values. In this
section, we systematically investigate this stability issue. We demonstrate stochastic approximation
of Shapley Values can be unstable when applied in classification tasks with long text under common
settings. In particular, when ranking the tokens in input based on the explanation scores, Spearman’s
correlation between rankings from different runs is low.
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Setting Spearman Top-5 Inter. Top-10 Inter. MSE Running Time
SVS-25 0.84(±0.00) 3.41(±0.00) 7.02(±0.00) 0.01(±0.00) 183.72s/it
KernelSHAP-25 0.04(±0.00) 0.43(±0.01) 1.45(±0.01) 0.00(±0.00) 1.92s/it
KernelSHAP-200 0.16(±0.00) 1.09(±0.01) 2.47(±0.00) 0.82(±0.29) 3.47s/it
KernelSHAP-2000 0.37(±0.00) 2.45(±0.01) 4.38(±0.05) 0.03(±0.00) 33.40s/it
KernelSHAP-8000 0.63(±0.00) 3.73(±0.02) 6.93(±0.01) 0.01(±0.00) 123.29s/it

Table 1: Ranking stability experiments on the Yelp-Polarity dataset. Each local explanation setting
is evaluated across 5 runs with different random seeds. “Top-K Inter.” denotes top-K intersection.
All values in this table are absolute values. Here we can see a clear trade-off between stability and
computation cost.

Setting Spearman Top-5 Inter. Top-10 Inter. MSE Running Time
SVS-25 0.75(±0.00) 3.54(±0.02) 7.46(±0.02) 0.02(±0.00) 128.07s/it
KernelSHAP-25 0.06(±0.00) 0.97(±0.01) 3.41(±0.03) 0.01(±0.00) 0.33s/it
KernelSHAP-200 0.24(±0.00) 1.79(±0.01) 4.37(±0.03) 0.07(±0.00) 2.04s/it
KernelSHAP-2000 0.52(±0.00) 3.19(±0.00) 6.09(±0.00) 0.03(±0.00) 20.39s/it
KernelSHAP-8000 0.76(±0.00) 4.08(±0.02) 7.74(±0.02) 0.01(±0.00) 89.48s/it

Table 2: Ranking stability experiments on the MNLI dataset.

Measuring ranking stability. Given explanation scores produced by different random seeds using
a stochastic Shapley Values estimator, we want to measure the difference between these scores.
Further, we are interested in the ranking difference as this is what matters in applications. To measure
the ranking stability among different runs, we mainly use Spearman’s correlation between rankings.
As Spearman’s correlation is calculated between two different ranking results, we run with multiple
random seeds and compute Spearman’s correlation between any two of them and use the averaged
Spearman’s correlation to measure the ranking stability. Besides, we also follow Ghorbani et al.
(2019) to report Top-K intersections between two rankings, since in many applications only the top
features are of explanatory interest. It computes the size of the intersection of Top-K features ranked
by two different runs of the same Shapley Values estimator.

Setup. We conduct our experiments on the Yelp-Polarity dataset (Zhang et al., 2015) and MNLI
dataset (Williams et al., 2018). Yelp-Polarity is a binary sentiment classification task and MNLI is a
three-way textual entailment classification task. Due to computational resource limitations, we only
conduct experiments on 500 random samples (we refer to these datasets as “Stabilty Evaluation Sets”
subsequently) with 5 different random seeds on the validation set of both Yelp-Polarity and MNLI2.
We use the publicly available fine-tuned BERT-base-uncased checkpoints3 (Morris et al., 2020) as
the target models to interpret and use the implementation of Captum (Kokhlikyan et al., 2020) to
compute the explanation scores for both KernelSHAP and SVS. For each explanation method, we
test with widely-used or recommended numbers of perturbation samples4 used to compute the ex-
planation scores for every instance. For Top-K intersections, we use K = 5 and K = 10.

Trade-off between stability and computation cost. The ranking stability experiment results are
listed in Table 1 and Table 2 for Yelp-Polarity and MNLI datasets, respectively. We observe that
when we follow the common setting of interpretation methods to generate 25 to 200 perturbation
samples, the stability of ranking and Top-K intersection is low. By drawing more masked samples
for each instance, the interpretation becomes more stable. However, the computational cost and
running time explode at the same time, especially when the size of the input text is large. To reduce
the sensitivity to an acceptable level (i.e., the Spearman’s correlation between two different runs is

2We already take way more than 2,000 hours on a single A100 GPU for all experiments in this section.
3Yelp-Polarity: https://huggingface.co/textattack/bert-base-uncased-yelp-polarity

MNLI: https://huggingface.co/textattack/bert-base-uncased-MNLI
4For SVS, the recommended number of perturbation samples is 25 in Captum. For KernelSHAP, to our best

knowledge, the typical numbers of perturbation samples used in previous works are 25, 200, 2000. We also
include KernelSHAP-8000 to see when given much longer running time, how stable KernelSHAP can be.
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Figure 2: Ranking stability over different input lengths. We observe that longer input suffers more
from instability.

higher than 0.60, which indicates strong correlation), we usually need to spend thousands of model
evaluation.

Low MSE does not imply stability. Mean Squared Error (MSE) is commonly used to evaluate
the distance between two explanation scores. We follow this trend and also list MSE between two
explanation scores. We observe that MSE weakly correlates with ranking stability. Even when the
difference of MSE for different settings is as low as 0.01, the correlation between rankings produced
by explanations can still be low.

Longer input suffers more from instability. We also plot the Spearman’s correlation decom-
posed at different input length in Figure 2. Here, we observe a clear trend that the ranking stability
degrades significantly even at an input length of 20 tokens. The general trend is that when the longer
input length, the worse the ranking stability. The same trend holds across datasets.

Discussion: why Shapley Values computation is instable in text domain? One of the most promi-
nent characteristics for text domain is that, models often requires to perform high-level correlation
analysis among input tokens (e.g, n-gram statistics), and missing even one token can drastically
change the semantics of the input (e.g., the sentiment words, adjectives and the proper nouns). When
the input length grows, the number of n-grams will grow fast. As shown in Section 3, the probability
of certain n-gram get sampled is drastically reduced as each n-gram will be sampled with equivalent
probability. Therefore, the observed model output will have large variance as certain n-grams may
not get sampled. Kwon & Zou (2022) presented a related theoretical analysis about why the uniform
sampling setting in Shapley Values computation can lead to suboptimal attribution results.

5 AMORTIZED INFERENCE FOR SHAPLEY VALUES

Existing approaches for improving the efficiency of model interpretation methods mainly focus on
enhancing sampling algorithms to use more representative perturbation samples thus reducing the
number of model evaluations (Covert et al., 2021; Mitchell et al., 2022). As an orthogonal direction,
we propose to train an amortized model to predict the local explanation scores given the inputs with-
out any queries to the model. Such training is achieved by fitting pre-collected reliable explanation
scores.

We build an amortized explanation model for text classification in a 2-stage way. In the first stage,
we collect reliable explanation scores as the reference scores for training using the existing Shapley
Values estimator. As shown in Section 4, SVS-25 is the most stable Shapley Values estimator and
we use it to obtain reference scores. In the second stage, we train a BERT-based amortized model
to take the text input and directly output the explanation scores by fitting the outputs to reference
scores with MSE loss.
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Specifically, given input tokens X, we will use a pretrained language model MLM to encode words
into d-dim embeddings e⃗ = MLM(X) = [e⃗1, . . . , e⃗L(X)] ∈ RL(X)×d. Then we use an linear layer
to transform each e⃗i to the predicted explanation score ϕAM (i, ŷi) = We⃗i + b. To train the model,
we use MSE loss to fit ϕAM (i, ŷ) to the pre-computed reference scores ϕ(i, ŷ) over the training
set XTrain. This is an amortized model in the sense that there is no individual sampling and model
queries for each test example X as in SVS and KernelSHAP. When a new sample comes in, all it
needs are just the input tokens.

Better accuracy-efficiency trade-off via meta learning As the explanation scores are highly lo-
cal, it is possible that the aforementioned simple L2 regression will only capture the globally shared
patterns in explanation scores across instance, but still cannot generalize well on every instance.
This naturally gives rise to a meta-learning based method: we can use the explanation scores gener-
ated by our models as good initialization for the Shapley Values for each instance, and then perform
SVS update as in Equation (2) to achieve better local adaption. Actually, if we treat explaining each
instance as a “task” and the SVS update as gradient descent steps based on L2 loss on perturba-
tion samples, then this meta-learning methods is identical to the famous MAML framework in meta
learning (Finn et al., 2017). This meta learning method inevitably introduce more computational
overhead when inferring explanation scores for each instance, but it also provides more flexible
control of accuracy-efficiency trade-off as we previously achieved using different number of pertur-
bation instances in SVS and KernelSHAP. We present a more detailed analysis of this meta learning
idea in Appendix B.

Other objective function We use L2 regression here to fit the amortized model for simplicity,
but that is not the only modeling choice. We also experiment with using sorting network (Petersen
et al., 2022), which is a continuous relaxation of sorting and can allow the model to learn sorting.
However, we empirically find it does now work well as it is pretty unstable to train over discrete
text data and the best performance observed cannot even beat FastSHAP baseline on Spearman’s
correlation. We leave further exploration for future works.

6 EXPERIMENTS

In this section, we present experiments to demonstrate the properties of the proposed approach in
terms of approximation precision, learning efficiency and sensitivity against reference scores. We
conduct experiments on the validation set of Yelp-Polarity and MNLI datasets. To generate refer-
ence explanation scores, we leverage the Thermostat (Feldhus et al., 2021) dataset, which contains
9,815 pre-computed explanation scores of SVS-25 on MNLI. We also take two weeks to compute
explanation scores of SVS-25 for 25,000 instances on Yelp-Polarity. For both datasets, we split them
into 9:1:1 for training, validation, and test sets. The hyperparameters of amortized models are tuned
on the validation set. We use Adam (Kingma & Ba, 2015) optimizer with a learning rate of 5e-5,
train the model for at most 10 epochs and do early stopping to select best model checkpoints. We
use BERT-base-uncased (Devlin et al., 2019) for MLM.

Baseline: FastSHAP We adapt FastSHAP (Jethani et al., 2021) to explain the text classifier and
compare it with our approach. However, we find that it is non-trivial to adapt FastSHAP to the
text domain. The original implementation can only be applied with tabular data or image data. As
pre-trained language models occupy a large amount of GPU memory, we can only use a small batch
size with limited perturbed samples (i.e., 32 perturbed samples per instance). This is equivalent
to approximate KernelSHAP-32 and the corresponding reference explanation scores computed by
FastSHAP are unstable. We also find it pretty hard and time-consuming to optimize FastSHAP.
More details can be found in Appendix A.

6.1 APPROXIMATION AND COMPUTATIONAL EFFICIENCY

To examine how well our model fits to the pre-computed Shapley Values (SVS-25), we compute
both Spearman’s correlation and MSE over the test set. As it is intractable to compute exact Shapley
Values for ground truth, we use the SVS-25 as a proxy instead. We also include different settings for
KernelSHAP results over the same test set. KernelSHAP is also an approximation to permutation-
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Method MNLI Yelp-Polarity
Spearman MSE Spearman MSE

SVS-25 0.75 1.90e-2 0.84 6.64e-3
KernelSHAP-25 0.17 9.95e-2 0.12 4.34e-2

KernelSHAP-200 0.35 7.73e-2 0.24 5.77e-2
KernelSHAP-2000 0.60 2.54e-2 0.51 1.86e-2
KernelSHAP-8000 0.74 1.25e-2 0.70 6.25e-3

FastSHAP 0.23 1.90e-1 0.18 7.91e-3
Our Amortized Model 0.42 9.59e-3 0.61 4.46e-6

Table 3: Approximation results for the Shapley explanation methods on MNLI and Yelp-Polarity
datasets. Bold-faced numbers are the best in each column. Results are averaged over 5 runs. Spear-
man’s correlation and MSE are computed against SVS-25, a proxy to exact Shapley Values. We can
see our amortized model can achieve better approximation when compared to KernelSHAP-200 and
our baseline FastSHAP, but not as good as much more time-consuming methods KernelSHAP-2000
and KernelSHAP-8000. We list SVS-25 results here as an upper bound.
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Figure 3: Learning curves for the amortized model over MNLI datasets (left) and Yelp-Polarity
datasets (right). The Spearman’s correlations in this figure is computed against SVS-25. We can see
our amortized model can learn more efficiently even if there is only 10% data used for training.

based Shapley Values computation (Lundberg & Lee, 2017). The approximation results are shown
in Table 3.

First, we find that despite the simplicity of our amortized model, the proposed amortized mod-
els achieve a high correlation with the reference scores (0.61 > 0.60) on Yelp-Polarity given
enough data. The correlation between outputs from the amortized models and references is moder-
ate (0.42 > 0.40) on MNLI when data size is limited. During inference time, our amortized models
can output explanation scores for each instance within 50 milliseconds, which is about 40-60 times
faster than KernelSHAP-200 and 400-600 times faster than KernelSHAP-2000 on Yelp-Polarity and
MNLI. Although the approximation results are not as good as other settings, such as KernelSHAP-
2000 or KernelSHAP-8000, our amortized model achieves reasonably good results with far less
computation cost.

We also find that the amortized model achieves the best MSE score among all approximation meth-
ods. Note that the two metrics, Spearman’s correlation and MSE, do not convey the same informa-
tion. MSE measures how well the reference explanation scores are fitted while Spearman’s correla-
tion reflects how well the ranking information is learned. We advocate for reporting both metrics.

6.2 INFERENCE AND LEARNING EFFICIENCY

Regarding the training, we need to pre-compute the explanation scores on a set of data so that we
can use them to train the models. This one-time step can be time-consuming as we need to run the

8
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Training Data Proportion Spearman (MNLI) Spearman (Yelp-Polarity)

10% 0.45 0.40
30% 0.57 0.65
50% 0.65 0.71
70% 0.65 0.72
100% 0.77 0.76

Table 4: Training time sensitivity study. To evaluate how much the amortized model will be influ-
enced by randomness during training, we sample training data 5 times with different random seeds
and then compute the averaged Spearman’s correlation among all pairs of runs. The standard devia-
tion is less than 1e-2. We can see our amortized model is stable against training time randomness.
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Figure 4: Feature selection based on interpretations on Yelp-Polarity and MNLI dataset. The faster
the curve drops, the explanation scores are more faithful to the model’s actual behavior. We can
see our amortized model is more faithful to the target model compared with KernelSHAP-200, but
cannot lead to as a significant performance drop as other time-consuming methods.

original explanation approaches. However, as the learning curve shown in Figure 3, we observe that
the model achieves good performance with about 5,000 instances.

During inference time, the amortized model is efficient and stable as it does not need to estimate the
explanation scores from sampling.

6.3 SENSITIVITY ANALYSIS

There is no randomness in generating explanation scores for new data samples when using the
amortized model. However, there is still some randomness in the training process, including the
random initialization of the output layer and the randomness in the model update. Therefore, similar
to Sec. 6.1, we study the sensitivity of amortized model to the random seeds. Table 4 shows the
results with different sample sizes. We observe that: 1) when using the same data (100%), random
initialization does not affect the outputs of amortized models – the correlation between different runs
is high (i.e., 0.77 on MNLI and 0.76 on Yelp-Polarity). 2) With more training samples, the model is
more stable.

6.4 DOWNSTREAM APPLICATIONS OF AMORTIZED MODELS

Feature Selection The first case study is feature selection, which is a straightforward application
of local explanation scores. The goal is to find decision-critical features via removing input features
gradually according to the sorting rank given by the explanation methods. The more faithful the
explanation method is to the target model, the more important tokens should be ranked higher and
should result in more performance drops when the same number of features are masked. We gradu-
ally mask Top α% tokens (α = 1%, 5%, 10%, 20%) and compute the accuracy over corrupted results
using the stability evaluation sets for MNLI and Yelp-Polarity datasets as mentioned in Section 4.

9
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As the results shown in Figure 4, the amortized model is more faithful than KernelSHAP-200 but
underperforms KernelSHAP-2000, KernelSHAP-8000 and SVS-25. However, amortized model is
more efficient than these methods.

Explanation as Domain Calibrator Following recent findings that good explanations should be
informative enough to help users to predict model behavior (Doshi-Velez & Kim, 2017; Chan-
drasekaran et al., 2018; Hase & Bansal, 2020; Ye et al., 2021). Ye & Durrett (2022) propose to com-
bine the local explanation with pre-defined feature templates (e.g., aggregating explanation scores
for overlapping words / POS Tags in NLI as features) to calibrate an existing model to new domains.
The rationale behind this is that, if the local explanation truly connects to human-understandable
model behavior, then following the same way how human transfer knowledge to new domains, the
explanations guided by human heuristics (in the form of feature templates) should help calibrate the
model to new domains. Inspired by this, we conduct a study using the same calibrator architecture
but plugging in different local explanation scores.

For calibration experiments, we follow Ye & Durrett (2022) to calibrate a fine-tuned MNLI model5
to MRPC. The experiment results are shown in Table 5. In the table, “BOW” means the baseline that
uses constant explanation scores when building the features for the calibration model. Compared
with the explanation provided by KernelSHAP-2000, the explanation given by the amortized model
achieves better accuracy, suggesting that the amortized model learns robust explanation scores that
can be generalized to out-of-domain data in downstream applications.

Model Acc

BOW 67.3
ShapCal (KernelSHAP-2000) 67.4

ShapCal (Amortized) 68.0

Table 5: Calibration Experiments for Amortized Models. We can see that the explanation scores can
help the calibration model achieves better accuracy on out-of-domain data than KernelSHAP-2000.

7 CONCLUSION

In this paper, we empirically demonstrate that it is challenging to obtain stable explanation scores on
long text inputs. Inspired by the fact that different instances can share similarly important features,
we propose to efficiently estimate the explanation scores through an amortized model trained to fit
pre-collected reference explanation scores.

In the future, we plan to explore model architecture and training loss for developing effective amor-
tized models. In particular, we will incorporate sorting-based loss to maintain the ranking order
of features. Besides, we will investigate the transferability of the amortized model across different
domains and different languages.
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Method MNLI Yelp-Polarity
Spearman Spearman

SVS-1 0.32 0.43
SVS-2 0.41 0.52
SVS-3 0.47 0.60
SVS-5 0.55 0.69

SVS-25 0.75 0.84
Our Amortized Model 0.42 0.61

Our Amortized Model (Adapt-1) 0.44 0.60∗

Our Amortized Model (Adapt-2) 0.47 0.64
Our Amortized Model (Adapt-3) 0.53 0.69
Our Amortized Model (Adapt-5) 0.57 0.71

Table 6: Approximation results for the Shapley explanation methods on MNLI and Yelp-Polarity
datasets. Bold-faced numbers are the best in each column. Results are averaged over 5 runs. Spear-
man’s correlation and MSE are computed against SVS-25, a proxy to exact Shapley Values. Adapt-m
means here how many sampled ordering σs we used here to do local adaption (m in Algorithm 1).
We can see 1) by doing local adaption, we can further improve the approximation results using our
amortized model, 2) using our amortized model as initialization, we can improve the sample effi-
ciency of SVS significantly (by comparing the performance of SVS-X and Our Amortized Model
(Adapt-X). ∗: not significant here compared with not using local adaption.

A ADAPTION FOR FASTSHAP BASELINE

As we mentioned in Section 6, we build our amortized models upon a pre-trained encoder
BERT (Devlin et al., 2019). However, using the pre-trained encoder significantly increases the
memory footprint when running FastSHAP. In particular, we have to host two language models on
GPUs, one for the amortized model and the other one for the target model. Therefore, we can only
adopt the batch size equals to 1 and 32 perturbation samples per instance. Following the proof
in FastSHAP, this is equivalent to teaching the amortized model to approximate KernelSHAP-32,
which is an unreliable interpretation method (See Section 6.3).

In experiments, we find that the optimization of FastSHAP is unstable. After an extensive hyper-
parameter search, we set the learning rate to 1e-6 and increased the number of epochs to 30. How-
ever, this requires us to train the model on a single A100 GPU for 3 days to wait for FastSHAP to
converge.

Algorithm 1 Local Adaption

Require: m: the desired number of local adaption perturbation samples, MAM: the trained amor-
tized explanation model, X: the target data instance that has length L, ŷ: the predicted label,
MCLF: the target model
ϕ←MAM(X)
for j = 1 to m do

choose a random order σ from permutation Π(L)
ϕ← ϕ+

∑
i

[
MCLF

(
XS([σ]i−1∪{i})

)
[ŷ]−MCLF

(
XS([σ]i−1)

)
[ŷ]

]
end for
ϕ← ϕ

m

B AMORTIZED INFERENCE VIA META LEARNING

As the Shapley Values are originally for each instance and thus it is possible that the amortized model
may not achieve a good fit for every instance. Thus, a local adaption can be helpful to strengthen
our model. Specifically, our meta learning framework is described in Algorithm 1. Note that here
if we can recover the original SVS computation (Strumbelj & Kononenko, 2010) by replacing ϕ←
MAM(X) to be ϕ← 0. MAM is trained using the method described in Section 5.
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The experiment results are shown in Table 6. Here we can see that: 1) By comparing the results
with using local adaption and not using, except the case that only using one sampled ordering to do
update (maybe the update is not sufficient), we consistently observe a significant improvement in
Spearman’s correlation across datasets. 2) By comparing using our amortized model output as ini-
tialization and not using, we also see a consistent Spearman’s correlation improvement over original
SVS, indicating that our amortized model can help achieve better sample-efficiency by providing a
good initialization.
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