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Abstract

Customizing machine translation models to001
comply with desired attributes (e.g., formal-002
ity or grammatical gender) is a well-studied003
topic. However, most current approaches rely004
on (semi-)supervised data with attribute anno-005
tations. This data scarcity bottlenecks democ-006
ratizing such customization possibilities to a007
wider range of languages, particularly lower-008
resource ones. This gap is out of sync with009
recent progress in pretrained massively mul-010
tilingual translation models. In response, we011
transfer the attribute controlling capabilities to012
languages without attribute-annotated data with013
an NLLB-200 model as a foundation. Inspired014
by techniques from controllable generation, we015
employ a gradient-based inference-time con-016
troller to steer the pretrained model. The con-017
troller transfers well to zero-shot conditions, as018
it operates on pretrained multilingual represen-019
tations and is attribute- rather than language-020
specific. With a comprehensive comparison to021
finetuning-based control, we demonstrate that,022
despite finetuning’s clear dominance in super-023
vised settings, the gap to inference-time control024
closes when moving to zero-shot conditions, es-025
pecially with new and distant target languages.026
The latter also shows stronger domain robust-027
ness. We further show that our inference-time028
control complements finetuning. Moreover, a029
human evaluation on a real low-resource lan-030
guage, Bengali, confirms our findings. Our031
code is in the supplementary material.032

1 Introduction033

Pretrained multilingual translation models with034

massive coverage (Zhang et al., 2020; Liu et al.,035

2020; Fan et al., 2021; Xue et al., 2021; NLLB036

Team et al., 2022) have become of the backbone037

of many translation systems. While their off-the-038

shelf translation quality has been constantly im-039

proving (Fan et al., 2021; Ma et al., 2021; NLLB040

Team et al., 2022), the flexibility of customiza-041

tion towards desired attributes, such as formality042

…

…

…

…

Figure 1: The number of translation directions with
attribute-annotated data (right) is far less than that of
what massively pretrained models serve (left).

or grammatical gender, is another important metric. 043

Adapting generic systems for attribute-controlled 044

translation relies on training data with attribute in- 045

formation. Creating such annotated data often re- 046

quires language-specific knowledge and manual 047

curation. This makes data acquisition challenging 048

even for single languages. When scaling to the nu- 049

merous directions served by massively multilingual 050

models, it quickly becomes impractical, as shown 051

in Figure 1. While prior works (Michel and Neubig, 052

2018; Saunders et al., 2020; Nadejde et al., 2022) 053

showed promising results of finetuning on limited 054

attribute-annotated data, to allow other languages 055

without supervised data to similarly benefit from 056

the customization possibilities, the transferability 057

of the attribute controllers remains to be studied. 058

A straightforward way to achieve attribute con- 059

trol is finetuning on attribute-specific data. Re- 060

cent works (Rippeth et al., 2022; Wu et al., 2023) 061

have shown that finetuning with just hundreds of 062

attribute-specific sentences is sufficient. However, 063

small finetuning data also brings the risk of over- 064

fitting and catastrophic forgetting (Freitag and Al- 065

Onaizan, 2016; Thompson et al., 2019). It is espe- 066

cially relevant when generalizing to new languages, 067

where finetuning on some languages may erase 068

the knowledge of others from pretraining (Garcia 069

et al., 2021; Cooper Stickland et al., 2021; Liu and 070

Niehues, 2022). While these issues may be miti- 071

gated by partial finetuning (Houlsby et al., 2019; 072
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Figure 2: Left: Inference-time control by gradient-based classifier guidance: training classifiers for attributes on
decoder activations, and using its predictions to edit inference-time model activations towards desired attributes.
Right: Standard training-time control by finetuning on attribute-specific data.

Bapna and Firat, 2019), domain mismatch between073

the finetuning data and the test domain can still074

degrade translation quality. We will validate these075

concerns in various zero-shot conditions with dif-076

ferent language relatedness and domains.077

On the other end of the spectrum, inference-time078

customization is another paradigm of attribute con-079

trol. In this case, the pretrained model is fully080

unchanged in the training stage. At inference time,081

the generation process is steered towards desired082

attributes by e.g. re-weighting entries in the out-083

put distribution (Saboo and Baumann, 2019; Yang084

and Klein, 2021; Landsman et al., 2022) or editing085

model activations (Dathathri et al., 2020). To en-086

able cross-lingual transfer, the controller must be087

trained on features that are shared across languages.088

This precludes methods that operate on the surface089

vocabulary level. In this work, we will extend an090

activation-based approach (Dathathri et al., 2020)091

originally for decoder-only models to cross-lingual092

transfer on pretrained translation models.093

Task Formalization We focus on the following094

task: Given a pretrained many-to-many multilin-095

gual translation model covering N languages and096

N(N − 1) translation directions, along with par-097

allel data on k (k ≪ N(N − 1)) translation direc-098

tions where the target translation corresponds to099

specific attributes (e.g., formality level), we aim to100

customize the pretrained model to translate with101

desired attributes for as many directions as possible.102

We refer to the subsequent model as an attribute103

controller. Specifically, after learning on the k sets104

of parallel data with attribute annotation, to what105

extent can we transfer the attribute controller to the106

remaining N(N − 1)− k translation directions?107

2 Background and Related Work108

Attribute-Controlled Translation Previous works109

investigated controlling various attributes of ma-110

chine translation outputs, for instance politeness 111

(Sennrich et al., 2016; Niu et al., 2018; Feely et al., 112

2019), gender (Vanmassenhove et al., 2018; Saun- 113

ders et al., 2020), length (Takase and Okazaki, 114

2019; Lakew et al., 2019; Marchisio et al., 2019; 115

Niehues, 2020), or style in general (Michel and 116

Neubig, 2018; Schioppa et al., 2021; Vincent et al., 117

2023; Wang et al., 2023). As existing works mainly 118

focus on supervised conditions with at least some 119

supervised data, how these approaches generalize 120

to new languages remains unclear. In face of data 121

scarcity, one approach is to use synthetic data by 122

pseudo-labeling (Rippeth et al., 2022; Lee et al., 123

2023). In our work, by building upon massively 124

multilingual translation models, we do not assume 125

the scalability of creating synthetic data for all lan- 126

guages served by the backend model, nor do we 127

assume a classifier that can a priori distinguish at- 128

tribute classes for zero-shot languages. 129

Multilinguality for Controllable Generation Our 130

work is also related to controllable text generation 131

in general. Despite steady progress in this field 132

(Keskar et al., 2019; Krause et al., 2021; Yang and 133

Klein, 2021; Liu et al., 2021), how the controller 134

generalizes across languages is likewise less ex- 135

plored. With the recent surge of large language 136

models (LLMs), attribute-controlled translation has 137

also been addressed by prompting multilingual lan- 138

guage models in a few-shot manner (Sarti et al., 139

2023; Garcia et al., 2023). Notably, Sarti et al. 140

(2023) reported promising few- and zero-shot at- 141

tribute control results using multilingual LLMs. In 142

this work, we take a different perspective by using 143

a pretrained dedicated encoder-decoder translation 144

model as backend, and transferring the attribute 145

control capabilities with lightweight add-ons. As 146

currently LLMs still lag behind dedicated transla- 147

tion models (Zhu et al., 2023; Sarti et al., 2023) 148

especially on low-resource languages (Robinson 149
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et al., 2023), we believe improving the attribute150

control capabilities of massively multilingual con-151

ventional models is still highly relevant.152

Multilingual Domain Adaptation Attribute con-153

trol can be viewed as a light domain adaptation154

task. Prior works (Cooper Stickland et al., 2021;155

Vu et al., 2022) adapting pretrained multilingual156

models have reported catastrophic forgetting of157

languages absent from the finetuning stage. Our158

results on finetuning for zero-shot attribute con-159

trol (§6.1) shows a different picture. One potential160

reason is that, compared to adapting to fully new161

domains such as medical or law texts, the attribute162

control task can be learned with less data. This in163

turn requires less intense finetuning and is therefore164

less vulnerable to forgetting.165

3 Transferring Attribute Controllers for166

Multilingual Translation167

To generalize to new translation directions, an ideal168

controller should be attribute- rather than language-169

specific. That is, its representation for different170

attribute labels varies little with specific languages.171

Inference-Time Control by Classifier Guidance:172

Our first approach builds upon the observation that173

the activations of pretrained multilingual models174

capture commonalities of different languages (Pires175

et al., 2019; Liu et al., 2020). An attribute classi-176

fier trained on these activations can then potentially177

transfer across languages, which we use at infer-178

ence time to steer the generation for languages with-179

out attribute-annotated data. The control takes ef-180

fect on inference-time model activations instead of181

parameters, as shown in Figure 2. Specifically, we182

first train an attribute classifier while freezing the183

pretrained model, and then edit the model activa-184

tions towards the wanted attribute based on the pre-185

dicted label at inference time. This idea has shown186

success in controllable image synthesis (Dhariwal187

and Nichol, 2021) and text generation (Li et al.,188

2022). To the best of our knowledge, no prior work189

has explored it for cross-lingual transfer.190

Specifically, we extend the approach by191

Dathathri et al. (2020) to encoder-decoder mod-192

els. For machine translation, Given a frozen pre-193

trained model, we run forward passes with attribute-194

annotated1 parallel data (X,Y)c for c ∈ [C],195

where X and Y are the source and target sentences196

with individual sentence pairs (x,y)i ∈ (X,Y),197

and C is the number of attribute labels.198
1Only the target side needs attribute labels.

During the forward passes, we train an clas- 199

sifier that maximizes P (c | h), where c is the 200

ground-truth attribute label and h is the decoder 201

hidden states after forced-decoding parallel data 202

(x,y): h = decoder(y, encoder(x)). Like with 203

a standard model, the output distribution is then 204

softmax(Wh), where W maps the hidden states 205

h to the vocabulary distribution. 206

At inference time step t, the hidden state is: 207

ht = decoder(yt−1,At−1), (1) 208

where yt−1 is the token from the previous step, 209

and At−1 is the model activations. At−1 contains 210

activation key-value pairs from the decoder self- 211

attention and cross-attention for steps 1 to t − 1, 212

and is cached in most Transformer decoding imple- 213

mentations (Ott et al., 2019; Wolf et al., 2020). 214

Based on all available decoder states till t−1, we 215

predict an attribute label: argmaxcP (c | h1,...,t−1). 216

Following Dathathri et al. (2020), we meanpool the 217

states from timestep 1 to t− 1 for the prediction. It 218

also empirically showed better performance. 219

As h1,...,t−1 is only determined by At−1, we can 220

rewrite P (c | h1,...,t−1) as P (c | At−1). Compar- 221

ing the prediction to the desired attribute c∗, we can 222

derive gradients measuring how much the current 223

activations satisfy the desired c∗. The gradients, 224

∇At−1P (c∗ | At−1), are then back-propagated for 225

several iterations with given step sizes, resulting in 226

updated activations Ãt−1, which further leads to 227

modified decoder hidden state: 228

h̃t = decoder(yt−1, Ãt−1). (2) 229

A new output token yt (that more likely satisfies the 230

control) is generated from h̃t by softmax(Wh̃t). 231

Finetuning-Based Control: A more common 232

way to realize control is finetuning the pretrained 233

model on attribute-specific parallel data, as done in 234

domain adaptation (Freitag and Al-Onaizan, 2016). 235

To transfer to directions without annotated data, 236

the adaptation step must mostly learn the desired 237

attributes rather than the specific languages in fine- 238

tuning, so as not to forget the languages without an- 239

notated data. On our tasks, naive finetuning already 240

works effectively: We finetune the full model on 241

each attribute, resulting in one specialized model 242

per attribute as shown in Figure 2.2 Partial fine- 243

tuning e.g. with adapters (Bapna and Firat, 2019; 244

2We tried prepending attribute tags to the source sen-
tences (Chu et al., 2017; Kobus et al., 2017), but this was
not enough to make the pretrained model to be attribute-aware.
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Task Directions # Sent. per lang. per att.

Formality control (formal/informal)
train en→{de, es, fr, hi, it} 400
test (supervised) en→{de, es, fr, hi, it} 600
test (new tgt) en→{pt, ru, ko} 600
test (new src) {de, fr, hi, it}→es 366-572
Grammatical gender control (feminine/masculine)
train en→es 194
test (supervised) en→es 552-556
test (new tgt) en→{it, fr} 515-546
test (new src+tgt){es, fr}→it, {es, it}→fr 271-365

Table 1: Data overview. Codes: German (de), Spanish
(es), French (fr), Hindi (hi), Italian (it), Korean (ko),
Portuguese (pt), Russian (ru), source (src), target (tgt).

Philip et al., 2020) is a more parameter-efficient245

approach. We do not explore partial finetuning in246

this work, as it does not fully align with our focus247

on the transferability of attribute controllers.248

4 Experimental Setup249

We experiment on two attribute control tasks: for-250

mality and grammatical gender control. As out-251

lined in Table 1, the training data has English on252

the source side. For the target languages, there is253

one set of translations per attribute. The low data254

volume not only reflects the practical challenge of255

data acquisition, but is also an established condition256

in existing benchmarks (Nadejde et al., 2022).257

4.1 Formality Control (In-Domain)258

The training data come from CoCoA-MT (Nadejde259

et al., 2022)3, where the test domain overlaps with260

training. For zero-shot conditions, we transfer con-261

trollers trained on different language pairs to new262

translation directions. Specifically, we investigate263

the following two cases:264

Transfer to New Target Languages We train the265

attribute controllers on one or multiple target lan-266

guages to assess the impact of multilinguality on267

transfer. We compare the following settings:268

• Single-direction: We use en→es and de as rep-269

resentative Romance and Germanic languages;270

• Multilingual: We train on all languages in the271

training data: en→{de, es, fr, hi, it}.272

For the new target languages, we choose three273

directions from the IWSLT 2023 formality control274

A potential reason is that the pretrained model tends ignore
the source tags as noise, and that the low amount of finetuning
data cannot re-establish the importance of the tags.

3We excluded Japanese, where our pretrained model has
very low translation accuracy on formality-annotated words
(<40%, whereas all 5 other languages score >60%).

shared task4 (Agarwal et al., 2023): en→pt (close), 275

en→ru (related), and en→ko (distant) for their 276

different degrees of relatedness to the languages in 277

training. Among them, en→ko has 400 sentences 278

of supervised data. We use it to establish the oracle 279

performance in the presence of supervised data. 280

Transfer to New Source Languages We re-align 281

the CoCoA-MT test set using English as pivot, cre- 282

ating a new test set with non-English source and 283

target sentences. Unlike translating from English, 284

here the source sentences also contain formality 285

information. This allows testing if the model can: 286

1) preserve the source formality level; 2) change 287

the source formality level when steered so. 288

4.2 Gender Control (Out-of-Domain) 289

For the formality control setup above, the data for 290

training the attribute controller come from the same 291

domain as the test set. To evaluate domain gener- 292

alization, for grammatical gender control, we train 293

the controller on texts with very different styles 294

from the test data. For training the attribute con- 295

troller, we use the en-es set from Saunders et al. 296

(2020)5 with artificial sentences of very simple 297

grammatical structure up to 7 words. In contrast, 298

for the test set we use MuST-SHE (Bentivogli et al., 299

2020), which consists of TED talks with much 300

longer sentences and more versatile styles. Besides 301

transfer to new target languages like previously 302

(§4.1), we also explore the following setting: 303

Transfer to New Source & Target Languages 304

The MuST-SHE test set comes in en-{es, fr, it}. 305

Like previously, we re-align them using English 306

as pivot, creating non-English source and target 307

sentences. In this case, both the source and tar- 308

get sentences have the same gender. As the at- 309

tribute training data is in en→es, we evaluate {es, 310

fr}→it and {es, it}→fr for the transfer to new 311

translation directions where both the source and 312

target languages differ from training. 313

4.3 Models and Evaluation 314

Models We use two types of backend models. For 315

the main experiments, we use the pretrained NLLB- 316

200 distilled 600M model (NLLB Team et al., 317

2022), which covers 200 languages for many-to- 318

many translation. We also train a Transformer- 319

base (Vaswani et al., 2017) from scratch to verify 320

4https://github.com/amazon-science/
contrastive-controlled-mt/tree/main/IWSLT2023

5https://github.com/DCSaunders/
tagged-gender-coref#adaptation-sets
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if observed phenomena are specific to models with321

massive multilingual pretraining. The Transformer-322

base model covers all languages in our experiments323

and is trained on OPUS-100 (Zhang et al., 2020).324

Details of these data are in Appendix A. Training325

and inference details are in Appendix B.326

Control Evaluation For formality control, we327

report matched accuracy (M-Acc; %) following328

Nadejde et al. (2022). For gender control, we329

use the official evaluation script (Bentivogli et al.,330

2020) for accuracy (%). For formality, as the test331

set is the same for both formalities, the baseline332

M-Acc for the two formality labels add up to 1.0.333

This is not the case for gender control.334

Quality Evaluation We use COMET↑ (Rei et al.,335

2020)6 as the main translation quality metric, and336

additionally report BLEU↑7 to compare to prior337

works. Note that BLEU is impacted by n-gram338

matches on the correct formality or gendered words,339

while COMET is less susceptible to the artifact. For340

COMET score comparisons, we run paired T-tests341

and bootstrap resampling using comet-compare.342

We use "*" or "†" to mark systems better or worse343

than the base pretrained model at p = 0.05.344

Human Evaluation To test the transfer to real low-345

resource languages, we conduct a human evalua-346

tion on Bengali, which was marked as low-resource347

in the NLLB-200 training data (NLLB Team et al.,348

2022). Details on the evaluation are in Appendix C.349

Baselines Few existing works experimented on350

the same data conditions as ours. An exception351

is the “mBART-large Gold Finetuned” model352

by Rippeth et al. (2022), who finetuned mBART353

(Liu et al., 2020) on parts of CoCoA-MT (Nadejde354

et al., 2022) for formality control. Their results355

overlap with our supervised results on en→{de, es,356

hi} and zero-shot results on en→ru. Other than357

this, the majority of prior works used more relaxed358

data conditions than ours, e.g., using an existing359

attribute classifier that covers zero-shot languages360

for pseudo-labeling (Lee et al., 2023) or hypothesis361

reranking (Wu et al., 2023). We report these results362

in Appendix D. Overall, our model’s performance363

is comparable to the leading systems.364

5 Supervised Conditions365

Table 2 and Table 3 show formality and gender con-366

trol results respectively with supervised controllers367

6with Unbabel/wmt22-comet-da (×100 for readability)
7using sacreBLEU (Post, 2018) with confidence intervals:

bs:1000|rs:12345|c:mixed|e:no|tok:13a|s:exp|v:2.3.1

Model Formal Informal Avg. BLEU COMET2022

en→de
base 45.6 54.4 − 35.7±1.0 82.1
+CG 95.0 89.6 92.3 38.4±1.1 81.6†
+FT 100.0 100.0 100.0 43.6±1.2 83.8*

Rippeth et al. 93.6 77.4 85.5 37.4 −

en→es
base 29.7 70.3 − 40.0±1.1 83.9
+CG 72.9 92.4 82.7 41.2±1.2 84.4*
+FT 100.0 95.9 98.0 46.0±1.2 85.5*

Rippeth et al. 96.7 82.7 89.7 38.3 −

en→fr
base 76.8 23.2 − 36.0±1.1 80.8
+CG 99.8 77.2 88.5 38.8±1.2 80.9
+FT 100.0 99.3 99.7 43.0 ±1.1 83.0*

en→hi
base 96.7 3.3 − 24.0±0.9 75.5
+CG 99.3 30.7 65.0 24.3±0.9 75.0†
+FT 99.6 99.2 99.4 36.4±1.0 81.7*

Rippeth et al. 98.5 64.7 81.6 28.7 −

en→it
base 3.2 96.8 − 41.3±1.1 84.9
+CG 18.7 99.5 59.1 40.6±1.1 84.1†
+FT 98.6 99.3 99.0 49.6±1.1 86.0*

Table 2: Formality control results in supervised condi-
tion (controllers trained on formality-annotated data).

ModelFeminine Masculine Global BLEU COMET2022

en→es
base 58.8 86.7 73.6 45.0±1.2 84.9
+CG 75.0 89.7 82.8 44.7±1.2 84.7
+FT 90.2 89.7 86.9 43.7±1.2 84.0†

Table 3: Grammatical gender control results in super-
vised condition (cross-domain: controller trained on
gender-annotated data from a different domain).

on NLLB-200. Overall, both finetuning and CG 368

are able to steer the output towards given attributes, 369

while maintaining the original translation quality 370

or at the cost of a slight degradation. 371

Finetuning more effective than classifier guid- 372

ance in supervised conditions: A comparison 373

of scores in Table 2 and Table 3 clearly shows 374

FT is more effective than CG. For formality con- 375

trol, FT consistently scores nearly 100% M-Acc. 376

It also substantially improves the quality scores 377

due to adapting towards the specific domain of the 378

attribute-annotated data, which is the same as the 379

test domain in this case. On the other hand for 380

CG, while it also improves the formality accuracy, 381

the scores lag behind finetuning in both accuracy 382

and quality. The gap is especially prominent on 383

hi and it, where the underlying NLLB model has 384

a strong bias towards a single formality: the ac- 385

curacy for the rare formality is nearly zero (3.3% 386

and 3.2% respectively). This is likely to do with 387

NLLB’s training data, which might be skewed to- 388

wards one single formality for some languages. In 389
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Pretrained Massively Multilingual Transformer-base

Model Formal Informal Avg. BLEU COMET2022 Formal Informal Avg. BLEU COMET2022

en→pt

base 47.7 52.3 − 41.7±1.1 85.1 35.8 64.2 − 38.7±1.1 82.2
+CG (de) 75.6 74.2 74.9 43.0±1.1 84.9 50.0 72.8 61.4 38.7±1.1 81.8†
+FT (de) 99.0 45.5 72.3 40.4±1.0 85.3 79.2 71.2 75.2 39.6±1.1 82.7*
+CG (es) 85.4 83.6 84.5 43.8±1.0 85.0 53.3 79.8 66.6 38.8±1.1 81.7†
+FT (es) 99.8 28.7 64.3 40.3±1.0 85.2 93.9 80.1 87.0 40.5±1.0 82.5*
+CG (multi) 84.8 80.0 82.4 43.7±1.1 84.9 55.9 80.8 68.4 39.0±1.1 81.8†
+FT (multi) 99.5 51.0 75.3 42.3±1.0 85.9* 95.8 81.9 88.9 41.4±1.0 83.1*
+CG +FT (multi) 100.0 83.2 91.6 42.1±1.0 85.7* 97.8 93.7 95.8 41.0±1.0 82.4

en→ru

base 55.0 45.0 − 30.3±1.0 83.7 43.9 56.1 − 24.2±1.0 75.9
+CG (de) 87.3 77.7 82.5 32.2±1.0 83.1 67.2 71.8 69.5 24.6±0.9 75.0†
+FT (de) 99.5 84.7 92.1 33.0±1.1 84.2* 84.0 69.3 76.7 25.0±1.0 75.8
+CG (es) 86.8 73.9 80.4 32.4±1.0 83.2 61.7 76.8 69.5 24.8±1.0 75.0†
+FT (es) 98.3 60.6 79.5 32.8±1.1 84.1* 83.5 68.6 76.1 26.1±1.0 76.6*
+CG (multi) 87.3 78.2 82.8 32.2±1.0 83.2 72.2 80.9 76.6 25.0±1.0 75.0†
+FT (multi) 99.8 79.6 89.7 33.0±1.1 84.2* 87.5 69.8 78.7 25.9±1.0 77.0*
+CG +FT (multi) 100.0 93.0 96.5 33.1±1.0 84.4* 96.2 91.3 93.8 26.2±1.0 76.2
Rippeth et al. (2022) 100.0 13.8 56.9 23.5 − − − − − −

en→ko

base 50.9 49.1 − 15.7±0.7 82.6 32.0 68.0 − 10.6±0.6 74.0
+CG (de) 67.0 64.6 65.8 15.7±0.7 82.1† 45.2 78.2 61.7 10.4±0.6 73.4†
+FT (de) 67.8 54.2 61.0 12.8±0.6 84.1* 42.7 66.4 54.6 10.7±0.6 74.0
+CG (es) 68.9 61.6 65.3 15.1±0.8 82.1† 46.3 77.6 62.0 10.7±0.6 74.1
+FT (es) 64.4 47.3 55.9 14.0±0.7 84.4* 47.4 62.7 55.1 11.7±0.6 75.2*
+CG (multi) 67.0 61.7 64.4 15.5±0.8 82.2 46.0 78.1 62.1 10.6±0.6 74.1
+FT (multi) 68.5 46.2 57.4 13.4±0.7 84.7* 48.3 68.4 58.4 11.0±0.6 74.4
+CG +FT (multi) 70.0 63.5 66.8 13.2±0.7 84.2* 58.9 81.8 70.4 10.8±0.6 73.4†

+oracle CG (ko) 70.3 62.6 66.5 15.2±0.7 81.7† 58.9 82.3 70.6 11.2±0.6 74.5*
+oracle FT (ko) 79.4 93.5 86.5 22.2±0.9 86.2* 86.7 97.9 92.3 19.1±0.9 74.0*

Table 4: Zero-shot formality control results. Best and second best results under the same data condition are marked.

this case, CG can only partly recover the ability390

to generate translation in the formality NLLB is391

unfamiliar with. These results indicate that CG is392

only effective when the underlying model does not393

suffer from an absolute bias towards one attribute.394

Classifier guidance more robust to domain mis-395

match: As motivated in §4.2, the gender control396

results in Table 3 allow us to assess the impact of397

domain mismatch between the controller training398

data and the test data, a very realistic scenario in399

practice. Here, while finetuning achieves higher400

accuracy for gendered words, it also degrades trans-401

lation quality by 0.9 COMET. This provides further402

evidence that the previously improved COMET403

scores (Table 2) are results of finetuning on in-404

domain data. In contrast, the translation quality405

with CG does not significantly differ from NLLB406

by the T-tests, suggesting its stronger domain ro-407

bustness. We hypothesize it is because CG operates408

on the last decoder layer’s hidden states, which are409

just one projection away from the output vocab-410

ulary. These representations likely contain more411

word-level than domain information, which is pre-412

cisely needed in the task of attribute control.413

6 Zero-Shot Conditions 414

6.1 New Target Languages 415

Now we transfer the trained controllers to target 416

languages unseen when training the controllers, 417

i.e., those without attribute annotation. In Table 4 418

and Table 5, we report the results on formality 419

and gender control respectively. In Table 4, we 420

also compare the single-direction and multilingual 421

controllers as motivated in §4.1. 422

Gap between finetuning and classifier guidance 423

shrinks in zero-shot conditions: While finetun- 424

ing was consistently leading in supervised condi- 425

tions (§5), now under zero-shot conditions with un- 426

seen target languages, the gap shrinks. For formal- 427

ity control, on Korean, the most distant language, 428

CG consistently achieves stronger control results 429

than finetuning, indicating more robustness when 430

transferring to unfamiliar settings. Overall in Ta- 431

ble 4, for the main experiments on NLLB-200, CG 432

outperforms FT in 7 of the 9 pairwise comparisons 433

({de, es, multi} × 3 target languages). With gen- 434

der control results in Table 5, finetuning achieves 435

stronger control accuracy (avg. +4.9% abs.) but 436
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Model FeminineMasculineGlobal BLEU COMET

en→it

base 53.8 88.9 73.1 35.1±1.0 84.1
+CG 72.3 92.8 83.6 35.4±1.1 83.7
+FT 83.6 91.2 87.8 34.4±1.0 83.5†
+CG +FT 88.6 94.5 91.8 33.4±1.0 82.6†

en→fr

base 55.3 88.4 72.4 38.3±1.3 82.6
+CG 67.8 90.3 79.4 38.7±1.2 82.5
+FT 78.9 90.8 85.0 38.2±1.2 82.0†
+CG +FT 87.0 91.9 89.5 37.4±1.2 81.9†

Table 5: Zero-shot grammatical gender control results
on new target languages with domain mismatch.

degrades translation quality (−0.6 COMET) due to437

domain mismatch. On the other hand, CG retains438

the translation quality. This confirms the previous439

finding (§5) on its stronger domain robustness.440

Multilingual controllers help when the base441

model is not massively multilingual: In Table 4,442

controllers trained on multiple translation direc-443

tions (multi) are compared to those trained on444

single directions (en→es or de). On Transformer-445

base, multi consistently outperforms its single-446

direction counterparts, regardless whether the con-447

troller is finetuning- or CG-based. In contrast,448

for the pretrained NLLB, there is no clear dis-449

tinction between the multilingual systems and rest.450

This indicates that NLLB does not further bene-451

fit from multilinguality in the controller training452

stage, likely because it already underwent a mas-453

sively multilingual pretraining stage. This shows454

that massively multilingual models are a useful ba-455

sis for attribute control especially when annotated456

resources are limited to single languages.457

Classifier guidance is complementary with fine-458

tuning: When applying CG on top of the fine-459

tuned models, we see the strongest control accuracy460

for both formality and gender control. This obser-461

vation is consistent whether the base model is the462

pretrained NLLB or the normal Transformer-base.463

Compared to finetuning alone, the addition of CG464

also does not degrade translation quality on NLLB.465

On the more challenging case of gender control466

which involves domain mismatch, adding CG to467

finetuning does not impact translation quality on468

fr and causes a slight degradation on it. This469

is likely linked to poor hyperparameter choices in470

CG: due to time constraints we directly used the471

hyperparameters when applying CG alone, which472

are too strong for models already finetuned for at-473

tribute control. We are optimistic for improved474

scores under more fitting hyperparameters.475

Model Quality FormalityWinWin & Tie
(1-5) (1-3) (%) (%)

(1)NLLB-200 4.25±0.75 2.69±0.46 − −
(2)CG (multi) formal4.00±0.79 2.63±0.48 56.3 81.3
(3)CG (multi) inf. 4.44±0.70 2.38±0.69 62.5 93.8
(4)FT (multi) formal 4.31±0.85 2.63±0.48 43.8 68.8
(5)FT (multi) inf. 4.13±1.05 2.44±0.49 62.5 93.8

Table 6: Human evaluation on Bengali, with quality on
a 5-point scale↑ and formality on a 3-point scale (↑: for-
mal) with standard deviations. Last two columns show
pairwise comparison of formality scores to baseline
NLLB-200 given the same source sentences (winning:
scoring more in the direction of the desired formality).

Finetuning did not erase knowledge on other 476

languages: To our surprise and different from re- 477

sults in domain adaptation (Cooper Stickland et al., 478

2021; Vu et al., 2022), finetuning did not erase the 479

pretrained model’s knowledge on the target lan- 480

guages absent in supervised finetuning, as reflected 481

by the translation quality scores (Table 4, 5). This 482

is not specific to NLLB, but also observed on the 483

Transformer-base trained with random initializa- 484

tion on a few translation directions. Therefore, this 485

phenomenon is not a result of massively multilin- 486

gual pretraining, but more likely linked to the light 487

finetuning strength with limited number of updates 488

and small learning rates. 489

Comparison to oracle data condition: In the 490

bottom rows of Table 4, we report the oracle perfor- 491

mance of using 400 sentences as supervised data 492

for training the controllers. Our strongest zero-shot 493

results match the performance of oracle CG, but 494

still lag far behind the upper-bound of finetuning 495

on in-domain data with attribute annotation (oracle 496

FT). We believe this gap is magnified as Korean is 497

not only linguistically distant from the languages 498

used in training, it also differs in the notion of for- 499

mality: Korean involves multiple levels of formal- 500

ity instead of a binary informal-formal distinction. 501

For the zero-shot transfer, this means transferring a 502

controller trained for binary control to a multi-class 503

problem with an unknown class mapping, which is 504

naturally more challenging. 505

Human Evaluation on Bengali: The results are 506

in Table 6. First, adding attribute control does not 507

appear to impact translation quality. Second, pair- 508

wise comparisons with the baseline show both CG 509

and finetuning are effective in formality control, 510

where CG has slightly higher win ratio than FT 511

against the baseline. Third, the impact on formality 512
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Source Formal Source Informal

Model Formal Informal Avg. BLEU COMET2022 Formal Informal Avg. BLEU COMET2022

X→es
base 57.8 42.2 − 29.8±0.5 82.7 20.3 79.7 − 29.9±0.5 82.7
+CG 86.7 73.3 80.0 30.5±0.8 82.3 67.5 93.7 80.6 31.1±0.6 82.3
+FT 99.6 77.4 88.5 32.8±0.7 83.9* 99.8 97.8 98.8 33.2±0.7 83.9*

Table 7: Zero-shot formality control results on new source languages, using controllers trained on English as source.
Sources are {de, es, fr, hi, it}. Colored columns indicate source formality agreeing with desired target formality.

scores is more prominent when steering towards in-513

formal translation. This likely because the baseline514

translations already have a high level of formality.515

Moreover, the rare usage of the lowest formality516

level in Bengali (Appendix C) could explain the517

relatively high formality scores for the systems518

steered towards “informal” (rows (3) and (5)).519

6.2 New Source and Target Languages520

New source languages easier than new target521

languages: In Table 7, we report the results of522

transferring controllers trained with English source523

to new source languages. Contrasting these scores524

with the target-side zero-shot results in Table 4, it525

is clear that transferring to new source languages526

is a much easier task. This is expected, as attribute-527

controlled translation primarily places lexical con-528

straints on the target side. Once the controller529

can generate translations with the correct attribute,530

swapping the source language does not pose a large531

challenge. Even when the source formality dis-532

agrees with the desired output formality (uncolored533

columns in Table 7), the controllers are able to steer534

the translations toward the required attributes.535

NLLB struggles to preserve source attributes:536

Contrasting the colored “base” cell in Table 7 with537

its uncolored counterpart, we see that NLLB does538

have some notion of formality in the source sen-539

tences, as source sentences with the correct for-540

mality improves accuracy on the desired formality541

(57.8 vs. 42.2% and 79.7 vs. 20.3%). However, the542

signals in the input alone are insufficient for gen-543

erating the correct formality. This is confirmed by544

another zero-shot experiment when both the source545

and target languages are new (Table 8). Here the546

sources already contain the correct grammatical547

genders. Despite this, NLLB cannot fully utilize548

the signals in the source, especially on the feminine549

gender. Its accuracy (76.1-83.2%) still lags behind550

the masculine class (87.0-90.4%). Both CG and551

finetuning substantially improve the accuracy and552

mostly close the gap between the two grammatical553

ModelFeminine Masculine Global BLEU COMET2022

es→it
base 79.4 89.3 85.2 30.0±1.5 83.3
+CG 87.6 92.3 90.4 29.5±1.4 82.9†
+FT 90.9 90.5 90.7 30.0±1.3 82.9†

fr→it
base 75.4 90.4 84.2 28.1±1.4 82.6
+CG 85.1 94.1 90.4 27.7±1.4 82.3
+FT 90.4 93.6 92.3 28.6±1.4 82.5

es→fr
base 83.2 87.0 85.3 31.2±1.4 79.9
+CG 86.8 88.8 87.9 31.3±1.4 79.8
+FT 89.2 88.5 88.8 31.4±1.5 79.7

it→fr
base 76.1 87.2 84.3 31.5±1.3 80.4
+CG 86.4 89.1 87.9 31.5±1.3 80.5
+FT 90.6 88.9 89.6 31.8±1.4 80.4

Table 8: Zero-shot grammatical gender control results
on new source and target languages.

classes. This shows both approaches strengthen the 554

source signals that are otherwise neglected. 555

7 Conclusion 556

To generalize attribute-controlled translation to 557

data-scarce conditions, we asked the question “how 558

transferable are attribute controllers on pretrained 559

multilingual translation model?”. We use a novel 560

classifier guidance method to extend a pretrained 561

NLLB-200 model for attribute control and contrast 562

its performance to finetuning-based control. 563

Our results led to the following recommenda- 564

tions for upgrading existing multilingual transla- 565

tion systems with attribute control capabilities: 1) 566

Given in-domain target sentences annotated with 567

attributes, even as few as the lower hundreds, fine- 568

tuning is the primary choice. 2) In case of distant 569

new target languages or strong domain mismatches 570

between the attribute-annotated data and test data, 571

decoding with classifier guidance is more promis- 572

ing. Otherwise finetuning is recommended. 3) In 573

case specific resource constraints preclude finetun- 574

ing or hosting multiple specialized variants of the 575

underlying model, we then recommend inference- 576

time control by classifier guidance. 4) In case the 577

underlying translation model is not massively mul- 578

tilingual, finetuning or training the controller on 579

multiple target languages is beneficial. 580
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Limitations581

More Fine-Grained Attributes Our classifier582

guidance approach works with discrete labels, mak-583

ing it not directly applicable to use-cases with more584

fine-grained or continuous attributes. In particular,585

although the gender classifier training incdlues a586

gender-neutral class, in evaluation we were only587

able to test two genders, limited by the availability588

of test data. As more test datasets with fine-grained589

attributes become available, our approach can be590

further improved and validated for these use-cases.591

Inference Speed Decoding speed is a main down-592

side of our classifier guidance approach. This is a593

result of multiple gradient-based updates of model594

activations at each decoding time step. Despite595

the promising zero-shot results, further speed-up596

is necessary is make it realistic for production sys-597

tems.598
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A OPUS-100 Data for Transformer-Base1033

The data overview is in Table 9. For tokenization,1034

we use the SentencePiece (Kudo and Richardson,1035

2018) model from NLLB-2008 (NLLB Team et al.,1036

2022). The model is trained to translate from and1037

into English.1038

Direction # Sentences # Tokens (en) # Tokens (X)

en-es 1,000,000 15,482,094 16,422,413
en-de 1,000,000 17,952,717 20,142,507
en-fr 1,000,000 21,495,343 26,634,530
en-hi 534,319 8,723,899 10,913,496
en-it 1,000,000 14,435,382 15,524,589
en-ko 1,000,000 11,290,102 9,552,148
en-pt 1,000,000 13,879,742 14,410,909
en-ru 1,000,000 16,638,782 19,630,699

Table 9: Overview of OPUS-100 data we used to train
the Transformer-base.

B Training and Inference Details1039

We implemented our approaches in FAIRSEQ (Ott1040

et al., 2019), and submitted the code and scripts as1041

supplementary materials.1042

B.1 Inference1043

Preprocessing For CoCoA-MT (Nadejde et al.,1044

2022), many test inputs contain multiple sentences.1045

When directly decoding, NLLB-200 (NLLB Team1046

et al., 2022) suffered from severe under-translation,1047

where the output translation only contains one sen-1048

tence. We therefore split the input by sentence1049

boundaries and decode sentence by sentence.1050

Hyperparameters When decoding, we use a1051

beam size of 4 and length penalty of 1.0.1052

Evaluation To evaluate BLEU and COMET1053

scores, we concatenate the hypotheses and refer-1054

ences from different attributes. It is also the case1055

when reporting the multi-source results in Table 7.1056

B.2 Details on Finetuning1057

When finetuning NLLB-200, we use a batch size1058

of 16k target tokens. For bilingual systems, we1059

train for 30 updates. When training multilingually,1060

we train for 60 updates. We use a learning rate of1061

0.0001 with an inverse squared root schedule and1062

20 warmup steps. Dropout is set to 0.1.1063

8https://github.com/facebookresearch/fairseq/
tree/nllb/#preparing-datasets-for-training

B.3 Details on Classifier Guidance 1064

Attribute Classifier Training The classifier op- 1065

erates on meanpooled decoder hidden states and 1066

consists of two feedforward layers with ReLU ac- 1067

tivation in between. The first layer projects from 1068

the 1024 Transformer hidden dimension to 256, the 1069

second layer from 256 to C, the number of attribute 1070

classes. In our experiments, C is 2 for formality 1071

control (formal, informal) and 3 for gender control 1072

(feminine, masculine, neutral)9. 1073

We train the classifier on a frozen NLLB-200 1074

600M model with an effective batch size of 32k 1075

target tokens. The learning rate is 0.002 with an 1076

inverse square root schedule and 20 warm-up steps. 1077

We use the Adam (Kingma and Ba, 2015) opti- 1078

mizer with betas of (0.9, 0.98). Dropout and label 1079

smoothing are set at 0.1. For formality control, we 1080

train the monolingual classifiers for 100 updates 1081

and multilingual for 250 updates. For the gender 1082

control, we train for 25 updates due to the small 1083

dataset and simplicity of the training data. 1084

Hyperparameters For the classifier guidance 1085

hyperparameters, on the en→de training data 1086

of CoCoA-MT, we searched among step size 1087

[0.05, 0.1, 0.5], and number of iterations [3, 5]. We 1088

do not use KL regularization and postnorm fusion 1089

as in Dathathri et al. (2020), since they degraded 1090

performance in initial experiments. 1091

Decoding Speed Decoding with our approach 1092

is slow due to the repeated gradient updates. For 1093

instance on formality control, decoding on the test 1094

sets of 600 sentences takes around 30 minutes. 1095

C Details on Human Evaluation 1096

We randomly sampled 16 source English sen- 1097

tences containing second person pronouns from the 1098

CoCoA-MT test set, and collected 5 translations 1099

for each: from baseline NLLB-200, as well as from 1100

CG (multi) and FT (multi) for both formalities10. 1101

A native speaker rated the 80 hypotheses. 1102

During the evaluation, we learned that there are 1103

three levels of formality in Bengali, where: 1) the 1104

lowest formality level is only used between very 1105

close relations; 2) the next higher level is used 1106

between families or acquaintances; 3) the high- 1107

est level is used between unfamiliar persons or 1108

9As our test set only covers two genders, we only report
scores on two genders.

10Due to time constraints, we could not include the combi-
nation of finetuning and classifier guidance in the evaluation.
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those between higher social distances. We there-1109

fore asked the annotator to match each formality1110

category to one integer point. That is, 1, 2, and1111

3 correspond to very informal, informal, and for-1112

mal respectively. We also learned that the lowest1113

formality level is only used between very close1114

relations and therefore rare.1115

While scoring, the annotator was presented with1116

the English source sentences and their Bengali1117

translations together in random order, and asked to1118

score translation quality on a 5-point scale (1 being1119

the worst) and formality scores on a 3-point scale1120

(1 being the least formal).1121

Formality BLEU COMET M-Acc

en→pt
Ours formal 40.3 85.3 100

informal 43.9 86.0 83
Wu et al. (2023) formal 45.4 77.4 100

informal 49.1 78.5 100
Bahar et al. (2023) formal 34.6 60.9 99

informal 42.4 67.9 64
Lee et al. (2023) formal 31.0 52.5 100

informal 19.9 24.9 68
Vakharia et al. (2023) formal 26.6 40.5 90

informal 28.4 42.5 58

en→ru
Ours formal 33.2 84.4 100

informal 33.0 84.4 93
Bahar et al. (2023) formal 35.4 61.7 99

informal 33.0 60.3 98
Wu et al. (2023) formal 33.7 58.0 100

informal 32.4 55.6 100
Lee et al. (2023) formal 25.8 44.5 100

informal 26.3 41.8 100
Vakharia et al. (2023) formal 18.4 -17.1 99

informal 14.9 -27.7 52
Vincent et al. (2023) formal unknown unknown 100

informal unknown unknown 99

Table 10: Comparison to prior works with different
data conditions.

D Comparison to Prior Works Trained on1122

Different Data Conditions1123

Here we compare our results to prior works that1124

used more relaxed data conditions than ours for the1125

zero-shot tasks. In Table 10, first four systems are1126

submissions to the unconstrained zero-shot track1127

of the IWSLT 2023 formality control shared task1128

(Agarwal et al., 2023). We compare to submissions1129

in the unconstrained track, as our models would fall1130

under this track due to the use of pretrained models.1131

The scores of other systems are from Table 48 of1132

Agarwal et al. (2023). We grayed out our COMET1133

scores, as we are unsure whether our evaluation1134

used the same underlying model as the organizers1135

(we used wmt22-comet-da). Overall, our model’s 1136

performance is comparable to the leading systems. 1137

14


	Introduction
	Background and Related Work
	Transferring Attribute Controllers for Multilingual Translation
	Experimental Setup
	Formality Control (In-Domain)
	Gender Control (Out-of-Domain)
	Models and Evaluation

	Supervised Conditions
	Zero-Shot Conditions
	New Target Languages
	New Source and Target Languages

	Conclusion
	OPUS-100 Data for Transformer-Base
	Training and Inference Details
	Inference
	Details on Finetuning
	Details on Classifier Guidance

	Details on Human Evaluation
	Comparison to Prior Works Trained on Different Data Conditions

