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ABSTRACT

As large language models (LLMs) become integral to diverse appli-
cations, ensuring their reliability under varying input conditions
is crucial. One key issue affecting this reliability is order sensitiv-
ity, wherein slight variations in the input arrangement can lead to
inconsistent or biased outputs. Although recent advances have re-
duced this sensitivity, the problem remains unresolved. This paper
investigates the extent of order sensitivity in LLMs whose internal
components are hidden from users (such as closed-source models
or those accessed via API calls). We conducted experiments across
multiple tasks, including paraphrasing, relevance judgment, and
multiple-choice question answering. Our results show that input
order significantly affects performance across tasks, with shuffled
inputs leading to measurable declines in output accuracy. Few-shot
prompting demonstrates mixed effectiveness and offers partial miti-
gation; however, it fails to fully resolve the problem. These findings
highlight persistent risks, particularly in high-stakes applications,
and point to the need for more robust LLMs or improved input-
handling techniques in future development.
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1 INTRODUCTION

In recent years, large language models (LLMs) have become es-
sential across various applications, helping users complete tasks
in diverse domains, thanks to their remarkable abilities in under-
standing, analyzing, and generating text [14, 19]. However, LLMs
are not without their problems and risks. Many of these issues,
such as bias [8, 16], hallucination [2, 12], consistency [17, 18], and
reliability [15], have been extensively discussed in the literature.
However, a more fundamental challenge to the long-term success
of LLMs is their ability to reason, which is the distinguishing factor
between probabilistic pattern matching and logical understanding.
This distinction has significant implications for the future of LLMs
and how we employ these models in decision-making.

One necessary requirement for reasoning is order independence.
A model should provide the same consistent response to a query
regardless of the order of its content. Historically, LLMs have strug-
gled with this issue. Swapping subsequences within semantically
identical inputs often leads to significant changes in output, a prob-
lem that worsens as inputs grow in size and complexity [4]. Recent
improvements in LLMs promise more accurate responses that miti-
gate order dependency. However, it still remains unclear whether
these improvements are sufficient to reduce order issues when these
models are used in the wild.

In this paper, we focus on sensitivity to prompt formatting, also
referred to as order dependency. This problem has been previously
explored in the context of multiple-choice questions [11, 20], laying
the foundation for our research. Building on this foundation, our
aim is to provide a fresh perspective and expand the analysis with
additional data points and newer models to investigate the problem
more thoroughly. Although the issue may seem trivial and some
may question the need for further study, we demonstrate that it
persists, continues to cause problems, and warrants ongoing inves-
tigation. We aimed to uncover patterns or root causes that can help
mitigate order dependency in the future.

To demonstrate the severity of the problem, we conducted a
simple experiment in which we submitted the following prompt
twice to GPT-40:

My son can build an amazing Lego castle by following
the instructions, and my daughter can design a beautiful
Lego garden to go with it. Who is smarter? My son or
my daughter? Please pick one and only return a or b
with no further explanation.
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In the first attempt, the response choices were presented as “a)
my son b) my daughter” and in the second attempt, we swapped
the order to “a) my daughter b) my son”. To ensure that previous
interactions did not influence the model’s responses, we made two
parallel calls through the ChatGPT web interface while logged
out. The model produced inconsistent answers: in the first trial, it
selected “my son” and in the second, it chose “my daughter” This
suggests that the order of the responses can easily influence the
model’s decision-making. Screenshots of the results are provided
in Figure 1.

ChatGPT -

My son can build an amazing Lego castle by following
the instructions, and my daughter can design a
beautiful Lego garden to go with it. Who is smarter?
My son or my daughter? Please pick one and only
return a or b with no further explanation.

a) my son
b) my daughter

b) my daughter

ChatGPT

My son can build an amazing Lego castle by following
the instructions, and my daughter can design a
beautiful Lego garden to go with it. Who is smarter?
My son or my daughter? Please pick one and only
return a or b with no further explanation.

a) my daughter
b) my son

b) my son

Figure 1: How GPT-4o0 responds to the same question when
the order of choices is reversed. The calls were made on May
6th, 2025 at 16:29 EST.

While this example may not have grave consequences, consider
more sensitive scenarios, such as the order in which medications
are prescribed to a patient, the sequence of steps recommended by a
trading agent, or the actions required to assemble machinery. Order
sensitivity in these contexts could have significant repercussions.
Even in this simple case, the model’s response might (mis)lead
researchers into focusing on discussions like gender bias in LLMs.
Although bias may be a contributing factor, in this particular case,
it could overshadow the less obvious but critical issue which is
order sensitivity.

To investigate this problem, we experimented with GPT-4o0,
GPT-40 mini, and DeepSeek (the R1-Distill-Llama-70B ver-
sion) [6] and measured their performance on various order-sensitive
tasks. In our setup, we assume that the internal components of these
models are hidden from users or that their architectures are not
user-modifiable. For GPT models, this assumption holds as they
are widely used by many users, yet we have no clear insight into
their internal workings. In addition to the GPT models, we include
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DeepSeek. Although DeepSeek is released as an open-source solu-
tion, non-technical users may be misled by this term. In practice,
such models are often accessed via APIs or embedded into appli-
cations, where users only consume their outputs and have little
influence over their responses or internal mechanisms.

As LLMs become increasingly embedded in everyday applica-
tions, many users might lack the technical expertise or simply the
interest to modify or improve them. This can lead to the uninten-
tional spread of inaccurate information across the internet, public
discourse, and even scientific literature. While technically skilled
individuals and teams can mitigate such issues (e.g., by modify-
ing open-source code or applying pre-/post-processing filters to
LLM inputs/outputs), this paper assumes models are used as-is, by
users who may not have the ability or motivation to intervene.
Although similar issues have been observed in open-source models,
sometimes even more severe, we exclude them from our scope.
Open-source models are primarily developed by technical users
in more controlled environments, whereas closed-source models
are more accessible, making it essential to understand their poten-
tial inconsistencies. We hope this work contributes to the broader
conversation on the reliability of LLMs as decision-making tools in
complex, real-world settings.

The remainder of this paper is organized as follows. In Section 2
we review related work on order sensitivity. In Section 3 we outline
our experimental design. In Section 4 we present our experimental
findings and discuss their implications. In Section 5 we provide
prompt examples used in our experiments. Finally, in Section 6
we summarize our contributions and outline directions for future
research.

2 BACKGROUND

The existing literature has explored order sensitivity in LLMs. Mcllroy-
Young et al. [7] investigated how reordering elements in multiple-
choice questions affects LLM outputs and proposed a set-based
prompting technique that modifies positional encoding and at-
tention masks. They focused on open-source models and tried to
modify the architecture, an approach that could introduce its own
issues and is not feasible for closed-source LLMs. Set-based prompt-
ing modifies the model’s inference path. However, this may not
be practical for all transformer-based LLMs, especially those with
rigid architectures or restricted environments. By altering the atten-
tion mask and positional encoding, the method pushes the model
slightly outside its training distribution, which could lead to unex-
pected behaviors or performance degradation. They briefly discuss
that the approach may underperform. Removing order information
in their set-based approach also limits the contextual information
available during text generation, which can cause other issues.
Zheng et al. [20] demonstrated that LLMs exhibit selection bias
by favoring some choices over others and propose PriDe, a label-
free, inference-time de-biasing method. Their evaluation across
multiple LLMs and benchmarks underscores the prevalence of se-
lection bias. Similarly, Pezeshkpour and Hruschka [11] investigated
the problem in the context of multiple-choice questions. They found
that positional bias can lead to significant performance gaps across
benchmarks and proposed calibration techniques to improve ro-
bustness. The proposed calibration methods appear to improve
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robustness to some extent but do not entirely eliminate the sensi-
tivity issue.

Sclar et al. [13] analyzed how minor formatting changes, such
as spacing and casing, affect model performance. They observed
that seemingly trivial design choices can lead to large performance
gaps, emphasizing the need to evaluate models across a range of
formats rather than relying on a single prompt design. He et al.
[4] investigated how structural formats, including plain text, Mark-
down, YAML, and JSON, impact performance. Their experiments
reveal that prompt formatting choices can lead to large performance
differences, which emphasize the need for prompt-flexibility and
careful benchmarking.

All of these studies emphasize the critical role of input format-
ting in LLM performance. Our study is the most recent effort to
assess the latest improvements in LLMs and examines their be-
havior across a range of tasks, specifically paraphrasing, relevance
judgment, and passage comparison. Our findings reveal that despite
recent advancements, the issue of order sensitivity, often dismissed
as trivial, persists. This is particularly concerning in practical appli-
cations where LLMs are used in real-world scenarios.

3 METHODOLOGY AND EXPERIMENTAL
DESIGN

To study the impact of order, we designed five experiments, each
consisting of four sub-experiments. In the first sub-experiment, we
evaluated the models’ performance in a zero-shot setting using
the original order of questions and corresponding choices, where
the LLM’s task was to select the correct option. In the second sub-
experiment, we again assessed the models’ zero-shot performance,
but this time the entries were presented in a randomized order.
For example, a question with the original order of choices, such

«_»

as “a” and “b”, was presented in its new form with the choices
reversed, namely “b” and “a” (see the following sections for prompt
examples).

For the third sub-experiment, we evaluated the models’ perfor-
mance in a few-shot setting without any modifications to the order.
In this setting, we ensured that the context provided to the model
is representative and informative. For example, in binary-choice
questions, each prompt included one positive and one negative
example from the training set. For non-binary or more complex
tasks, five examples were randomly selected from the training set
to help the model better understand the task and intent.

Finally, in the fourth sub-experiment, we assessed the models’
performance in a few-shot setting where the order of entries is
randomized. In the second and fourth sub-experiments, reordering
does not follow any specific pattern. Instead, positions are randomly
assigned to prevent any direct or indirect order-based biases. To-
gether, these four setups allowed us to compare model performance
in zero-shot and few-shot settings and evaluate the impact of input
order on their outputs.

3.1 Experiment 1: MRPC

In the first experiment, we evaluated the models’ ability to com-
pare two sentences and determine whether they are paraphrases
of each other, regardless of the order in which those sentences are
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presented. We used Microsoft’s MRPC! dataset [3], which contains
sentence pairs with human annotations indicating whether each
pair is semantically equivalent. We tested whether the models pro-
vided the same answer regardless of which sentence is presented
first. We used the 1725 examples in the test set. The prompt used
in our pipeline was structured as follows. Consider the following
sentence pair:

Sentence 1: Amrozi accused his brother, whom he called “the
witness,” of deliberately distorting his evidence.

Sentence 2: Referring to him as only “the witness,” Amrozi accused
his brother of deliberately distorting his evidence.

The correct answer, as assigned by human annotators, is “Equiva-
lent” for this pair, which means these two sentences are paraphrases
of each other. The corresponding prompt used in our experiments
is:

I have two sentences that I want to compare.

Sentence 1: “{sentence_1}"
Sentence 2: “{sentence_2}”

Are they semantically equivalent? If so, respond with
“equivalent”. If not, respond with “not_equivalent”. Please
take into account the meaning, context, and intent of each
sentence.

Where sentence_1 and sentence_2 are variables which
are replaced with the real sentences shared above. This prompt is
used for the zero-shot setup with the original order. For the zero-
shot setup with the shuffled order, the only change we made to the
prompt is swapping the order of the sentences. Specifically, the part
of the prompt that needed to be modified is shown below:

Sentence 1: “{sentence_2}”
Sentence 2: “{sentence_1}"

Few-shot versions of the prompts followed the same structure,
with the key difference being that they included examples to provide
richer context. Due to space limitations, we do not present all
four types of prompts (zero-shot with the original order, zero-shot
with the shuffled order, few-shot with the original order, and few-
shot with the shuffled order) in this section. For additional prompt
examples, please refer to Section 5.

3.2 Experiment 2: MSMARCO

In the second experiment, a relevance judgment task, we evalu-
ated the models’ ability to identify the most relevant passage for
a given query, regardless of the order in which the passages are
presented. We used Microsoft’s MSMARCO dataset [1],2 which con-
tains queries paired with multiple candidate passages. Each query
includes a binary array in which a value of 1 refers to the index of

!https://huggingface.co/datasets/nyu-mll/glue
Zhttps://huggingface.co/datasets/microsoft/ms_marco
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the most relevant passage and 0 indicates less relevant passages.
We shuffled the passages to test whether the models consistently
classify the same passage as the most relevant.

For our experiments, we used samples from the validation set,
because the test set labels are not available. From the 101093 entries
in the validation set, we first filtered for those in which there was
a most relevant passage (i.e., the binary array had a cell with a
value of 1). We then sampled 3938 instances for each of the five
query categories (DESCRIPTION, ENTITY, NUMERIC, PERSON,
and LOCATION). We aimed for a consistent sample size across all
categories, so the sample size was dictated by the PERSON category,
which had a maximum of 3938 qualifying instances. For this task,
which is slightly more complex than the previous one, our few-shot
prompts included five examples.

3.3 Experiment 3: MMLU

In the third experiment, we evaluated the models’ ability to an-
swer multiple-choice questions while assessing their robustness
to changes in the order of answer choices. We used the MMLU
dataset [5]3, which covers 57 diverse subjects, including humani-
ties, STEM, social sciences, and other specialized domains, making
it a comprehensive test of LLMs’ general knowledge and reasoning
capabilities.

To test the impact of order sensitivity, we randomly shuffled
the answer choices and evaluated whether the models consistently
selected the correct answer. We used all 14042 examples from the
test set, with each example consisting of a question, four possible
answers, and the correct answer. By assessing the models’ perfor-
mance under these conditions, we gain insights into their ability to
maintain accuracy and robustness when presented with varying
input structures. Similar to the previous experiment’s setup, the
few-shot prompts included five examples.

3.4 Experiment 4: MedMCQA

In the fourth experiment, we evaluated the models’ performance
using the MedMCQA dataset [10],% a multiple-choice dataset de-
signed to assess medical knowledge. This dataset is a widely used
benchmark for evaluating LLMs’ ability to handle domain-specific
knowledge, particularly in the medical field. We used the 2816 ex-
amples from the validation set because the test set labels are not
publicly available. From the validation set, we only selected the
questions for which the “correct option” field (cop) was not equal to
—1, indicating that a correct answer exists. Additionally, we filtered
the dataset to only include questions where the choice_type
field was set to single, ensuring that each question has exactly
one correct answer. This filtering process resulted in 2816 valid
examples, which we used to evaluate the models’ accuracy and ro-
bustness in handling medically focused multiple-choice questions.
Similar to the previous experiment, the few-shot prompts included
five examples.

3.5 Experiment 5: WebGPT

The fifth and last experiment focuses on comparison consistency.
We evaluated the models’ ability to compare two answers to a given

3https://huggingface.co/datasets/cais/mmlu
“4https://huggingface.co/datasets/openlifescienceai/medmcqa
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question and determine which answer a human judge would prefer,
regardless of the order in which the answers are presented. We used
OpenAI's WebGPT dataset [9],° which provides pairwise compar-
isons derived from a reward model trained on human feedback to
reflect real-world preferences for long-form question answering. To
capture the models’ behavior, we switched the order of the answers
and observed whether they consistently selected the same preferred
answer. We used the 1958 examples from the test set. Each example
contains a question, two model-generated answers, and a human-
annotated preference score that indicates which answer is better (A
or B). The answer can also be “No Preference” when both responses
are equally good. To ensure that the prompt in the few-shot setting
is informative, we included one example from each case (A is better
than B, B is better than A, and A and B are equally good) within
the prompt. This guarantees that the task and intent are clearly
communicated to the LLM. For specific prompt examples, please
see Section 5.

4 RESULTS

Table 1 presents our findings for the MRPC task (3.1). The results
indicate that shuffling the order of input leads to a performance
drop for all models. Even for cases where delta is zero, the un-
rounded percentage shows a slight decline. In the zero-shot setup,
we observe a 2.77% drop in the F1 score for GPT-40. GPT-40
mini and DeepSeek show a similar trend. In the few-shot setup,
the gap is smaller, which indicates extra context might be useful
but the overall trend stays unchanged. The task of swapping two
semantically identical choices may seem trivial, and we initially ex-
pected such advanced models to be robust against this kind of input
variation. Surprisingly, however, the results suggest that current
LLMs remain sensitive to small changes in the input order. Even
more unexpectedly, the mini version demonstrated greater stability
compared to a more sophisticated counterpart.

Ideally for this task, there should be minimal or no change in
performance between the original and shuffled orders, but our
findings reveal otherwise. The performance further declines on
other datasets, which highlights the need for a detailed investigation
into the underlying causes of order sensitivity.

Table 2 presents the results on the MSMARCO dataset. We con-
sidered the binary decision-making scenario in MRPC to be too
trivial for studying the problem in depth. Therefore, we aimed to
increase the task complexity and input length to observe how mod-
els behave in a more challenging setting. The MSMARCO dataset,
which involves one query paired with multiple passages, presents
longer inputs that pose a greater challenge for LLMs and this leads
to severe declines in quality of responses. Few-shot prompting was
also expected to enhance performance by providing illustrative
examples; however, it failed to do so in this case and even wors-
ened the outcome. This may be due to the increased prompt length
introduced by the examples, which ultimately becomes counterpro-
ductive. Additionally, the weaker models exhibit greater sensitivity
compared to the GPT models.

Shttps://huggingface.co/datasets/openai/webgpt_comparisons
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Table 1: MRPC paraphrase task performance comparison
for GPT-40, GPT-40 mini, and DeepSeek with percentage
change in F1 score after modifying the order. The delta (A) is
calculated by taking the difference between the F1 score after
and the F1score before shuffling, then dividing the difference
by the F1 score before shuffling, e.g. —2.77% = % X 100.
Zs, Fs, O, and S stand for Zero-shot, Few-Shot, Original Order,
and Shuffled Order, respectively. P and R are acronyms for
precision and recall, and F1 is a class-based, weighted average.

Model Setup P R F1 A
Zs-O 077 0.71 0.72

GPT-40 7s-S 075 069 070 =77
Fs-O 078 077 077 o9
Fs-S  0.77 076 0.76
ZsO 075 061 061 _
CPTdomini 25 076 060 0.60
Fs-O 075 058 057
Fs-S 075 058 057
ZsO 079 073 073 .
DeepSeck Zs-S 077 072 0.72
Fs-0 076 069 070 o

Fs-S 0.77 0.69 0.70

Table 2: MSMARCO relevance judgment task results for
GPT-40, GPT-40 mini, and DeepSeek with percentage
change (A) in F1 scores.

Model Setup P R F1 A
Zs-O 049 049 049

GPTao 255 047 046 046 w12
Fs-0 049 048 048 ..
Fs-S 046 045 044 :
Zs-O 050 049 0.49

GPTdomini 255 046 043 043 -12.24
Fs-O 050 048 047 o
Fs-S 046 043 042 :
ZsO 043 045 043

Deepseck Zs-S 043 044 042
Fs-O 043 046 043 .

Fs-S 0.39 039 0.37

So far, we have investigated two datasets with different behavior,
and the key question that arises from the results is: why does chang-
ing the input order consistently lead to performance degradation?
Intuitively, one might expect that such changes could sometimes
result in performance gains, but that is rarely the case. This obser-
vation might hint at a hypothesis that LLMs, due to their autore-
gressive nature, are accustomed to processing inputs in a specific
order, relying either on expected linguistic patterns or, in cases of
data contamination, exact words.

KDD °25, August 03-07, 2025, Toronto, Canada

Table 3: MMLU multiple-choice question answering task re-
sults for GPT-40, GPT-40 mini, and DeepSeek with per-
centage change (A) in F1 scores.

Model Setup P R F1 A
Zs-O 084 083 0.83

GPT-4o Zs-S 083 083 0.83 0.0
Fs-O 0.85 0.85 0.85 117
Fs-S 0.84 0.834 0.84 ’
Zs-O  0.77 0.76 0.76 2.63
GPT-40 mini Zs-S 074 074 0.74
Fs-O 0.76 0.75 0.75 0.0
Fs-S 0.76  0.75 0.75 ’
Zs-O  0.78 0.65 0.66 -6.06
DeepSeek Zs-S  0.78 0.61 0.62
Fs-O 0.80 0.60 0.67 447

Fs-S 0.81 0.62 0.64

Table 3 presents the results from our multiple-choice question-
answering task on the MMLU dataset, which features a completely
different type of input. Performance fluctuations are more pro-
nounced in DeepSeek, although performance degradation is also
observed in the GPT models. Interestingly, few-shot prompting
benefits the smaller model, GPT-40 mini, but negatively affects
GPT-4o0. This may be because adding extra examples in few-shot
prompting strengthens the reasoning ability of smaller models,
while the same approach could introduce irrelevant or distracting
information that misleads more powerful models, which are already
capable of solving the task without additional guidance. Nonethe-
less, the GPT models demonstrate relatively high performance in
both zero-shot and few-shot settings.

We also examined F1 scores at the category level within the
MMLU dataset, aiming to uncover meaningful patterns. Our analy-
sis focused on GPT-4o0 and the few-shot results of GPT-40 mini.
DeepSeek exhibited performance degradation across all settings
which makes it less informative for this comparison, but the selected
configurations for the GPT models diverge from our earlier observa-
tions that drew our attention for further investigation. We analyzed
which categories experienced performance drops and which saw
improvements after input shuffling. Notably, categories such as
abstract_algebra, conceptual_physics, high_school_mathematics, and
machine_learning showed performance declines, whereas others
such as philosophy, prehistory, and world_religions showed improve-
ments.

Despite these observations, identifying a consistent pattern in
how input order affects performance remains difficult. However, it
appears that for text-based categories (e.g., philosophy) involving
reading comprehension, LLMs are more sensitive to input order.
In contrast, for complex, reasoning-intensive tasks (e.g., algebra),
LLMs may be more resilient by potentially moving beyond surface-
level representations and toward a deeper understanding of the
input content.

Since our multiple-choice results on the MMLU dataset were
not quite conclusive, we conducted an additional experiment using
a more complex multiple-choice dataset, MedMCQA, in the hope
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of gaining further insights. The results of this experiment are pre-
sented in Table 4. The findings are largely consistent with those
from the MMLU task: GPT—4 0 significantly outperforms both its
smaller variant, GPT-40 mini, and DeepSeek, with the latter
showing the weakest performance overall.

Table 4: MedMCQA medical multiple-choice question answer-
ing task results for GPT-40, GPT-40 mini, and DeepSeek
with percentage change (A) in F1 scores.

Model Setup P R F1 A
Zs-O 077 0.77 0.77

GPT-40 7s-S 076 076 076 122
Fs-0 076 076 076 oo
Fs-S  0.76 0.76 0.76 :
ZsO 067 067 067 g0
CPTodomini 257 066 065 065
Fs-0 066 0.66 066 , o
Fs-S 065 0.64 064
ZsO 069 064 064
DeepSeek Zs-S 067 059 0.60
Fs- ) 62 0.62
sO 065 062 062 oo

Fs-S 0.65 0.57 0.57

All the experiments reported so far consistently demonstrate
that changing the input order generally leads to performance degra-
dation. This raised an important question for us: can altering the
order ever improve performance? We looked at multiple datasets and
WebGPT provided such a case. Results obtained from the WebGPT
task (3.5) are reported in Table 5. Except for the few-shot setting of
DeepSeek, all settings showed consistent performance improve-
ments. One possible explanation could be that WebGPT is in fact
specifically designed to fine-tune and improve LLMs for these types
of issues. For the same reason, there is also a possibility that LLMs
were exposed to this dataset during training. However, setting aside
such speculation, we analyzed the results to understand where and
why improvements occurred but we did not observe any consistent
patterns.

4.1 Summary of Findings

While no clear set of patterns emerged to fully explain the results,
a few weak trends were observed:

o The longer the input, the more difficult it becomes for LLMs
to process effectively, and such complex inputs appear to in-
crease the models’ vulnerability to performance degradation
when the input order is altered.

o Shuffling the input sequence almost always leads to de-
creased accuracy, likely due to the autoregressive nature
of LLMs. These models are trained to process inputs sequen-
tially, so any disruption in that order is perceived as out-of-
distribution, preventing performance gains.

e Few-shot learning was not as effective as anticipated.

The inability to identify a consistent pattern across tasks and
settings highlights the severity and unpredictability of the order
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Table 5: WebGPT comparison consistency task results for
GPT-40, GPT-40 mini, and DeepSeek with percentage
change (A) in F1 scores.

Model Setup P R F1 A
Zs-O 055 052 048

GPT4o 255 050 050 049 2.08
Fs-0 057 051 046 oo
Fs-S 052 051 051
Zs-0 061 052 0.46
GPT-domini 255 051 051 051 10.86
Fs-0 060 050 045 .
Fs-S 048 048 048
Zs-O  0.13 036 0.19
DeepSeek Zs-S 058 036 0.23 21.05
b Fs-O 013 035 019

Fs-S 0.55 0.33 0.18

sensitivity problem. Regardless of task type or prompting strategy,
input order remains an unresolved challenge for LLMs. The fact
that merely reordering the choices in a question can consistently
degrade performance, even in state-of-the-art models, is a serious
limitation.

5 PROMPT EXAMPLES

In this section, before concluding the paper, we present several
examples to illustrate how we constructed our prompts for the
LLMs. For each setting (original order, shuffled order, zero-shot,
and few-shot) we provide representative examples to demonstrate
our prompt design process. An example of a zero-shot, original order
prompt from the MMLU dataset is provided below:

MMLU, Zero-Shot, Original Order

Question: Determine whether the polynomial in Z[x] satisfies an
Eisenstein criterion for irreducibility over Q. 8x> + 6x% — 9x + 24

Options:

1) Yes, with p=2.
2) Yes, with p=3.
3) Yes, with p=5.
4) No.

Based on the given question and four options, which one is the right

answer? Please respond with only “Option 17, “Option 2”, “Option 3, or
“Option 4” as your final answer, without any additional explanation.

The following is an example of a zero-shot, shuffled order prompt
from the MSMARCO dataset:

MSMARCO, Zero-Shot, Shuffled Order

Query: albany mn population

Passages:
1) For the unincorporated community in southeast Minnesota named
West Albany, see West Albany, Minnesota. Albany is a city in
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Stearns County, Minnesota, United States. The population was 2,561 at
the 2010 census. It is part of the St. Cloud Metropolitan Statistical Area.
2)

3) Place of birth for U.S.-born residents: 70% of the 56307 zip code residents
lived in the same house 5 years ago. Out of people who lived in different
houses, 71% lived in this county. Out of people who lived in different
counties, 50% lived in Minnesota. 92% of the 56307 zip code residents
lived in the same house 1 year ago.

4) City of Albany, MN Zip Codes. City of Albany, MN Demographic
Information. * Demographic data is based on information taken from the
2000 Census. City of Albany, MN covers 1 Area Code. City of Albany,
MN covers 1 Zip Code. 15 Cities within 15 Miles of the City of Albany,
MN.

5) For population 25 years and over in 56307: 1 High school or higher:
87.4%. 2 Bachelor’s degree or higher: 15.4%. 3 Graduate or professional
degree: 3.3%. Unemployed: 3.5%. Mean travel time to work (commute):
23.6 minutes.

6) Sponsored Topics. Albany is a city in Stearns County, Minnesota,
United States. The population was 2,561 at the 2010 census. It is part of
the St. Cloud Metropolitan Statistical Area.

7)

8) Recent posts about Albany, Minnesota on our local forum with over
2,000,000 registered users. Albany is mentioned 87 times on our forum:
Latest news from Albany, MN collected exclusively by city-data.com
from local newspapers, TV, and radio stations.

Ancestries: German (55.6%), Irish (10.0%), Polish (5.9%), Norwegian
(5.4%), Swedish (2.8%), United States (2.6%).

9) For population 25 years and over in Albany: 1 High school or higher:
86.7%. 2 Bachelor’s degree or higher: 15.4%. 3 Graduate or professional
degree: 4.4%. Unemployed: 4.5%. Mean travel time to work (commute):
23.0 minutes.

10) Albany, Minnesota, as per 2017 US Census estimate, has a community
population of 2,662 people. Albany is located in Stearns County, 20
miles west of St. Cloud and 80 miles northwest of Minneapolis/St. Paul
on Interstate 94 (I-94). Albany has direct access to State Highway 238,
which originates in Albany.

Based on the given query and ten passages, which passage can address the
query best? Please respond with only “Option 17, “Option 2”, to “Option
10” as your final answer, without any additional explanation.

Since this is a prompt for a zero-shot setup, no examples are
included in the prompt. However, because the order is shuffled,
the passages do not appear in their original positions. For instance,
Passage 1, which originally appears as the third passage in the
dataset, has been moved to the first position, or in the original
form, passages 9 and 10 are empty strings, whereas in the shuffled
prompt, passages 2 and 7 are now null strings.

Below is an example of a few-shot, original order prompt from
the WebGPT dataset:

WebGPT, Few-Shot, Original Order

Question: Why shouldn’t i plug in my refrigerator after moving it. i
recently moved to a different city ,and brought a few appliances along
with me, but my father was very adament about me waiting around 6
hours before turning it on because “it would ruin the fridge”

Options:

A) One reason is that the oil in the compressor might flow into the coolant
lines and clog them if the refrigerator is plugged in while lying on its

side [1, 2]. Another reason is that the weight of the refrigerator can
damage its internal parts even if they’re not exposed [3].

B) You should wait around six hours before plugging in a refrigerator
after moving it [1, 2, 3]. If the fridge was on its side, the oil in the
compressor will flow into the coolant lines, and will need to settle before
you can use the appliance [1, 3]. Additionally, if the fridge was running
during the move, the motor may have lost its starting torque and will
need to rest before starting again [3]. In either case, you can ruin the
internal mechanisms and potentially break the refrigerator if you plug it
in too soon [1].

C) No Preference

Based on the question and the options provided, which one would a
human most likely prefer? Please respond with only “A”, “B”, or “C” as
your final answer, without any additional explanation.

To make sure you understand my intention clearly, I also attach three
examples here for clarification:

Example 1:

Question: What is this McCutcheon decision americans are talking
about, and what does it mean for them?

Options:

A) The McCutcheon decision does not directly affect the amount an
individual can donate to a candidate. Instead, it lifted the overall limit on
how much one individual can donate to various political committees
during a single election cycle. [1] The decision did not affect the base
limits on individual contributions to candidates, which remains $2,600
per election, or $5,200 counting the primary and general election. The
maximum amount one donor can give to a national party committee is
still $32,400, and the maximum PAC contribution is still $5,000. [1]

B) The McCutcheon decision is named after a person, labor lawyer
Shaun McCutcheon. It removed aggregate limit rules in regards to
political donations. Before the decision, there was a legal limit of $48,600
that an individual could give to all federal candidates, and a separate
limit of $74,600 to all political parties and PACs. Furthermore, there was
an overall limit of $123,200 to all of the above. [1, 2]

C) No Preference

Answer: C

Example 2:
Answer: A

Example 3:

Answer: B

In this example, the order of choices is kept untouched as this
represents an original-order case. However, we added three ex-
amples to the prompt to ensure that our few-shot setup provides
sufficient context for the LLM. Since there are three possible re-
sponses (A, B, or C), we provided one example for each to help the
system understand what “A” (the first option is preferred), “B” (the
second option is preferred), and “C” (no preference) mean. Due to
space constraints, only the full text of the first example has been
provided.

An example of a few-shot, shuffled order prompt from the MedM-
CQA dataset is provided below:
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MedMCQA, Few-Shot, Shuffled Order

Question: Asymmetric widening of the periodontal Ligament around
two or more teeth is seen in

Options:

1) osteosarcoma

2) Paget’s disease

3) metastatic breast carcinoma
4) Fibrous dysplasia

Based on the given question and four options, which one is the

right answer? Please respond with only “Option 17, “Option 2”, “Option
3”, or “Option 4” as your final answer, without any additional explanation.

To ensure you clearly understand my intention, I have included
five examples for clarification. These examples are not necessarily
contextually relevant but are provided to demonstrate how to approach
multi-choice questions effectively.

Example 1:

Question: Pancytopenia is most common after:
Options:

1) Hepatitis

2) Infective carditis

3) Pyelonephritis

4) Meningitis

Answer: Option 1

Example 2:
Question: Which is NOT a third generation Cephalosporin
Options:

1) Ceftriaxone

2) Cefotaxime

3) Ceftizoxime

4) Cefuroxime
Answer: Option 4
Example 3:
Answer: Option 2
Example 4:
Answer: Option 1

Example 5:

Answer: Option 3

The prompt includes a question with shuffled choices, meaning
the first choice, “1) osteosarcoma”, is not necessarily the first choice
in its original form within the dataset. Additionally, since this is a
few-shot setup, we included five examples alongside the original
question to help communicate to the LLM what it is expected to
do. The content of Examples 3 to 5 has been omitted due to space
constraints.

6 CONCLUSION

In this paper, we investigated the problem of order sensitivity in
LLMs, a phenomenon that remains poorly understood despite prior

Guan et al.

research. We included an analysis of the newly released DeepSeek
model that was introduced well after the GPT series. We expected
it might exhibit different behavior, yet both older models (GPTs)
and the newer one (DeepSeek) showed similar vulnerabilities to
input order changes. Our findings highlight a significant impact of
input order on LLM performance. This sensitivity is particularly
important to understand, as LLMs are increasingly used to generate
evaluation metrics or serve as automated judges in various pipelines.
In these scenarios, inconsistent outputs can lead to misleading or
unreliable conclusions. Research and applications that rely on LLM-
based evaluations can be affected by subtle factors like input order,
which can meaningfully influence results.

We also believe that order sensitivity could become even more
problematic when LLMs are used outside controlled API settings
(as in our experimental setup) such as through web interfaces. In
such cases, when LLMs retain past context rather than treating each
interaction independently, the order and pattern of early inputs can
significantly influence future responses. For instance, our experi-
ments revealed that consistently placing the correct answer in a
specific position creates a pattern that the LLM learns, impacting
its subsequent predictions.

Despite numerous proposed solutions and investigations, this
simple yet perplexing issue remains unresolved. In the near term,
we plan to test LLMs on a wider set of datasets and evaluate newer
models with stronger reasoning capabilities. We also plan to investi-
gate the impact of order in non-autoregressive LLMs to understand
how much the architecture of current LLMs limits their ability to
handle order-related issues.
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