
Disentanglement Beyond Static vs. Dynamic:
A Benchmark and Evaluation Framework for

Multi-Factor Sequential Representations

Tal Barami∗ Nimrod Berman∗ Ilan Naiman∗ Amos H. Hason Rotem Ezra Omri Azencot
Faculty of Computer and Information Science

Ben-Gurion University of the Negev
{baramit, bermann, naimani, hasona, rotemez}@post.bgu.ac.il

azencot@bgu.ac.il

Abstract

Learning disentangled representations in sequential data is a key goal in deep
learning, with broad applications in vision, audio, and time series. While real-
world data involves multiple interacting semantic factors over time, prior work has
mostly focused on simpler two-factor static and dynamic settings, primarily because
such settings make data collection easier, thereby overlooking the inherently multi-
factor nature of real-world data. We introduce the first standardized benchmark
for evaluating multi-factor sequential disentanglement across six diverse datasets
spanning video, audio, and time series. Our benchmark includes modular tools
for dataset integration, model development, and evaluation metrics tailored to
multi-factor analysis. We additionally propose a post-hoc Latent Exploration Stage
to automatically align latent dimensions with semantic factors, and introduce a
Koopman-inspired model that achieves state-of-the-art results. Moreover, we show
that Vision-Language Models can automate dataset annotation and serve as zero-
shot disentanglement evaluators, removing the need for manual labels and human
intervention. Together, these contributions provide a robust and scalable foundation
for advancing multi-factor sequential disentanglement. Our code is available on
GitHub, and the datasets and trained models are available on Hugging Face.

1 Introduction

Learning disentangled representations has become a core research focus in deep learning [3], with
applications across vision, audio, time series, and language domains [26, 42, 35, 17]. The goal
is to map data into sub-representations that capture distinct semantic factors [59]. Disentangled
representations boost model performance, fairness, controllability, and interpretability [39, 15, 17].
Due to scarce labeled data, much work has focused on unsupervised disentanglement learning
[38]. A key subfield is sequential disentanglement [27, 36], which traditionally aims to learn two
representations from sequential data: dynamic features that evolve over time and static features that
remain invariant. For example, in the case of a smiling person, their identity remains static while the
facial expression changes dynamically.

Two key challenges in sequential disentanglement remain open. The first is multi-factor disentangle-
ment: rather than treating static and dynamic aspects as single units, it is crucial to further decompose
each into multiple meaningful sub-factors [8, 6]. For instance, a person’s identity (static) may be fur-
ther decomposed into age and sex, while dynamic facial patterns might include smile intensity, head

∗Equal contribution

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.

https://github.com/azencot-group/MSD-Benchmark
https://huggingface.co/collections/AmosHason/msd-benchmark-68ced7cd3742906799e9ebc4

movement, and motion speed. The second challenge is achieving modality-agnostic disentanglement.
Prior work in sequential representation learning [36, 2, 6, 46] has aimed to develop general-purpose
methods that are agnostic to the underlying data modality. This offers a key advantage: models
can be applied across different data types without requiring significant architectural or algorithmic
adaptations. Addressing both challenges would enable finer control, deeper analysis, and broader
applicability of sequential models. Despite its potential, multi-factor and modality-agnostic sequential
disentanglement remains relatively underexplored.

In this work, we tackle three critical barriers to progress in multi-factor disentanglement. (1) The field
lacks standardized infrastructure: unlike two-factor disentanglement, which benefits from established
benchmarks [66, 2, 46], multi-factor research suffers from fragmented datasets, inconsistent evaluation
protocols, and limited public code [61, 8], often relying on synthetic data with limited real-world
relevance. (2) Current protocols depend on fully labeled datasets, which are scarce in practice.
Even when labels are available, additional training of dataset-specific classifiers is often required,
demanding domain expertise and significant resources. (3) Evaluation is labor-intensive: even if
labels are available, mapping semantic factors to latent variables typically requires manual inspection,
especially in non-compact settings where a single factor maps to multiple latents [6].

To overcome the first challenge, we compile a diverse benchmark spanning six datasets across multiple
modalities. This includes two existing video datasets, two new synthetic datasets generated using
established tools, a novel audio dataset, and a real-world time series dataset with extracted feature
labels. All datasets are provided in a unified format to eliminate inconsistencies and alignment issues.
To support fair comparison, we adapt and standardize implementations of existing disentanglement
methods from prior work, and additionally propose four new baselines, including one novel method
that outperforms previous state-of-the-art results. For evaluation, we present ten metrics. We refine
four existing sequential disentanglement metrics, adopt three image-based disentanglement metrics
for sequential setup, and augment three new disentanglement-consistency metrics for the video
domain. Overall, these contributions form a comprehensive development-evaluation framework for
fair, thorough evaluation across datasets, methods, and metrics.

To address the second challenge, we propose using Vision-Language Models (VLMs) as taggers and
judges [63] for video-based sequential disentanglement. Inspired by LLM-based judges [64, 22]
and recent advances in VLMs [12, 32], we leverage VLMs to perform two key tasks for datasets
lacking ground truth labels: (a) Tagger – the unsupervised discovery of semantic factors of variation
(e.g., hair color, lighting) and the corresponding identification of their label spaces (e.g., blonde,
gray, brown); and (b) Judge – a zero-shot evaluator for diverse video modalities that can replace
domain-specific classifiers in existing evaluation pipelines. Together, these components pave the way
for almost-fully automated workflows and facilitate the use of real-world video datasets. While our
use of VLMs represents an early step in this direction, we demonstrate their effectiveness on both
synthetic and real-world benchmarks and provide a user-friendly API for broader adoption.

As for the third challenge, we introduce a dedicated latent exploration stage. Traditionally, evaluating
disentanglement methods required manually inspecting and matching latent variables to semantic
factors, even when ground truth labels were available. This process was not only tedious but also
inconsistent and difficult to scale. Our post-training phase automates this step: given a trained
model, its dataset, and corresponding labels, it identifies which latent variables correspond to which
semantic attributes. This removes the bottleneck of manual mapping and enables rapid, reproducible
benchmarking. In addition, we propose two model-agnostic heuristic strategies that are robust,
plug-and-play, and easily extensible. Empirical results show that this automated approach not only
reduces human effort but can also surpass manual matching in complex scenarios.

We conduct an extensive quantitative comparison across 6 methods, 6 diverse datasets, and up to 10
evaluation metrics, offering a comprehensive overview of the current state in multi-factor sequential
disentanglement. To expose the limitations of existing methods, we analyze a representative failure
case on high-quality video data. We also validate the accuracy and reliability of our VLM-based
evaluation pipeline on synthetic and real-world datasets. Finally, we outline promising future
directions and key open challenges. Overall, our benchmark, including the automation tools and
new baselines, establishes a scalable and principled framework for the development, evaluation, and
comparison of disentanglement methods, aiming to catalyze the next wave of progress in this field.

2

2 Related work
Non-sequential disentanglement and benchmarking. Disentanglement has long been a central
goal in unsupervised learning and generative modeling [3]. Early methods introduced inductive biases
to encourage disentanglement without relying on explicit supervision [24, 14, 28]. In the vision
domain, benchmarks such as dSprites [25], 3D Shapes [28], and the extensive analysis in [38] have
been instrumental in advancing the field by providing datasets with ground truth factors of variation
that enabled rigorous evaluation and catalyzed research on disentanglement methods. However,
these benchmarks focus exclusively on static images and fail to capture the rich temporal dynamics
inherent in sequential data. To address this limitation, we adapt existing datasets and develop new
generators capable of producing video sequences with controlled, time-varying factors, thus extending
disentanglement benchmarking to the multi-factor sequential domain. We hope our benchmark will
similarly serve as a catalyst for progress in multi-factor sequential disentanglement research.

Two-factor sequential disentanglement and benchmarking. Separating static and dynamic
factors in sequential data has been extensively studied in the video and speech domains [27, 36].
Early models, such as FHVAE [27], introduced explicit architectural mechanisms to disentangle these
two components. Subsequent approaches have incorporated theoretical guarantees and architectural
biases to further improve sequential disentanglement quality [66, 2, 23, 46, 5, 67]. In parallel,
evaluation benchmarks have expanded to cover video, audio, and time series data, with datasets
such as Sprites [36], MUG [1], TIMIT [68], and PhysioNet [20]. However, multi-factor evaluation
remains challenging: most datasets annotate only coarse static and dynamic attributes (e.g., identity
or expression), overlooking the finer-grained factors that compose them, such as hair color or sex
within identity. As a result, while two-factor evaluation protocols are now relatively well-established,
extending them to support multi-factor sequential disentanglement across modalities remains a
significant open problem.

Multi-factor sequential disentanglement and benchmarking. These approaches seek to disen-
tangle multiple static and dynamic factors simultaneously, moving beyond the traditional binary
separation. Notably, [8] introduced a framework for disentangling multiple latent attributes in videos,
though their work was limited by reproducibility and dataset availability. Similarly, [61] proposed a
sequence-based model but faced similar challenges. More recently, [6] advanced the field by releasing
a standardized evaluation protocol and public codebase. Related but distinct are recent works on
symmetry learning and Meta-Sequential Prediction (MSP) [43], and its extensions via Neural Fourier
Transform (NFT) [31] and Neural Isometries [41], which approach disentanglement through the lens
of latent linear operators and equivariant structures. Despite these improvements, evaluation still
relies heavily on manual matching between latent variables and semantic factors, limiting scalability
and large-scale comparisons. Moreover, the diversity and availability of multi-factor sequential
datasets lag behind those developed for two-factor disentanglement. As a result, the landscape
remains fragmented, with custom datasets and inconsistent evaluation criteria. No prior work has
addressed the need for automated evaluation at the multi-factor level. In this work, we aim to bridge
these gaps by introducing a unified, modality-diverse, and scalable benchmark, along with tools for
automated evaluation and broader dataset coverage.

VLMs as taggers and judges. The use of LLMs as automated judges has gained significant
traction, with several studies [64, 37, 22] demonstrating their reliability in evaluating tasks like
summarization, dialogue generation, and translation. Building on this success, VLMs have been
adapted for judging multimodal tasks [33, 12], including image captioning, visual question answering
(VQA), and referring expression comprehension. Chen et al. [12] showed that Multimodal LLMs
(MLLMs) achieve strong alignment with human judgments in VQA settings. Beyond evaluation,
VLMs are increasingly used for automatic tagging and annotation: Zhou et al. [65] leveraged VLMs
to construct web-scale datasets, and Du et al. [18] incorporated VLM-generated labels into benchmark
datasets. Building on these advances, we leverage VLMs both as taggers for discovering semantic
factors and as judges for unsupervised model evaluation, enabling fully automated pipelines for
dataset annotation and evaluation in multi-factor sequential disentanglement tasks.

3 The Multi-factor Sequential Disentanglement (MSD) benchmark
In what follows, we define the problem setting (Sec. 3.1) and outline the benchmark’s main compo-
nents—datasets (Sec. 3.2), methods (Sec. 3.3), and metrics (Sec. 3.4). The benchmark is modular,
with standardized interfaces allowing users to add datasets, implement methods, or extend metrics

3

\

Data
Samples

No

Labeled?

VLM Tagger Module

Train

Validation
Test

Labeled Dataset

Train

Dataset
Model

Unsupervised
Multi-factor Training

Latent Exploration Stage
Mapping

Latent Space Labels

...

f1
f2

fm

...

Z1
Z2

Zn

Z3 f3

Val

Labeled Dataset

Trained
Disentanglement

Model Latent Explorer

Swap
Based

Or

Predictor
Based

Or

New

VLM

Judge Module

Classifier

Or

Evaluation Tools

Yes

Test

Labeled
Dataset

Predictor
Module

Existing datasets New

Dataset Pick Model Pick

NewExisting

2-Swap / 2-GSample /
M-Swap / M-GSample

C-Swap / C-Sample
/ GC-Sample

DCI

Swap Hair

...

Z1
Z2

Zn

Modularity
Compactness
Explicitness

...

f1
f2

fm

+ Hair Swapped?
- Skin Swapped?
- Pants Swapped?
- Shirt Swapped?
- Action Swapped?

Judge Module

Judge Module

Static features
preserved throughout
the sequence?

Ground Truth

Evaluation Metrics

Figure 1: A visual summarization of our benchmark codebase and user flow. A full explanation of all
the details of the flow can be found in App. A.

seamlessly. We then introduce the Latent Exploration Stage (Sec. 3.5), the Koopman-based multi-
factor disentanglement method (Sec. 3.6), and the VLM-based judge (Sec. 3.7). Fig. 1 summarizes
the framework.

3.1 Multi-factor sequential disentanglement
Let X be a sequential dataset where each sample x ∈ X is a sequence of length T where each
element xt lies in Ro. For example, in a multivariate time series o is simply the number of features
per time step; in video o = c × h × w denotes a structured image tensor. We assume variation
in X is governed by a finite set of semantic factors F = {f1, . . . , fk} [3], each associated with a
discrete label space Yfi = {y1fi , . . . , y

n
fi
}. While k and n may be unbounded in theory, we assume

both are finite for practical purposes. A disentanglement model M learns latent representations
z ∈ Rl, aiming to assign each factor fi to a subset of coordinates zJi , where Ji ⊆ {1, . . . , l}. We
denote the full mapping as Jmap = {J1, . . . , Jk}, ideally disjoint to ensure each latent subset encodes
only one factor. To handle sequential data, we partition F into disjoint static and dynamic subsets:
F = SF ∪DF , with SF ∩DF = ∅. Static factors (e.g., identity, sex) remain constant across time,
while dynamic factors (e.g., pose, expression) vary. The model must disentangle z such that each
subset of features zJi

exclusively controls its associated factor fi, faithfully reflecting its temporal
behavior—static or dynamic.

3.2 Datasets
We curate a collection of six diverse datasets spanning three modalities, all of which adhere to the
formal definition outlined above. For the video modality, we include Sprites [36] and create sequential

4

variants from the established 3D Shapes [28] and dSprites [25] (two variants: dSprites-Static and
dSprites-Dynamic). For audio, we create the realistic-sounding dMelodies-WAV dataset, which
builds upon dMelodies [50], while for time series, we adapt and label the real-world BMS Air Quality
dataset [13]. In addition to the datasets we release, a major focus of our benchmark design is to make
integrating new datasets as seamless as possible. We encourage the community to contribute datasets
in our standardized format, fostering a collective effort. Datasets without explicit F and Y information
can also be included; however, in such cases, latent exploration and evaluation functionalities will be
disabled. Further implementation and annotation details are provided in App. B.2, and a summary
table (Tab. 4) highlights the key characteristics of each dataset.

3.3 Methods
To fully-participate in our benchmark, methods must support, through our API, a standardized set
of functionalities, such as ingestion of multi-factor sequential datasets and integration with our
latent exploration and evaluation stages. Specifically, each method must be able to: (1) provide
encoding and decoding functions to and from its latent space; (2) output a fixed-length representation
(e.g., a 1D vector) for each input sequence, obtained by flattening or aggregating the full latent
sequence; (3) swap channels of two latent representations; and optionally be able to: (4) sample
new data points from its latent space. As part of building the benchmark, we made a comprehensive
effort to implement and adapt a broad set of available multi-factor sequential disentanglement
methods. Some were integrated directly, while others required substantial refactoring, and for
methods lacking official implementations, we re-implemented them from scratch. Despite best efforts,
a few methods could not be reliably reproduced. To further enrich the benchmark, we introduced
several new baselines, all included in our released codebase. Thanks to the modular framework,
methods are fully decoupled, allowing new additions with minimal effort. The benchmark includes
the following models: Sequential VAE [29]; Sequential β-VAE [24]; Sequential Sparse-AE [49];
Multi-disentangled-features Gaussian Processes VAE (MGP-VAE) [8], which leverages Gaussian
processes to model static and dynamic features; Structured Koopman Disentanglement (SKD) [6],
which is based on spectral loss and Koopman operator; and our improved Single Static Mode SKD
(SSM-SKD), which we present in Sec. 3.6, enhancing latent inference and static decomposition. We
also attempted to incorporate methods from [26, 61]; however, [61] lacks a public implementation
and could not be reproduced, and while [26] provides code, we were unable to adapt it reliably to
our framework. The benchmark is designed for continuous expansion of method coverage. A full
summary of implementation status is provided in Tab. 5, and further architectural details appear in
App. C.

3.4 Metrics
We propose ten metrics that capture complementary aspects of multi-factor disentanglement. They
are grouped into three categories, each assessing a distinct property of disentangled sequential
representations. Some metrics are modality-specific, such as those evaluating consistency in video
data, while others are modality-agnostic and applicable across domains.

Factorial swap and sample metrics. The first group evaluates whether latent subspaces exert
precise and selective control over semantic attributes in the output. (1) 2-Swap and (2) 2-GSample,
derived from existing benchmarks [46, 2], test whether models can correctly separate static and
dynamic factors in two-factor setups by swapping or sampling latent components and verifying
outcomes with classifiers or vision–language models (VLMs). (3) M-Swap and (4) M-GSample
extend this evaluation to the multi-factor setting, following [6]. They test whether a model can
manipulate or preserve individual factors selectively. Each of these four metrics generates numerous
values that complicate model comparison; thus, we introduce a weighted mean score to summarize
these values into a single value that balances preservation and controlled variation. These metrics
are particularly well-suited for video and audio datasets, where factor-level interventions produce
semantically interpretable results. In contrast, they are excluded from time series datasets, where
such interventions are difficult to interpret (e.g., swapping the “month” in weather records).

Disentanglement-Completeness-Informativeness (DCI) metrics. Metrics (5)–(7) extend the DCI
framework [19], adapted to sequential and multi-factor settings. (5) DCI-M (Modularity) measures
whether each group of latent dimensions affects only a single factor. (6) DCI-C (Compactness)
evaluates whether each factor is controlled by a small subset of latents. (7) DCI-E (Explicitness)
quantifies how well latent representations retain predictive information about the factors. These

5

metrics are modality-agnostic and are applied consistently across all benchmark datasets. We adapt
these metrics for sequential data by flattening latent trajectories to form set-level representations
and compute disentanglement scores at the factor level. This adaptation draws inspiration from
established toolkits such as disent [40] and disentanglement_lib [38].

Consistency metrics. The final group comprises video-specific metrics (8–10), which evaluate the
temporal stability of static factors across generated or manipulated sequences, inspired by recent
video consistency metrics [55]. (8) C-Swap measures whether static attributes remain consistent
when swapped between two video sequences. (9) C-Sample checks whether sampling static factors
produces temporally coherent outputs. (10) GC-Sample evaluates global consistency by verifying
whether static attributes are preserved across entire generated sequences. These metrics focus on
temporal coherence and are applied exclusively to video datasets.

Implementation and scope. The DCI metrics provide a domain-agnostic foundation, while the
swap, sample, and consistency metrics extend disentanglement evaluation into sequential and
modality-specific regimes. Intervention-based metrics (2-/M-Swap, 2-/M-GSample) are used only
where factor manipulations are semantically meaningful, while consistency metrics are restricted to
visual modalities. A detailed discussion of all metrics is provided in App. D.

3.5 Latent Exploration Stage (LES)
Evaluating unsupervised disentanglement is inherently challenging [53], particularly for our setup
that does not include the compactness assumption, i.e., semantic factors like age or hair color may
span multiple latent dimensions [11]. This complicates interpretation and often requires extensive
human intervention to identify the axes of variation. Even when models are trained successfully,
manually assigning latent dimensions to semantic factors is not only time-consuming but can also
degrade performance. To address this, we introduce the LES: a post-hoc procedure that, given a
dataset, its labels, and a trained model, automatically maps latent subspaces to semantic factors.
Demonstrating its effectiveness, applying LES to SKD [6] not only reduces the need for human effort
but also improves results on multi-factor tasks, for instance (M-Swap: 0.69 → 0.70, M-GSample:
0.67 → 0.71), underscoring its value for scalable and reliable evaluation.

The benchmark includes two complementary LES strategies: predictor-based and swap-based. The
predictor-based method trains a supervised classifier per factor to predict ground truth labels from the
latent code; feature importances then reveal which dimensions are most relevant. This approach is
fast and effective when labels are available, but may degrade under noisy supervision. In contrast, the
swap-based method performs latent interventions: it swaps a subset of latent dimensions between
samples, decodes the results, and uses a pretrained judge to identify which factor has changed.
Repeated trials reveal latent–factor associations. Although more computationally intensive, this
method captures subtle and combinatorial relationships that predictor-based strategy may miss. Both
approaches are modular and extensible, and users can add new exploration methods with minimal
effort. Additional details on LES are provided in App. F.

3.6 Single Static Mode Structured Koopman Disentanglement (SSM-SKD)
SKD. Our method builds on the SKD framework introduced in [6]. SKD is grounded in Koopman
operator theory [30, 9], which states that the dynamics of a nonlinear system can be represented
linearly in a lifted (potentially infinite-dimensional) space via a linear operator known as the Koopman
operator. SKD leverages this idea by approximating the Koopman operator with a finite-dimensional
matrix, allowing nonlinear temporal dynamics to be modeled as linear transformations in a learned
latent space. This is realized using Koopman AEs, which jointly learn the latent encoding and a
Koopman matrix estimated per batch [57, 48, 45]. To encourage disentanglement, SKD enforces
a spectral structure on the Koopman matrix: some eigenvalues are fixed at one, while others are
constrained to lie strictly within the unit circle. This spectral constraint decomposes the latent space
into time-invariant and time-variant components via projection onto the corresponding eigenspaces.
SSM-SKD. While SKD separates static and dynamic components, it does not guarantee disentan-
glement among multiple, e.g., static, factors, as each Koopman eigenvector may entangle several
features due to a lack of orthogonality. To mitigate this, we propose encoding static information
in a single eigenvector, with individual factors represented across its orthogonal coordinates. We
focus on static disentanglement and thus designate one eigenvector for static content, treating all
others as dynamic. However, forming a single static vector at the batch level is insufficient—one
vector lacks the capacity to capture diverse static information across multiple samples. Enlarging the
Koopman matrix exacerbates the issue by encouraging dynamic modes to absorb static signals, while

6

a lower-rank Koopman matrix does not have the capacity to encode the data. To address this, we
approximate the Koopman operator per sample, assigning each sequence its own Koopman matrix.
This design preserves SKD’s training procedure while enhancing representational expressiveness,
allowing the model to capture fine-grained static information in a single dedicated subspace. Addi-
tionally, extraction of disentangled representations is simplified: each coordinate of the static vector
is orthogonal, and may cleanly correspond to a distinct semantic factor—or multiple coordinates may
jointly describe a single one. A detailed method description, illustrative diagrams, and key differences
between SKD and SSM-SKD are provided in App. C.2.

3.7 VLM-as-a-tagger/judge
A major barrier to disentanglement evaluation is the reliance on labeled data to verify whether
latent dimensions correspond to semantic factors. While feasible in synthetic settings, this becomes
impractical in real-world applications, where annotations are costly or unavailable. To overcome
this, we introduce a VLM-based tagger/judge—a VLM [63] that infers factor values directly from
visual inputs. By replacing dataset-specific classifiers with a general-purpose reasoning engine, our
approach supports scalable, label-free evaluation across diverse vision modalities. Although current
disentanglement methods fail to recover meaningful factors when trained on real-world datasets (see
Sec. 4.3), our VLM-based framework enables future progress by removing annotation bottlenecks.
We validate its utility in two experiments, described in Sec. 4.4.

Integration flow. The VLM is integrated into four benchmark stages: (1) Factor discovery: given
an unlabeled dataset, the VLM returns a list of high-level visual factors (e.g., hair color, age); (2)
Label assignment: for each factor, the VLM assigns a label to each sample (e.g., “black” or “blonde”
for hair color); (3) Latent exploration: in classifier-dependent LES strategies, the VLM serves as
a flexible classifier to map latent dimensions to factors; and (4) Evaluation: in metrics requiring
classification, the VLM replaces task-specific models, enabling fully automated evaluation. See
App. F.2 for a visual summary.

Implementation details. Factor discovery is performed via pairwise sample comparisons, prompt-
ing the VLM to describe visual differences. These responses are aggregated and clustered by a
language model to form canonical factors. Infrequent attributes are discarded, and each factor is
labeled as static or dynamic based on inspection of representative sequences. For label space discov-
ery, the VLM is prompted to extract and consolidate observed values into concise, practical label
sets. Finally, for judging, the VLM is presented with a sample, a target factor, and a predefined set
of possible labels, and is tasked with selecting the most appropriate label, eliminating the need for
dataset-specific classifiers. Figures illustrating each functionality are provided in App. F.

4 Benchmarking results
In this section, we present a comprehensive quantitative comparison of all methods (Sec. 4.1), a
qualitative analysis of selected approaches (Sec. 4.2), and a failure case highlighting the limitations
of current multi-factor disentanglement methods (Sec. 4.3). We conclude with an evaluation of our
VLM-based method to assess its reliability and accuracy (Sec. 4.4).

4.1 Quantitative benchmarking
We evaluate all methods across six datasets using our disentanglement metrics. Assessing multi-
factor disentanglement is challenging, as metrics must capture not only successful manipulation of
target factors but also the preservation of unrelated ones, leading to measures that can be hard to
interpret. To simplify comparison, we aggregate results into a single representative score per dataset

Table 1: Summary of disentanglement metrics across various datasets (higher numbers are better).
Bold values denote the best performance for each row.

Dataset Sparse-AE VAE β-VAE MGP-VAE SKD SSM-SKD

Sprites 0.73 ± 2e-03 0.58 ± 3e-03 0.60 ± 2e-03 0.79 ± 3e-03 0.75 ± 1e-02 0.95 ± 2e-03
3D Shapes 0.85 ± 9e-04 0.93 ± 7e-04 0.82 ± 7e-04 0.65 ± 2e-03 0.76 ± 1e-03 0.96 ± 4e-04
dSprites-Static 0.50 ± 1e-03 0.52 ± 1e-03 0.70 ± 2e-03 0.53 ± 2e-03 0.64 ± 1e-03 0.83 ± 2e-03
dSprites-Dynamic 0.68 ± 2e-03 0.63 ± 1e-03 0.65 ± 2e-03 0.53 ± 2e-03 0.64 ± 4e-03 0.71 ± 1e-03
dMelodies-WAV 0.47 ± 3e-03 0.45 ± 2e-03 0.52 ± 2e-03 0.35 ± 3e-03 0.52 ± 2e-03 0.55 ± 2e-03
BMS Air Quality 0.36 ± 5e-03 0.42 ± 2e-03 0.42 ± 4e-03 0.17 ± 2e-03 0.36 ± 9e-03 0.42 ± 2e-03

7

Table 2: Leaderboard showing the mean and standard deviation of each model’s performance across
metrics. Higher values indicate better performance. SKD-based methods lead the board.

M-Swap ↑ M-GSample ↑ DCI-M ↑ DCI-C ↑ DCI-E ↑ C-Swap ↑ C-Sample ↑ GC-Sample ↑ 2-Swap ↑ 2-GSample ↑

1.0 SSM-SKD
(0.79 ± 0.14)

SSM-SKD
(0.81 ± 0.14)

SSM-SKD
(0.51 ± 0.37)

SSM-SKD
(0.81 ± 0.13)

SSM-SKD
(0.80 ± 0.22)

SSM-SKD
(0.83 ± 0.14)

SSM-SKD
(0.95 ± 0.02)

SSM-SKD
(0.96 ± 0.02)

SKD
(0.87 ± 0.12)

SKD
(0.87 ± 0.11)

2.0 SKD
(0.69 ± 0.06)

SKD
(0.70 ± 0.07)

β-VAE
(0.26 ± 0.14)

β-VAE
(0.79 ± 0.04)

SKD
(0.58 ± 0.14)

MGP-VAE
(0.66 ± 0.26)

β-VAE
(0.95 ± 0.05)

β-VAE
(0.95 ± 0.06)

SSM-SKD
(0.86 ± 0.14)

SSM-SKD
(0.86 ± 0.13)

3.0 MGP-VAE
(0.68 ± 0.14)

VAE
(0.67 ± 0.11)

Sparse-AE
(0.25 ± 0.29)

VAE
(0.77 ± 0.10)

Sparse-AE
(0.55 ± 0.31)

Sparse-AE
(0.56 ± 0.27)

SKD
(0.94 ± 0.04)

SKD
(0.95 ± 0.03)

MGP-VAE
(0.79 ± 0.09)

β-VAE
(0.74 ± 0.14)

4.0 VAE
(0.67 ± 0.11)

β-VAE
(0.67 ± 0.04)

VAE
(0.24 ± 0.33)

Sparse-AE
(0.77 ± 0.09)

β-VAE
(0.53 ± 0.24)

SKD
(0.53 ± 0.07)

Sparse-AE
(0.91 ± 0.11)

Sparse-AE
(0.93 ± 0.08)

β-VAE
(0.73 ± 0.14)

VAE
(0.70 ± 0.15)

5.0 Sparse-AE
(0.67 ± 0.07)

Sparse-AE
(0.64 ± 0.04)

MGP-VAE
(0.17 ± 0.22)

SKD
(0.63 ± 0.06)

VAE
(0.45 ± 0.29)

β-VAE
(0.49 ± 0.22)

VAE
(0.90 ± 0.06)

VAE
(0.93 ± 0.06)

VAE
(0.70 ± 0.15)

MGP-VAE
(0.69 ± 0.09)

6.0 β-VAE
(0.66 ± 0.03)

MGP-VAE
(0.57 ± 0.06)

SKD
(0.14 ± 0.10)

MGP-VAE
(0.47 ± 0.14)

MGP-VAE
(0.42 ± 0.27)

VAE
(0.43 ± 0.35)

MGP-VAE
(0.77 ± 0.04)

MGP-VAE
(0.74 ± 0.04)

Sparse-AE
(0.70 ± 0.12)

Sparse-AE
(0.66 ± 0.06)

Sm,d = 1
Kd

∑Kd

k=1 sm,d,k, where Sm,d ∈ [0, 1] is the aggregated score for model m on dataset d,
sm,d,k is the normalized value of metric k, and Kd is the number of applicable metrics. This ensures
comparability across datasets while weighting all metrics equally. Reported ± values denote standard
errors over five evaluation runs. Details appear in App. D, with full results in App. G. Summary
scores are shown in Tab. 1.

To capture metric-specific trends, we also report a per metric leaderboard summarizing each model’s
performance averaged over datasets where a metric applies: Lm,k = 1

|Dk|
∑

d∈Dk
sm,d,k, where

Lm,k is the leaderboard score of model m on metric k and Dk is the set of valid datasets. Each
column represents a metric and each row a rank level, as shown in Tab. 2, highlighting which models
perform best under specific evaluation criteria and complementing the aggregated view in Tab. 1.

Model comparison. The final results reveal several key insights. First, our method, SSM-SKD,
consistently achieves state-of-the-art performance across a diverse set of datasets. It ranks first on 4
out of 6 benchmarks. For example, on the Sprites dataset, it outperforms the current strong baseline
with an approximate 16% improvement. Moreover, on the more challenging dSprites synthetic
datasets, it achieves a significant performance gap over prior methods, demonstrating both robustness
and effectiveness. Second, while our implementations of baseline methods such as Sparse-AE and
β-VAE occasionally achieve competitive results, they still lack consistency across datasets. However,
they are simple, and we suggest that incorporating recent advances in sparse modeling and improved
disentanglement techniques for VAEs may hold promise for future research.

Dataset analysis. While certain datasets, such as Sprites and 3D Shapes, are nearing saturation,
others remain far from solved. For example, no method exceeds a score of 0.85 on either variant
of the dSprites dataset, indicating significant room for improvement even on synthetical setups.
Similarly, performance on dMelodies-WAV and BMS Air Quality remains suboptimal across all
evaluated models, suggesting further opportunities for methodological advancement. Overall, we
hope our comprehensive analysis provides a clear snapshot of current progress and will encourage
future efforts to close the remaining performance gaps.

4.2 Qualitative benchmarking

To qualitatively assess disentanglement, we visualize the effect of swapping individual factors between
two reference samples. In Fig. 2, we present an example using two reference samples (Sample 1/2).
For each method (SSM-SKD and MGP-VAE), we sequentially transfer a single semantic factor
from Sample 2 to Sample 1. The considered factors include skin tone, pants color, shirt color, hair
color, and movement dynamics. This visualization offers intuitive insight into each model’s ability to
isolate and manipulate specific factors. For example, MGP-VAE fails to correctly swap hair color,
erroneously changing it to green instead of purple. While qualitative results are useful for identifying
model failure cases, they may also be misleading—particularly for datasets with many attributes or
when models exhibit stochastic behavior, making cherry-picking or incidental inconsistencies more
likely. Therefore, we recommend treating qualitative evaluation as a complementary diagnostic tool
to support and contextualize quantitative results, rather than as a primary evaluation metric.

4.3 Failure case: real-world data
While our benchmark demonstrates that existing methods can operate on realistic data modalities
such as time series and audio, both the quantitative results and the following experiment indicate that

8

Sample 1

Sample 2

SSM-SKD MGP-VAE

Skin

Pants

Shirt

Hair

Movement

Figure 2: Qualitative factor-swapping between two reference samples (left). For each row, a single
factor from Sample 2 is swapped into Sample 1. Results are shown for two models: SSM-SKD
(middle block) and MGP-VAE (right block). Factors include skin tone, pants color, shirt color, hair
color, and movement dynamics (top to bottom).

their performance remains suboptimal, with considerable room for improvement. To further analyze
this issue, we evaluate the current state-of-the-art model on real-world video data. Specifically, we
train SSM-SKD on the VoxCelebOne dataset [44], which contains in-the-wild talking face videos.
For qualitative analysis, Fig. 3 presents two original samples (row 1), their reconstructions (row 2),
and a sex-swapped variant (row 3). The results reveal that the current model struggles to capture
high-level semantic attributes. Although a correct swap can be visually perceived to some extent,
the output remains blurry, and other factors, such as background, remain entangled. While these
results are shown for SSM-SKD, similar limitations are observed across all existing methods, which
are largely based on VAE architectures [29]. A primary reason for this failure is the reliance on
similar encoder-decoder designs based on AE/VAE backbones, which are known to suffer from
disentanglement-reconstruction trade-offs [10]. We believe these findings help clarify the current
limitations of multi-factor disentanglement models and will hopefully encourage future efforts to
close the remaining performance gaps. We hypothesize that utilizing paradigms such as diffusion
models [16], GANs [51], and hierarchical VAE architectures [58] could be fruitful for improving
both generation quality and disentanglement.

4.4 Assessing a VLM-as-a-tagger/judge
In this section, we validate the applicability of the VLM-based tagger/judge both in the sense of
applicability to real-world problems and alignment to ground truth judgment.

Performance on a real-world dataset. Our goal is to enable benchmarking of disentanglement
methods on real-world datasets. As shown in Sec. 4.3, current methods often fall short in this setting,
however, practical evaluation tools can be helpful for future methodical development. We apply our
VLM-based tagger to the VoxCelebOne dataset. Example frames are shown in Fig. 4. Tab. 3 presents
selected semantic factors and their identified values, collected fully autonomously by the VLM. The
VLM effectively captures key features and labels across data variations. We validate its zero-shot
tagging accuracy against human annotations on 100 samples. Results show near-perfect performance

O
ri

g.
R

ec
.

Sw
ap

Figure 3: SSM-SKD results on VoxCelebOne: Row 1 shows the original samples (Orig.), row 2 the
reconstructions (Rec.), and row 3 an attribute swap (Swap).

9

Figure 4: Sampled frames from VoxCelebOne.

Table 3: Semantic factors with their possible
values and VLM annotation accuracy.

Factor Values Accuracy

Background red, green, ... 0.92
Hair style short, wavy, ... 0.81
Hair color black, brown, ... 0.84
Sex male, female 1.00
Lighting bright, dim, ... 0.72
Shirt color green, blue, ... 0.63

for sex and background, with strong accuracy for hair-related factors. Lower scores for lighting
and shirt color are likely due to visual ambiguity, which also affects human judgment. Although
the labeling process is not perfect, it enables a capability that was previously unavailable: flexible
supervised evaluation on real-world datasets. Further, it is worth noting that users can introduce
factors of variation that the model may have overlooked; our pipeline is designed to retrieve their
corresponding values. Full results can be found in App. F.

Ground Truth Ranking
V

L
M

-B
as

ed
R

an
ki

ng

Figure 5: Agreement between VLM-based and
supervised evaluations.

Alignment with full setup evaluation. To val-
idate the reliability of the fully end-to-end au-
tomatic evaluation, we assess whether the fi-
nal method rankings align with those obtained
under a setup with full access to ground truth
factors and labels. To simulate such an envi-
ronment, we utilize the final evaluation on the
Sprites and 3D Shapes datasets and consider the
average of four metrics: M-Swap, DCI-C, DCI-
E, and DCI-M. We compare the rankings pro-
duced by the fully automatic setup (using VLM)
with those derived from ground truth supervi-
sion. We present both the graphical correlation
plots and the corresponding Spearman correla-
tion values in Fig. 5. The results demonstrate an
almost perfect alignment between the automatic
VLM-based evaluation and the fully supervised
ground truth evaluation. This highlights the va-
lidity and robustness of the VLM evaluation flow
as a strong proxy for fully labeled assessments.

5 Discussion

This work takes a significant step toward standardized and scalable benchmarking of multi-factor
sequential disentanglement. Our benchmark introduces diverse realistic and synthetic datasets, novel
evaluation protocols, and implementations of leading methods. Our proposed SSM-SKD model
provides a strong baseline, but clear gaps remain in all current models, especially in capturing
complex, high-level semantics. We further demonstrate the importance of the LES module, and
highlight the value of VLMs in enabling tagging and evaluation on unlabeled real-world datasets.

An interesting trend in our results (Tab. 1) is that the vanilla VAE occasionally achieves the highest
score. This indicates limitations of current methods rather than benchmark bias—when all models
struggle, absolute scores are low, though in some datasets (e.g., 3D Shapes) the VAE meaningfully
disentangles factors. More broadly, this reflects the field’s focus on visual domains, with audio and
time series models still underdeveloped. To address this, we introduce dMelodies-WAV and BMS Air
Quality as challenging benchmarks from underrepresented modalities, promoting progress beyond
vision. Our benchmark thus highlights both the strengths and gaps of current methods, emphasizes
the need for modality-agnostic approaches, and establishes a foundation for models that generalize
across diverse domains. Further discussion appears in App. E.

10

Acknowledgments

This research was partially supported by the Lynn and William Frankel Center of the Computer
Science Department, Ben-Gurion University of the Negev, an ISF grant 668/21, an ISF equipment
grant, and by the Israeli Council for Higher Education (CHE) via the Data Science Research Center,
Ben-Gurion University of the Negev, Israel.

References
[1] N. Aifanti, C. Papachristou, and A. Delopoulos. The MUG facial expression database. In 11th

International Workshop on Image Analysis for Multimedia Interactive Services WIAMIS 10,
pages 1–4. IEEE, 2010.

[2] J. Bai, W. Wang, and C. P. Gomes. Contrastively disentangled sequential variational autoencoder.
Advances in Neural Information Processing Systems, 34:10105–10118, 2021.

[3] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives.
IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.

[4] N. Berman, O. Joglekar, E. Kosman, D. Di Castro, and O. Azencot. Towards general modality
translation with contrastive and predictive latent diffusion bridge. In Advances in Neural
Information Processing Systems (NeurIPS) 39, 2025.

[5] N. Berman, I. Naiman, I. Arbiv, G. Fadlon, and O. Azencot. Sequential disentanglement
by extracting static information from a single sequence element. In Forty-first International
Conference on Machine Learning, ICML, 2024.

[6] N. Berman, I. Naiman, and O. Azencot. Multifactor sequential disentanglement via structured
Koopman autoencoders. In The Eleventh International Conference on Learning Representations,
ICLR, 2023.

[7] N. Berman, I. Naiman, M. Eliasof, H. Zisling, and O. Azencot. One-step offline distillation of
diffusion-based models via Koopman modeling. In Advances in Neural Information Processing
Systems (NeurIPS) 39, 2025.

[8] S. Bhagat, S. Uppal, Z. Yin, and N. Lim. Disentangling multiple features in video sequences
using Gaussian processes in variational autoencoders. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIII 16, pages
102–117. Springer, 2020.

[9] S. L. Brunton, M. Budišić, E. Kaiser, and J. N. Kutz. Modern Koopman theory for dynamical
systems. arXiv preprint arXiv:2102.12086, 2021.

[10] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins, and A. Lerchner.
Understanding disentangling in β-VAE. arXiv preprint arXiv:1804.03599, 2018.

[11] M.-A. Carbonneau, J. Zaidi, J. Boilard, and G. Gagnon. Measuring disentanglement: A review
of metrics. IEEE transactions on neural networks and learning systems, 35(7):8747–8761,
2022.

[12] D. Chen, R. Chen, S. Zhang, Y. Wang, Y. Liu, H. Zhou, Q. Zhang, Y. Wan, P. Zhou, and L. Sun.
MLLM-as-a-judge: Assessing multimodal LLM-as-a-judge with vision-language benchmark.
In Forty-first International Conference on Machine Learning, 2024.

[13] S. Chen. Beijing multi-site air quality. UCI Machine Learning Repository, 2017. DOI:
https://doi.org/10.24432/C5RK5G.

[14] T. Q. Chen, X. Li, R. Grosse, and D. Duvenaud. Isolating sources of disentanglement in
variational autoencoders. Advances in Neural Information Processing Systems (NeurIPS), 2018.

[15] E. Creager, D. Madras, J.-H. Jacobsen, M. Weis, K. Swersky, T. Pitassi, and R. Zemel. Flexibly
fair representation learning by disentanglement. In International conference on machine
learning, pages 1436–1445. PMLR, 2019.

11

[16] F.-A. Croitoru, V. Hondru, R. T. Ionescu, and M. Shah. Diffusion models in vision: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(9):10850–10869, 2023.

[17] H. Cunningham, A. Ewart, L. Riggs, R. Huben, and L. Sharkey. Sparse autoencoders find highly
interpretable features in language models. arXiv preprint arXiv:2309.08600, 2023.

[18] Y. Du, X. Yu, et al. VLM-Bench: Benchmarking vision-language models for image understand-
ing. arXiv preprint arXiv:2306.17144, 2023.

[19] C. Eastwood and C. K. Williams. A framework for the quantitative evaluation of disentangled
representations. In 6th International Conference on Learning Representations, 2018.

[20] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E.
Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley. PhysioBank, PhysioToolkit, and Phys-
ioNet: Components of a new research resource for complex physiologic signals. circulation,
101(23):e215–e220, 2000.

[21] T. Gonen, I. Pemper, I. Naiman, N. Berman, and O. Azencot. Time series generation under
data scarcity: A unified generative modeling approach. In Advances in Neural Information
Processing Systems (NeurIPS) 39, 2025.

[22] J. Gu, X. Jiang, Z. Shi, H. Tan, X. Zhai, C. Xu, W. Li, Y. Shen, S. Ma, H. Liu, et al. A survey
on LLM-as-a-judge. arXiv preprint arXiv:2411.15594, 2024.

[23] J. Han, M. R. Min, L. Han, L. E. Li, and X. Zhang. Disentangled recurrent Wasserstein
autoencoder. arXiv preprint arXiv:2101.07496, 2021.

[24] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Ler-
chner. β-VAE: Learning basic visual concepts with a constrained variational framework. In
International conference on learning representations, 2017.

[25] I. Higgins, N. Sonnerat, L. Matthey, A. Pal, C. P. Burgess, M. Bosnjak, M. Shanahan,
M. Botvinick, D. Hassabis, and A. Lerchner. Scan: Learning hierarchical compositional
visual concepts. arXiv preprint arXiv:1707.03389, 2017.

[26] J.-T. Hsieh, B. Liu, D.-A. Huang, L. F. Fei-Fei, and J. C. Niebles. Learning to decompose and
disentangle representations for video prediction. Advances in neural information processing
systems, 31, 2018.

[27] W.-N. Hsu, Y. Zhang, and J. Glass. Unsupervised learning of disentangled and interpretable
representations from sequential data. Advances in neural information processing systems, 30,
2017.

[28] H. Kim and A. Mnih. Disentangling by factorising. In International Conference on Machine
Learning (ICML), 2018.

[29] D. P. Kingma, M. Welling, et al. Auto-encoding variational Bayes, 2013.

[30] B. O. Koopman. Hamiltonian systems and transformation in Hilbert space. Proceedings of the
National Academy of Sciences, 17(5):315–318, 1931.

[31] M. Koyama, K. Fukumizu, K. Hayashi, and T. Miyato. Neural Fourier transform: A general
approach to equivariant representation learning, 2024.

[32] S. Lee, S. Kim, S. Park, G. Kim, and M. Seo. Prometheus-vision: Vision-language model as a
judge for fine-grained evaluation. In Findings of the Association for Computational Linguistics
ACL 2024, pages 11286–11315, 2024.

[33] B. Li, C. Huang, et al. Evaluating vision-language models: A survey. arXiv preprint
arXiv:2312.01201, 2023.

[34] T. Li, D. Katabi, and K. He. Return of unconditional generation: A self-supervised representation
generation method. Advances in Neural Information Processing Systems, 37:125441–125468,
2024.

12

[35] Y. Li, X. Lu, Y. Wang, and D. Dou. Generative time series forecasting with diffusion, denoise,
and disentanglement. Advances in Neural Information Processing Systems, 35:23009–23022,
2022.

[36] Y. Li and S. Mandt. Disentangled sequential autoencoder. arXiv preprint arXiv:1803.02991,
2018.

[37] S. Liu, Q. Zhu, et al. GPTEval: NLG evaluation using GPT-4 with better human alignment.
arXiv preprint arXiv:2309.03435, 2023.

[38] F. Locatello, S. Bauer, M. Lucic, G. Raetsch, S. Gelly, B. Schölkopf, and O. Bachem. Chal-
lenging common assumptions in the unsupervised learning of disentangled representations. In
international conference on machine learning, pages 4114–4124. PMLR, 2019.

[39] J. Ma, C. Zhou, P. Cui, H. Yang, and W. Zhu. Learning disentangled representations for
recommendation. Advances in neural information processing systems, 32, 2019.

[40] N. J. Michlo. Disent - a modular disentangled representation learning framework for PyTorch.
Github, 2021.

[41] T. W. Mitchel, M. Taylor, and V. Sitzmann. Neural isometries: Taming transformations for
equivariant ML, 2024.

[42] G. Mittal and B. Wang. Animating face using disentangled audio representations. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 3290–3298,
2020.

[43] T. Miyato, M. Koyama, and K. Fukumizu. Unsupervised learning of equivariant structure from
sequences, 2022.

[44] A. Nagrani, J. S. Chung, and A. Zisserman. VoxCeleb: A large-scale speaker identification
dataset. In INTERSPEECH, 2017.

[45] I. Naiman and O. Azencot. An operator theoretic approach for analyzing sequence neural
networks. In Proceedings of the AAAI conference on artificial intelligence, 2023.

[46] I. Naiman, N. Berman, and O. Azencot. Sample and predict your latent: Modality-free sequential
disentanglement via contrastive estimation. In International Conference on Machine Learning,
pages 25694–25717. PMLR, 2023.

[47] I. Naiman, N. Berman, I. Pemper, I. Arbiv, G. Fadlon, and O. Azencot. Utilizing image
transforms and diffusion models for generative modeling of short and long time series. Advances
in Neural Information Processing Systems, 37:121699–121730, 2024.

[48] I. Naiman, N. B. Erichson, P. Ren, M. W. Mahoney, and O. Azencot. Generative modeling
of regular and irregular time series data via Koopman VAEs. In The Twelfth International
Conference on Learning Representations, 2024.

[49] A. Ng et al. Sparse autoencoder. CS294A Lecture notes, 72(2011):1–19, 2011.

[50] A. Pati, S. Gururani, and A. Lerch. dMelodies: A music dataset for disentanglement learning.
arXiv preprint arXiv:2007.15067, 2020.

[51] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved
techniques for training GANs. Advances in neural information processing systems, 29, 2016.

[52] P. J. Schmid and J. L. Sesterhenn. Dynamic mode decomposition of numerical and experimental
data. In 61st Annual Meeting of the APS Division of Fluid Dynamics, Bulletin of the American
Physical Society, San Antonio, Texas, United States of America, 11 2008. American Physical
Society.

[53] A. Sepliarskaia, J. Kiseleva, and M. de Rijke. How to not measure disentanglement. arXiv
preprint arXiv:1910.05587, 2019.

13

[54] M. C. Simon, P. Frossard, and C. D. Vleeschouwer. Sequential representation learning via
static-dynamic conditional disentanglement. In European Conference on Computer Vision,
pages 110–126. Springer, 2024.

[55] W. Sun, R.-C. Tu, J. Liao, and D. Tao. Diffusion model-based video editing: A survey. arXiv
preprint arXiv:2407.07111, 2024.

[56] A. Szabó, Q. Hu, T. Portenier, M. Zwicker, and P. Favaro. Understanding degeneracies and
ambiguities in attribute transfer. In V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, editors,
Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September
8-14, 2018, Proceedings, Part V, volume 11209 of Lecture Notes in Computer Science, pages
721–736. Springer, 2018.

[57] N. Takeishi, Y. Kawahara, and T. Yairi. Learning Koopman invariant subspaces for dynamic
mode decomposition. Advances in neural information processing systems, 30, 2017.

[58] A. Vahdat and J. Kautz. NVAE: A deep hierarchical variational autoencoder. Advances in
neural information processing systems, 33:19667–19679, 2020.

[59] X. Wang, H. Chen, Z. Wu, W. Zhu, et al. Disentangled representation learning. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2024.

[60] Y. Wu, E. Manilow, Y. Deng, R. Swavely, K. Kastner, T. Cooijmans, A. Courville, C.-Z. A.
Huang, and J. Engel. MIDI-DDSP: Detailed control of musical performance via hierarchical
modeling. In International Conference on Learning Representations, 2022.

[61] M. Yamada, H. Kim, K. Miyoshi, and H. Yamakawa. FAVAE: Sequence disentanglement using
information bottleneck principle. arXiv preprint arXiv:1902.08341, 2019.

[62] S. Yu, S. Kwak, H. Jang, J. Jeong, J. Huang, J. Shin, and S. Xie. Representation align-
ment for generation: Training diffusion transformers is easier than you think. arXiv preprint
arXiv:2410.06940, 2024.

[63] J. Zhang, J. Huang, S. Jin, and S. Lu. Vision-language models for vision tasks: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2024.

[64] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li,
E. Xing, et al. Judging LLM-as-a-judge with MT-Bench and chatbot arena. Advances in Neural
Information Processing Systems, 36:46595–46623, 2023.

[65] K. Zhou, A. Baldrati, et al. DataComp: In search of the next generation of multimodal datasets.
arXiv preprint arXiv:2304.14108, 2023.

[66] Y. Zhu, M. R. Min, A. Kadav, and H. P. Graf. S3VAE: Self-supervised sequential VAE
for representation disentanglement and data generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 6538–6547, 2020.

[67] H. Zisling, I. Naiman, N. Berman, S. Suwajanakorn, and O. Azencot. DiffSDA: Unsupervised
diffusion sequential disentanglement across modalities, 2025.

[68] V. Zue, S. Seneff, and J. Glass. Speech database development at MIT: TIMIT and beyond.
Speech communication, 9(4):351–356, 1990.

14

NeurIPS paper checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract and introduction accurately reflect the paper’s
contributions, including the development of a standardized benchmark (Sec. 3) and its
extensions: the latent exploration stage, the new SSM-SKD method, and the VLM-based
annotation and classification modules (Sec. 3).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in Sec. 4.3, Sec. 5, and App. E, addressing assumptions,
dataset coverage, and performance factors. These sections also outline key challenges and
directions for future improvement.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

15

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results or formal proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide an overview of the full pipeline in Fig. 1 and detailed docu-
mentation in the appendix, including the benchmark codebase (App. A), dataset creation
(App. B.1), the new SSM-SKD method (App. C.2), metric details (App. D), and the LES
and VLM flow and prompts (App. F). We also openly release all code, pretrained models,
configurations, and datasets.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

16

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to the code, trained model weights, datasets (including
creation scripts), and complete configuration files with hyperparameters, along with detailed
instructions and example commands to reproduce all main experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We publish the configuration files with all selected hyperparameters and the
train-validation-test splits, and the complete experimental protocol is described in Fig. 1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: We repeated all experiments multiple times and report the mean and standard
deviation where applicable, indicating variability across runs. For the VLM experiment
(Fig. 5), we report Spearman’s rank correlation between ground truth and predicted rankings,
indicating a strong and statistically significant association.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report hardware specs (CPU, GPU, RAM), software stack (CUDA, cuDNN,
Python, PyTorch), and approximate compute time and memory per model; details are
described in App. A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We followed the NeurIPS Code of Ethics by ensuring fair and privacy-
preserving data use, avoiding deprecated or sensitive datasets, and transparently documenting
limitations, societal impact, and compute resources. We also provide open access to all
code, models, and datasets with appropriate licenses to support responsible and reproducible
research.

Guidelines:

18

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss both potential benefits and risks throughout the paper. Our
benchmark supports progress in interpretable and controllable representation learning,
which has applications in healthcare, accessibility, and education. At the same time, we
acknowledge risks such as unintended biases in learned factors, misuse of generative
capabilities, and privacy concerns, and we offer mitigation strategies including transparency,
standardized evaluation, and responsible data practices (see Sec. 5 and Sec. E).
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release models or datasets that pose a high risk of misuse;
all released components are focused on benchmarking and evaluation with no sensitive or
scraped data involved.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

19

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite and credit all original datasets and codebases used in the paper,
explicitly mentioning their licenses and terms of use, as detailed in the appendix and
references.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release new datasets, code, models, and pretrained weights, all accompa-
nied by thorough documentation covering usage, configuration, licenses, limitations, and
generation procedures, as detailed in the appendix.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

20

paperswithcode.com/datasets

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve research with human subjects or require IRB
approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

21

A Codebase

We provide a modular, extensible, and fully configurable codebase designed to support large-scale
benchmarking of disentanglement methods in sequential domains. The codebase is organized
into three main modules: Datasets, Methods, and Evaluation, each designed to ensure clarity,
reproducibility, and ease of integration with new components. An overview of the codebase structure
and execution flow is illustrated in Fig. 1.

Datasets. Dataset construction is handled via dedicated scripts for each modality (e.g., video, audio,
time series), which store outputs in a standardized HDF5 format. Datasets such as dSprites and 3D
Shapes are originally static, providing the full combinatorial state space of factor configurations. To
extend these into the sequential domain, we include procedural generators (App. B.1) that synthesize
dynamic sequences by controlling independent factors over time using composable dynamic modifiers.
Each sample is labeled with a factor-annotated metadata dictionary, making it compatible with all
evaluation modules.

In addition, we provide an automatic annotation component based on VLMs, which enables factor
supervision without relying on ground truth labels. This component supports both zero-shot and
few-shot configurations, allowing users to either supply a small number of examples or rely purely
on textual prompts. Beyond label prediction, the VLM module is capable of discovering the factor
space itself (i.e., identifying which attributes vary across samples), as well as the label space (i.e.,
enumerating the possible values for each factor). This enables flexible and scalable annotation
pipelines across modalities, especially in domains where manual labeling is expensive or ambiguous.

Methods. All models are implemented as subclasses of a shared AbstractModel class, which
enforces a standardized interface to ensure compatibility with evaluation modules and visualizers.
Each model must implement the following core methods: encode, which maps input data to a
latent representation; decode, which reconstructs inputs from latent codes; latent_vector, which
extracts a flat latent representation for downstream analysis; latent_dim, which returns the dimen-
sionality of the latent space; and forward, which defines the full end-to-end computation from input
to output, including any auxiliary predictions or regularization terms. Model behavior and training
configurations are fully specified via declarative YAML files using OmegaConf, enabling users to
customize architectures, losses, and schedules without modifying source code.

The training procedure is controlled by the Trainer module, which standardizes optimization, log-
ging, checkpointing, and learning rate scheduling. Each trainer subclass corresponds to a specific
model (or model family) and encapsulates its unique loss formulation, training logic, and regulariza-
tion schemes. During training, input batches are processed through the model’s forward method,
and losses are computed with respect to both reconstruction quality and disentanglement objectives
(e.g., mutual information penalties, eigenvalue regularization, or predictive consistency). The trainer
logs metrics and intermediate outputs at configurable intervals and supports automatic saving of
checkpoints, early stopping, and resuming from previous runs.

Evaluation. The core of our benchmark lies in the EvaluationManager, which orchestrates the
evaluation pipeline. Each evaluation run is composed of multiple Evaluator modules, which may
implement different metrics or analysis procedures. Evaluators can access model latents, reconstructed
outputs, classifier predictions, or synthesized samples to compute their metrics.

Central to the evaluation design are three key components: the LatentExplorer, the Judge, and
the Predictor. The LatentExplorer discovers mappings between latent dimensions and semantic
factors, using either supervised classifiers, swap-based interventions, or custom exploration strategies.
The Judge module evaluates the alignment between generated outputs and target attributes. It
supports both classifier-based judges (i.e., pretrained neural classifiers) and VLM-based judges that
enable zero- and few-shot evaluation without requiring ground truth annotations. The Predictor
module, typically implemented as a Gradient Boosting Classifier, is used in modularity-based metrics
to measure how well latent representations can predict each factor independently.

Our benchmark includes a broad set of evaluation metrics. These include intervention-based metrics
such as MultiFactor and TwoFactor swap/sample evaluations, which assess how manipulating latent
subsets affects factor-specific predictions. We also include Consistency metrics, which evaluate
whether static and dynamic factors are preserved or appropriately altered across time. Finally, the

22

DCI metrics measure modularity (disentanglement of factor influence), compactness (concentration
of factor information), and explicitness (predictability of factors from latent space). All results are
logged as structured tables and visualizations, facilitating systematic and interpretable benchmarking.

23

B Additional data details

B.1 Static to dynamic generators

In datasets like dSprites and 3D Shapes, dynamic video sequences are synthetically generated by
extending the original static datasets with controlled, factor-wise temporal transformations.

The process follows a modular design, consisting of three main components:

1. Each dynamic factor (e.g., scale, orientation) originates from a static factor that was present
in the original dataset. Dynamic factors are associated with multiple pre-defined sequences
that describe different ways in which the factor’s value can evolve over time across frames.
For example, in 3D Shapes, the scale factor may oscillate smoothly between small and large
values, while orientation might rotate cyclically.

2. We then define the full state-space of possible sequences. Each sequence is specified by:
• A static configuration - fixed values for the entire sequence)
• A dynamic configuration - values that changes over time)

3. Finally, we render the actual video sequences for each sample within the state space. For
each sampled (static & dynamic) state, we generate a full sequence of frames by repeatedly
mapping factor values into rendered images.

This architecture is designed with several key principles in mind. Controlled dynamics ensure that
only specific factors are allowed to vary during each sequence, enabling clear attribution of observed
motions to known underlying causes. The framework supports flexible generator assignment, where
each dynamic factor can evolve according to different temporal patterns, allowing a rich diversity of
dynamic sequences to be produced. To support evaluation and supervision, label alignment guarantees
that every sequence is annotated systematically, providing detailed information about both static and
dynamic factors across time. Finally, by combining all static configurations with all possible dynamic
sequences, the process results in a rich state space, where even a relatively small number of original
factors can generate a vast and varied dataset of temporally coherent video sequences.

B.2 Datasets

• BMS Air Quality (time series) [13]: A real-world dataset of 24-step sequences with 13
features, annotated with 5 static environmental and temporal factors: station, year, month,
day, and season. We collect and annotate this dataset to support sequential disentanglement
tasks.

• dMelodies-WAV (audio) [50, 60]: A synthetically generated dataset of audio waveforms
labeled with one static factor (instrument) and five dynamic musical attributes (tonic, scale,
rhythm bar1, arpeggio chord1, arpeggio chord2). Despite its synthetic nature, the audio is
perceptually realistic, and we provide both the dataset and its generating labels. We utilized
the dMelodies [50] symbolic music disentanglement dataset and created an equivalent
real-world raw waveform music dataset using MIDI-DDSP [60].

• dSprites-Static (video) [25]: Consists of 16-frame sequences of synthetic shapes with static
attributes (color, shape, position) and dynamic transformations (scale speed, rotation speed).
We built a generic video generator on top of the original dSprites image generator. We
contribute this tool to enable users to create new, dynamic variations.

• dSprites-Dynamic (video) [25]: Contains 12-frame sequences with static visual attributes
(color, shape, orientation, scale) and dynamic positional movement along the X and Y axes.
This dataset also uses our video generator infrastructure.

• 3D Shapes (video) [28]: A dataset of 10-frame rendered sequences featuring static factors
(floor hue, wall hue, object hue, shape) and dynamic attributes (scale and orientation).
Similar to the dSprites variants, we extend the original image generator with temporal
dynamics and make the video generator publicly available.

• Sprites (video) [36]: Composed of 8-frame animated character sequences labeled with one
dynamic factor (movement) and four static appearance factors (body, bottom, top, hair). We
use an existing variant of this dataset for consistency and ease of comparison.

24

• VoxCelebOne (video) [44] derived from the VoxCelebOne audio-visual corpus. Here we
focus solely on the visual modality. Each sample consists of a short video segment depicting
a speaking individual, extracted from real-world interview recordings on YouTube. The
dataset captures a wide diversity of speakers across ethnicities, accents, and age groups, and
includes variation in pose, expression, lighting, and background conditions. For our purposes,
we preprocess each face track into fixed-length sequences of cropped face images. Sequences
are standardized to facilitate disentanglement analysis under real-world variability.

Table 4: Datasets supported in our benchmark. Each entry includes dataset type, split sizes, sequence
characteristics, and disentangled factors.

Dataset Type Train / Val / Test Seq.
Len.

Features Factors (Type, #Classes)

BMS Air Qual-
ity [13]

Time se-
ries

12272 / 2630 / 2630 24 13 Station (static, 12), Year (static, 5),
Month (static, 12), Day (static, 31),
Season (static, 4)

dMelodies-
WAV [50, 60]

Audio 11289 / 2419 / 2420 48000 – Instrument (static, 4), Tonic (dy-
namic, 12), Scale (dynamic, 3),
Rhythm Bar1 (dynamic, 28), Arp
Chord1 (dynamic, 2), Arp Chord2
(dynamic, 2)

dSprites-Static
[25]

Video 21772 / 4666 / 4666 16 (3, 64, 64) Color (static, 9), Shape (static, 3),
PosX (static, 8), PosY (static, 8),
Scale Speed (dynamic, 6), Rotation
Speed (dynamic, 3)

dSprites-
Dynamic [25]

Video 20412 / 4374 / 4374 12 (3, 64, 64) Color (static, 9), Shape (static, 3),
Scale (static, 6), Orientation (static,
5), PosX Dynamic (dynamic, 6),
PosY Dynamic (dynamic, 6)

3D Shapes [28] Video 50400 / 10800 / 10800 10 (3, 64, 64) Floor Hue (static, 10), Wall Hue
(static, 10), Object Hue (static, 10),
Shape (static, 4), Scale Dynamic
(dynamic, 6), Orientation Dynamic
(dynamic, 3)

Sprites [36] Video 8164 / 1750 / 1750 8 (3, 64, 64) Movement (dynamic, 9), Body
(static, 6), Bottom (static, 6), Top
(static, 6), Hair (static, 6)

VoxCelebOne
[44]

Video 153386 / 500 10 (3, 64, 64) Background Color (static, 16), Hair
Style (static, 11), Hair Color (static,
8), Sex (static, 2), Lighting (dy-
namic, 7), Shirt Color (dynamic, 10),
Age Group (static, 5), Skin Color
(static, 3), Glasses (static, 2), Facial
Hair (static, 2), Earrings (static, 2)

B.2.1 dMelodies-WAV

The dMelodies-WAV dataset extends the dMelodies [50] symbolic music disentanglement dataset
into the raw audio domain, enabling novel research directions in disentangled representation learning
for music. The original dMelodies dataset consists of 2-bar monophonic melodies generated from
symbolic notation, governed by a well-defined set of independent factors including musical scale,
chord progression, rhythm, and arpeggiation direction. Each melody adheres to a structured I–IV–V–I
chord progression and is constructed using discrete rhythmic and harmonic patterns, ensuring control
and interpretability. To bring this symbolic dataset into the waveform domain, we synthesized a
subset of dMelodies using the MIDI-DDSP [60] neural audio synthesis model, producing realistic-
sounding audio sequences across four different instruments (violin, trumpet, saxophone, and flute).
The resulting dMelodies-WAV dataset includes both global factors (instrument, tonic, and scale) and
local factors (rhythm and arpeggiation direction per chord), providing a rich structure for studying
disentanglement in raw waveform music. By bridging symbolic and raw music representations,

25

dMelodies-WAV introduces the first multi-factor disentanglement benchmark in raw waveform
music, opening new avenues for evaluating multi-scale and hierarchical multi-factor sequential
disentanglement methods.

B.2.2 BMS Air Quality

The BMS Air Quality dataset is adapted for disentanglement analysis by structuring it into fixed-
length temporal sequences. Raw hourly records, collected between 2013 and 2017 from multiple
monitoring stations across Beijing, are preprocessed by grouping measurements according to station,
year, month, and day, resulting in sequences of length 24 corresponding to full daily records.

Environmental features, including pollutant concentrations (e.g., PM2.5, PM10, SO2, NO2, CO,
O3), meteorological variables (e.g., temperature, pressure, dew point, rainfall, wind speed), and wind
direction (encoded via sine and cosine transformations), are normalized across the dataset. Missing
entries are interpolated linearly to ensure continuity within sequences.

Each daily sequence is further labeled with attributes such as the recording station, year, month,
day, and climatological season, where seasons are assigned based on date. The resulting dataset
provides structured samples and is partitioned into training, validation, and test subsets, with complete
metadata annotations for all categorical factors.

26

C Additional methods details

We summarize bellow the different methods:

• Sequential VAE [29]: An extension of the AE with variational inference, introducing
generative capabilities absent in the standard AE.

• Sequential β-VAE [24]: Builds on the VAE by introducing a β-coefficient to enforce
stronger factorization in the latent space, promoting disentanglement.

• Sequential Sparse-AE [49]: Extends the AE with a larger latent space and sparsity con-
straints, encouraging interpretability and factor disentanglement.

• MGP-VAE [8]: A structured VAE that uses Gaussian processes with fractional Brownian
motion and Brownian bridges to disentangle static and dynamic features over time.

• SKD [6]: A Koopman operator-based model that employs spectral loss functions to disen-
tangle multiple latent factors in sequential data.

• SSM-SKD (Sec. 3.6): Our improved variant of SKD, which incorporates a single static mode
constraint and enhanced latent space extraction to achieve more efficient disentanglement.

Table 5: Availability and reproducibility of code before and after our benchmarking. "Partially" indi-
cates that results could not be reproduced in the original environment without significant adaptation.

Method Code Available
Before Bench-
mark

Reproducible in Origi-
nal Environment

Reproducible in Our
Benchmark

VAE No - Yes
β-VAE No - Yes
Sparse-AE No - Yes
MGP-VAE Yes Partially Yes
SKD Yes Partially Yes
SSM-SKD - - Yes
DDPAE Yes No No
FAVAE No No No

C.1 Hyperparameter grid search

We conducted a grid search to identify stable and comparable configurations across methods (Tab. 6).
For each method, we defined a compact discrete set of key hyperparameters—such as latent di-
mensionality, hidden layer sizes, and regularization weights—chosen to balance representational
capacity and computational efficiency. From this space, we randomly sampled approximately 100
combinations of parameter values.

Model selection was performed independently for each dataset and method by selecting the best-
performing configuration based on predictor-based LES and evaluation over the validation splits.
Each method’s configuration files define the best-performing hyperparameter values found in our
grid search along with default values for any additional hyperparameters.

C.2 Our method: SSM-SKD

C.2.1 Motivation

By design SKD constrains all static modes to have eigenvalues which are close to 1. However, we may
also consider having just a single static mode with an eigenvalue which is close to 1. This method,
which we call Single Static Mode SKD, may possibly aid in introducing further constraints on the
representation of static factors. Furthermore, it forces orthogonality on the encoding of static factors
in the Koopman matrix, since all static factors are encoded in a single eigenvector of orthogonal
coordinates.

27

Table 6: Grid search parameter value sets for each method

Method Parameter Value Set

Sparse-AE
latent_dim {64, 128, 256, 512}
sparsity_weight {0.01, 0.1, 1.0}
hidden_dims {(32, 64, 128, 256), (64, 128, 256, 512), (128, 256, 512, 1024)}

VAE
latent_dim {64, 128, 256, 512}
hidden_dims {(32, 64, 128, 256), (64, 128, 256, 512), (128, 256, 512, 1024)}

β-VAE
latent_dim {64, 128, 256, 512}
beta {2, 3, 5, 8}
hidden_dims {(32, 64, 128, 256), (64, 128, 256, 512), (128, 256, 512, 1024)}

MGP-VAE
NUM_FEA {4, 5, 6}
FEA_DIM {2, 3}
FEA {bb, bb2}
fac {0.1, 0.5, 0.9}
kl_beta {2.0, 3.0}

SKD
k_dim {26, 40, 54}
hidden_dim {80, 90, 110, 140, 180}
w_rec {11.0, 12.0, 13.0, 14.0, 15.0, 16.0}
w_pred {0.25, 1.0, 4.0}
w_eigs {0.25, 1.0, 4.0}
static_size {6, 7, 8, 9, 10, 11}
static_mode {ball, norm}
dynamic_thresh {0.125, 0.25, 0.275, 0.425, 0.5, 0.575, 0.725, 0.75, 0.875}

SSM-SKD
k_dim {15, 16, 19, 20, 23, 24, 27, 28, 31, 32, 43, 54}
hidden_dim {80, 90, 120, 130, 160, 170, 200, 210}
w_pred {0.25, 1.0, 4.0}
w_eigs {0.25, 1.0, 4.0}
dynamic_thresh {0.125, 0.25, 0.275, 0.425, 0.5, 0.575, 0.725, 0.75, 0.875}

C.2.2 Architecture in relation to SKD

We begin by defining a single static eigenvalue (static size 1) and attempt to reproduce the results
of SKD using this setting. However, we encounter the shortcut problem [56]: when the Koopman
matrix size K is small (K ≤ 8), the model fails to reconstruct. On the other hand, when K is large,
the model is unable to achieve the desired static-dynamic disentanglement, as it exploits the higher
capacity of the additional modes to encode static information.

To address this, we modify the Koopman operator approximation from a per batch to a per instance
formulation. Specifically, we solve a least-squares problem for each instance in the batch: for every
0 ≤ i ≤ N − 1, we compute a solution to the linear system

Zi,0:T−2Ki = Zi,1:T−1,

where Z denotes the latent representation from the encoder, i indexes instances in the batch, and T is
the sequence length. The colon operator denotes slicing along the temporal dimension. As a result,
we obtain N Koopman matrices {Ki}, one for each instance in the batch.

In SSM-SKD we redefine K as a tensor that concatenates all per instance matrices {Ki} along a new
batch dimension (dimension index 0).

28

C.2.3 Latent space extraction in relation to SKD

SKD extracts a latent space representation at the batch level. Consistent with the principles of
dynamic mode decomposition (DMD) [52], SKD defines the Koopman latent representation of an
instance along particular modes as multiplication of its latent matrix Zi - where i indexes the instance
within the batch - by a submatrix of the eigenvector matrix of K which corresponds to the subspace
of selected modes. Therefore, to perform attribute swapping between two instances in the batch, each
instance’s latent matrix is first projected into the Koopman eigenbasis via multiplication with the
eigenvector matrix. Then, the components corresponding to the desired modes are swapped. Finally,
each swapped representation is projected back into the original latent space by multiplying with the
inverse of the eigenvector matrix, and subsequently passed through the decoder to produce the output.

In contrast, SSM-SKD approximates the Koopman operator individually per instance, making
SKD’s batch-level latent extraction incompatible. Instead, for each instance, we isolate its static
latent representation by projecting its latent matrix onto the subspace spanned by the static mode -
achieved via multiplication with the corresponding submatrix of the eigenvector matrix, followed by
multiplication with the corresponding submatrix of the inverse of the eigenvector matrix. The dynamic
latent representation is similarly obtained by projecting onto the subspace spanned by the dynamic
modes. We treat the K feature coordinates from the static projections and the K feature coordinates
from the dynamic projections as the static and dynamic channels of the instance, respectively.

To perform attribute swapping under this formulation, we simply exchange the contents at the
corresponding static and/or dynamic channels between two instances. The final representations -
obtained by summing the modified static and dynamic latent representations - are then passed through
the decoder to produce the output.

We provide a visual comparison between our method and SKD [6] in Fig. 6. Let Z denote the latent
tensor of the batch. This tensor has shape (N,T,K), where N is the batch size, T is the temporal
length of the sequences, and K (the size of Koopman matrices) is the dimensionality of the latent
features at each time step.

29

SKD

𝑍𝑖,:,: ∙

𝑍𝑗,:,: ∙

Left
Eigenvector

Matrix

Right
Eigenvector

Matrix
∙

∙

=

=

SSM − SKD

Left
Eigenvector

Matrices

Right
Eigenvector

Matrices

𝑍𝑖,:,: ∙

𝑍𝑗,:,: ∙

=

=

Static Latent Representations

𝑍𝑖,:,: ∙

𝑍𝑗,:,: ∙

=

=

Dynamic Latent Representations

+

+

Figure 6: Latent space extraction and swap in SKD and in SSM-SKD

30

D Additional metrics details

Below we will detail each metric in our benchmark. We encourage reareds to seek further information
regarding disentanglament metrics and their taxonomy in the great survey of [11]. We define in
Sec. 3.1 the problem formulation and notations that will be used along this section.

D.1 Two-factor Swap (2-Swap)

Two-factor swapping is a long-standing benchmark for evaluating two-factor sequential disentangle-
ment methods [2]. In this task, the data is assumed to be governed by two types of factors: static
(e.g., identity) and dynamic (e.g., motion). Given two samples x1 and x2 drawn from a dataset with
corresponding, the objective is to disentangle their representations and swap one factor while keeping
the other fixed. Formally, let z1 = (s1, d1) and z2 = (s2, d2) denote the latent representations of x1

and x2, where s and d correspond to the static and dynamic components, respectively. The decoder is
then used to reconstruct cross-composed samples: x̂1 = dec(s1, d2) and x̂2 = dec(s2, d1), where
dec is the decoding module of the disentanglement model.

A successful swap is one in which the reconstructed samples accurately preserve the intended static
factor from one sample and the dynamic factor from the other. For example, x̂1 should retain the
identity (static component) of x1 while exhibiting the motion (dynamic component) of x2. We assume
access to ground truth labels for both static and dynamic attributes. To evaluate the swap, we measure
the accuracy of the preserved factors using a pre-trained classifier or a VLM module. Specifically,
we compute the accuracy of the static factor as ŷstatic

1 = ystatic
1 , where ŷstatic

1 is predicted from x̂1.
Similarly, we evaluate the dynamic factor as ŷdynamic

1 = ydynamic
2 , reflecting that x̂1 should exhibit

the dynamics of x2. The same evaluation is applied symmetrically to x̂2. This task provides both a
qualitative and quantitative assessment of whether the model has successfully learned to disentangle
the latent space into interpretable and independent two-factors.

D.2 Two-factor Generation and Swap (2-GSample)

This metric is similar in spirit to the 2-Swap evaluation but differs in a key aspect. Instead of swapping
static and dynamic components between two distinct samples, we operate on a single input sample.
Specifically, we extract its disentangled latent representation and then replace either the static or
dynamic component with a newly sampled one from the prior or a predefined distribution. This
setup allows for evaluating both the generative quality and the disentanglement capacity of the model,
offering a broader and more flexible assessment. A successful generative swap should preserve the
unaltered factor (either static or dynamic) while meaningfully changing the other. Formally, let x1

be a sample with corresponding static and dynamic labels y1 = (ystatic
1 , ydynamic

1). We encode x1 to
obtain its disentangled representation z1 = (s1, d1). Then, we sample a new component ŝ1 or d̂1 to
construct a modified latent representation ẑ1 = (ŝ1, d1) or (s1, d̂1), respectively. The new sample
is generated via decoding: x̂1 = dec(ẑ1). Evaluation is performed by measuring the accuracy of
the swapped and preserved factors using classifiers or VLMs, following the same protocol as in the
2-Swap evaluation.

D.3 Multi-factor Swap (M-Swap) and Multi-factor Generation and Swap (M-GSample)

This metric extends the two-factor evaluation to a more general multi-factor setting. We assume a
set of semantic factors F , composed of two disjoint subsets of static and dynamic factors, denoted
by F = SF ∪ SD, with access to corresponding ground truth labels. For each individual factor
fi ∈ F , we perform a procedure analogous to the two-factor swapping setup. In the swap protocol,
we freeze the latent representation corresponding to a selected factor fi and randomly modify the
representations of all other factors. We then evaluate whether (1) the frozen factor remains unchanged,
and (2) the other factors have been successfully altered. An ideal disentanglement model should
exhibit near-random classification accuracy for the swapped factors and 100% accuracy for the frozen
factor. This process is repeated independently for each fi ∈ F . An example of this evaluation
protocol is illustrated in the supplementary material files. A similar procedure is applied in the
generative swap setting, where new values are sampled for all factors except the frozen one.

31

Since the resulting evaluation table is high-dimensional and difficult to interpret at a glance, we
propose a distilled single-score summary. First, we compute the average accuracy of the diagonal
entries, which reflect the preservation of the frozen factor and should ideally be 100%. Next, we
evaluate the effectiveness of changing the non-frozen factors by computing the average deviation
of the off-diagonal entries from their respective noise floors. The noise floor for each factor is
precomputed based on the number of classes it spans. Finally, we average the diagonal accuracy and
the normalized off-diagonal deviation to obtain a single overall score. A precise implementation of
this scoring protocol is provided in our code.

D.4 DCI-M/C/E

The DCI metrics [19] provide a complementary triad of measures that together offer a comprehensive
evaluation of a model’s disentanglement capabilities. These metrics assess the ability of a model to
produce latent representations z that are both interpretable and structured. The evaluation proceeds
by training regressors to predict ground truth generative factors from the learned latent codes. As a
joint preprocessing step, let M denote a trained model and z = EncM (x) be the latent representation
of input x. Let J = {j1, . . . , jm} be a partition of the indices of z, and F = {f1, . . . , fm} the set
of m ground truth factors. For each zji , a regressor rfkji is trained to predict factor fk. In the case
where z has a temporal structure (e.g., in time series data), it is reshaped to a fixed-length vector by
flattening and averaging across time steps to enable standard regression. After training this m×m
matrix of regressors, the DCI metrics are computed as described in [19]. We use Gradient Boosting
Trees as the base regressor throughout our experiments.

D.5 Consistency metrics for disentanglement

In sequential data, e.g., video, ensuring that the learned representations maintain consistency over
time is critical for evaluating disentanglement—especially for static features that should not vary
across frames. A disentangled representation should encode the same static factors across a sequence
while allowing dynamic factors to vary. We define two primary approaches to measure consistency:
i) Swap Consistency: checks preservation of static features after swapping between real examples;
and ii) Generation Consistency: evaluates consistency within generated time series, both globally and
locally.

Swap Consistency (C-Swap). C-Swap measures whether static features remain temporally con-
sistent when they are transferred between two examples. Let each example xi be described by
static factors fs1, . . . , fsk and dynamic factors fd1, . . . , fdn, with corresponding factor realizations
vi = {si, di}. Here, si ∈ Rk are static values, and di(t) ∈ Rn are dynamic values at time
step t ∈ {1, . . . , T}. Given two examples x1, x2, and their static factors s1, s2, define a subset
f ⊆ {1, . . . , k} of static features to be swapped, and let f be its complement. We construct swapped
examples with the following factor compositions:

ṽ1(t) = (sf2 , s
f
1 , d1(t)), ṽ2(t) = (sf1 , s

f
2 , d2(t)) . (1)

To assess consistency, we compare the label of each swapped feature m ∈ f over time against its
correct value from the source example using a classifier Cm. The per feature C-Swap scores are:

C1-m,swap =
1

T

T∑
t=1

I(Cm(x̃1(t)) = v2,sm) (2)

C2-m,swap =
1

T

T∑
t=1

I(Cm(x̃2(t)) = v1,sm) , (3)

here, v2,sm and v1,sm are the original static feature labels from the source examples. These metrics
quantify how accurately the swapped features are preserved throughout the sequence.

Global and Local Generation Consistency (GC-Sample/C-Sample). GC-Sample and C-Sample
evaluate the internal temporal coherence of static factors in model-generated sequences. Unlike in
C-Swap, ground truth static labels are unknown, so we evaluate consistency based on redundancy
and stability over time.

32

GC-Sample assesses if a static feature retains a dominant value across all frames in a generated
sequence. Let x̃gen(t) be the t-th frame of a generated sequence and Cm(x̃gen(t)) the predicted label
of static feature m. We first identify the most frequent value of feature m across time:

vfrequent,sm = mode (Cm(x̃gen(1)), . . . , Cm(x̃gen(T))) . (4)

Then, the GC-Sample score for feature m ranges from 0 to 1 and reflects how dominant the most
frequent label is throughout the sequence and it is defined as:

Cm-global =
1

T

T∑
t=1

I(Cm(x̃gen(t)) = vfrequent,sm) . (5)

C-Sample captures short-term continuity by measuring how often static features remain unchanged
between consecutive frames. Formally, the C-Sample score for feature m is:

Cm-local =
1

T − 1

T−1∑
t=1

I(Cm(x̃gen(t)) = Cm(x̃gen(t+ 1))) . (6)

This measures the proportion of adjacent frame pairs where the static feature value remains the
same. Unlike GC-Sample, C-Sample is sensitive to short bursts of change or fluctuations. Both
global and local scores offer complementary views of consistency. High GC-Sample implies that one
label dominates across time, even if some changes occur, whereas high C-Sample implies smooth
transitions with minimal frame-to-frame variation. In practice, both metrics should be considered
when evaluating temporal stability of disentangled static features in generated sequences.

33

E Limitations and future directions

Our benchmark takes a significant step toward providing a flexible, extensible, and scalable frame-
work for the development and evaluation of multi-factor disentanglement methods. Through our
benchmarking efforts, we have identified several limitations and promising directions for future
research, which we encourage the community to pursue.

Theoretical grounding. Current methods for disentanglement still lack strong theoretical guar-
antees, particularly in the multi-factor and sequential setting. Most existing approaches assume
full statistical independence between factors, despite the fact that real-world generative processes
often exhibit causal dependencies [54]. While the field of disentangled representation learning has
seen significant theoretical advances in recent years [24, 14], these developments have not yet been
adequately extended to the multi-factor case. We believe that bridging this gap by incorporating
insights from causal inference and identifiability theory could lay the foundation for more principled
models capable of handling complex, structured factor interactions over time.

Refined factorial swap and sample metrics. The four factorial swap and sample metrics used in
our benchmark are computed as uniformly weighted arithmetic means of absolute differences between
actual and expected accuracies. These values capture two complementary aspects of disentanglement:
partition strength (how well each factor is represented by its designated latent subspace) and leakage
resistance (how little information about a factor is contained in latent subspaces associated with other
factors).

Values representing partition strength are bounded by 1, while values representing leakage resistance
have lower upper bounds that depend on the number of classes (the more classes, the higher the
bound). However, in multi-factor settings, the number of off-diagonal elements (leakage resistance
terms) exceeds the number of on-diagonal elements (partition strength terms). Because all terms are
equally weighted, the resulting metric can become dominated by leakage resistance values, despite
their lower range. This imbalance increases with the number of factors, leading to metrics that are
less robust, less comparable across datasets, and more sensitive to inter-dataset variability. Moreover,
the unequal bounds compress the effective range of the final score, biasing it toward higher values.

These metrics can be refined by (1) normalizing each difference to the [0, 1] range, (2) computing
separate arithmetic means for partition strength and leakage resistance, and (3) combining them via a
weighted geometric mean. This formulation explicitly controls the relative contributions of partition
strength and leakage resistance, resulting in more interpretable, balanced, and dataset-independent
scores.

Alternative approaches to sequential disentanglement. Current multi-factor sequential disentan-
glement methods grew in an atmosphere that emphasized an approach of static-dynamic sequential
disentanglement and, as a result, they may have inherited some of its pitfalls (e.g., a nuanced and
dataset- and modality-dependent definition of static and dynamic factors). Real-world data often does
not exhibit a clear perceptual dichotomy between static and dynamic factors and may even exhibit
causal relations between them [54] (e.g., the perceived hair color may depend on changes in lighting),
thus other approaches are worth exploring, including a multi-scale (possibly hierarchical) approach,
which relates sequence dynamics to different time scales of variation - a property of real-world data
across all modalities.

Practical performance. Our benchmarking reveals that current methods struggle to generalize to
real-world datasets, particularly those involving complex audio and time series data. As illustrated
in our failure case analysis, these models often fail to preserve high-level semantic details when
manipulating or reconstructing samples. This is partly due to their reliance on VAEs, which are
known to produce blurry reconstructions and suffer from posterior collapse in some cases. We argue
that future work should explore more expressive generative models - such as diffusion or flow-based
[16, 21, 7, 47, 4] models - that may offer better fidelity, robustness, and semantic controllability in
the disentanglement setting.

Leveraging large-scale pretrained models. Recent advances in large-scale pretraining have
demonstrated that representation learning at scale can yield generalizable and semantically rich latent
spaces [34, 62]. While our work does not directly explore these models, we see great potential

34

in investigating how pre-trained models - especially foundation models in vision, language, and
multimodal domains - can be adapted or fine-tuned to produce disentangled representations. This
could lead to plug-and-play disentanglement modules, transfer learning across modalities, or domain-
specific finetuning with minimal supervision.

VLMs as taggers, judges, and feedback modules. In this work, we take an initial step toward
leveraging VLMs for zero-shot annotation and evaluation of semantic factors. This opens new
opportunities for replacing or supplementing human supervision. However, further improvements
are possible: few-shot learning, adapter-based post-training, and prompt tuning could make VLMs
more specialized for disentanglement tasks. Moreover, we envision a future where VLMs not only
tag or judge outputs, but actively serve as feedback modules - providing signal for contrastive,
reinforcement-based, or hybrid learning objectives to guide unsupervised disentanglement. While
such feedback would still be imperfect, it could help bridge the gap between unsupervised objectives
and human-aligned semantics.

Overall, we hope our benchmark catalyzes further theoretical, empirical, and practical advancements
in the pursuit of robust multi-factor disentangled representations.

35

F LES and VLM additional details

F.1 LES

We introduce this stage prior to presenting the evaluation metrics, as it is a prerequisite for effectively
assessing sequential disentanglement models. Evaluating unsupervised disentanglement is a well-
known and ongoing challenge [53]. In the context of sequential models, this issue is particularly
pronounced - even when ground truth labels are available - because these methods generally assume
a non-compact latent representation and require tedious human intervention. That is, semantic factors
(e.g., hair color or age) may be encoded across multiple latent dimensions, rather than being captured
by a single variable, as would be expected under the compactness assumption [11]. This makes
manual inspection even more difficult and error-prone.

Even when a model is successfully trained, a poor choice of latent-to-factor mapping may severely
degrade performance on downstream disentanglement tasks. Tab. 7 illustrates this issue: we compare
results on a multi-factor swapping task [6] using the authors’ publicly released model, with and
without our proposed LES. The results show significant performance gains obtained solely by
intelligently selecting the latent-factor mapping, highlighting the importance of post-hoc exploration.

Table 7: Comparison of SKD without and
with LES on Sprites dataset.

SKD w/o LES SKD + LES

M-Swap 0.69 0.70
M-GSample 0.67 0.71

LES. The LES aims to identify which components
of a learned latent representation correspond to spe-
cific generative factors. Given a pretrained model,
LES techniques allow interpretation of the latent
space by constructing mappings between dimensions
and known factors of variation. The benchmark
includes two complementary exploration strategies:
predictor-based and swap-based methods. Both tech-
niques are designed to integrate seamlessly into the
benchmark, and users can choose based on their de-
sired speed-quality trade-off. Moreover, LES is designed to be modular: new exploration techniques
can be added to the framework with minimal effort, providing flexibility for future extensions.

Predictor-based LES The predictor-based approach evaluates the informativeness of each latent
dimension by training a supervised classifier to predict ground truth factors from the latent codes.
Specifically, for each factor, we train an independent predictor (e.g., gradient boosting classifier)
using the latent representations as input and factor labels as targets. Classification accuracy serves as
a proxy for how well the latent space captures the given factor. To localize the influence of specific
dimensions, we extract feature importances from each trained predictor, enabling the construction of
a mapping from factors to influential latent dimensions. This method is fast and effective when full
supervision is available but may suffer when classifiers are inaccurate or overfit.

Swap-based LES The swap-based method assesses disentanglement by applying targeted inter-
ventions in the latent space. The idea is to swap a subset of latent dimensions between two samples,
decode the resulting representations, and observe which semantic factors change. Given a candidate
latent subset, we swap it between two samples and use a pretrained judge model to classify the
decoded outputs. If a specific factor changes consistently when a particular latent subset is modified,
we infer that this subset encodes the corresponding factor. To promote minimal and disentangled
mappings, we penalize large subsets during exploration. While this method can be more precise
than the predictor-based approach, it is computationally more intensive due to the need for repeated
decoding and classifier evaluation and aims to discover how well all combinatorial options perform,
while the predictor-based doesn’t consider these combinations.

To ensure fair evaluation, we used predictor-based LES uniformly across all methods and datasets in
our reported benchmark.

F.2 VLM implementation details

We integrate VLMs into our benchmark framework for two primary purposes: (1) automatic dataset
annotation and (2) classification of new, previously unseen samples. For both tasks, we employ

36

OpenAI’s GPT-4o via the API as our backbone model; however, the benchmark is compatible with
alternative VLM backends, such as Qwen2.5, which is readily integrated in our code.

The automatic annotation tool consists of three key stages (see Fig. 7 for an overview): First in the
feature space discovery stage (Fig. 8), the VLM is queried with a large number of sample pairs to
identify distinguishing attributes (e.g., “blue hair in image 1, red hair in image 2”). Recurrent or
semantically similar attributes are grouped to form a concise set of varying factors, with user-defined
thresholds controlling factor inclusion (e.g., features that vary in at least 10% of comparisons).
Second, in the label space discovery stage (Fig. 9), the VLM uses the previously extracted factor
descriptions to generate a set of likely discrete label values per factor. Finally, during the annotation
stage (Fig. 10), the model is presented with each sample and asked to assign the appropriate label for
each factor using a closed-set, multiple-choice format.

This same closed-label querying procedure is also employed in the classifier/judge module, where
the VLM, given a known factor and its predefined label set, selects the most appropriate label for a
new sample, thus eliminating the need for dataset-specific classifiers.

Unlabeled
Dataset

No

Yes

No

Known
Label

Space?
Yes

Known
Feature
Space?

Feature
Space

Description

Feature
Space

Description

VLM Feature
Space Exploration

VLM Label
Space Exploration

VLM Annotation
Module

Optional

Few
Labeled

Examples

Labeled
Dataset

Figure 7: VLM-based annotation framework. Overview of our pipeline for automatic dataset
annotation using a VLM. Given an unlabeled dataset, the system optionally performs feature space
and label space discovery if they are not known in advance. Once both spaces are defined, the
VLM assigns labels to each sample through closed-set queries. Few-shot examples can optionally
be provided to guide the annotation process. This same procedure is reused for classification of
previously unseen samples.

37

You are given two image sequences. Identify:

1. Pairs of object-attribute that differ between the images.
2. Pairs of object-attribute that remain the same in both images

For each pair, provide short, clear description of the attribute (or difference)

Different:
Hair color (blue vs purple)
Skin tone (light vs gray)
Shirt color (gray vs red)

Same:
Pose (jumping)
Pants color (red)
Shoe color (yellow)

Figure 8: Comparison-based feature exploration. The model receives two image sequences and
identifies which visual attributes differ or remain the same.

You are given a list of features and two sources of evidence: Descriptions of how
each feature varies across images and a set of visual examples.
Your task is to estimate the most likely set of label values for each feature.
Features: Hair color, Shirt color, Pants color, Skin tone, Shoe color and Pose type
Differences:

Hair color (purple vs green, red vs purple, ...)
Shirt color (white vs blue, black vs gray, ...)
...

...

Hair color: red, green, blue, ...
Shirt color: white, blue, red, ...
Pants color: red, green, white, ...
Skin tone: light, dark, gray, ...
Pose type: standing, walking, ...
Shoe color: yellow, brown, gray, ...

Figure 9: Label space estimation. The model uses visual and textual evidence to estimate a practical
label set for each known feature.

38

You are given an image. For each attribute listed below, choose the correct value:

Hair color (Red, Green, Blue, Orange, Purple, White, Blonde)
Shirt color (White, Blue, Red, Brown, Gray, Black)
Pants color (Red, Green, White, Gray, Brown, Black)
Skin tone (Light, Dark, Gray, Brown)
Shoe color (Yellow, Brown, Gray, Black, Orange)
Pose (Walking, Jumping, Standing, Waving, Idle, Pointing)

Hair color: orange
Shirt color: white
Pants color: green
Skin tone: gray
Shoe color: yellow
Pose: waving

Figure 10: Annotation/judging. The model is presented with a single image (or sequence) and a
predefined set of attributes. For each attribute, it must select the correct value from a fixed label space.
This module is used to annotate unseen samples in zero-shot or few-shot settings.

39

F.3 Full VoxCelebOne experiment results

We used the VLM feature and label exploration module to automatically identify semantic factors
in the VoxCelebOne dataset (Fig. 11). The following factors, along with their corresponding label
spaces, were discovered in an unsupervised manner: background color, hair style, hair color, sex,
lighting, and shirt color. A user can manually add factors, and then the Tagger module will find their
label space. To expand this set, we manually added additional meaningful factors: age group, skin
color, glasses, facial hair, and earrings. The complete list of factors and their possible values is shown
in Tab. 9.

Next, we used the VLM annotation module to label 100 samples from the dataset and manually
annotated the same set for comparison. We then computed per factor annotation accuracy by
comparing VLM predictions against human labels. Results are reported in Tab. 8.

Figure 11: Sampled frames from the VoxCele-
bOne dataset.

Table 8: Semantic factors with their possible
values and VLM annotation accuracy on Vox-
CelebOne

Factor Values Accuracy

Background red, green, ... 0.92
Hair style short, wavy, ... 0.81
Hair color black, brown, ... 0.84
Sex male, female 1.00
Lighting bright, dim, ... 0.72
Shirt color green, blue, ... 0.63

Age group <20, 20–40, ... 0.65
Skin color light, medium, ... 0.89
Glasses yes, no 0.99
Facial hair yes, no 0.95
Earrings yes, no 0.82

Table 9: Semantic factors and their possible values

Factor Possible Values

Background color red, blue, green, purple, brown, black, white, gray, orange, pink, yellow,
beige, teal, multicolored, dark, light

Hair style short, long, wavy, straight, curly, tied up, combed back, layered, tousled,
slicked back, bob cut

Hair color black, brown, blonde, gray, red, white, dark, light
Sex male, female
Lighting bright, dark, dim, warm, cool, natural, artificial
Shirt color green, blue, red, pink, orange, white, black, maroon, dark, light
Age <20, 20–40, 40–60, 60–80, 80+
Skin color light, medium, dark
Glasses yes, no
Facial hair yes, no
Earrings yes, no

40

G Extended results and experimental setup

G.1 Full comparison per dataset

We provide an extended comparison of all methods across all metrics, broken down by dataset.
These detailed tables complement the summary presented in Tab. 1 of the main paper. For each
dataset, we present a dedicated table: Sprites (Tab. 10), 3D Shapes (Tab. 11), dSprites-Static (Tab. 12),
dSprites-Dynamic (Tab. 13), dMelodies-WAV (Tab. 14), and BMS Air Quality (Tab. 15). All results
have an additional level of detail; for simplicity, we attach these full results in the supplementary
material files.

Table 10: Performance of disentanglement methods on the Sprites dataset. ↑ indicates that higher is
better. Bold values denote the best score per row.

Metric Sparse-AE VAE β-VAE MGP-VAE SKD SSM-SKD

M-Swap ↑ 0.69 ± 1e-03 0.64 ± 2e-03 0.66 ± 2e-03 0.86 ± 2e-03 0.70 ± 6e-03 0.94 ± 3e-03
2-Swap ↑ 0.65 ± 3e-03 0.63 ± 3e-03 0.66 ± 2e-03 0.89 ± 3e-03 0.97 ± 2e-02 0.97 ± 2e-03
M-GSample ↑ 0.69 ± 2e-03 0.65 ± 1e-03 0.66 ± 1e-03 0.62 ± 3e-03 0.71 ± 1e-02 0.94 ± 2e-03
2-GSample ↑ 0.66 ± 3e-03 0.63 ± 3e-03 0.66 ± 2e-03 0.81 ± 2e-03 0.96 ± 2e-02 0.96 ± 4e-03
DCI-M ↑ 0.37 ± 6e-03 0.25 ± 4e-03 0.28 ± 3e-03 0.57 ± 4e-03 0.30 ± 5e-03 0.89 ± 3e-03
DCI-C ↑ 0.83 ± 1e-03 0.78 ± 1e-03 0.79 ± 6e-04 0.73 ± 3e-03 0.71 ± 4e-03 0.95 ± 1e-03
DCI-E ↑ 0.80 ± 3e-03 0.33 ± 9e-03 0.33 ± 4e-03 0.94 ± 4e-03 0.77 ± 2e-03 0.98 ± 9e-04
C-Swap ↑ 0.65 ± 2e-03 0.17 ± 7e-04 0.17 ± 4e-04 0.91 ± 1e-03 0.49 ± 2e-02 0.95 ± 8e-04
C-Sample ↑ 0.97 ± 7e-04 0.87 ± 2e-03 0.88 ± 2e-03 0.79 ± 2e-03 0.95 ± 5e-04 0.96 ± 6e-04
GC-Sample ↑ 0.97 ± 1e-03 0.85 ± 3e-03 0.86 ± 3e-03 0.76 ± 4e-03 0.96 ± 4e-03 0.97 ± 4e-04

Table 11: Performance of disentanglement methods on the 3D Shapes dataset. ↑ indicates that higher
is better. Bold values denote the best score per row.

Metric Sparse-AE VAE β-VAE MGP-VAE SKD SSM-SKD

M-Swap ↑ 0.79 ± 8e-04 0.87 ± 2e-04 0.72 ± 8e-04 0.76 ± 5e-04 0.80 ± 8e-04 0.93 ± 6e-04
2-Swap ↑ 0.88 ± 1e-03 0.93 ± 9e-04 0.90 ± 8e-04 0.85 ± 1e-03 0.98 ± 7e-04 0.97 ± 1e-03
M-GSample ↑ 0.64 ± 6e-04 0.86 ± 1e-03 0.73 ± 7e-04 0.62 ± 5e-04 0.81 ± 8e-04 0.95 ± 5e-04
2-GSample ↑ 0.74 ± 1e-03 0.93 ± 8e-04 0.91 ± 6e-04 0.71 ± 1e-03 0.97 ± 7e-04 0.97 ± 8e-04
DCI-M ↑ 0.75 ± 2e-03 0.90 ± 2e-03 0.54 ± 1e-03 0.25 ± 4e-03 0.23 ± 2e-03 0.92 ± 3e-04
DCI-C ↑ 0.92 ± 5e-04 0.97 ± 6e-04 0.86 ± 2e-04 0.52 ± 2e-03 0.63 ± 3e-03 0.97 ± 1e-04
DCI-E ↑ 0.96 ± 1e-03 0.99 ± 7e-04 0.92 ± 2e-03 0.45 ± 4e-03 0.58 ± 3e-04 1.00 ± 9e-05
C-Swap ↑ 0.80 ± 1e-03 0.90 ± 3e-04 0.63 ± 8e-04 0.80 ± 1e-03 0.63 ± 2e-03 0.95 ± 3e-04
C-Sample ↑ 0.99 ± 3e-04 1.00 ± 2e-04 1.00 ± 2e-05 0.81 ± 1e-03 0.98 ± 1e-04 0.98 ± 2e-04
GC-Sample ↑ 0.99 ± 3e-04 1.00 ± 1e-04 1.00 ± 1e-04 0.79 ± 1e-03 0.98 ± 2e-04 0.98 ± 4e-05

41

Table 12: Performance of disentanglement methods on the dSprites-Static dataset. ↑ indicates that
higher is better. Bold values denote the best score per row.

Metric Sparse-AE VAE β-VAE MGP-VAE SKD SSM-SKD

M-Swap ↑ 0.60 ± 7e-04 0.60 ± 4e-04 0.64 ± 2e-03 0.56 ± 4e-04 0.65 ± 1e-03 0.78 ± 2e-03
2-Swap ↑ 0.60 ± 1e-03 0.60 ± 3e-04 0.77 ± 6e-04 0.72 ± 2e-03 0.77 ± 2e-03 0.80 ± 5e-03
M-GSample ↑ 0.60 ± 1e-03 0.60 ± 4e-04 0.65 ± 1e-03 0.49 ± 7e-04 0.66 ± 1e-03 0.79 ± 3e-03
2-GSample ↑ 0.60 ± 8e-04 0.60 ± 7e-04 0.78 ± 4e-04 0.65 ± 1e-03 0.78 ± 1e-03 0.81 ± 3e-03
DCI-M ↑ 0.00 ± 4e-04 0.00 ± 3e-04 0.23 ± 3e-03 0.09 ± 3e-03 0.09 ± 6e-04 0.69 ± 2e-03
DCI-C ↑ 0.68 ± 3e-04 0.68 ± 7e-04 0.76 ± 1e-03 0.44 ± 3e-03 0.57 ± 2e-03 0.86 ± 9e-04
DCI-E ↑ 0.20 ± 6e-03 0.21 ± 8e-03 0.69 ± 9e-03 0.34 ± 2e-03 0.58 ± 9e-04 0.95 ± 3e-04
C-Swap ↑ 0.17 ± 3e-04 0.17 ± 3e-04 0.55 ± 2e-03 0.61 ± 1e-03 0.50 ± 1e-03 0.75 ± 5e-04
C-Sample ↑ 0.75 ± 9e-04 0.85 ± 5e-04 0.98 ± 3e-04 0.72 ± 2e-03 0.91 ± 5e-04 0.94 ± 7e-04
GC-Sample ↑ 0.81 ± 4e-04 0.92 ± 2e-03 0.99 ± 2e-04 0.71 ± 1e-03 0.93 ± 3e-04 0.95 ± 8e-04

Table 13: Performance of disentanglement methods on the dSprites-Dynamic dataset. ↑ indicates
that higher is better. Bold values denote the best score per row.

Metric Sparse-AE VAE β-VAE MGP-VAE SKD SSM-SKD

M-Swap ↑ 0.65 ± 2e-03 0.62 ± 2e-03 0.65 ± 1e-03 0.70 ± 6e-04 0.67 ± 3e-03 0.67 ± 7e-04
2-Swap ↑ 0.68 ± 3e-03 0.65 ± 1e-03 0.59 ± 3e-03 0.70 ± 2e-03 0.77 ± 2e-03 0.70 ± 2e-03
M-GSample ↑ 0.61 ± 9e-04 0.62 ± 6e-04 0.66 ± 7e-04 0.60 ± 8e-04 0.68 ± 7e-03 0.69 ± 2e-03
2-GSample ↑ 0.62 ± 1e-03 0.66 ± 1e-03 0.59 ± 3e-03 0.60 ± 1e-03 0.77 ± 2e-03 0.69 ± 2e-03
DCI-M ↑ 0.28 ± 3e-03 0.14 ± 1e-03 0.20 ± 3e-03 0.10 ± 3e-03 0.08 ± 1e-03 0.34 ± 2e-03
DCI-C ↑ 0.77 ± 1e-03 0.73 ± 5e-04 0.78 ± 5e-04 0.44 ± 2e-03 0.57 ± 4e-03 0.72 ± 2e-03
DCI-E ↑ 0.68 ± 4e-03 0.59 ± 3e-03 0.54 ± 8e-03 0.35 ± 4e-03 0.55 ± 2e-03 0.77 ± 2e-03
C-Swap ↑ 0.59 ± 1e-03 0.48 ± 2e-03 0.62 ± 1e-03 0.33 ± 9e-04 0.48 ± 1e-02 0.67 ± 1e-03
C-Sample ↑ 0.94 ± 4e-04 0.89 ± 2e-03 0.94 ± 7e-04 0.74 ± 1e-03 0.90 ± 8e-04 0.93 ± 6e-04
GC-Sample ↑ 0.95 ± 7e-04 0.94 ± 5e-04 0.96 ± 3e-04 0.72 ± 7e-04 0.91 ± 7e-04 0.94 ± 1e-03

Table 14: Performance of disentanglement methods on the dMelodies-WAV dataset. ↑ indicates that
higher is better. Bold values denote the best score per row.

Metric Sparse-AE VAE β-VAE MGP-VAE SKD SSM-SKD

M-Swap ↑ 0.63 ± 0e+00 0.63 ± 0e+00 0.63 ± 0e+00 0.53 ± 0e+00 0.63 ± 0e+00 0.65 ± 2e-03
M-GSample ↑ 0.63 ± 0e+00 0.63 ± 0e+00 0.63 ± 0e+00 0.53 ± 0e+00 0.63 ± 0e+00 0.65 ± 2e-03
DCI-M ↑ 0.02 ± 1e-03 0.01 ± 2e-03 0.17 ± 2e-03 0.00 ± 8e-04 0.09 ± 5e-03 0.13 ± 3e-03
DCI-C ↑ 0.68 ± 7e-04 0.69 ± 2e-03 0.75 ± 2e-03 0.39 ± 5e-03 0.62 ± 4e-03 0.67 ± 2e-03
DCI-E ↑ 0.38 ± 1e-02 0.29 ± 4e-03 0.41 ± 8e-03 0.29 ± 8e-03 0.64 ± 2e-03 0.67 ± 2e-03

Table 15: Performance of disentanglement methods on the BMS Air Quality dataset. ↑ indicates that
higher is better. Bold values denote the best score per row.

Metric Sparse-AE VAE β-VAE MGP-VAE SKD SSM-SKD

DCI-M ↑ 0.06 ± 2e-03 0.16 ± 2e-03 0.16 ± 3e-03 0.00 ± 7e-04 0.07 ± 3e-03 0.12 ± 2e-03
DCI-C ↑ 0.74 ± 1e-03 0.78 ± 7e-04 0.78 ± 2e-03 0.33 ± 2e-03 0.68 ± 2e-02 0.70 ± 6e-04
DCI-E ↑ 0.29 ± 1e-02 0.32 ± 5e-03 0.31 ± 6e-03 0.17 ± 4e-03 0.33 ± 8e-03 0.43 ± 3e-03

42

G.2 Full metric results

Certain evaluation metrics presented in the main paper were distilled into a single representative
score for simplicity and clarity. Here, we provide the complete, undistilled metric results for each
dataset. Due to space limitations, these detailed tables are not included directly in the main document
but in the supplementary material files.

G.3 Results with VLM

In Tab. 16 and Tab. 17 we present the final scores obtained using the VLM evaluation. Although
these scores differ from those obtained under the setup with full access to ground truth labels, we
demonstrate in Sec. 4.4 that the ranking order remains almost perfectly correlated.

Table 16: Performance of disentanglement methods on the Sprites (VLM) dataset. ↑ indicates that
higher is better. Bold values denote the best score per row.

Metric Sparse-AE VAE β-VAE MGP-VAE SKD SSM-SKD

M-Swap ↑ 0.64 0.60 0.61 0.71 0.64 0.76
DCI-M ↑ 0.17 0.07 0.07 0.29 0.14 0.43
DCI-C ↑ 0.73 0.70 0.70 0.49 0.59 0.71
DCI-E ↑ 0.59 0.39 0.40 0.77 0.71 0.78

Table 17: Performance of disentanglement methods on the 3D Shapes (VLM) dataset. ↑ indicates
that higher is better. Bold values denote the best score per row.

Metric Sparse-AE VAE β-VAE MGP-VAE SKD SSM-SKD

M-Swap ↑ 0.67 0.73 0.69 0.54 0.63 0.74
DCI-M ↑ 0.24 0.43 0.14 0.05 0.34 0.49
DCI-C ↑ 0.81 0.86 0.79 0.63 0.76 0.82
DCI-E ↑ 0.67 0.78 0.61 0.45 0.76 0.83

G.4 Experimental setup and computational cost

We produced the above results through training and evaluation on a cluster of machines with AMD
EPYC 7002 Series CPU (x86_64 architecture), 256 GB RAM, Linux kernel 5.14.0, glibc 2.34,
NVIDIA GeForce RTX 4090 (Gigabyte) GPU, NVIDIA VBIOS 95.02.3C.C0.93, NVIDIA driver
565.57.01, CUDA 12.6, cuDNN 9.5.1, Python 3.9.21, pip 25.1, NumPy 1.26.4, PyTorch 2.7.0, and
the packages listed in requirements.txt (available in our code).

Training times varied per model and was depending on the dataset, between 6 to 60 seconds for an
epoch. Evaluation runs required under 2 hours per method. Preliminary and ablation experiments
approximately doubled the total compute usage.

43

	Introduction
	Related work
	The Multi-factor Sequential Disentanglement (MSD) benchmark
	Multi-factor sequential disentanglement
	Datasets
	Methods
	Metrics
	Latent Exploration Stage (LES)
	Single Static Mode Structured Koopman Disentanglement (SSM-SKD)
	VLM-as-a-tagger/judge

	Benchmarking results
	Quantitative benchmarking
	Qualitative benchmarking
	Failure case: real-world data
	Assessing a VLM-as-a-tagger/judge

	Discussion
	Codebase
	Additional data details
	Static to dynamic generators
	Datasets
	dMelodies-WAV
	BMS Air Quality

	Additional methods details
	Hyperparameter grid search
	Our method: SSM-SKD
	Motivation
	Architecture in relation to SKD
	Latent space extraction in relation to SKD

	Additional metrics details
	Two-factor Swap (2-Swap)
	Two-factor Generation and Swap (2-GSample)
	Multi-factor Swap (M-Swap) and Multi-factor Generation and Swap (M-GSample)
	DCI-M/C/E
	Consistency metrics for disentanglement

	Limitations and future directions
	LES and VLM additional details
	LES
	VLM implementation details
	Full VoxCelebOne experiment results

	Extended results and experimental setup
	Full comparison per dataset
	Full metric results
	Results with VLM
	Experimental setup and computational cost

