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ABSTRACT

Heterogeneous tabular data poses unique challenges in generative modelling due
to its fundamentally different underlying data structure compared to homogeneous
modalities, such as images and text. Although previous research has sought to
adapt the successes of generative modelling in homogeneous modalities to the tab-
ular domain, defining an effective generator for tabular data remains an open prob-
lem. One major reason is that the evaluation criteria inherited from other modal-
ities often fail to adequately assess whether tabular generative models effectively
capture or utilise the unique structural information encoded in tabular data. In this
paper, we carefully examine the limitations of the prevailing evaluation framework
and introduce TabStruct, a novel evaluation benchmark that positions structural
fidelity as a core evaluation dimension. Specifically, TabStruct evaluates the align-
ment of causal structures in real and synthetic data, providing a direct measure
of how effectively tabular generative models learn the structure of tabular data.
Through extensive experiments using generators from eight categories on seven
datasets with expert-validated causal graphical structures, we show that structural
fidelity offers a task-independent, domain-agnostic evaluation dimension. Our
findings highlight the importance of tabular data structure and offer practical guid-
ance for developing more effective and robust tabular generative models. Code is
available at https://github.com/SilenceX12138/TabStruct.

1 INTRODUCTION

Tabular data generation is a cornerstone of many real-world machine learning tasks (Borisov et al.,
2022; Fang et al., 2024), ranging from training data augmentation (Margeloiu et al., 2024; Cui et al.,
2024) to missing data imputation (Zhang et al., 2023). These applications highlight the importance
of building powerful models capable of generating high-quality synthetic tabular data, which ne-
cessitates an appropriate understanding of the underlying data structure. For instance, textual data
conforms to the distributional hypothesis, and thus the autoregressive process can be a natural and
effective approach for text generation (Zhao et al., 2023; Sahlgren, 2008). In contrast, tabular data
poses unique challenges due to its heterogeneity – the features within a dataset typically have vary-
ing types and semantics, with feature sets that can differ across datasets (Grinsztajn et al., 2022;
Shi et al., 2024). Recent work in tabular foundation predictors demonstrates that (causal) structure
can be an effective prior for tabular data structure (Hollmann et al., 2025), which is fundamentally
different to homogeneous modalities like text or images. As such, it is important to investigate how
effectively existing tabular generative models capture and leverage the tabular data structure.

Prior work (Hansen et al., 2023; Zhang et al., 2023; Margeloiu et al., 2024) has proposed tabu-
lar generative models spanning multiple categories for high-quality synthetic data. However, a fair
and comprehensive benchmarking framework remains absent. Specifically, existing benchmarks
exhibit three primary limitations: (i) Lack of evaluating the tabular data structure. The main-
stream benchmarks primarily adopt evaluation dimensions from homogeneous modalities, including
density estimation (Alaa et al., 2022), downstream utility (Xu et al., 2019), and privacy preserva-
tion (Kotelnikov et al., 2023). While these metrics have proven effective for other modalities, they
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fail to fully assess whether tabular generative models capture the unique structural information of
tabular data. (ii) Potentially biased evaluation. Beyond overlooking structural information, cer-
tain conventional evaluation metrics may introduce bias (see Appendix A.2 for more details). For
instance, evaluating synthetic data based on downstream utility depends heavily on the choice of the
performance metric as well as the downstream models and tasks (Hansen et al., 2023; Margeloiu
et al., 2024), which may obscure the true capabilities of tabular generative models. (iii) Limited
coverage of tabular generative models. Existing benchmarks often evaluate a narrow range of
tabular generative models, limiting their ability to provide a comprehensive comparison of model
performance across the broader landscape of tabular generative modelling. Appendix A further sum-
marises the scope of the evaluation metrics and generators in TabStruct and existing benchmarks. In
this paper, we aim to address these gaps by developing a systematic and comprehensive evaluation
framework for existing tabular generative models.

We introduce TabStruct (Figure 1), a novel benchmark designed to comprehensively evaluate tab-
ular generative models across diverse metrics and model categories. TabStruct is characterised by
three core concepts. Firstly, TabStruct positions structural fidelity as a core evaluation dimension,
and quantifies it through the alignment of feature independence relationships between real and syn-
thetic data. Secondly, TabStruct retains the conventional evaluation metrics and investigates their
interplay with structural fidelity. Thirdly, TabStruct includes eight generator categories, ensuring
holistic and robust benchmarking results.

Our contributions can be summarised as follows: 1 Conceptual (Section 2): We propose
TabStruct, a novel benchmark framework that integrates structural fidelity as a core evaluation
dimension for tabular generative models. 2 Empirical (Section 3): We quantitatively analyse the
model capabilities across four dimensions and provide actionable insights for designing more robust
tabular generative models. 3 Technical: We will release TabStruct, including the benchmark
suite, the associated codebase, and all raw experimental results. This open-source library will
enable researchers and practitioners to evaluate their models efficiently and comprehensively with
a standardised framework.

2 TABSTRUCT BENCHMARK FRAMEWORK

Figure 1 provides an overview of the TabStruct framework. We first describe our problem setup
(Section 2.1). Then we discuss the empirically effective structural prior of tabular data (Section 2.2),
and the proposed methodology for quantifying structural fidelity (Section 2.3). In addition, details
of the employed benchmark datasets in TabStruct are available in Section 2.4. Finally, we detail the
conventional evaluation dimensions (Appendix A.2) and the benchmark generators (Appendix B.6).

2.1 PROBLEM SETUP

We address the task of tabular data generation. Let D := {(x(1), y(1)), . . . , (x(N), y(N))} represent
a labelled tabular dataset consisting of N samples. For the i-th sample x(i), x(i)

d denotes its d-th fea-
ture, and y(i) denotes the corresponding target. To simplify notation, we refer to the training split of
the full dataset D as the reference data, denoted by Dref. The synthetic data produced by tabular data
generators is denoted by Dsyn. The evaluation of tabular generative models is conducted by assessing
the quality of Dsyn across multiple dimensions. We further illustrate the setup in Appendix B.2.

2.2 TABULAR DATA STRUCTURE

The underlying structure of tabular data has long been an open research question (Kitson et al.,
2023; Hollmann et al., 2025; Müller et al., 2022). For other modalities like textual data, it is nat-
ural to characterise their structure as autoregressive, guided by human knowledge (Yang, 2019).
Therefore, pretraining paradigms aligned with the autoregressive structure, such as next-token pre-
diction (Achiam et al., 2023), have proven successful in textual generative modelling. In contrast,
heterogeneous tabular data does not naturally lend itself to human interpretation, making a structural
prior for such data generally elusive.

Recent studies (Hollmann et al., 2025; Müller et al., 2022) on tabular foundation predictors have
begun to shed light on the underlying structure of tabular data. Hollmann et al. (2025) introduces
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Figure 1: The overview of the TabStruct evaluation framework. (A) Given the graphical struc-
tures (i.e., structural causal models) validated by domain experts, we perform prior sampling on
these graphs to generate a full dataset D. (B) We train tabular generative models on the training split
Dref ⊂ D. We then generate synthetic data Dsyn with the fitted models. (C) We evaluate the quality
of synthetic data by comparing Dref and Dsyn across four dimensions.

TabPFN, a tabular foundation predictor pretrained on 100 million “synthetic” tabular datasets.
These datasets are “synthetic” because they do not incorporate real-world semantics: they are
produced with randomly constructed structural causal models (SCM). Remarkably, despite not
being explicitly trained on any real-world dataset, TabPFN is able to outperform an ensemble
of strong baseline predictors, which have been fine-tuned on each individual classification task.
The exceptional performance of TabPFN suggests that the SCMs used to construct the pretraining
datasets, despite lacking real-world semantics, effectively reflect the structural information encoded
in real-world tabular data.

However, it is important to note that this does not imply that SCMs can fully represent the underlying
structures of all tabular data. Instead, TabPFN demonstrates that the causal relationships between
features, as modelled by SCMs, act as an empirically effective structural prior for a great proportion
of real-world tabular data.

As the success of LLMs primarily stems from their ability to leverage the autoregressive nature of
textual data, we argue that a robust tabular data generation process should be able to capture the
unique causal structures within the tabular data. More specifically, generating data aligned with the
causal structures in reference data could provide valuable insights into the open research question of
how to effectively leverage the structural information inherent in tabular data.

2.3 STRUCTURAL FIDELITY

Using causal relationships as the structural prior for tabular data, we define the structural fidelity of a
tabular generative model as the alignment between the causal structures in the reference data Dref and
the synthetic data Dsyn. Following prior benchmarks on causal discovery and inference (Spirtes et al.,
2001; Tu et al., 2024), TabStruct evaluates structural fidelity at the level of the Markov equivalent
class. At this level, causal structures are represented by completed partially directed acyclic graphs
(CPDAGs). The causal structures of Dref and Dsyn are considered equivalent as long as they encode
the same set of conditional independence relationships between features.

Fine-grained quantification of structural fidelity. Given the ground-truth causal structure of
Dref, we can derive all conditional independence relationships between features programmatically
(Figure 2). These conditional independence relationships are then tested on Dsyn to investigate
whether the synthetic data exhibits a Markov equivalent causal structure to the reference data. For
each pair of features, the conditional independence test is formulated as a binary classification task,
where 1 indicates independence and 0 indicates dependence. The balanced accuracy of the condi-
tional independence tests on Dsyn is then computed in order to quantify structural fidelity.

3



Published as a workshop paper at SynthData Workshop (ICLR 2025)

Ground-truth Causal Structure

	𝑥!

	𝑥"

	𝑥#

	𝑥$

	𝑥%

	𝑦

Ground-truth Conditional Independence

Global Independence

Local Independence

𝑦 ⫫	𝑥! ∣ 𝑥"
𝑦 ⫫	𝑥# ∣ 𝑥"
𝑦 ⫫	𝑥$ ∣ 𝑥"
𝑦 ⫫	𝑥% ∣ 𝑥"

𝑥!	⫫ 𝑥% ∣ 𝑥#
𝑥#	⫫ 𝑥$ ∣ 𝑥!
𝑥$	⫫ 𝑥% ∣ 𝑥#

𝑥!	⫫	𝑥" ∣ 𝑥#,𝑥$
𝑥%	⫫ 𝑥" ∣ 𝑥#,𝑥$

Derive conditional 
independence 
relationships

Figure 2: An illustrative example for the quantification of structural fidelity. Given the ground-
truth causal structure, we first derive the conditional independence relationships between features.
These relationships are then divided into two levels of granularity: global and local. The global set
encompasses all conditional independence relationships across the entire feature set, whereas the
local set includes only those relationships that are directly relevant to the target variable y. Next, we
apply conditional independence tests on Dsyn to examine the alignment of conditional independence
relationships between features.

To provide a more fine-grained assessment of structural fidelity, we decompose structural fidelity
into two complementary metrics: global independence and local independence. As illustrated
in Figure 2, global independence evaluates all conditional independence relationships in the dataset,
whereas local independence focuses only on those relationships relevant to the target variable y.
Intuitively, local independence assesses how well the generator models the relationships between
the target and the features, while global independence provides a comprehensive evaluation of the
generator’s ability to capture the overall structure of tabular data.

Rationales for CPDAG-level evaluation. TabStruct does not evaluate causal fidelity at the di-
rected acyclic graph (DAG) level, as this would require an additional causal discovery method to
determine the causal directions between features. Recovering causal directions is an inherently
challenging task, and no existing causal discovery methods can guarantee perfect identification of
causal directions (Zanga et al., 2022; Kaddour et al., 2022). This limitation is further illustrated in
Section 3. Additionally, evaluating at the DAG level can introduce biases, as the results depend on
the specific causal discovery method used. This issue is similar to the key limitation of “downstream
utility”, which is inherently biased by the choice of downstream tasks and predictors. To address
this, TabStruct evaluates causal structures at the CPDAG level, reducing the risks associated with
inaccurate or biased identification of causal directions.

2.4 BENCHMARK DATASETS WITH GROUND TRUTH CAUSAL STRUCTURES

To accurately quantify structural fidelity, the reference data should be paired with ground-truth
causal structures. Therefore, we construct benchmark datasets by leveraging structural causal
models (SCMs) that have been validated by human experts (Scutari, 2011). Human validation
ensures that the causal structures are realistic, increasing the likelihood that TabStruct’s benchmark
results can generalise to other real-world datasets without known causal structures (i.e., where
structural fidelity cannot be directly evaluated). We note that this is a core distinction between
TabStruct and prior studies (Tu et al., 2024; Hollmann et al., 2025): instead of relying on datasets
without real-world semantics, TabStruct utilises reference data with expert-validated, realistic
causal structures and mixed feature types.

We outline the process of building the reference datasets as follows. Firstly, we use ground-truth
SCMs with realistic and expert-validated structures. Secondly, we perform prior sampling on these
SCMs: root nodes are randomly initialised, and their values are propagated through the causal graph.
A single sample is generated by recording the node values after propagation, with each propagation
producing one sample. Thirdly, this process is repeated until sufficient samples are obtained. By
following this procedure, we construct full datasets D with accessible and well-defined causal struc-
tures. We include both classification (Table 4) and regression (Table 5) datasets, and the detailed
descriptions are in Appendix B.

4



Published as a workshop paper at SynthData Workshop (ICLR 2025)

Table 1: Benchmark results of nine tabular data generators on seven datasets with varying fea-
ture scales. The results are grouped based on the tasks. For each group, we report the normalised
mean ± std metric values across datasets. We also highlight the First, Second and Third best per-
formances for each metric. Existing tabular generative models, including advanced neural networks,
struggle to accurately capture the underlying structure of tabular data.

Generator Density Estimation Downstream Utility Privacy Preservation Structural Fidelity
Shape ↑ Trend ↑ α-precision ↑ β-recall ↑ Accuracy ↑ RMSE ↓ DCR ↑ Authenticity ↑ Local independence ↑ Global independence ↑

Classification tasks
Dref 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 100.00±0.00 − 0.00±0.00 0.00±0.00 100.00±0.00 100.00±0.00

SMOTE 0.94±0.00 0.93±0.00 0.82±0.01 1.00±0.00 95.71±1.54 − 0.11±0.01 0.05±0.01 74.02±3.13 35.39±0.85
BN 0.97±0.00 0.91±0.00 0.95±0.01 0.75±0.01 89.88±1.01 − 0.79±0.03 0.50±0.01 35.49±3.42 45.31±0.79
TVAE 0.83±0.00 0.75±0.00 0.70±0.02 0.66±0.02 94.57±1.50 − 0.94±0.04 0.60±0.02 65.96±3.64 64.29±0.77
GOGGLE 0.08±0.02 0.05±0.01 0.01±0.01 0.24±0.02 18.57±1.16 − 0.98±0.03 0.86±0.01 0.00±0.00 0.00±0.00
CTGAN 0.72±0.02 0.74±0.02 0.89±0.04 0.52±0.06 76.74±2.80 − 0.82±0.03 0.74±0.05 55.58±0.47 50.95±1.02
NFlow 0.73±0.01 0.66±0.01 0.79±0.03 0.20±0.03 23.79±3.02 − 0.84±0.04 0.92±0.01 20.88±4.40 40.74±1.14
TabDDPM 0.39±0.01 0.37±0.01 0.24±0.01 0.22±0.01 33.90±1.07 − 0.77±0.04 0.83±0.01 5.63±2.62 23.69±0.68
ARF 0.97±0.00 0.90±0.00 0.92±0.01 0.61±0.02 59.21±2.15 − 0.85±0.03 0.65±0.01 32.59±3.72 46.40±0.94
GReaT 0.74±0.01 0.71±0.01 0.65±0.02 0.56±0.02 48.34±1.57 − 0.69±0.03 0.62±0.01 38.56±3.15 45.20±0.77

Regression datasets
Dref 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 − 0.00±0.01 0.00±0.00 0.00±0.00 100.00±0.00 100.00±0.00

SMOTE 0.85±0.00 0.89±0.00 0.71±0.00 0.96±0.00 − 0.16±0.02 0.29±0.01 0.08±0.01 49.66±6.67 69.21±5.36
BN 0.86±0.00 0.77±0.00 0.90±0.01 0.73±0.01 − 0.10±0.02 0.22±0.01 0.30±0.01 71.05±5.00 77.51±2.96
TVAE 0.70±0.01 0.61±0.01 0.61±0.03 0.63±0.02 − 0.20±0.27 0.66±0.04 0.50±0.02 44.10±4.15 52.52±2.31
GOGGLE 0.30±0.06 0.24±0.01 0.30±0.09 0.28±0.03 − 0.83±0.29 0.32±0.06 0.80±0.02 21.31±1.47 22.33±0.74
CTGAN 0.54±0.04 0.51±0.02 0.73±0.09 0.44±0.08 − 0.37±0.55 0.31±0.03 0.76±0.05 9.21±6.09 11.96±4.11
NFlow 0.74±0.01 0.62±0.01 0.67±0.04 0.52±0.05 − 0.31±0.08 0.58±0.04 0.72±0.04 37.62±3.62 23.68±3.70
TabDDPM 0.20±0.02 0.25±0.01 0.31±0.00 0.18±0.01 − 0.02±0.03 0.68±0.03 0.87±0.00 38.97±0.72 10.20±5.33
ARF 0.84±0.00 0.79±0.00 0.94±0.01 0.53±0.02 − 0.18±0.26 0.36±0.01 0.66±0.02 33.64±3.50 31.56±2.32
GReaT 0.67±0.01 0.67±0.01 0.69±0.03 0.64±0.03 − 0.21±0.25 0.39±0.03 0.51±0.02 38.42±5.09 38.66±3.38

Table 2: Correlation between ranks of different metrics. The relatively higher correlation be-
tween Accuracy/RMSE and local independence demonstrates that a generator can achieve high
downstream utility by prioritising the conditional independence relationships directly relevant to
the target variable while overlooking the global structure.

Local independence Global independence

Accuracy 0.90 0.57
RMSE 0.77 0.33

3 EXPERIMENTS

Experimental setup. For each dataset of N samples, we first split it into train and test sets (80%
train and 20% test). We further split the train set into a training split (Dref) and a validation split
(90% training and 10% validation). For classification datasets, stratification is preserved during data
splitting. We provide detailed descriptions of data splitting in Appendix B. We repeat the splitting
10 times, summing up to 10 runs per dataset. All benchmark generators are trained on Dref, and
each generator produces a synthetic dataset with Nsyn samples. For classification, the synthetic data
preserves the stratification of reference data. Since a small Nsyn may not yield robust results of model
performance (Margeloiu et al., 2024), we conduct a proof-of-concept experiment (see Appendix C
for more details) and empirically set Nsyn = 3Nref as the saturation point where further increases in
Nsyn have negligible impact on evaluation results. We further detail the aggregation of evaluation
results in Appendix B.5.

3.1 GENERATOR PERFORMANCE IN LEARNING TABULAR DATA STRUCTURE

Downstream utility is not the golden standard for tabular generative modelling. In prior stud-
ies (Appendix A), downstream utility is often considered as the core evaluation dimension. From
this perspective, a generator is considered effective if its synthetic data achieves high performance
in downstream tasks. However, as discussed in Appendix A.2, downstream utility inherently bi-
ases evaluation towards relationships between the target variable and the features, thus overlooking
the relationships between features. Table 1 and Table 2 quantitatively demonstrate this limitation.
The rankings of downstream utility are strongly correlated with local independence but exhibit much
weaker correlation with global independence. This indicates that a generator can achieve high down-
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stream utility by prioritising local independence at the expense of global independence. For instance,
SMOTE achieves the highest downstream utility and local independence in classification tasks, but it
performs poorly in global independence. This suggests that SMOTE focuses narrowly on structures
relevant to the target variable while neglecting inter-feature relationships. Therefore, a generator
should not be deemed effective solely based on downstream utility, as it can overlook the broader
structural information encoded in the data.

Structural fidelity presents consistent challenges across tasks and generators. Table 1 shows
a notable gap in structural fidelity between reference data (Dref) and synthetic data (Dsyn) across
both classification and regression tasks. For instance, in classification tasks, the highest local inde-
pendence achieved is 74.02% (SMOTE), indicating the smallest performance gap relative to Dref is
over 25%. Global independence shows an even large performance gap of 35% between Dref and
Dsyn. In contrast, the smallest gaps between Dref and Dsyn in statistical fidelity and downstream
utility remain consistently below 10%. The underperformance in structural fidelity also exists in
regression datasets. These results underline the consistent challenges faced by existing tabular gen-
erative models in capturing the underlying structure of tabular data.

Existing structure learning methods struggle with tabular data generation. While Bayesian
Network (BN) exhibit relatively strong performance in structural fidelity, their success is unsur-
prising – the reference datasets are constructed with SCMs that perfectly align with the required
assumptions of the causal discovery methods employed in BN (i.e., causal Markov assumption,
causal sufficiency and causal faithfulness). Despite this advantage, the gap between Dref and Dsyn
remains notable for BN. For instance, in classification tasks, the global independence gap exceeds
50% compared to Dref. This demonstrates the limitations of existing structure learning methods in
recovering perfect causal structures from observed data alone. Such findings are consistent with
previous research (Tu et al., 2024), which reveals that current causal discovery methods struggle
with datasets containing more than 10 features. In TabStruct, we employ realistic SCMs, with the
number of features ranging from 7 to 223. Consequently, BNs perform less effectively despite hav-
ing an objective function for explicit structure learning. This further justifies our choice to evaluate
structural fidelity at the CPDAG level rather than the DAG level.

Baseline models can outperform complex models in structural fidelity. Interestingly, simple
baseline models such as SMOTE and TVAE exhibit competitive performance in structural fidelity.
For global independence, Table 1 shows that TVAE consistently ranks among the top-3 across both
classification and regression datasets. We note that TVAE does not possess explicit advantages as
a structure learning method, indicating that variational autoencoders remain effective models for
capturing feature relationships in tabular data.

All evaluation dimensions are complementary, rather than interchangeable. As demonstrated
in Figure 5, no single metric is fully indicative of all other metrics. This highlights the necessity for
researchers and practitioners to select evaluation metrics that are aligned with the specific objectives
of their tasks, rather than relying on a single dimension to evaluate the performance of tabular gen-
erative models. For instance, in regression tasks, BN excels in capturing the underlying tabular data
structure, suggesting that its synthetic data can facilitate more accurate causal inference compared
to TabDDPM. However, if a practitioner’s primary concern is downstream performance, TabDDPM
would be the preferred choice. Similarly, SMOTE consistently achieves competitive results in down-
stream utility across tasks. Nevertheless, SMOTE introduces high risks of privacy leakage, which
may be unacceptable for certain sensitive scenarios.

4 CONCLUSION

We introduce TabStruct, a novel benchmark framework for the holistic evaluation of tabular genera-
tive models. TabStruct positions structure fidelity as a core aspect of model performance, and quan-
tifies it at the Markov equivalent class level by evaluating the conditional independence relationships
between features. Additionally, TabStruct provides conventional evaluation metrics while consid-
ering their interplay between structural fidelity. Our experimental results demonstrate that conven-
tional evaluation dimensions fail to provide a holistic view of model performance, and the existing
tabular generative models still struggle to effectively capture the underlying structure of tabular data.
The insights from TabStruct and the open-source library can guide researchers in developing next-
generation tabular data generators, and help practitioners select appropriate models for their tasks.
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A SUMMARY OF EXISTING BENCHMARKS

A.1 EVALUATION SCOPE

Table 3 presents a comparative analysis of TabStruct against existing benchmarks for evaluating
tabular generative models. TabStruct is the only benchmark that covers four evaluation metrics,
including density estimation, downstream utility, privacy preservation, and structural fidelity. More-
over, it is the only comprehensive benchmark, supporting all eight generator types and offering a
more holistic overview of existing tabular generative models.

Table 3: Comparison of evaluation scopes between TabStruct and existing benchmarks.
(a) TabStruct introduces a novel benchmark for the holistic evaluation of tabular generative mod-
els, with a particular emphasis on capturing the underlying structure of tabular data. (b) TabStruct
stands out as the only benchmark that covers eight generator categories.

(a) Evaluation Metrics

Benchmark source Density Estimation Downstream Utility Privacy Preservation Structural FidelityLow-order High-order Classification Regression

Xu et al. (2019) " " " " % %

Durkan et al. (2019) " % % % % %

Watson et al. (2023) % % " % % %

Liu et al. (2023) " " " % % %

Borisov et al. (2023) " " " " " %

Kotelnikov et al. (2023) " % " " " %

Hansen et al. (2023) " " " % % %

Zhang et al. (2023) " " " " " %

Tu et al. (2024) " " % % % "

Shi et al. (2024) " " " " " %

TabStruct (Ours) " " " " " "

(b) Generator Category Coverage

Benchmark source Interpolation BN GAN VAE NF Tree Diffusion LLM # Generators

Xu et al. (2019) % " " " % % % % 7
Durkan et al. (2019) % % % " " % % % 10
Watson et al. (2023) % % " " % " % % 6
Liu et al. (2023) % " " " " % % % 7
Borisov et al. (2023) % % " " % % % " 4
Kotelnikov et al. (2023) " % " " % % " % 6
Hansen et al. (2023) % " " " " % " % 5
Zhang et al. (2023) " % " " % % " " 9
Tu et al. (2024) % % " " % % " " 7
Shi et al. (2024) % % " " % % " " 9

TabStruct (Ours) " " " " " " " " 9

A.2 CONVENTIONAL EVALUATION APPROACHES

Density estimation evaluates the mismatch between the marginal (i.e., low-order) or joint (i.e., high-
order) distributions of reference and synthetic data (Hansen et al., 2023). A generator can triv-
ially achieve high performance on low-order metrics by independently sampling from each feature’s
marginal distribution. While high-order metrics measure sample-level similarity, they still fail to ex-
plicitly demonstrate whether the synthetic data presents the same causal structures as reference data.

Following prior studies (Hansen et al., 2023; Shi et al., 2024; Zhang et al., 2023), we evaluate den-
sity estimation using four metrics of two categories: (i) Low-order: Shape and Trend (Wüst, 2011).
Shape measures the synthetic data’s ability to replicate each column’s marginal density. Trend as-
sesses its capacity to capture correlations between different columns. (ii) High-order: α-precision
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and β-recall (Alaa et al., 2022). α-precision quantifies the similarity between the reference and
synthetic data, and β-recall assesses the diversity of the synthetic data.

Downstream utility measures the performance gap when substituting reference data with synthetic
data in downstream tasks. This metric is inherently task-specific and susceptible to bias from the
choice of downstream models and tasks. A parallel can be drawn to image generation, where
Mixup (Psaroudakis & Kollias, 2022) augments training data with synthetic samples by interpolat-
ing between real samples. While Mixup improves downstream performance, it disrupts the spatial
structure of images, resulting in synthetic samples that are generally visually unrealistic (Mumuni &
Mumuni, 2022). This example shows that downstream utility, while useful for specific tasks, cannot
serve as a holistic measure of a tabular data generator.

For all downstream tasks, we adopt the “train-on-synthetic, test-on-real” strategy (Xu et al., 2019).
To mitigate the bias from downstream models, we evaluate downstream utility by averaging the
performance of six representative downstream predictors, including three standard baselines:
Logistic Regression (LR) (Cox, 1958), KNN (Fix, 1985) and MLP (Gorishniy et al., 2021); two
tree-based methods: Random Forest (RF) (Breiman, 2001) and XGBoost (Chen & Guestrin, 2016);
and a PFN method: TabPFN (Hollmann et al., 2025).

Privacy preservation primarily focuses on the trade-off between specific downstream tasks and
privacy leakage (Margeloiu et al., 2024). Similar to downstream utility, this dimension is also highly
task-dependent, making it susceptible to bias, and limiting its ability to provide a comprehensive
assessment of the capability of tabular generative models.

We measure privacy preservation using two metrics: (i) median Distance to Closest Record
(DCR) (Zhao et al., 2021), where a higher DCR indicates that synthetic data is less likely to be
directly copied from the reference data; (ii) Authenticity (Alaa et al., 2022), where a higher score
indicates that the generated samples are less likely to be mere replicas of the reference data.
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B REPRODUCIBILITY

B.1 REFERENCE DATASETS

To ensure that the causal structures of reference datasets are realistic, we select seven publicly
available datasets from bnlearn (Scutari, 2011). Each dataset is accompanied by a ground-truth
structural causal model (SCM) validated by human experts. Furthermore, to obtain generalisable
benchmark results, we select datasets from diverse domains, and they are across three different
levels of structure scales (i.e., small, medium and large).

In contrast, the only prior benchmark that addresses structural fidelity, CauTabBench (Tu et al.,
2024), does not utilise SCMs validated by human experts. Additionally, the dimensionality of their
datasets is fixed at 10 numerical features. In summary, TabStruct is one of the first to offer a compre-
hensive benchmark for tabular generative models, leveraging datasets with realistic causal structures,
mixed feature types, and more than 10 features.

Table 4: Details of four classification datasets with realistic structures.

Dataset Domain Structure scale # Samples # Features # Numerical # Categorical # Classes # Samples per class
(Min)

# Samples per class
(Max)

Sangiovese Agriculture Small (<20 nodes) 2,000 15 14 1 16 108 146
Insurance Economics Medium (20–50 nodes) 2,000 27 0 27 4 38 1,122
Hailfinder Meteorology Large (>50 nodes) 2,000 56 0 56 3 519 880
ANDES Education Large (>50 nodes) 2,000 223 0 223 2 830 1,170

Table 5: Details of three regression datasets with realistic structures.

Dataset Domain Structure scale # Samples # Features # Numerical # Categorical

Healthcare Medicine Small (<20 nodes) 2,000 7 7 3
MEHRA Meteorology Medium (20–50 nodes) 2,000 24 20 4
ARTH150 Life Science Large (>50 nodes) 2,000 107 107 0

B.2 DATA SPLITTING

Full Dataset
𝑁

Training + Validation data
𝑁 × 0.8

Test set
N	×	0.2

Training split (Reference data)
𝑁ref = 𝑁 × 0.8 × 0.9

Validation split 
𝑁 × 0.8 × 0.1

Generator

Evaluation 
dimensions

Synthetic data
𝑁syn = 3𝑁ref

Evaluation 
results

Figure 3: Data splitting strategies for benchmarking tabular data generators.

B.3 DATA PREPROCESSING

Following the procedures presented in prior work (McElfresh et al., 2024; Grinsztajn et al., 2022),
we perform preprocessing in two steps. Firstly, we impute the missing values with the mean value for
numerical features and the most mode value for categorical features. We then compute the required
statistics with training data and then transform it. For categorical features, we convert them into
one-hot encodings. For numerical features, we perform Z-score normalisation. We compute each
feature’s mean and standard deviation in the training data and then transform the training samples to
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have a mean of zero and a variance of one for each feature. Finally, we apply the same transformation
to the validation and test data before conducting evaluations.

B.4 IMPLEMENTATION OF CONDITIONAL INDEPENDENCE TEST

For categorical datasets, we employ the chi-square independence test (McHugh, 2013); for
numerical datasets, we use partial correlation based on the Pearson correlation coefficient (Baba
et al., 2004); and for mixed datasets, we utilise a residualisation-based conditional independence
test (Ankan & Textor, 2023; Li & Shepherd, 2010; Muller & Peterson, 1984). We implement
these conditional independence tests using pgmpy (Ankan & Textor, 2024), an open-source Python
library for causal and probabilistic inference. The significance level is set to 0.01 by default (i.e.,
the p-value is 0.01).

B.5 AGGREGATION OF EVALUATION RESULTS

The reported results are averaged by default over 10 runs on the test sets. When aggregating
results across datasets, we use the average distance to the minimum (ADTM) metric via affine
renormalisation between the top-performing and worse-performing models (Grinsztajn et al., 2022;
McElfresh et al., 2024; Hollmann et al., 2025; Margeloiu et al., 2024; Jiang et al., 2024). To
aggregate different metrics within the same evaluation dimension, we compute their average. For
downstream utility, evaluation results are averaged over six downstream predictors to mitigate the
bias from specific predictors.

B.6 BENCHMARK GENERATORS

TabStruct includes nine existing tabular data generation methods of eight different categories:
(i) a standard interpolation method SMOTE (Chawla et al., 2002); (ii) a structure learning method
Bayesian Network (Qian et al., 2024); (iii) two Variational Autoencoders (VAE) based methods
TVAE (Xu et al., 2019) and GOGGLE (Liu et al., 2023); (iv) a Generative Adversarial Networks
(GAN) method CTGAN (Xu et al., 2019); (v) a normalising flow model Neural Spine Flows
(NFLOW) (Durkan et al., 2019); (vi) a diffusion model TabDDPM (Kotelnikov et al., 2023); (vii) a
tree-based method Adversarial Random Forests (ARF) (Watson et al., 2023); and (viii) a Large
Language Model (LLM) based method GReaT (Borisov et al., 2023). In addition, we include Dref,
where the reference data is directly used for evaluation. We provide full implementation details of
benchmark generators in Appendix B.7.

B.7 IMPLEMENTATIONS OF BENCHMARK GENERATORS

SMOTE is an interpolation-based oversampling method (Chawla et al., 2002). It generates new
samples by interpolating between real samples. We use the open-source implementation of SMOTE
from Imbalanced-learn (Lemaı̂tre et al., 2017), setting the number of neighbours k within the range
{1, 3, 5}. When applicable, we use the default value for nearest neighbours (i.e., k = 5).

Bayesian Network (BN) is a probabilistic graphical model used to represent and reason about the
dependence relationships between features (Qian et al., 2024; Hansen et al., 2023). It consists of
two main components: (i) a causal discovery model to construct a directed acyclic graph (DAG),
where features and the target serve as nodes, and their dependencies are represented as edges; (ii) a
parameter estimation mechanism to quantify the dependence relationships. Following Hansen et al.
(2023), the causal discovery method is selected from Hill Climbing Search (Koller, 2009), the Peter-
Clark algorithm (Koller, 2009), and Chow-Liu or Tree-augmented Naive Bayes (Chow & Liu, 1968;
Friedman et al., 1997). We then build the parametrised BN using maximum likelihood estimation.

TVAE is a variational autoencoder (VAE) designed for tabular data (Xu et al., 2019). TVAE employs
mode-specific normalisation to handle the complex distributions of numerical features. To address
the class imbalance problem, TVAE conditions on specific categorical features during generation.

GOGGLE is a VAE-based tabular data generator designed to model the dependence relationships
between features (Liu et al., 2023). GOGGLE proposes to learn an adjacency matrix to model the
dependence relationships between features. However, TabStruct and prior benchmarks (Margeloiu
et al., 2024; Zhang et al., 2023; Shi et al., 2024) all show that the downstream utility of GOGGLE is

15



Published as a workshop paper at SynthData Workshop (ICLR 2025)

limited. We hypothesise that this is because of the challenge of learning accurate structures of tabular
data. The inherent structure learning mechanism in GOGGLE fails to capture accurate conditional
independence relationships between features, it could thus lead to poor-quality synthetic data, even
if the model attempts to explicitly model the relationships between features like GOGGLE.

CTGAN is a conditional generative adversarial network (GAN) designed for tabular data (Xu et al.,
2019). CTGAN leverages PacGAN (Lin et al., 2018) framework to mitigate mode collapse. In
addition, CTGAN employs the same mode-specific normalisation technique as TVAE.

NFlow is a normalisation flow model designed for tabular data generation (Durkan et al., 2019).
NFlow incorporates neural splines as a drop-in replacement for affine or additive transformations in
coupling and autoregressive layers.

TabDDPM is a diffusion-based model for tabular data generation (Kotelnikov et al., 2023). Tab-
DDPM introduces two core diffusion processes: (i) Gaussian noise for numerical features and
(ii) multinomial diffusion with categorical noise for categorical features. TabDDPM directly con-
catenates numerical and categorical features as the input and output of the denoising function.

ARF is a tree-based model for tabular data generation (Watson et al., 2023). ARF employs a recur-
sive adaptation of unsupervised random forests for joint density estimation by iteratively refining
synthetic data distributions using adversarial training principles.

GReaT leverages large language models (LLMs) to generate synthetic tabular data (Borisov et al.,
2023). GReaT converts each sample into a sentence and fine-tunes the language model to capture
the sentence-level distributions. Additionally, GReaT shuffles the order of features to mitigate the
permutation variance in sentence-level distributions.

B.8 SOFTWARE AND COMPUTING RESOURCES

Software implementation. (i) For generators: We implemented SMOTE with Imbalanced-
learn (Lemaı̂tre et al., 2017), an open-source Python library for imbalanced datasets with an
MIT licence. For other benchmark generators, we used their open-source implementations in
Synthcity (Qian et al., 2024), a library for generating and evaluating synthetic tabular data with an
Apache-2.0 license. (ii) For downstream predictors: We implemented TabPFN with its open-source
implementation (https://github.com/automl/TabPFN). We implemented the other five
downstream predictors (i.e., Logistic Regression, KNN, MLP, Random Forest and XGBoost) with
their open-source implementation in scikit-learn (Pedregosa et al., 2011), an open-source Python
library under the 3-Clause BSD license. (iii) For result analysis and visualisation: All numerical
plots and graphics have been generated using Matplotlib 3.7 (Hunter, 2007), a Python-based plotting
library with a BSD licence. The icons for downstream tasks are from https://icons8.com/.

We ensure the consistency and reproducibility of experimental results by implementing a uniform
pipeline using PyTorch Lightning, an open-source library under an Apache-2.0 licence. We further
fixed the random seeds for data loading and evaluation throughout the training and evaluation pro-
cess. This ensured that TabEBM and all benchmark models were trained and evaluated on the same
set of samples. The experimental environment settings, including library dependencies, are specified
in the open-source library for reference and reproduction purposes.

Computing Resources. All the experiments were conducted on a machine equipped with an
NVIDIA A100 GPU with 40GB memory and an Intel(R) Xeon(R) CPU (at 2.20GHz) with six
cores. The operating system used was Ubuntu 20.04.5 LTS.
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C RATIONALES FOR SAMPLE SIZE OF SYNTHETIC DATA
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Figure 4: Downstream utility vs. different ratios between the number of synthetic data and
reference data (Nsyn : Nref). On the “Hailfinder” dataset, as Nsyn increases, the evaluation results
become saturated. Specifically, the range of balanced accuracy varies by less than 0.3% when the
ratio increases from Nsyn : Nref = 3 : 1 to Nsyn : Nref = 10 : 1. Therefore, we set Nsyn = 3Nref in
all experiments to ensure stable evaluation results.
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D EXTENDED EXPERIMENTAL RESULTS
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Figure 5: Summarised comparison of nine tabular data generators across four evaluation di-
mensions. The results reveal that excelling in conventional evaluation dimensions does not ensure
the model’s ability to capture the underlying data structure. Learning the underlying data structure
remains challenging for tabular generative modelling.
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E FUTURE WORK

While TabStruct provides valuable insights, we acknowledge several directions for future explo-
ration. One primary limitation of TabStruct is the scope of datasets. As discussed in Section 2.3,
due to the limitations of existing causal discovery methods, TabStruct relies on datasets with expert-
validated causal graphs. However, most real-world tabular datasets lack ground truth causal graphs,
making it challenging to assess structural fidelity in such cases. To address this, we plan to de-
velop new evaluation metrics that enable more flexible assessment of structural fidelity in real-world
datasets, where ground truth causal structures are unavailable.
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