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ABSTRACT

Subset or core-set selection offers a data-efficient way for training deep learning
models by identifying important data samples so that the model can be trained
using the selected subset with similar performance as trained on the full set. How-
ever, most existing methods tend to choose either diverse or difficult data samples,
which is likely to form a suboptimal subset, leading to a model with compro-
mised generalization performance. One key limitation is due to the misalignment
with the underlying goal of subset selection as an optimal subset should faith-
fully represent the joint data distribution that is comprised of both feature and
label information. To this end, we propose to conduct diversity-difficulty Bal-
anced One-shot Subset Selection (BOSS), aiming to construct an optimal subset
for data-efficient deep learning. Samples are selected into the subset so that a
novel balanced core-set loss bound is minimized, which theoretically justifies the
need to simultaneously consider both diversity and difficulty to form an optimal
subset. The loss bound also unveils the key relationship between the type of data
samples to be included in the subset and the subset size. This further inspires the
design of an expressive importance function to optimally balance diversity and
difficulty depending on the subset size. The proposed approach is inspired by
a theoretical loss bound analysis and utilizes a fine-grained importance control
mechanism. A comprehensive experimental study is conducted on both synthetic
and real datasets to justify the important theoretical properties and demonstrate
the superior performance of BOSS as compared with the competitive baselines.

1 INTRODUCTION

Deep learning has enjoyed a great popularity in a wide range of domains, including natural language
processing (Brown et al., 2020; Liu et al., 2019), computer vision (Ramesh et al., 2021; Dosovitskiy
et al., 2021; Tan & Le, 2019; Chen et al., 2020) and more. However, the success comes at a cost of
a large amount of data and increased resource consumption. Such resources include computational
cost, training time, energy usage, financial burden, and carbon emission (Schwartz et al., 2020;
Strubell et al., 2019). The resource consumption is usually proportional to the amount of data used
for training (Hestness et al., 2017) and at the same time, using large amounts of data is not always
feasible because of constraints such as labeling cost (Settles, 2009), memory limitation (Shin et al.,
2017), and sparse computing resources (Konečnỳ et al., 2016) (e.g., on mobile or edge devices).

Subset or core-set selection aims to find candidate data points from a large pool of data such that
the model trained on the subset has comparable performance to that of the model trained on the
full set (Feldman, 2020). This will in turn help decrease the resources consumed by training on
large amounts of data. Intuitively, subsets can be chosen dynamically during each training epoch
(Mirzasoleiman et al., 2020; Killamsetty et al., 2021b;a; Pooladzandi et al., 2022). However, the
selection algorithm is usually time-consuming and can significantly increase the overall training
duration (Shin et al., 2023). Such a process also requires a forward pass through the entire dataset
each time a subset is chosen, which incurs a high cost for a large dataset. On the other hand, one-
shot subset selection only picks the subset once before the training starts and uses that subset for
the entire training process (Zheng et al., 2023; Paul et al., 2021; Feldman & Zhang, 2020; Sorscher
et al., 2022).While it may still be essential to initialize a model using the full dataset for few epochs
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to obtain the training dynamics employed for subset selection, one-shot subset selection offers the
advantage that the time required for this selection is accounted for only once. One-shot subset
selection can also serve for the scenarios such as continual learning (Nguyen et al., 2018).

Subset selection have been used for classical problems such as regression (Madigan et al., 2002),
classification (Tsang et al., 2005), and clustering (Har-Peled & Kushal, 2005). Recent works have
started exploring applications of core-set selection for data-efficient deep learning (Guo et al., 2022;
Wan et al., 2022; Killamsetty et al., 2021c). Two categories of methods have been explored to in-
corporate the most important examples into the selected subset, including 1) diversity based, which
selects a diverse set of samples to cover the entire feature (or gradient) space (Mirzasoleiman et al.,
2020; Killamsetty et al., 2021a;b; Pooladzandi et al., 2022; Shin et al., 2023; Welling, 2009; Agarwal
et al., 2020; Sener & Savarese, 2018), and 2) difficulty-based, which selects the most difficult sam-
ples to best characterize the decision boundary (Toneva et al., 2019; Feldman & Zhang, 2020; Paul
et al., 2021; Sorscher et al., 2022). More specifically, diversity-based methods leverage the facility
location objective (Farahani & Hekmatfar, 2009) to select the optimal subset such that the distance
between the subset and full set in the feature (Sener & Savarese, 2018; Welling, 2009; Agarwal
et al., 2020) or gradient space (Mirzasoleiman et al., 2020; Killamsetty et al., 2021a; Pooladzandi
et al., 2022; Shin et al., 2023) is minimized. In contrast, difficulty-based methods (Toneva et al.,
2019; Paul et al., 2021) score examples based on a difficulty metric where a high score corresponds
to a higher difficulty. Paul et al. (2021) shows that by removing the easier examples, a large por-
tion (i.e., 25%–50%) of a full dataset can be pruned without obviously compromising the model’s
generalization performance.

However, the existing methods as described above are fundamentally limited as they are in-
adequate to select the optimal subset of samples. This is due to the fact that the selec-
tion criterion does not align with the ultimate goal of subset selection, which is to repre-
sent a joint distribution P (x,y) (as instantiated by a full set) using a small subset of data
samples. Consequently, solely relying on the feature (i.e., x) or the label side (i.e., y) will
lead to a suboptimal selection result. There have been some recent efforts, aiming to im-
prove the existing one-shot core-set selection methods (Zheng et al., 2023; Xia et al., 2023),
where they introduce difficulty metrics or new sampling strategy using existing difficult metrics.
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Figure 1: CCS (a) Vs. BOSS (b): Decision boundary learned
using the selected subset shown in red circles by CCS and BOSS,
where the subset is 10% of the full set.

For example, coverage-centric
core-set selection (CCS) (Zheng
et al., 2023) considers various
levels of difficulty when choos-
ing samples to form the subset,
which helps to improve the qual-
ity of the subset. Nevertheless,
a principled way is still lacking
to properly balance diversity and
difficulty for choosing a subset
that can faithfully represent the
underlying joint distribution. As
Figure 1 (a) shows, the subset
chosen by CCS (as highlighted
in red) misses some critical regions (e.g., as annotated in the figure) in the full set, leading to a sub-
optimal subset with a lower generalization performance (due to a less accurate decision boundary).

To address the key limitations of existing approaches, we propose to perform diversity-difficulty
Balanced One-shot Subset Selection (BOSS), aiming to construct an optimal subset to achieve data-
efficient deep learning. BOSS performs subset selection guided by a balanced core-set loss bound
that reveals an important trade-off between feature similarity (i.e., diversity) and label variability
(i.e., difficulty). In particular, the balanced loss bound is comprised of two key components as a nat-
ural result of the joint impact from the feature and label sides, respectively. This theoretical result
further confirms the need to properly model the joint data distribution in subset selection as solely
relying on the feature or label sides will result in a significantly loose loss bound that will compro-
mise the learning process. Furthermore, the novel loss bound also uncovers important relationship
between the type of data samples to be selected (i.e., diverse or difficult) and the size of the subset
(as determined by the available computing budget). In particular, for a small subset size, the loss
introduced by the feature similarity will dominate the bound, which will direct subset selection to

2



Under review as a conference paper at ICLR 2024

choose representative samples to avoid using dissimilar samples in the subset to represent samples
in the full set. As the size increases, the large label variability from certain (i.e., difficult) regions
in the joint distribution will contribute more significantly to the overall loss bound. This will force
the selection of samples from these regions so that the decision-boundary can be further refined to
reduce the label loss. This key theoretical insight suggests that when integrating diversity and dif-
ficulty for subset selection, subset size plays a crucial role. To this end, we design an expressive
importance function that can properly balance diversity and difficulty depending on the subset size.

Figure 1 (b) visualizes the subset chosen by the proposed BOSS method. As compared with CCS,
BOSS adequately covers the entire feature space while attending to all critical regions, which ensures
that an accurate decision boundary can be learned from the chosen subset with a much improved
prediction performance than CCS. Our main contribution is threefold: (1) a novel balanced core-
set loss bound which not only justifies the necessity of simultaneously considering both diversity
and difficulty for subset selection but also unveils the key relationship between the type of data
samples to be included in the subset and the subset size, (2) design of an expressive importance
function to optimally balance diversity and difficulty for subset selection given the subset size, and
(3) a comprehensive evaluation using both synthetic and real-world data to verify the key theoretical
results and empirical performance of the proposed method.

2 RELATED WORK

2.1 DIVERSITY-BASED SUBSET SELECTION

Gradient-based subset selection (GB-SS). GB-SS aims to find a subset such that the difference
between the sum of the gradients of the full set and the weighted sum of the gradients of the subset is
minimized. As a representative GB-SS method, CRAIG (Mirzasoleiman et al., 2020) shows the gain
for convex optimization or simple classification tasks but becomes less competitive for complex deep
learning models and difficult learning tasks. GradMatch (Killamsetty et al., 2021a) improves on
CRAIG by regularizing the weight values such that large weight values are penalized while selecting
the subset. Adacore (Pooladzandi et al., 2022) leverages a Hessian pre-conditioned gradient to
capture the curvature information of gradient and exponential moving average of gradients to smooth
out the local gradient information. In addition to minimizing the gradient difference, LCMAT (Shin
et al., 2023) also minimizes the difference of maximum eigenvalue obtained from the inverse of
Hessian of full set and subset in order to capture the curvature information of the loss landscape.
Although these methods improve the performance, the calculation of inverse Hessian approximation
is time-consuming and computationally expensive (Pearlmutter, 1994).

Feature-based subset selection (FB-SS). FB-SS aims to find a representative subset in the feature
space. K-center (Farahani & Hekmatfar, 2009) is a mini-max facility location problem where the
subset is selected such that the maximum distance between a point in the original dataset closest to
the chosen center is minimized. Herding (Welling, 2009) selects the subset such that the distance
between the centroid of the full set and the subset is minimized. The centroid is found using the
feature of the input. Contextual Diversity (Agarwal et al., 2020) improves the visual diversity in the
feature space and uses KL divergence for calculating the pairwise distance. Although these methods
leverage input features to select the subset, they do not consider the sample difficulty. However,
the difficulty level of the samples is important because even if two samples are close in the feature
space, they can have distinct difficulty scores, especially for those close to the decision boundary.

2.2 DIFFICULTY-BASED SUBSET SELECTION

Difficulty-based subset selection scores each example based on some difficulty metric that measures
how difficult it is to learn the sample or how much impact the sample has on the generalization.
Toneva et al. (2019) count the number of times an example is learned and then forgotten to identify
which examples are difficult. The number of times an example is forgotten is denoted as the forget-
ting score. The larger the difficulty, the higher the score. To select the subset, the easier samples
are discarded and only the difficult samples are used. Although the forgetting score gives a good
estimate of the difficulty of a sample, computing the scores requires training the model on the full
dataset multiple times to get a reliable score for the sample. Paul et al. (2021) introduce the EL2N
score which stands for L2 norm of a prediction error. Unlike forgetting scores, EL2N can be calcu-
lated early on during the training such that the time to find the subset is significantly lower. Sorscher
et al. (2022) compare the EL2N score with other scores such as the influence score (Feldman &
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Zhang, 2020) to select the subset. The influence score of a sample is the measure of how much the
generalization performance of a model suffers if that sample is removed from the training dataset.
Samples with high influence scores are deemed more difficult. However, this method is also compu-
tationally expensive because it needs to train the model multiple times on the full dataset. Although
difficulty-based methods prove to be effective for larger subset sizes, they tend to choose suboptimal
solutions when the subset size is small. Our theoretical results reveal the key underlying reason for
this behavior. One very recent work (Xia et al., 2023) defines a new difficulty metric based on the
distance of each example with the center of the related class such that we can select the samples
with smaller distances to their class center. However, it ignores the diversity in the feature space.
Another recent work (Zheng et al., 2023) develops a new sampling method that can utilize different
difficulty scores to achieve better performance compared to only selecting the most difficult samples.
It selects samples randomly among different strata of difficulty scores and allocates an equal budget
among the strata. Our theoretical results show that the diversity and difficult components need to be
carefully balanced to avoid a loose loss bound that can misguide the subset selection process.

3 METHODOLOGY

Consider a deep learning model with parameters θ and a training dataset V = {xi,yi}|V|
i=1

from which we want to select a subset S ⊆ V . We use one-hot vectors for the labels y.
The training objective is to find the set of parameters θ that gives us the lowest training er-
ror l = 1

|T |
∑|T |

n=1 ln(η(xn),yn;θ), where T could be either the full set or the subset and

η(xn) = (η(1), ...η(K))⊤ is the model prediction for xn given θ. To obtain the optimal model
that can be trained over S, we first train a model for a few epochs on the full dataset (i.e., T = V)
to select the subset S from V using the model information. A newly initialized model θS is then
trained on the subset (T = S). The size |S| is limited by the amount of budget or resources available.
We want to find a subset such that the model trained on the subset has a comparable generalization
capability to that of the model trained on the full set.

3.1 THE BALANCED CORE-SET LOSS BOUND

Our goal is to find the optimal subset that generalizes similarly to the model trained on the full set.
Following the core-set based formulation (Sener & Savarese, 2018), the true generalization loss of
the model θS is closely related to the full set loss:

Ex,y [l(η(x),y;θ)] ≤

∣∣∣∣∣Ex,y [l(η(x),y;θ)]−
1

|V|
∑
i∈V

l(η(xi),yi;θS)

∣∣∣∣∣+ 1

|V|
∑
i∈V

l(η(xi),yi;θS)

The first term in the above equation is the difference between true generalization loss and the full set
empirical loss which is inaccessible. Thus, we focus on the full set loss given model θS . We assume
that for every input xi in the full set, there exists an xj in the subset such that the training loss on xj

is 0 due to the optimization of the model on S.

Theorem 1 (Balanced Core-set Loss Bound). Given the full set V and the subset S, for each
xi ∈ V , we can locate a corresponding xj ∈ S , such that ∥xj − xi∥ = minxn∈S ∥xn − xi∥
and l(η(xj),yj) = 0. Then, we have

1

|V|
∑
i∈V

l(xi,yi,θS) ≤
1

|V|
∑
i∈V

(λη∥xi − xj∥+ λy∥yi − yj∥) + L

√
log(1/γ)

2|V|
(1)

with the probability of 1−γ, where λη and λy are Lipschitz parameters, L is the maximum possible
loss and γ is the probability of the Hoeffding’s bound not holding true.

Proof Sketch. To obtain the inequality, we utilize Hoeffding’s bound. The problem then becomes
finding the expectation of the full set loss (E[ 1

|V|
∑

i∈V l(η(xi),yi;θS)]). Note that unlike in the
active learning case where the labels of the full set are unknown, we have access to both the inputs
and labels in the subset selection scenario. Thus, we treat the model θS as the variable and convert all
difference terms to ∥xi−xj∥ or ∥yi−yj∥ using Lipschitz conditions. The proof mainly involves the
following step where we utilize the triangle inequality and the assumption that l(η(xj),yj ;θS) =
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0,∀xj ∈ S:

E

[
1

|V|
∑
i∈V

l(η(xi),yi;θS)

]

=
1

|V|
∑
i∈V

E[|l(η(xi),yi;θS)− l(η(xj),yi;θS) + l(η(xj),yi;θS)− l(η(xj),yj ;θS)|]

≤ 1

|V|
∑
i∈V

E[|l(η(xi),yi;θS)− l(η(xj),yi;θS)|+ |l(η(xj),yi;θS)− l(η(xj),yj ;θS)|] (2)

Remark (Decomposing Loss Bound: Feature and Label Objectives). Eq. (1) gives the upper bound
of the training loss, which has two main components: 1) the feature difference (or similarity) ∥xi −
xj∥ and 2) the label variability ∥yi−yj∥. Thus, the optimal subset should be able to minimize both
the feature difference and label variability to obtain a tight loss bound.

Bridging label variability with difficulty score. Naturally, a diversity-guided approach will min-
imize the feature objective. Next, we will show that a difficulty-based approach can account
for the label objective. In a typical difficulty-based selection, the score often aligns with the
shape of the decision boundary. For example, the EL2N score is defined as E [∥η(x)− y∥].
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Figure 2: (a) The difficulty level of the samples for the syn-
thetic dataset is computed using the EL2N score. The darker
points refers to the difficult samples with higher value of
EL2N score. The EL2N score is computed at epoch 10. (b)
The expected label variability ∥yi − yj∥ in the 10-sample
neighborhood (scaled value).

It highly correlates with the variance
of prediction η(x) and whether the
prediction is correct. Along the most
difficult part of the joint data distribu-
tion, we can expect the data samples
to have large variances of η(k)(x)
produced by the model (especially
a less overfitted model as the one
used in our initial training) among
all K classes and are more likely to
be misclassified. This means that
the high difficulty scores will be dis-
tributed near the difficult part of the
decision boundary. We can demon-
strate this behavior with a synthetic
dataset. The dataset is designed to
have four moon-shaped classes, with
slight overlapping (noises) as visual-
ized in Figure 4 (d). As we show the EL2N score with a color map in Figure 2 (a), we can see
exactly how the boundary points have the highest difficulty scores. Next, we will connect the EL2N
score to the ∥yi − yj∥ objective.

Theorem 2 (EL2N lower bounds the label variability). Assuming a subset sample (xj ,yj) ∈ S is
located in a difficult region (e.g., near the decision boundary), where (i) the neighborhood Nj is
dense (∥xj − xi∥ ≤ δx,∀(xi,yi) ∈ Nj for |Nj | closest points) and (ii) the label variability is high
(p(∥yi − yj∥ > 0) ≥ ξ), the EL2N score produced by a smooth model (such as the initial model
η0(x;V) that we use) will lower bound the label variability in this neighborhood Nj .

Proof. For the initial model trained for a few epochs on the full set V , we denote it as η0. Given
a difficult region as specified by the theorem, we consider the closest neighbors xi and xj , which
implies δx ≈ 0. Assume that xj is correctly predicted: ∥yj − η0(xj)∥ ≈ 0. Then, we have

∥yi − yj∥ ≈ ∥yi − yj∥+ λη0δx ≥ ∥yi − yj − η0(xi) + η0(xj)∥
= ∥(yi − η0(xi))− (yj − η0(xj))∥
≈ ∥yi − η0(xi)∥ (3)

If xj is from a difficult region as specified by the theorem, then two conditions (i) and (ii) are
satisfied. Consider another data sample xj from the dense neighborhood where ∥xj − xi∥ ≤ δx,
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we have ∥η0(xj) − η0(xi)∥ ≤ λη0δx. Since δx → 0, we have η0(xj) ≈ η0(xi). On the other
hand, condition (ii) implies yi ̸= yj , so xi is likely to be wrongly predicted by the model. Then, the
∥yi − yj∥ term can be lower bounded by the difference between the model prediction and label of
the wrongly classified sample for the pair (xi,xj): ∥yj − η0(xj)∥. This way, in the most difficult
region, we can approximate the overall ∥yi−yj∥ by the expected difference between the prediction
and the label. More importantly, if the subset is populated in the most difficult region, this lower
bound will not change if we permute (xj ,yj) and (xi,yi) in the same neighborhoodNj (as long as
p(∥yi − yj∥ > 0) ≥ ξ) even if the wrongly classified samples are exchanged. We can then average
the expected difference between the prediction and the label, which resembles the definition of the
EL2N score EL2N = Et[∥η0(x) − y∥], where the expectation is taken over several undertrained
initial models θ(t)

V .

In Figure 2 (b), we show the averaged label variability |
∑

i∈Nj
∥yi − yj∥|/|Nj | in a random 10-

sample neighborhood setting (the values are scaled for visualization purpose). We can see that the
trend of label variability matches the EL2N score in the difficult regions as shown in Figure 2 (a).

3.2 DIVERSITY-DIFFICULTY BALANCED ONE-SHOT SUBSET SELECTION

Further analysis of the balanced core-set loss bound. The balanced core-set loss bound given in
(1) is comprised of two major components that correspond to feature similarity and label variability,
respectively. For a subset with a fixed size, the bound reveals that a good subset should keep both
terms small in order to obtain a tight loss bound. In this way, a model trained using such a subset
can be expected to perform similarly as a model trained from the full set, which essentially optimize
the l.h.s. of (1). Since the model property (especially λη) is unknown, a principled and fine-grained
mechanism is required to optimally balance these two components to make them jointly close to the
full set loss. Further, as the subset size changes, the contribution from the two components may vary
significantly, which in turn will affect the optimal balancing mechanism. In particular, when the
subset size is small, the first term tends to dominate the entire bound because if some major clusters
in the data distribution is completely missed, then all the data samples in the entire cluster will be
represented by some dissimilar data samples from different clusters. This will accumulate a large
feature difference that leads to a very loose bound. As the subset size increases and representative
samples are properly chosen from all major clusters, the label variability starts to make a more
obvious contribution to the overall bound. As revealed in our proof of Theorem 2, completely
missing a difficult region will lead to a large label difference, which will result in a larger loss
bound. Intuitively, missing samples from these regions will make the model lose the opportunity to
learn a fine-grained decision boundary to further improve the generalization performance.

Balancing diversity-difficulty through an expressive importance function. In order to have
fine-grained control for a balanced subset selection, we not only want to be able to control the target
difficulty level but also how much the selection method will emphasize on the chosen level. In other
words, we need a function to control both the peak and the sharpness of the selection. Accordingly,
we design an importance function I(·, ·) that includes two tunable parameters c and α, where c
controls the peak location w.r.t. the difficulty of data samples and α controls the sharpness:

I(xj ,yj) =

[
sin (π(Dj − c)) + 1

2

]α
(4)

where Dj ∈ [0, 1] denotes a difficulty metric such that Dj → 0 (Dj → 1)
for easy (difficult) samples, c ∈ [1.5, 2.5], and α ≥ 0 are the tunable parameters.
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Figure 3: Importance functions with fixed α = 1 and c = 2

A smaller value of c gives importance
to easier samples whereas a larger
value of c gives importance to the dif-
ficult samples. When α = 0, the
function is flat, assigning equal im-
portance to all samples and increas-
ing α will increase the sharpness.
Figure 3 presents a set of importance
functions with distinct shapes when
fixing α = 1 while varying c or fix-
ing c = 2 while varying α. The blue
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Figure 4: Subset selection for different subset sizes compared with the full set decision boundary.

(dot) plot in (a) gives priority to easier samples; the green (dash-dot) plot gives priority to difficult
samples; and the orange (dash) plot gives priority to moderately difficult samples. In (b), the blue
(dot) plot assigns uniform importance and the green (dash-dot) plot increases the sharpness of the
curve by increasing the value of α.

The rich expressiveness of the proposed importance function provides the flexibility to assign proper
importance to difficult or easier samples depending on the required subset size, according to our
analysis of the balanced loss bound. Hence, both the peak and sharpness parameters can be modeled
as a function over the subset size. In general, the parameter c increases as the subset size increases to
give more focus to difficult samples. This is because we should focus on the more difficult samples
and fine-tune the decision boundary when we can afford the additional budget. In contrast, for the
small budget regime, we keep α small, making the function more flat and encouraging diversity-
based selection. With a larger subset, α will not have a great impact as long as it is moderately
large. We conduct experiments on a synthetic dataset to demonstrate how the proposed importance
function can perform an optimally balanced subset selection as the size of the subset varies. The
results are shown in Figure 4. Given the extremely small subset size (1%), it is preferred to let
the model choose more diverse (and representative) data samples to cover a wide range of the data
space by setting α = 0. As the subset increases (3%→ 10%), the peak of I can be shifted to higher
difficulty levels by increasing both α and c. As can be seen, by training the model using a subset
that is only 10% of the full set, it can discover a decision boundary as shown in (c) really close to
the one using a model trained using the full set, as shown in (d).

Balanced subset selection Function. Combining the minimization of the diversity objective using
the maximization of the similarity between the full set and the subset, and the minimization of
the difficulty objective using our controllable importance function, we propose the balanced subset
selection function as:

F (S) =
∑
i∈V

max
j∈S

Sim(xi,xj)I(xj ,yj) (5)

where we use multiplication since we remain agnostic about the Lipschitz coefficients. Even with
our fine-grained difficulty control, there is still the risk of selecting noises especially when we target
the most difficult. To this end, we will adopt the cutoff mechanism as in (Zheng et al., 2023). In Eq.
(5), the ranges of c and α ensure the non-negativity of I. Thus, F (S) is a monotonically increasing
function and can be shown to be submodular. This allows us to use a lazy greedy algorithm to
approximate the optimum subset that can minimize F (S). The greedy algorithm starts with an
empty set S = ϕ and keeps on adding samples (xj ,yj) to subset S that maximizes the gain:

F ((xj ,yj)|S) = F (S ∪ (xj ,yj))− F (S) (6)

The pseudo code summarizing our implementation is described in Appendix C.

4 EXPERIMENTS

We conducted experiments on both synthetic and real-world data, aiming to further verify our pro-
posed important theoretical results through the former and demonstrate the superior empirical per-
formance through the latter. Limited by space, the synthetic experimental results are presented in
Appendix D.1. Our real data experiments are conducted using four datasets: SVHN, CIFAR10,
CIFAR100, and Tiny-ImageNet. We present both comparison result and a detailed ablation study.

Comparison baselines. We compare BOSS with seven baselines: 1) Random: The samples are
selected uniformly. 2) CRAIG: CRAIG is one of the first representative-based subset selections
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developed for classical models as well as deep learning models. It selects the subset by matching the
gradient update signals of the full set and the subset (Mirzasoleiman et al., 2020). 3) GradMatch:
GradMatch uses orthogonal matching pursuit algorithm to match the gradient of subset and training
set (Killamsetty et al., 2021a). 4) Adacore: Adacore uses hessian preconditioned gradient instead
of gradient (Pooladzandi et al., 2022). 5) LCMAT: LCMAT selects the subset such that they match
the loss curvature of the full set and the subset by matching the gradient and maximum eigenvalue
of hessian between the full set and the subset (Shin et al., 2023). 6) Moderate: Moderate core-set
introduces distance-based scores such that samples with features closer to the median of the features
of the related class is more important such that they keep the most important samples and prune the
unimportant ones (Xia et al., 2023). 7) CCS: CCS is coverage-centric core-set selection, which
choose data samples randomly across different strata of importance scores giving priority to sparse
strata (Zheng et al., 2023).

Table 1: Comparison results on subsets with different sizes
Dataset Subset Random CRAIG GradMatch Adacore LCMAT Moderate CCS BOSS(Ours)

10% 24.11±1.9 24.61±0.9 23.68 ±1.5 24.12±1.5 23.26±1.9 24.16±1.3 29.59±0.9 33.22±0.5

Tiny ImageNet 20% 37.67±0.3 37.76±0.6 38.20 ±1.3 37.94±0.6 36.71±0.8 37.57±1.1 40.42±0.6 45.73±0.4

30% 45.12±0.9 44.63±0.5 44.93 ±0.6 44.72±0.5 44.06±0.38 45.30±0.4 47.11±0.5 51.75±0.4

50% 53.07±0.7 53.03±0.6 53.81 ±0.2 53.37±0.4 53.10±0.4 53.31±0.4 55.11±0.3 57.88±0.2

10% 37.35±1.9 38.67±1.3 36.68 ±0.6 37.65±0.8 37.23±0.8 37.76±0.9 40.26±1.6 47.58±0.5

CIFAR 100 20% 51.55±2.6 51.44±1.7 53.16 ±2.2 52.79±0.8 53.11±0.3 50.90±1.9 55.48±1.8 61.44±0.7

30% 62.89±0.6 62.92±0.7 63.02 ±1.2 62.28±1.2 62.25±0.8 62.55±0.6 64.61±0.5 67.89±0.2

50% 70.67±0.3 70.69±0.5 70.68 ±0.4 71.19±0.3 70.53±0.4 71.13±0.2 71.53±0.3 74.03±0.3

10% 70.69±1.2 70.96±1.6 72.26 ±0.5 72.65±0.9 71.03±2.6 72.04±0.7 74.78±1.8 79.47±0.5

CIFAR 10 20% 83.27±1.2 83.36±1.5 84.30 ±0.9 84.30±1.2 83.98±1.3 83.64±0.8 86.45±2.1 87.82±0.9

30% 88.89±0.6 88.98±1.2 88.47 ±0.6 88.37±1.2 88.54±0.7 88.46±0.5 91.49±0.5 92.15±0.6

50% 92.69±0.2 92.75±0.3 91.89 ±0.4 92.67±0.5 92.58±0.2 92.61±0.2 93.45±0.5 94.36±0.2

8% 84.98±1.9 84.30±1.1 84.31 ±1.8 82.31±2.6 84.05±1.8 84.51±0.7 86.69±1.5 89.52±0.8

SVHN 12% 87.16±2.4 88.49±0.4 88.99 ±1.0 88.41±1.3 87.49±1.3 88.97±0.6 92.16±0.9 93.18±0.5

16% 90.47±0.7 89.92±0.9 90.42 ±0.8 90.34±0.8 90.16±0.6 90.35±1.1 93.87±0.5 94.31±0.3

20% 91.64±0.7 92.13±0.3 91.56 ±0.4 91.95±0.8 91.36±0.4 91.30±0.9 94.38±0.5 95.08±0.3

Experimental setup. Our experiment setup follows existing approaches, such as (Shin et al., 2023;
Guo et al., 2022; Zheng et al., 2023), where to select the subset, we first initialize a model by training
it using the full dataset for a limited number of epochs. Then using the training dynamics obtained
from the initialized model, we obtain the difficulty score for each sample which is used to select the
subset. We then evaluate the selected subset by keeping the subset fixed and using the subset to train
a new randomly initialized model. For the difficulty score, we mainly experiment using the EL2N
score because it can be computed efficiently early on during the training. The features, gradients,
and Hessians are computed from the second-last layer of the network. The baselines vary in the way
they select the subset. For the model, we train the ResNet18 model (He et al., 2016) using SGD
with a learning rate decay of 5 × 10−4, starting learning rate of 0.1, and momentum of 0.9. We
use ResNet34 for the Tiny ImageNet dataset. We use a batch size of 256. To compute the EL2N
score, we use the training dynamics up to the first 10 epochs of the initial training. Similarly, we use
the feature representations, gradients, and Hessians of epoch 10 of the initial training. The reported
results are averaged over five runs. For our method, we sample the subset in a class-balanced fashion.
Additional details of experimental setup can be found in the Appendix.

Performance comparison. Table 1 show the result for the four datasets as compared to the base-
lines. Our method systematically integrates both diversity and difficulty while performing a bal-
anced selection according to the subset size and the nature of dataset. As a result, it significantly
outperforms all the competitive baselines, especially on the low budget regime. The performance
difference decreases as the subset size increases because there is less room for improvement.

Impact of key parameters. In order to show the behavior of the importance function, we run
experiments over different values of c and α and present the results in Figure 5 (a) and (b). Their
optimal values depend on the subset size and the complexity of the dataset. The parameters c, and α
control the importance given to certain difficulty levels in their own unique ways. For smaller subset
sizes, the best value of c is lower whereas it is higher for a larger subset. This is equivalent to giving
more importance to difficult samples when the subset size is larger and more importance to easier
samples when the subset size is smaller. For α, when we have a larger subset size, by increasing the
value of α, we can increase the sharpness of the importance function to select more points from the
difficult region. Additional results are presented in the Appendix.
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Table 2: Ablation study results
Dataset Subset Diversity Difficulty (EL2N) Diversity + Difficulty Diversity + Difficulty + Cutoff

10% 24.04±1.1 3.39±0.3 32.12±0.9 33.22±0.5

Tiny ImageNet 20% 37.63±0.9 7.75±0.5 43.49±0.6 45.73±0.4

30% 44.47±0.9 20.92±1.9 48.39±0.5 51.75±0.4

50% 52.78±0.2 44.42±0.6 54.83±0.1 57.88±0.2

10% 36.69±0.6 7.11±0.4 47.68±0.8 47.58±0.5

CIFAR 100 20% 52.04±0.9 14.78±0.5 59.66±0.8 61.44±0.7

30% 62.41±0.3 31.99±1.1 66.60±0.7 67.89±0.2

50% 70.18±0.1 65.73±1.0 72.35±0.3 74.03±0.3

10% 72.17±0.9 22.26±0.4 78.45±0.5 79.47±0.5

CIFAR 10 20% 84.10±1.0 41.95±1.9 85.82±0.4 87.82±0.9

30% 88.63±0.4 78.75±6.4 88.81±0.4 92.15±0.6

50% 92.52±0.5 94.41±0.2 94.42±0.2 94.36±0.2

8% 83.96±2.5 63.00±1.9 87.99±0.5 89.52±0.8

SVHN 12% 89.02±1.2 77.68±1.2 91.97±0.7 93.18±0.5

16% 89.83±0.9 81.83±1.7 93.45±0.3 94.31±0.3

20% 91.27±0.6 84.84±1.1 93.39±0.4 95.08±0.3
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Figure 5: The impact of key parameters with respect to the subset size

To ensure a fair comparison with CCS, we also leverage the cutoff rate parameter β. Figure 5(c)
shows that β should be set higher for a small subset size to avoid choosing noisy or outlier samples.
This can ensure a more robust subset of data samples to be selected.

Ablation study. Our ablation study investigates the following parts: 1) the Diversity component,
where we minimize the distance between xi and xj ; 2) the Difficulty component, where we select
samples based on their difficulty scores; 3) Diversity+Difficulty, which performs sample selection
based on the proposed balanced subset selection function F ; and 4) Diversity+Difficulty+Cutoff,
where we further prune the potential noisy examples while balancing diversity and difficulty. Table 2
shows the ablation study results. Only using the Diversity component, which selects the representa-
tive samples has sub-optimal performance since it does not consider any difficulty-level information
of the datasets. Furthermore, only using the Difficulty component has the worst performance, espe-
cially for the low budget regime. This is because the selection is highly biased towards those difficult
samples, which causes a large feature difference, leading to a very loose loss bound, as our analysis
shows. When combining the difficulty and diversity through the proposed importance function, the
performance improves by a large margin. Integrating the cutoff mechanism can slightly improve the
performance, especially for those more complex datasets, such as Tiny ImageNet. This is because
those datasets may likely contain noisy or outlier samples, which if selected, could negatively impact
the quality of the subset.

5 CONCLUSION

Subset selection is a promising direction in solving the problem of increasing resource consumption
by large deep learning models. Existing subset selection methods have limitations because their se-
lection criteria do not consider a joint distribution of data diversity and difficulty. We propose a novel
subset selection strategy that systematically integrates both diversity and difficulty supported by a
balanced core-set loss bound. The novel loss bound also suggests important relationship between
the difficulty of the selected sample and the subset size, which leads to an expressive importance
function that enables us to select appropriate samples according to the subset size. Our theoretical
analysis along with the empirical results on synthetic and real-world data demonstrate the greater
effectiveness of BOSS compared with the competitive baselines.
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Appendix
Appendix A summarizes the major notations used in the main paper. Appendix B provides detailed
proofs of our main theoretical results. Appendix C describes our subset selection algorithm. Ap-
pendix D provides additional experimental details, link to the source code, results for synthetic data,
and ablation studies on real-world data. Appendix E summarizes the limitations and societal impact
of the proposed method.

A SUMMARY OF NOTATIONS

Table 3: Summary of Notations

Symbol Description
V Set of all the training samples (Full Set)
S Set of samples that are selected (Subset)
λ Lipschitz parameter
η Neural network regression function
xi Input feature of a sample in the Full-set
yi True label of a sample in the Full-set
xj Input feature of a sample in the Subset
yj True label of a sample in the Subset
θS Model trained on the Subset
l(·) Loss function
γ Probability for Hoeffding’s inequality
L Upper bound for the loss function
C Number of classes

F (·) Balanced subset selection function
Sim Similarity function

I(xj ,yj) Importance score of sample j
Dj Difficulty score of sample j
c Parameter controlling peak of importance function
α Parameter controlling the sharpness of importance function
β Hard cut-off rate

B PROOFS OF THEORETICAL RESULTS

In this section, we provide detailed proofs for the proposed theorems in the main paper. We have
introduced the balanced core-set loss bound in Section 3.1. Here we first expand the loss bound
derivation and analysis and then provide detailed proofs for Theorem 1.

B.1 OUR TAKE ON THE CORE-SET LOSS BOUND

In (Sener & Savarese, 2018), the authors proposed the classic core-set cover loss bound, in the active
learning setting. The first step is to upper bound the true expectation of generalization loss by the
full set loss, which is shown in:

Ex,y [l(η(x),y;θ)] ≤

∣∣∣∣∣Ex,y [l(η(x),y;θ)]−
1

|V|
∑
i∈V

l(η(xi),yi;θS)

∣∣∣∣∣
+

1

|V|
∑
i∈V

l(η(xi),yi;θS) (7)

Same as (Sener & Savarese, 2018) and (Zheng et al., 2023), we adopt this approach and focus on
the expectation of the full set loss. However, differently from their approach, we formally tailor
the problem in the known full set setting. In our case, all data samples (xi,yi) ∈ V are treated
as known, and the unknown is the model θS trained on the subset (and the corresponding outputs

13



Under review as a conference paper at ICLR 2024

η(xi)), which corresponds accurately to the subset selection problem. For the same reason, we
denote the loss function by l(η(xi),yi;θS). Next, we also apply the Hoeffding’s bound to analyze
the full set loss. However, unlike (Sener & Savarese, 2018) and (Zheng et al., 2023) which reached
loose conclusions by bounding the feature difference ∥xi−xj∥ using the core-set cover, we consider
the joint effect over both the feature and the label, arriving at a balanced core-set loss bound which
will be explained below.

B.2 PROOF FOR THEOREM 1

Proof. We obtain the inequality in Eq. (1) by applying the Hoeffding’s bound:

If X1, X2, ..., Xn are independent and ai ≤ Xi ≤ bi almost surely, then the sum Sn = X1+...+Xn

satisfy

P (Sn − E[Sn] ≥ t) ≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
(8)

In Theorem 1, we apply the above inequality to the full set loss
∑

i∈V l(η(xi),yi;θS) by substitut-
ing Sn =

∑
i∈V l(η(xi),yi;θS) and using 0 ≤ l(η(xi),yi;θS) ≤ L (L being the maximum loss

value):

P

(
1

|V|
∑
i∈V

l(η(xi),yi;θS)− E

[
1

|V|
∑
i∈V

l(η(xi),yi;θS)

]
≥ t

|V|

)
≤ exp

(
− 2t2

|V|L2

)
(9)

Let γ = exp
(
− 2t2

|V|L2

)
, then with probability 1− γ,

1

|V|
∑
i∈V

l(η(xi),yi;θS)− E

[
1

|V|
∑
i∈V

l(η(xi),yi;θS)

]
≤ t

|V|
(10)

Rearranging and solving for t, we get

1

|V|
∑
i∈V

l(η(xi),yi;θS)− E

[
1

|V|
∑
i∈V

l(η(xi),yi;θS)

]
≤ L

√
log(1/γ)

2|V|
(11)

Next, we explain the expectation of the full set loss and obtain the balanced combination result:

E

[
1

|V|
∑
i∈V

l(η(xi),yi;θS)

]

=
1

|V|
∑
i∈V

E[|l(η(xi),yi;θS)− l(η(xj),yi;θS) + l(η(xj),yi;θS)− l(η(xj),yj ;θS)|]

≤ 1

|V|
∑
i∈V

E[|l(η(xi),yi;θS)− l(η(xj),yi;θS)|+ |l(η(xj),yi;θS)− l(η(xj),yj ;θS)|]

=
1

|V|
∑
i∈V

(
E[|l(η(xi),yi;θS)− l(η(xj),yi;θS)|]

+ E[|l(η(xj),yi;θS)− l(η(xj),yj ;θS)|]
)

(12)

which has been broken into two terms.

For the first term E[|l(η(xi),yi;θS) − l(η(xj),yi;θS)|], we utilize the Lipschitzness of
the model combined with the Lipschitzness of the loss function to get E[|l(η(xi),yi;θS) −
l(η(xj),yi;θS)|] ≤ E[λη∥xi − xj∥]. The expectation should be taken over the model predic-
tion η(k)(xi), and will result in a class-irrelevant term for

∑
k η

(k)(xi) = 1 if we use loss functions
like the cross-entropy loss so that λη(k)

is the same for all k.

For the second term E[|l(η(xj),yi;θS) − l(η(xj),yj ;θS)|] we directly use the Lipschitzness of
the loss function w.r.t. y and it is independent from η(xi) so we have λy∥yi − yj∥.
Substituting all the above terms back and we will obtain Eq. (1).
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B.3 ANALYSIS OF THEOREM 2

In Theorem 2, we connect the EL2N score to the expected label variability in a neighborhoodNj of
a subset point (xj ,yj). Unlike Theorem 1, which is more general about the loss on full set V , this
connection is specifically made in the difficult region.

Remark (2.1). Why is it important to consider the difficult region?

We have defined the difficult region as dense and having high label variability. This is because we
really focus on the disadvantage of only considering the diversity aspect or the difficulty aspect.
Intuitively, if the true distribution of (x,y) is clearly separated and smooth, using a few samples
can perfectly explain the classification problem as long as all classes are represented. However, if
there exists a difficult region such that ∥xj − xi∥ ≤ δx and p(∥yi − yj∥ > 0) ≥ ξ, then it poses a
challenge for both single-sided approaches: a diversity-only approach can not identify informative
data samples that help learn the decision boundary in this difficult region, while a difficulty-only
approach will be highly biased towards this region and won’t be able to efficiently represent the ma-
jority of samples which are easy to classify. We will present more visualizations using the synthetic
dataset in Appendix D.1. Thus, it takes a delicate balancing to improve the overall objective in (1)
when the difficult region exists.

Remark (2.2). How do we utilize the EL2N score to explain the label variability?

In the proof of Theorem 2, we present an approximately lower bounding relationship between the
label difference between yi and yj and the EL2N score of the wrongly classified sample (xj ,yj). If
we assume that the neighborhoodNj includes (xi,yi), (xj ,yj), and {(xn,yn)}

|Nj |−2
n=1 . With p ≥ ξ,

we have yi ̸= yj , thus flipping them will likely flip the model prediction for all xn. When we take
the expectation over all samples inNj , the averaged ∥yi − yj∥ will be connected to the distribution
of the EL2N scores of these data samples which is the expectation over a series of models θ(t)

V .

C ALGORITHM

Algorithm 1 BOSS (Balanced One-Shot Subset Selection)
Initial Training

Input: Dataset V
Output: Difficulty score Di, feature vector xi

1: Initialize full set model θV
2: Train θV on V
3: From θV obtain η(xt

i), y
t
i for each epoch t ∈ [1, T0]

4: From θV obtain xi for epoch T0.
5: Compute EL2N Score Di using η(xt

i), y
t
i

6: return Di, xi

Subset Selection
Input: Dataset V , Subset size b, difficulty score Di, input feature xi

Parameter: Hard example prune rate β, importance function parameters c and α
Output: Subset S

1: Ii ← ((sin (π(Di − c)) + 1)/2)
α {Convert difficulty score to importance score}

2: V ′ ← V \ {|V| ∗ β hardest samples} {Prune hardest samples}
3: S ← ϕ {Start with an empty subset and add to the subset until we reach the budget for the

subset:}
4: while |S| < b ∗ |V| do
5: F (S) ←

∑
i∈V maxj∈S Sim(xi,xj)Ij {Compute the facility location function from the

feature similarity and sample importance}
6: j ∈ argmaxe∈V\SF (e|S) {Using lazy-greedy algorithm, select sample j which gives us the

maximum conditional gain F (e|S)}
7: S ← S ∪ {j} {Update the subset with the new element}
8: end while
9: return S
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Our method has three main components, 1) Initial training where we first train a model to generate
training dynamics from which we can compute the importance scores, 2) Generating importance
score from the training dynamics, and 3) Selecting Subset and evaluating the subset by training a
new model using the selected subset. Details are provided in Algorithm 1.

D ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

We perform our experiments on machines with GPUs: A100, V100, and P4. In our experiments,
when combining the difficulty and diversity, we show the results for using the EL2N score (Paul
et al., 2021) as a difficulty metric. The EL2N score is calculated in the initial training phase by
averaging the error norm over the first 10 epochs. To leverage the cutoff, the Accumulated Margin
(AUM) metric (Pleiss et al., 2020) is leveraged, for which we need to train the model for the full
epoch (200 epoch for CIFAR10 and CIFAR100, and 100 epoch for Tiny ImageNet and SVHN). Our
implementation details and source code can be found here.

D.1 SYNTHETIC DATA EXPERIMENTS

We create the synthetic data to include four moons with two input features such that we can visualize
and simulate the complex decision boundary. The synthetic data is visualized in the Figure 3. The
dataset has 2000 samples which are split into 80/20 train/test sets. For the model, we use a fully
connected neural network with two hidden layers each containing 100 neurons. To train the neural
network we use Adam optimizer with a learning rate of 0.001, ϵ = 1e-08, and weight decay = 0. For
the full set, we train the model for 100 epochs. The model reaches a test accuracy of 98.25% while
training on the full data.
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Figure 6: Decision Boundary Evolution

Decision boundary evolution. Figure 6 shows the evolution of the decision boundary along with
the difficulty level of each data point for every epoch. The difficulty is calculated using the EL2N
score which is the L2 norm of prediction and the onehot label and averaged over the previous epochs.
As we train the model for a higher number of epochs, the model is able the learn complex decision
boundaries or the curved region and most of the samples become easier or has low EL2N score.
However, the difficulty score computed at the earlier epochs, for instance at epoch 10, truly captures
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the difficulty level of samples along the decision boundary. This agrees with the past methods which
compute the EL2N score at epoch 10.
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Figure 7: Difficulty score, feature distance, and label variability comparison. All values are scaled
to 0 to 1 for better visualization. (c) Label variability 1 and (d) Label variability 2 are permutations
of Figure 2(b) by randomly changing the data samples included in the 10-sample neighborhood.

Label variability visualization Following Appendix B.3, we visualize the terms that have been
discussed in our theoretical results using the synthetic dataset.

In Figure 7, we visualize the difficulty score, feature distance, and label variability with random
permutations to the anchor points being used as (xj ,yj) in the 10-sample neighborhood case. From
Figure 7 (a) and (b), we see that the difficulty score does not correlate with the feature distance,
and the feature distance is not informative in the difficult region, where the distance is consistently
low because it is the denser area. From Figure 2 (b) and Figure 7 (c) and (d), we can see that even
with different permutations, the label variability shares the same trend as the difficulty score near
the decision boundary.
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Figure 8: Difficulty score and 1(yi ̸= yj ; j = argmaxn∈S Sim(xn,xi)) comparison, where red
triangles represent data samples in S.

In Figure 8, we show a different visualization presenting the actual label differences between the
full set and the subset if we choose from different regions. Figure 8 (b) shows a diverse selection,
while Figure 8 (c) and (d) show two different biased selections. In all cases, the data samples
near the decision boundary have a different label from the nearest sample in S (1(yi ̸= yj ; j =
argmaxn∈S Sim(xn,xi))=1). This further supports our motivation as allocating the budget to cover
the more difficult region does not guarantee the reduction of the label variability objective in the loss
bound given in (1) unless we can cover all these samples. Thus, it is important that we propose the
balanced selection function.

Impact of the subset size to the balanced core-set bound. In the main paper, we state that the
subset size will affect the optimal diversity-difficulty balance: in data data-scarce regime, the diver-
sity dominates while as the subset budget increases, more difficult samples should be picked. To
more clearly show how the subset size impacts the balanced core-set loss bound, we quantify and
visualize the two major components in the loss bound:

∑
i ||xi − xj || and

∑
i ||yi − yj ||, which

essentially captures the feature distance and label distance between the selected subset and the full
set, respectively. As can be seen from Figure 9 (a), for a small subset size, when choosing the
subset based on the label variability (or difficulty), it can help to quickly reduce the label distance.
However, it also leads to a very large feature distance that makes the overall bound large. Figure 9
(b) further confirms this because the selected samples misses some major regions of the data dis-
tribution as stated in the main paper. In contrast, when focusing on choosing samples based on the
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Figure 9: Trend of the two major components in the balanced core-set loss bound: (a) feature and
label distance trends by label variability based selection; (b) first 16 samples selected based on label
variability; (c) feature and label distance trends by focusing on diversity first; (d) first 16 samples
selected based on feature similarity

first component (i.e., diversity), the feature distance drops significantly as shown in Figure 9 (c),
which implies that the selected subset can represent the entire data distribution well. This is further
confirmed by Figure 9 (d), which visualizes the distribution of the selected data samples. As more
samples are selected, they will start to cover the difficult regions, which can effectively bring down
the label distance as shown in Figure 9 (c).

BOSS Subset selection comparison. Here we include the subset selection visualization and com-
parison for the synthetic dataset. The red circles are the samples selected in the subset. We already
saw the comparison of CSS and BOSS for the 10% subset in Figure 1. Here we further compare
these methods for 1% and 3% subset sizes. In all the cases, BOSS outperforms CCS.

Figure 10 compares the subset selected by CCS and BOSS for 1% subset size. In this case, BOSS
can select the diverse samples by setting α = 0. Although the model cannot learn the complex
decision boundary because of the lack of enough data, the CSS misses samples from the important
regions and learns an even worse decision boundary.
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Figure 10: CCS vs BOSS for 1% Subset Size for the synthetic data. For CCS, β = 0.1. For BOSS,
β = 0 and α = 0 which is the same as only using representative-based selection.

Similarly, Figure 11 compares CCS and BOSS for a 3% subset size. This figure also verifies that
the CCS misses the samples from the critical region that our method is able to capture. In turn our
method learns the complex decision boundary to achieve better performance than the CCS baseline.

Figure 12 shows the comparison of the subset selected by the representative-based method which
matches the feature of the subset and the full set (Diverse) compared with the subset selected by
our method. The representative-based subset selection does not consider the sample difficulty which
leads it to ignore samples from a very difficult region. However, our method is able to give more
emphasis on the difficult region to better learn the decision boundary.
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Figure 11: CCS vs BOSS for 3% Subset Size for the synthetic data. For CCS, β = 0.1. For BOSS,
β = 0, c = 0.5, and α = 1
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Figure 12: Visualization of representative-based subset selection compared with our method. The
red circles are the points selected for the subset. The subset size is 10% and β = 0. For Diverse,
α = 0 and for BOSS, α = 1, and c = 0.8.

D.2 ADDITIONAL ABLATION STUDY

Table 4: Comparison of CCS and BOSS for Tiny ImageNet while using different difficulty metrics.

EL2N Forgetting AUM
Subset CCS BOSS CCS BOSS CCS BOSS
10% 29.59±0.9 33.22±0.5 30.44±1.7 33.78±1.3 31.51±1.2 33.47±0.7

20% 40.42±0.6 45.73±0.4 42.75±0.9 45.56±0.6 42.05±0.4 45.80±0.6

30% 47.11±0.5 51.75±0.4 48.61±0.7 51.81±0.2 48.92±0.1 52.11±0.3

50% 55.11±0.3 57.88±0.2 55.91±0.5 57.82±0.3 55.74±0.4 57.79±0.3
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Figure 13: The impact on performance when c is fixed while varying the value of α.
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Other difficulty metrics. Table 4 shows the comparison between CCS and BOSS while using
EL2N (Paul et al., 2021), Forgetting (Toneva et al., 2019), and Accumulated Margin(AUM) (Pleiss
et al., 2020) for the difficulty metric. For a fair comparison, we compare CCS and BOSS for each
difficulty metric separately. Our method (BOSS) outperforms CCS for every difficulty metric.

Impact of α. In the main paper, we have already discussed the impact of the key parameters.
Although we have clear guidance for setting c as it is closely related to the subset size |S|, the
selection of best α is less explicit. However, we can see that in general we still prefer smaller α
in the small subset size case because we want the importance function to be flat and better focus
on diversity-based selection, and we prefer moderately larger α to allow more expressive selection
based on the difficulty. In Figure 13, we show the change in performance as we change the parameter
α and keep the parameter c fixed to the best value for the given subset size and the dataset. For
the larger subset sizes, the change in α has a minor effect on the performance when compared to
smaller subset sizes, and less obviously for the more difficult datasets (Tiny ImageNet and CIFAR
100) where the difficulty levels may have a good separation. Thus, we can verify that α is mostly
useful for the fine-tuning of subset selection especially given a small subset size, and becomes less
sensitive for larger subset sizes.

Table 5: EfficientNet-B0 results for CIFAR100

Subset Random Moderate CCS BOSS
10% 30.51±1.0 32.59±1.3 36.91±2.2 42.64±0.6

20% 43.52±1.9 42.04±2.2 46.53±3.7 53.39±0.3

30% 55.48±0.7 55.26±1.7 56.89±0.3 60.37±0.4

50% 64.05±0.7 63.91±0.3 63.59±0.5 68.27±0.5

Table 6: ViT-B16 results for CIFAR100

Subset Random Moderate CCS BOSS
10% 78.49±0.7 50.41±0.7 78.62±0.3 79.97±0.4

20% 81.87±0.7 69.81±0.5 81.95±0.8 83.19±0.1

30% 83.98±0.2 77.66±0.5 84.93±0.1 85.08±0.1

50% 85.88±0.1 84.19±0.0 85.88±0.1 86.55±0.1

D.2.1 RESULTS FOR OTHER MODELS

In Tables 5 and 6, we evaluate our method on two additional models: EfficientNet-B0 (Tan & Le,
2019) and a vision transformer ViT-B16 (Dosovitskiy et al., 2021). For EfficientNet, we use our
previously mentioned setting. For ViT, we use pre-trained weights, batch size of 128, learning rate
of 0.01, and train for 12 epochs. We compare with the two most recent and competitive baselines
(CCS (Zheng et al., 2023)), Moderate (Xia et al., 2023)) and Random. Our method performs better
than the baselines for both models. The performance margin for ViT is lower because we are using
pre-trained weights and the room for improvement is small. Nonetheless, we show the usefulness of
our method for other models than ResNet.

Table 7: Imbalanced CIFAR100 using exponential decay

Subset Random Moderate CCS BOSS
10% 27.39±0.9 25.37±1.7 29.41±0.5 36.63±0.9

20% 42.82±1.1 40.57±0.6 44.36±1.7 50.91±0.6

30% 52.51±0.7 50.00±3.0 50.87±1.4 57.15±0.5

50% 63.03±0.6 61.76±0.2 61.86±0.5 66.72±0.1

D.2.2 IMBALANCED DATA

Tables 7 and 8 show the result for class imbalanced data. We make CIFAR100 imbalanced in two
ways. First (7), by using exponential decay Nci × e−0.01i where Nci is the number of samples
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Table 8: Imbalanced CIFAR100 using step

Subset Random Moderate CCS BOSS
10% 31.66±0.7 27.02±0.7 33.60±0.9 38.72±0.9

20% 47.36±0.9 41.77±2.9 46.82±0.6 53.75±0.3

30% 56.64±0.2 52.31±0.6 52.81±1.1 58.37±0.4

50% 62.19±0.9 59.96±0.7 60.25±0.2 66.03±0.2

for class ci. Second (8), by pruning 80% of data from 20% of classes. Our method has better
performance compared to the baselines in both of the settings. It is interesting to note that random
is also competitive and even better in some cases compared to the other baselines.

Table 9: Time comparison in seconds.
Dataset Subset Size Subset Selection Subset Selection Subset Training Full Set Training

(Initial Training) (Selection Algorithm)
10% 9 346

CIFAR100 20% 219 13 587 4387
30% 14 800
50% 15 1816
10% 11 342

CIFAR10 20% 173 19 571 3468
30% 22 801
50% 27 1244

D.2.3 TIME COMPARISON

In Table 9, we compare the time taken by our method for Subset Selection and Subset Training.
The Subset Selection consists of initial training for 10 epochs on the full data, and the lazy greedy
algorithm to select the subset. The Subset Selection time is shorter compared to training on the
subset (Subset Training) and also takes a very short time compared to training on the full set (Full
Set Training). The time for the subset selection algorithm (time excluding the initial training) is
significantly small compared to the initial training time and also does not require GPU computation.
We measure the time in seconds using NVIDIA RTX A6000 GPU for CIFAR10 and CIFAR100
datasets.

E LIMITATIONS AND SOCIETAL IMPACT

In this paper, we have proposed a balanced one-shot subset selection method (BOSS). While using
the subset reduces the resource consumption by large deep learning models, we should consider the
change of information from the full set to the subset and the potential biases the selection might
introduce. We should also carefully deploy the balanced selection method as data diversity and in-
formativeness (difficulty) are being explicitly controlled. In real-world applications, only preserving
the subset could be beneficial if the above aspects are well-considered, and can prove to be useful in
scenarios such as continual learning and various socially impactful deep learning applications.
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