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DEMOS: Clustering by Pruning a Density-Boosting
Cluster Tree of Density Mounts

Junyi Guan , Sheng Li , Xiaojun Chen , Xiongxiong He , and Jiajia Chen

Abstract—Most existing clustering algorithms require presetting
cluster number and often fail to capture complex shapes. Herein,
we propose a clustering algorithm by pruning a density-boosting
cluster tree of density mounts—DEnsity MOuntains Separation
clustering algorithm (DEMOS). A cluster is assumed to be a
density-connected area with multiple (or a single) density mounts
(i.e., single-peak clusters) and a relatively large dis-connectivity
from density-connected areas of higher densities. Based on this
assumption, DEMOS can easily detect the number of clusters and
robustly reconstruct their complex shapes. It first builds the dataset
into a peak graph, where each density peak represents a density
mount. A multi-valley-link-based connectivity estimation method
is embedded to efficiently estimate the connectivity between density
peaks during peak graph building. Then, by applying a new linkage
metric designed based on our assumption, DEMOS builds density
mounts into a reasonably density-boosting cluster tree. After ob-
taining a robust center detection in a clarity-enhancing decision
graph (i.e., a two-dimensional plot for detecting centers), DEMOS
prunes the cluster tree into final clusters to finish clustering. Exper-
imental results on both synthetic and real datasets demonstrated
the effectiveness of DEMOS and its applicability to large-scale data
clustering.

Index Terms—Clustering, complex shape clustering, cluster
number detection, density peak.

I. INTRODUCTION

C LUSTERING that aims to group similar objects is a vital
unsupervised learning technique for data mining [1], [2],

which has been applied to different areas, such as computer
vision [3], [4], pattern recognition [5], [6], image processing [7],
[8], machine learning [9].

An ideal clustering can reasonably identify the number of
clusters and accurately reconstruct cluster shapes. Different
clustering methods have been proposed based on specific as-
sumptions regarding the nature of a “cluster” [9], which can
be classified as partitioning, hierarchical, density-based, graph-
based, etc [11].
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K-means [12] is one of the most popular partitioning clus-
tering methods. It aims to partition a dataset into K clus-
ters to minimize the total distance sum of points to cluster
centroids (centers). Despite the simplicity and efficiency of
K-means in clustering hyperspherical shapes, it is unsuitable
for non-spherical shapes [10]. Kernel K-means [13], [14], [15]
can capture non-spherical shapes by applying kernel meth-
ods to transform non-spherical shapes into linearly separable
spherical shapes. Nevertheless, these K-centers techniques re-
quire presetting the number K of clusters. Some density-based
clustering methods that view a cluster as a set of maximum
density-connected points can reconstruct non-spherical shapes
of clusters without presetting the number of clusters [16], [17],
[18]. But these methods may possibly merge highly overlapping
clusters [19].

Hierarchical clustering that aims to build a cluster tree (i.e.,
a dendrogram) according to a specific (dis)similarity matrix of
data is suitable for capturing non-spherical shapes [10]. One of
the most classic hierarchical clustering methods is linkage-based
clustering, which builds a cluster tree according to a specific
linkage metric.

For example, Single-linkage [20] views the minimum member
distance between clusters as the linkage metric can detect link
shapes but is sensitive to outliers, while Complete-linkage [21] is
insensitive to outliers and views the maximum member distance
between clusters as the linkage metric. Although these methods
effectively identify non-spherical shapes, a given number of
clusters is required to prune the cluster tree, similar to the
parameter K in K-center techniques.

In 2014, Science published a remarkable linkage-based
clustering algorithm—the density peak clustering algorithm
(DPC) [22]. DPC builds a cluster tree according to its special
density-distance-based linkage metric. It assumes that a cluster
center is a density peak that should have a higher density ρ than
its surrounding points and have a far distance δ away from higher
density areas. Based on its assumption, DPC cuts the cluster tree
into clusters via a decision graph (i.e., a ρ-δ plot for detecting
centers). For its excellent detection of the number of clusters
and reconstruction of non-spherical shapes, DPC is recognized
as a promising and concerned clustering algorithm [25], [26].

Nevertheless, DPC’s linkage metric is unsuitable for complex
non-spherical shapes reconstruction [29], and its decision graph
may unclearly display the real cluster centers in dealing with
multi-peak clusters. In other words, DPC’s center detection
method is not robust for multi-peak clusters [27], [28]. Although
different improved methods [29], [30], [31], [32], [33], [34],
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TABLE I
NOTATIONS AND DEFINITIONS USED IN THIS PAPER

[35], [36], [37] were proposed, based on DPC’s cluster center
assumption, their cluster center detections were still not robust
when dealing with multi-peak clusters. Note that most DPC-
based methods are unsuitable for large-scale datasets due to high
time-consuming, like most hierarchical clustering algorithms.

Herein, a clustering algorithm by pruning a density-boosting
cluster tree of density mounts—DEnsity MOuntains Separation
clustering algorithm (DEMOS1) is proposed, which executes
linkage-based clustering on a sparse density peak graph (here-
inafter, a peak graph). DEMOS views a cluster as a density-
connected area with multiple (or a single) density mounts and a
relatively large dis-connectivity from density-connected areas of
higher densities. A density mount refers to a single-peak local
cluster, i.e., a local cluster with only one density peak as the
cluster center. DEMOS can fast capture complex non-spherical
shapes and has robust center detection performance when deal-
ing with multi-peak clusters. The main contributions of DEMOS
are as follows:

1) A cluster is assumed to be a density-connected area with
multiple (or a single) density mounts and a relatively
large dis-connectivity from density-connected areas of
higher densities. So, DEMOS can reasonably reconstruct
complex shapes to obtain a robust center detection perfor-
mance by clearly displaying the real cluster centers in our
decision graph.

2) A novel linkage metric is designed to build a cluster tree of
density peaks, and a multi-valley-link-based connectivity

estimation method to achieve a fast connectivity estima-
tion of density peaks with high fidelity.

3) DEMOS obtains robust performance in center detection,
because our decision graph can better highlight cluster
centers by further expanding the difference between cen-
ters and non-centers.

4) DEMOS is suitable for large-scale data clustering with
only requiring kNN distances of data as input.

The rest paper is composed as: Section II is the related
works; Section III mainly focuses on the proposed DEMOS
algorithm; Section IV displays the experiment and discussion;
and Section V gives the final conclusion.

II. RELATED WORKS

A. Notations

Table I lists the major symbols and notations used in the
following parts.

B. Linkage-Based Clustering

Given a dataset X = {x1, x2, . . . , xn | xi ∈ Rd}, and let
C(t) = {C1, C2, . . . , Cn−t} denote the cluster set of the t-th
iteration, where Cy means y-th cluster in C(t),

⋂n−t
y=1 Cy =

∅,
⋃n−t

y=1 Cy = X , and C(0) means the initial cluster set.

1The code is available at https://github.com/Guanjunyi/DEMOS
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Linkage-based clustering first views each point as a single-
ton cluster, i.e., t = 0, and then iteratively merges the most
similar cluster pair into one cluster according to a specific
linkage metric, i.e., C(t) ← C(t+1), t← t+ 1; finally, when
all data are merged into a given number nc of clusters, i.e,
t = n− nc, clustering is done. For exmaple, at t-th iteration,
the most similar cluster pair Ci and Cj ∈ C(t) = {Ci, Cj , . . .}
are merged into one cluster C∗ = {Ci, Cj}, then have C(t+1) =
(C(t) \ {Ci, Cj}) ∪ C∗, indicating that |C(t)| − |C(t+1)| = 1
(where | · | denotes the number of elements in one set). Sub-
sequently, cluster set C(t) and iteration number t are updated to:
C(t) ← C(t+1), t← t+ 1.

The core of a linkage-based method is its linkage metric,
that is, a specific pair-wise dissimilarity measure between two
clusters.

1) Single-Linkage Clustering: Single-linkage cluster-
ing [20] is one of the most popular linkage-based clustering
techniques. It treats the minimum membership distance
between clusters as their dissimilarity, that is, the linkage metric
of Single-linkage, denoted as Ds, as defined in (1), where
dij = ||xi − xj ||2 indicates the euclidean distance between
points xi and xj .

Ds(Cy, Cz) = min
xi∈Cy,xj∈Cz

dij (1)

Let G(X,E,w) be a weighted complete graph of dataset
X , where E = {eij |xi, xj ∈ X}, and edge weight function
w : E → R+, w(eij) = dij . Single-linkage essentially builds a
minimum spanning tree (MST)TG of graphG, as in (2), and then
cuts the tree into a given number of clusters with the minimum
sum of weights. Where T (G) means all spanning trees of graph
G, and E(T ) means all edges in tree T .

TG = argmin
T∈T (G)

∑
e∈E(T )

w(e) (2)

2) Density Peak Clustering: DPC [22] inherits the main idea
of Mean-shift [23]—to search local density maxima (density
peaks) as cluster centers, but unlike Mean-shift that views all
density peaks as centers, DPC selects appropriate centers based
on its center assumption.

As a linkage-based clustering method with a specific density-
distance-based linkage metric, DPC calculates point xi’s local
density ρi and distance δi from its nearest higher density point,
as in (3) and (4), respectively, where the “cutoff distance” dc
is user-specified [22]. For the highest density point xi, its δi =
maxxj

(dij).

ρi =
∑
xj∈X

χ(dij − dc), χ(z) =

{
1 z < 0
0 z � 0

(3)

δi = min
xj

(dij) , s.t. ρj > ρi (4)

Except for the selected nc cluster centers with top γ(γ = ρ · δ)
values, DPC associates each non-center point along its δ path
(i.e., each non-center point is associated with its nearest higher
density point). In fact, DPC’s allocation idea–to connect all data
points into a single tree–is the same as that of Quick-shift [24]

(a fast variant of Mean-shift), but the difference lies in how to
prune the tree into final clusters.

For a cluster Cy , DPC considers the minimum distance from
its cluster center ct(Cy) (i.e., the highest density point in cluster
Cy , as in (5)) to a higher density point of another cluster Cz as
their dissimilarity. The minimum distance herein is called ”the
minimum center-boosting distance”. Besides, DPC additionally
adds center density ρ as a penalty term to resist the interference
of outliers (noise). Thus, the linkage metric of DPC is defined
as in (6).

ct(Cy) = argmax
xi∈Cy

(ρi) (5)

Dd(Cy, Cz) = min
xi,xj

(ρi · dij)

s.t. xi = ct(Cy), xj ∈ Cz, ρj > ρi (6)

Equation (6) implies that the dissimilarity evaluation between
clusters is unidirectional, in other words, DPC can only evaluate
the dissimilarity from a cluster to other higher density clusters.

TGd
= argmin

T∈T (Gd)

∑
e∈E(T )

wd(e) (7)

Let Gd(X,Ed, wd) be a weighted complete digraph of
dataset X according to density boosting, where Ed =
{eij |ρi < ρj , xi, xj ∈ X}, and edge weight function wd :
Ed → R+, wd(eij) = ρi · dij . Similar to Single-linkage, DPC
also builds a MST TGd

of digraphGd, as in (7), and then cuts the
tree into a given number of clusters with the minimum sum of
weights. As a result, all edges in TGd

are exactly δ paths. Also,
DPC applies a decision graph [22] to assist in the detection of
cluster number.

3) Comparison of DPC and Single-Linkage: Although DPC
and Single-linkage both aim to generate a MST of the dataset,
DPC builds a density-boosting MST, constraining data points to
only associate with higher-density areas.

Single-linkage’s metric Ds (see (1)) focuses on the minimum
gap (connectivity) between clusters, so Single-linkage tends to
build link structures and is sensitive to outliers; while DPC’s
metricDd (see (6)) adds density-boosting as a constraint, so DPC
normally builds density-boosting link structures and is insensi-
tive to outliers. ButDd ignores the gap between clusters, causing
DPC to mistakenly merge clusters with a big gap (i.e., without
density-connectivity) [27], [29], resulting in poor clustering.

Fig. 1 presents the limitations of Single-linkage and DPC
on toy datasets D1 and D2. As shown in D1 dataset, the gap
between cluster B and C is narrower, and cluster (point) O
is an outlier. Single-linkage captured the gap differences, i.e.,
Ds(O,B) > Ds(C,B), and divided them into cluster {O} and
cluster {B,C}. Obviously, to classify outlier O as a separate
cluster is unreasonable. In contrast, DPC obtained Dd(O,B) <
Dd(C,B) and divided D1 dataset into clusters {O,B} and {C}.
With the density-boosting constraint, DPC no longer relies on
the minimum gap between clusters to evaluate the dissimilarity,
which effectively removes the interference of outliers.

Nevertheless, Dd’s ignoring of the minimum gap between
clusters may cause DPC to mistakenly merge clusters with a
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Fig. 1. The limitations of Singe-linkage and DPC. Relatively poor clustering results are highlighted in the red box.

big gap, resulting in poor clustering. For example, D, E, and
F are the three normal clusters of D2 dataset, where the gap
between clusters E and F is narrower. Single-linkage success-
fully captured gap differences among clusters, i.e., Ds(E,D) >
Ds(E,F ); while DPC failed, i.e., Dd(E,D) < Dd(E,F ). If
cluster D, E, and F need to be further divided into two cate-
gories, the output of Single-linkage is cluster {D} and cluster
{E,F}, while DPC’s is {D,E} and {F}. Because Dd focuses
on the minimum center-boosting distance from a low-density
cluster center (e.g., the center of cluster E) to high-density areas
(e.g., clusterD andF ) and ignores the true gap between clusters.

Herein, a novel linkage metric that follows the density-
boosting rule is designed to reasonably merge clusters into high-
density areas, which takes the gap (dis-connectivity) information
between clusters into account to effectively estimate the cluster
dissimilarity.

C. Density-Based Clustering

Density-based clustering can well reconstruct arbitrary
shapes. DBSCAN [16], a typical density-based clustering
method, considers a cluster as a set of density-connected points.
DBSCAN can not work well on clusters of varied densities [39].
Moreover, it needs to well tune parameters (ε and minPts)
to obtain a reasonable density-connectivity criterion, which is
usually a tedious process.

OPTICS [38], an improved version of DBSCAN, extends
DBSCAN in detecting clusters of varied densities by applying a
reachability plot. HDBSCAN [39], a hierarchical version of DB-
SCAN, constructs a cluster hierarchy of connected components

and extracts the stable clusters from the hierarchy. HDBSCAN
can detect clusters of varied densities and is more robust to
parameter selection. Qian et al. [40] introduced the concept
of ”local density information” to help detect clusters of varied
densities. In DEMOS, inspired by density-based clustering, we
ensure points within a cluster are density-connected to achieve
the robust reconstruction of complex-shaped clusters.

D. Density Peaks and Peak Graph

A cluster center in most density-based clustering methods is
considered as a density maximum point within its local density
area or a density peak [22], [23]. Thus, a non-density peak
(herein, a normal point) will never be a cluster center and
should be associated with at least one density peak. So, after
normal points are pre-associated with density peaks, the original
clustering of data points is reduced to the clustering of density
peaks.

A specific sparse graph structure of density peaks (or a peak
graph) has been proposed in our previous work [33], which
helps to achieve a fast clustering of density peaks and effectively
reconstruct complex shapes. Based on the peak graph, a multi-
valley-link-based connectivity estimation method is designed to
provide a high-fidelity connectivity estimation of density peaks.

III. THE PROPOSED METHOD

This section gives a detailed introduction to the proposed
DEMOS algorithm. Fig. 2 presents its clustering process: 1) peak
graph building (blue); and 2) the clustering of density mounts
(green).
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Fig. 2. The clustering process of the proposed DEMOS algorithm.

Step 1: with dataset X and parameter k as inputs, DEMOS
performs density estimation of data points (by (10)) to identify
density peaks (according to Definition 1); followed, DEMOS
pre-assigns normal points (i.e., non-density peak points) to ob-
tain density mounts (see Section III-B2), during which DEMOS
completes the representative learning of data by using our RT
method (see Section III-C2); subsequently, the multi-valley-
link-based connectivity estimation method is used to evaluate
the connectivity (i.e., similarity) between density peaks (see
Section III-C); finally, according to the obtained similarity in-
formation, DEMOS completes the peak graph building;

Step 2: based on the peak graph, DEMOS builds a cluster
tree of density mounts by using the linkage metric Dp (see
Section III-A); then, DEMOS selects cluster centers using a
robust cluster center selection method and prunes the cluster
trees into density mount groups (see Section III-D); finally, after
points in the same density mount groups being grouped together
as clusters, clustering is done.

A. The Linkage Metric of Density Peaks

Consider PX = {p1, p2, . . . , pnp
} as a set of density peaks

of dataset X , PX ⊂ X , then P̄X = X \ PX is a set of normal
points. DEMOS executes linkage-based clustering of density
peaks to output cluster set C(t) = {C1,C2, . . . ,Cnp−t}, t ∈
[0, np − 1], where Cy ∈ C(t) represents a cluster of density
peaks,

⋂np−t
y=1 Cy = ∅, and

⋃np−t
i=1 Cy = PX .

As the core of DEMOS, the linkage metric of clus-
ters (of density peaks) is defined in (8), where ct(Cy) =

argmaxpi∈Cy
(ρpi

) returns the center of cluster Cy , and d̂pipj

represents the dissimilarity between cluster centers pi and pj (of
Cy and Cz). Our linkage matric Dp ensures that each cluster is
merged into a high-density area, while fully considering the con-
nectivity between clusters. Fig. 3 presents Dp with dissimilarity

Fig. 3. The core idea of our linkage metricDp with the dissimilarity estimation
function d̂. Dp focuses on the member dis-connectivity along the shortest path
between cluster centers.

estimation function d̂ (see Section III-B4).

Dp(Cy,Cz) = min
pi,pj

(
ρpi
· d̂pipj

)

s.t. pi = ct(Cy), pj = ct(Cz), ρpj
> ρpi

(8)

Let Gp(PX , Ep, wp) be a complete digraph of density
peaks, whereEp = {epipj

|ρpi
< ρpj

}, and weight functionwp :

Ep → R+, wp(epipj
) = ρpi

· d̂pipj
. Where Dp is used to build
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a MST of digraph Gp(PX , Ep, wp), as in (9).

TGp
= argmin

T∈T (Gp)

∑
e∈E(T )

wp(e) (9)

In what follows, a robust connectivity-based dissimilarity
estimation function d̂ is designed based on the peak graph
concept [33].

B. Peak Graph Buliding

Before building a peak graph, we need to identify density
peaks and pre-assign normal points.

1) The Identification of Density Peaks: For each point xi ∈
X , we search for its k nearest neighbors (denoted as Nk(xi))
as its surrounding points, and fast estimate its local density
ρi according to the within-surrounding similarity [41], as in
(10), where m is a parameter for density smoothness control
(discussed in Section III-E). Note that Laplacian centrality [54]
is also an excellent method for local density estimation, but
for achieving a faster execution speed, a KNN-based density
estimation method is applied in DEMOS.

ρi =
1∑

xj∈Nk(xi)
(dij)m

(10)

Definition 1. Point xi is a density peak, denoted as p ∈ PX ,
if ρi > maxxj∈Nk(xi)(ρj).

Density peaks with the characteristic of local density maxima
are defined in Definition 1. On this basis, a fast identification of
density peaks within a kNN-graph of dataset X can be achieved.
Parameter k, as the only hyperparameter in DEMOS, is set as
k = �√n 
 in default, where symbol �·
 is a ceiling function.
Note that DEMOS is insensitive to the default k setting (see
discussion in Section IV-F).

2) The Pre-Association Strategy of Normal Points: Accord-
ing to the clustering idea of Mean-shift [23], each normal point
xi should be directly assigned to the nearest dense area within
its surrounding area Nk(i), and the nearest dense area is exactly
where xi’s nearest higher density neighbor locates [27]. There-
fore, normal points are pre-allocated to the same clusters of their
nearest higher density points directly. As a result, normal points
spontaneously form sub-clusters with unique density peaks as
sub-cluster centers. Sub-cluster with only one density peak p as
its center is called a density mount, denoted asmt(p). Therefore,
a cluster C of density peaks can represent a cluster C of points
as in (11).

C =
⋃
p∈C

mt(p) (11)

Let adjacency matrix A ∈ Rn×n express the pairwise as-
sociation relationship between points, where the (i, j)-th ele-
ment aij = 1 means that point xj is associated to its nearest
higher density neighbor xj . Then, let GA(X,Ea) be the adja-
cency digraph of adjacency matrix A, where Ea = {eij |aij =
1, xi, xj ∈ X}, thus density mounts are connected components
in digraph GA. In a density mount, the density peak xi is a sink
point without outdegree in GA, i.e., deg+(xi) =

∑
xj∈X aij =

0; oppositely, source point xi without indegree, i.e., deg−(xi) =∑
xj∈X aji = 0, is considered as an edge point.
Therefore, the original clustering of data points is simplified

to the clustering of density peaks, with each normal point being
associated with a density peak. To perform the clustering of
density peaks, a peak graph is needed.

3) Graph Buliding: A peak graph is a sparse graph structure
of density peaks, where edges only exist between density peaks
within intersecting density mounts (sub-clusters). For the detec-
tion of intersecting density mounts, we introduce the concepts of
valley points and links (also known as border points and links).

Valley points are considered to only exist on both sides of
the borderline between intersecting density mounts. In other
words, a borderline is a line that divides the mutual-proximal
valley points of different density mounts. So, a small-value kv
is introduced, as:

kv = min(k, �2× ln(n)�) (12)

to effectively detect the mutual-proximity between valley points
of intersecting density mounts, where �·� is a floor function.
Clearly, kv  n, since kv � k  n. The small-value kv can
effectively help to detect the proximal valley points between
intersecting density mounts.

On this basis, we define valley points between intersecting
density mounts as in Definition 2.

Definition 2. If mutual-proximity points xi and xj are in
different density mounts, i.e., xi ∈ mt(pa) ∩Nkv

(xj), xj ∈
mt(pb) ∩Nkv

(xi), then points xi, xj are valley points, and
density mounts mt(pa), mt(pb) are intersected. Besides, points
xi, xj are herein called a cross-mount valley point pair, denoted
as xi�xj .

Since each density peak represents its density mount, the term
”intersecting density peaks” is used to indicate their intersecting
density mounts in the peak graph.

For a valley point xi, we define its valley link vi as in (13),
where point τi is the unlinked nearest cross-mount valley point
of xi, as in (14). To ensure the independence of each valley link,
once a valley pair is linked, two valley points at both ends are
labeled as“linked”, in other words, the connection of valley links
is a without put-back operation.

vi = {xi, τi} (13)

τi = argmin
xj :xj�xi

(dij) , s.t. xi, xj are both unlinked (14)

Definition 2 implies that merely a valley link can indi-
cate intersecting density mounts, thus, the peak graph can
be described as GS

p (PX , ES
p , w

S
p ), where ES

p = {epipj
|∃v =

{xy, τy}, xy ∈ mt(pi), τy ∈ mt(pj)}. Weight function wS
p :

ES
p → R+, w

S
p (epipj

) = d∗pipj
outputs the weight cost between

density peaks pi and pj connected by edge epipj
, where d∗pipj

∈
[0, 1] means the dis-connectivity between pi and pj , as defined
in (15).

d∗pipj
= 1− s∗pipj

(15)

4) Dissimilarity Estimation Function d̂: Let Γpipj
be the

shortest path (obtained by Dijkstra [42]) between density peaks
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Fig. 4. The core ideas of RT method (left) and the multi-valley-link-based connectivity estimation method (right), where the minimum standard element number
ns of two connectivity message vectors are both 3.

pi and pj in peak graph GS
p (PX , ES

p , w
S
p ), as in (16), where pi

and pj are head and tail, respectively, and p′2, p
′
3 refer to the 2nd

and the 3 rd density peaks along the path.

Γpipj
=

{
pi, p

′
2, p
′
3, . . . , p

′
nΓ−1, pj

}
, nΓ = |Γpipj

| (16)

The dissimilarity estimation function d̂pipj
outputs the mem-

ber dis-connectivity between cluster Cy and Cz along path
Γpipj

, s.t. pi = ct(Cy), pj = ct(Cz), as in (17), where condi-
tion Γpipj

⊆ (Cy ∪Cz) ensures that cluster Cy and Cz are

adjacent and associative. For Γpipj
= ∅, we set d̂pipj

= 1.

d̂pi,pj
= d∗Γpipj

(q)Γpipj
(q+1)

s.t. pi = ct(Cy), pj = ct(Cz),Γpipj
⊆ (Cy ∪Cz),

Γpipj
(q) ∈ Cy, and Γpipj

(q + 1) ∈ Cz (17)

Fig. 3 presents the core idea of our linkage metric Dp with
dissimilarity estimation function d̂. At first, there are nine density
peaks (mounts), and then after six times of merging according to
our linkage metric Dp, three clusters A, B, and C are generated.
As shown, clusterB’s center p3 is closer to clusterC’s center p1,
but is more connected to cluster A (of p2). Our linkage metric
Dp detected connectivity differences and successfully merged
the cluster A and B.

Since, d∗ = 1− s∗ (15), we will detail introduce the measure
of connectivity s∗.

C. Multi-Valley-Link-Based Connectivity Estimation

This subsection introduces the multi-valley-link-based con-
nectivity estimation method, in which, the connectivity message
based on representativeness is fast calculated via our RT method.
The core idea of our connectivity estimation method is presented
in Fig. 4.

1) Connectivity Message: Suppose that density peak pi and
pj are mutual neighbors with the highest connectivity s∗pipj

= 1
(i.e., absolute similarity) as:

Assumption 1. Mutual-neighboring density peaks are con-
sidered to own the highest connectivity, i.e. s∗pipj

= 1, s.t.
pi ∈ Nk(pj), pj ∈ Nk(pi).

Actually, Assumption 1 is meaningless, because density peaks
can never be mutual neighbors as in Definition 1.

Definition 2 indicates that at least one (usually multiple) valley
link exists between intersecting density peaks. To utilize As-
sumption 1, we introduce the concept of representativeness, i.e.,
to what extent one point can represent another, as in Definition
3.

Definition 3. If pointxi, xj ∈ mt(p), thenxi has an represen-
tativeness value to represent xj , denoted as θ(xi, xj) ∈ [0, 1].

According to Definition 3, we introduce the concept of peak-
representativeness as in Definition 4:

Definition 4. The peak-representativeness of point xi ∈
mt(p) indicates xi’s representativeness to its density peak p,
denoted as θi ∈ [0, 1].

According to Definition 4, valley link v = {xi, xj}(xj = τi),
where point xi and xj own representativeness θi and θj to their
density peaks, respectively. Thus, a valley link v can provide a
connectivity message sv between density peaks, as defined in
(18).

sv = θi × θj , v = {xi, xj} , xj = τi (18)

To quantify connectivity message sv, a representativeness
transfer method (RT method) is designed to fast calculate the
peak-representativeness θ of points.

2) Fast Representativeness Learning via the RT Method: The
proposed RT method follows three definitions:

Definition 5. Density peak xi ∈ mt(p), i.e., xi = p, owns the
largest representativeness θi = 1 to itself.

Definition 6. Direct representativeness is mutual and in-
dependent, which only exists between directly associated
points xi and xj in GA, i.e., mutuality: θ(xi, xj) = θ(xj , xi),
s.t. aij ∨ aji = 1; and independence: θ(xi, xi′′) = θ(xi, xi′)×
θ(xi′ , xi′′), s.t. aii′ ∧ ai′i′′ = 1.

Definition 7. The representativeness between directly associ-
ated points xi and xj is equal to their reduced density ratio, as
in (19).

θ(xi, xj) =
min(ρi, ρj)

max(ρi, ρj)
, s.t. aij ∨ aji = 1 (19)

According to Definitions 5 through 7, peak-representativeness
θi is defined in (20), where Δxip = {xi, x

′
2, . . . , x

′
nΔ−1, p}

represents all nΔ (nΔ = |Δxip|) corresponding adjacent points
on the path from point xi to its density peak p (see the left
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of Fig. 4).

θi =
∏

xj∈Δxip

θ(xj , xj′), s.t. ajj′ = 1 (20)

Equation (20) indicates that the peak-representativeness can
be transferred to all normal points within a density mount, named
the ”representativeness transfer method” (the RT method). Note
that the RT method can be embedded in the pre-association of
normal points without adding computational complexity, so the
calculation of sv is not time-consuming.

In what follows, a multi-valley-link-based connectivity esti-
mation method is proposed for a reasonable connectivity esti-
mation between density peaks based on sufficient connectivity
messages.

3) Connectivity Estimation: Inspired by the density-
connectivity of DBSCAN [16], we get Assumption 2. Based on
it, a multi-valley-link-based connectivity estimation method is
proposed.

Assumption 2. Density peaks with high similarities should be
well-connected and usually have multiple valley links with large
connectivity messages.

For density peaks pi and pj , we pick a set of valley links
with the top connectivity messages to structure a connectivity
message vector spipj

, as in (21), where s[1] � s[2] � . . . � s[ns],
and ns represents the minimum standard number of valley link
samples for structuring vector s (discussed in Section III-C4).
If the total number n∗s of s values (i.e., valley links) between
density peaks is less than ns, i.e., n∗s < ns, then, we set s[i] = 0,
s.t. n∗s < i � ns.

Based on connectivity message vectors, the multi-valley-link-
based connectivity s∗pipj

is defined as in (22), where wpipj
is an

equally decreasing weight vector for spipj
(see (23)), i.e., s[i]

owns its corresponding weight value w[i]. The core idea of our
multi-valley-link-based connectivity estimation method is in the
right of Fig. 4.

spipj
=

{
s[1], s[2], . . . , s[ns]

}
(21)

s∗pipj
= s�pipj

wpipj
(22)

wpipj
=

{
w[i] =

2

n2
s + ns

(ns + 1− i)

}ns

i=1

=
2

n2
s + ns

{ns, ns − 1, . . . , 1} (23)

Our connectivity metric s∗ roughly follows Assumption 2,
that is, a density peak that owns multiple valley links with large
connectivity messages will obtain a high similarity (connectiv-
ity) s∗, as verified after:

Proof: Since 1�wpipj
= 1 and s ∈ [0, 1], therefore, s∗pipj

∈
[s[ns], s[1]] ⊆ [0, 1]. Clearly, if and only if s[1] = s[ns] = 1,
s∗pipj

≡ 1 (i.e., the largest connectivity). Where s[ns] = s[1] rep-
resents uniformity; and s[ns] = 1 indicates that all messages own
the largest connectivity value, i.e., ∀s ∈ spipj

, s = 1. Therefore,
s∗ roughly follows Assumption 2.

4) The Self-Acquisition of ns: The minimum standard ele-
ment number ns of connectivity message vector spipj

is sup-
posed to be positively related to the edge point number of a

density mount, i.e., a density mount with more edge points
should use more sufficient connectivity messages to describe
its connectivity with other density mounts.

ns = �η ×min (nε(pi), nε(pj))
 (24)

nε(p) =
∑

xi∈mt(p)

ε(xi), ε(x) =

{
1 deg−(x) = 0
0 others

(25)

On this basis, a self-acquisition method is proposed to de-
termine ns, as in (24), where η is a ratio parameter (default is
η = 0.25). The function nε(p) outputs the total number of edge
points in density mount mt(p), as in (25), where ε(·) is an edge
point judgment function.

D. A Robust Cluster Center Selection Method

According to the obtained connectivity s∗ values between
density peaks, the dissimilarity matrix of density peaks can
be obtained via function d̂ according to (17), and then, the
density-boosting cluster tree TGp

based on linkage metric Dp is
built according to (9).

ṗ = argmin
p′

(d̂pp′), s.t. ρp′ > ρp (26)

In cluster treeTGp
, each density peak p views the most similar

density peak of higher density as its unique parent node ṗ, as in
(26). To prune cluster tree TGp

to achieve final clustering, we
propose a robust cluster center selection method based on our
cluster assumption.

1) Our Cluster Assumption: According to (17), d̂pṗ essen-
tially outputs a member dis-connectivity (gap) between cluster
Cy and Cz with p = ct(Cy), ṗ = ct(Cz). Thus, if density peak
p is a real cluster center, its corresponding cluster Cy should
have a relatively large member dis-connectivity d̂pṗ with cluster
Cz . Inspired by this, we propose our cluster assumption:

Assumption 3. A cluster C ⊆ PX should have a high-density
cluster center p = ct(C), and have a relatively large dis-
connectivity (gap) δ with other higher-density clusters of density
peaks.

Based on Assumption 3, δ of density peaks is calculated as in
(27). For each normal point xi ∈ P̄X , δi = 0, as in (28), because
normal points own no center attribute.

δp = min
p′

d̂pp′ , s.t. ρp′ > ρp (27)

δi = 0, xi ∈ P̄X (28)

Once each density peak p owns its candidate center attributes:
ρp and δp, true cluster centers are clearly displayed in our
decision graph. Fig. 5 (left) demonstrates the superiority of our
decision graph on the Agg dataset [44].

After selecting cluster centers, cluster tree TGp
is pruned at

the selected cluster centers (as new root nodes) to generate final
clusters of density peaks. Then, normal points are allowed to
inherit cluster labels from their density peaks. Once each point
owned its cluster label, clustering is done.

2) Decision Graph Clarity Metric: A clear decision graph
increases the center detection robustness. Herein, F1-score [46]
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Fig. 5. Our decision graph performance comparison with DPC on dataset Agg
(7 clusters). Cluster centers are marked by red color.

is used to quantify the center detection robustness, as in (29).

F1 =
2× TP

2× TP + FP + FN
(29)

Let σ = {σ1, σ2} ∈ Iσ be a threshold point for center de-
tection, i.e., points xi with ρi−ρmin

ρmax−ρmin
� σ1 and δi−δmin

δmax−δmin
�

σ2 are selected as centers, where ρmin = minxi∈X(ρi),
ρmax = maxxi∈X(ρi), δmin = minxi∈X(δi), and δmax =
maxxi∈X(δi). Iσ indicates the domain ofσ as in (30). Therefore,
a threshold point σ = {σ1, σ2} ∈ Iσ can provide an F1 score of
center detection as fF1(σ1, σ2) : Iσ → [0, 1].

Iσ =
{
σ = {σ1, σ2} ∈ R2|0 � σ1 � 1, 0 � σ2 � 1

}
(30)

DGCI =

∫∫(
Iσ\I(1)

σ

) fF1(σ1, σ2)dσ1dσ2∫∫(
Iσ\I(1)

σ

) dσ1dσ2
(31)

A F1-score-based Decision Graph Clarity Index (DGCI) is
also designed to quantify the clarity of a decision graph, as in
(31), where I

(1)
σ indicates meaningless threshold domain, i.e.,

σ ∈ I
(1)
σ can only provide a single cluster. Generally, a clear

decision graph owns a high DGCI ∈ [0, 1]. As Fig. 5 shows,
DEMOS’s decision graph is much clearer than DPC’s, for own-
ing a much larger optimal threshold setting area (yellow area)
than DPC. As a result, DEMOS gets a higher DGCI = 0.82
than DPC (DGCI = 0.63).

3) Clarity-Enhancing Methods of Decision Graph: Accord-
ing to (31), if all cluster centers fall in the upper right corner
of the decision graph (i.e., the optimal candidate region), and
all non-centers fall in the bottom left corner (i.e., the worst
candidate region), the decision graph will have a high DGCI
score. To obtain a high-DGCI (clear) decision graph, two
clarity-enhancing methods are proposed.

Algorithm 1: DEMOS-Step1: Peak Graph Building.

Input: dataset X = {x1, x2, . . . , xn}, and parameter k.
Output: peak graph GS

p (PX , ES
p , w

S
p ) and density mounts

mt(PX) = {mt(p)|p ∈ PX}.
1: fast obtain the kNN matrix, by applying fast kNN

technique [45].
2: estimate density ρ = {ρ1, ρ2, . . . , ρn}, w.r.t cv ≈ 0.4,

(10).
3: for each point xi ∈ X do
4: θi = 1 // initialization
5: end for
6: order the dataset X as X ′ in descending order of ρ.
7: for each point xi ∈ X ′, from high-ρ to low-ρ do
8: for each neighbor xj ∈ Nk(xi), from near to far do
9: if ρj > ρi then

10: aij = 1 // adjacency matrix A.
11: θi = θj × θ(xi, xj) // (19) and (20), RT

method.
12: break
13: end if
14: end for
15: end for
16: for each point xi ∈ X do
17: if deg+(xi) =

∑
xj∈X aij = 0 then

18: PX = PX ∪ xi // density peaks
19: xi ← a unique label
20: else
21: P̄X = P̄X ∪ xi// normal points
22: Label(xi)← Label(xj), s.t. aij = 1 //

Label(x) outputs x’s label.
23: end if
24: end for
25: points with same label form density mounts

mt(PX) = {mt(p)|p ∈ PX}.
26: for each pair of density peak pi, pj ∈ PX do
27: calculate the connectivity s∗pipj

// see Section III-C.
28: if s∗pipj

�= ∅ then
29: ES

p = ES
p ∪ epipj

// for peak graph building.
30: end if
31: end for
32: return GS

p (PX , ES
p , w

S
p ) and density mounts

mt(PX) = {mt(p)|p ∈ PX}.

1). The difference removal of ρ: cluster centers in low-density
areas are always squeezed to the left regions of the decision
graph, causing a low DGCI score. To assure that density
peaks in different density areas have an equal probability to be
selected as cluster centers, we remove density differences among
connected components of peak graph Gp(PX , Ep) (denoted
as Gcon

p (P con
X , Econ

p ), where P con
X ⊆ PX , Econ

p ⊆ ES
p ), as in

(32).

ρ̂p =
ρp

maxpi∈P con
X

(ρpi
)
, p ∈ P con

X (32)
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Algorithm 2: DEMOS-Step2: Clustering of Density
Mounts.

Input: dataset X , and peak graph GS
p (PX , ES

p , w
S
p ) and

density mounts mt(PX) = {mt(p)|p ∈ PX}.
Output: clustering result C = {C1, C2, . . . , Cnc

}
1: build fully connected peak graph Gp(PX , Ep, wp)

based on peak graph GS
p (PX , ES

p , w
S
p ).

2: build cluster tree TGp
according to (9).

3: for each density peak p ∈ PX do
4: calculate δp according to (27).
5: end for
6: for each density peak p ∈ PX do
7: ρ̂p =

ρp

maxpi∈Pcon
X

(ρpi
) , p ∈ P con

X

8: δ̂p = δ2p
9: end for

10: for each normal point xi ∈ P̄X do
11: δi = 0
12: end for
13: select appropriate cluster centers c={c1, c2, . . . , cnc

}
in decision graph of ρ̂ and δ̂.

14: non-center density peaks inherit cluster labels from
their parent node in cluster tree TGp

.
15: obtain clusters of density peaks

C = {C1,C2, . . . ,Cnc
}.

16: for each Ci ∈ C do
17: Ci =

⋃
p∈Ci

mt(p)
18: end for
19: return Clustering result C = {C1, C2, . . . , Cnc

}

Therefore, cluster centers of low-density areas fall in the
optimal candidate region of the decision graph, obtaining a high
DGCI score.

2). The difference amplification of δ: Assumption 3 tells that
δ ∈ [0, 1] values of center density peaks (i.e., real cluster centers)
are closer to 1 than non-center density peaks. Herein, we provide
a simple method to amplify the difference between δ values
of centers and non-centers, as in (33), where λ is called an
amplification factor (default is λ = 2).

δ̂p = δλ
p, p ∈ PX (33)

As a result, δ value differences between center and non-center
density peaks are amplified, which presses non-center density
peaks to the bottom of the decision graph, obtaining a high
DGCI score.

Fig. 6 shows the performance of our decision graph on Agg
dataset using our clarity-enhancing methods. As shown, our
decision graph with DGCI = 0.93 is clearer than the original
decision graph with DGCI = 0.82.

E. Density Smoothness Control Parameter m

According to (19) and (20), a smoother density distribution
tends to produce a high peak-representativeness, which may re-
sult in a high connectivity value between density peaks, and vice
versa. However, the two cases can both lead to a small-variance

Fig. 6. The demonstration of the clarity-enhancing of decision graph (on
Agg) via the proposed clarity-enhancing methods. The yellow area indicates
the optimal threshold setting area and the gray area indicates the real cluster
center area.

connectivity estimation that will yield a small-variance δ esti-
mation (i.e., the δ-distribution tends to be uniform), according to
(27). Thus, δ-difference between centers and non-centers may
be narrowed, so as to increase the difficulty of cluster center
detection.

cv =

√
1
n

∑n
i=1(ρi − ρ̄)2

ρ̄
, ρ̄ =

1

n

∑
xi∈X

ρi (34)

To obtain an appropriate connectivity estimation, a control-
lable local density estimation method with a density smooth-
ness control parameter m (see (10)) is designed. The variation
coefficient cv of density distribution is applied to describe the
smoothness of density distribution, as in (34). Let parameter m
self-tune to control cv ≈ c∗v , where c∗v is a smoothness threshold
(default is c∗v = 0.4). By using the controllable local density
estimation method, DEMOS can always produce a stable and
appropriate connectivity estimation for robust center detection,
even when dealing with datasets of different distributions.

F. Pseudocode and Complexity

Algorithms 1 and 2 show the pseudocode of DEMOS in two
steps: 1) peak graph building; 2) the clustering of density mounts.

The computational complexity of peak graph building is
O(n log(n) + nk̃ + n), where k̃ means that a point’s k̃-th neigh-
bor (an average concept) is its nearest higher density point. In
fact, most points can find a really close higher density point, i.e.,
k̃  k. And peak-graph-based clustering is O(np log(np) +
|ES

p |+ np + n), where |ES
p | is the total edges of peak graph

GS
p .
Since np  n, the overall computational complexity of DE-

MOS is O(n log(n) + nk̃ + |ES
p |), where k̃, and |ES

p | are all
far less than n.

IV. EXPERIMENTS

A. Experimental Set up

Datasets. Ten common synthetic datasets of different shapes
and eight popular real-world datasets are selected to benchmark
clustering algorithms. The detailed summarization is displayed
in Table II.
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Fig. 7. The clustering results of the proposed DEMOS on 10 tested synthetic datasets (in Table II) of different shapes.

TABLE II
DATASETS

Comparison Algorithms and Settings. four classic clustering
methods (K-means (KM) [12], Self-tuning Spectral Clustering
(SSC) [43], DBSCAN (DB) [16], HDBSCAN (HDB) [39]),
seven state-of-the-art DPC-based algorithms (DPC [22], SSSP-
DPC [29], SNN-DPC [30], DPC-CE [34], FastDPeak [32],
PGDPC [33], and DPC-DBFN [37]), and the proposed DEMOS
are the comparison algorithms. We set parameters of different
comparison algorithms according to their best performance over
a large range of possible configurations. Besides, for K-means
and SSC, we use the best results among ten runs; while for all
DPC-based algorithms, we manually select appropriate density
peaks as cluster centers by observing their decision graphs.

Data Preprocessing. the min-max normalization [47] is used
to preprocess datasets to avoid the difference of dimensional
metrics.

Machine Configuration. Matlab (r2017b) on Mac-Book Pro
with 2.9 GHz Intel Core i5, 8 G RAM.

Evaluation Metric. The popular Adjusted Rand Index
(ARI) [52], and Adjusted Mutual Information (AMI) [52] are
applied to evaluate the clustering performance.

B. Experiments on Synthetic Datasets

Fig. 7 presents the clustering results of DEMOS on ten syn-
thetic datasets of different shapes, where the “�” represents the
identified cluster center, and different colors indicate different
clusters. As shown, the proposed DEMOS algorithm almost
perfectly reconstructs the complex-shaped clusters in all tested
datasets.

Table III presents the AMI and ARI scores of DEMOS and
other comparison algorithms, where the best results are high-
lighted. As shown, DEMOS stands out for its high scores on
almost all synthetic datasets.

In reality, complex-shaped data may have many density peaks,
and the number of density peaks is changeable and difficult to
settle. Therefore, to further verify the practicability of DEMOS,
we applied the DEMOS to several complex-shaped synthetic
datasets with a changeable number of density peaks. For each
dataset, its density distribution is obtained by (10) with k =
�√n 
, and then, four peak graphs with different density peak
numbers are built for clustering. Fig. 8 shows the clustering
results of DEMOS on the Agg dataset, where np indicates the
total number of density peaks, andnc indicates the selected clus-
ter number. As shown, DEMOS always successfully assigned
density peaks to the right clusters, regardless of the changeable
number of density peaks. Table IV shows the AMI and ARI
scores obtained by DEMOS on six synthetic datasets, which
verifies the robustness of DEMOS in handling complex-shaped
data with a changeable number of density peaks.

As verified, the proposed DEMOS algorithm has an excellent
performance in reconstructing complex shapes.

C. Experiments on Real-World Datasets

To further evaluate the clustering performance of DEMOS
in dealing with datasets of high-dimensional and large size,
we conducted experiments on five common UCI real-world
datasets [48] of high-dimensional (Iris, Wine, Segment, Drive-
data, and Breastcancer), and three common machine learning
real-world datasets of large size (the YTF dataset that contains
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TABLE III
THE COMPARISON OF AMI AND ARI ON SYNTHETIC DATASETS

Fig. 8. The clustering result (nc = 7) of DEMOS on the Agg dataset with np = 42, 31, 16, and 12.

TABLE IV
THE AMI AND ARI SCORES OF DEMOS ON DIFFERENT SYNTHETIC DATASETS

WITH DIFFERENT NUMBERS OF DENSITY PEAKS

10,000 samples of 41 persons’ faces, the USPS dataset that
contains 11,000 samples of handwritten digits, and the MNIST
that contains 10,000 samples of handwritten digits prepro-
cessed [19]). The detailed information of these eight datasets
is in Table II.

Table V reports the experimental results of comparison al-
gorithms, where the best results are highlighted. As shown, the
overall performance of DEMOS is outstanding, especially on
three large datasets: the YTF, USPS, and MNIST datasets. The
above experiments verified that the proposed DEMOS shall be
an alternative method for real-world dataset clustering.

Fig. 9(a) presents the two-dimensional data visualizations
(marked by ground truth) of MNIST and USPS acquired by

t-SNE [53] (a classic dimensionality reduction algorithm). As
shown, t-SNE demonstrated admirable data visualization re-
sults. It almost perfectly distinguished the ten classes. For com-
parison, Fig. 9(b) shows the t-SNE data visualizations of MNIST
and USPS that are marked by DEMOS’s clustering labels. As
shown, for the MNIST dataset, DEMOS obtained a pleasing
partitioning result very close to the true labels; and for the USPS
dataset, DEMOS also obtained a good partitioning result. The
above experiment verifies the superiority of DEMOS in dealing
with the MNIST and USPS datasets.

Although t-SNE’s excellent dimensionality reduction ability
can help visualize high-dimensional data to achieve naked-eye
clustering, it is prohibitively time-consuming in dealing with
large data. For example, t-SNE took 6740 seconds for USPS
visualization, while DEMOS only took about 1 second on clus-
tering USPS. Therefore, DEMOS is more suitable for large data
clustering.

In addition, Fig. 10 presents handwriting digits of different
peak-representativeness values. As shown, standard handwriting
digits tend to have a large peak-representativeness value, which
verifies the effectiveness of our representativeness learning.

D. The Clarity of Decision Graphs

Benefited from the new center assumption and clarity-
enhancing methods, DEMOS can own a clear decision graph,
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TABLE V
THE COMPARISON OF AMI AND ARI ON REAL-WORLD DATASETS

Fig. 9. The t-SNE-based visualization comparison between the true labels and our clustering labels on MNIST and USPS.

Fig. 10. The MNIST handwriting digits with different learned peak-
representativeness θ by our RT method.

which implies that DEMOS is robust in cluster center detection.
To verify the superiority of DEMOS to other DPC-based algo-
rithms, we apply F1-score and DGCI index to conduct quan-
titative comparison experiments on different decision graphs.
The corresponding results are presented in Table VI, where
DEMOS(-) is a DEMOS version without clarity-enhancing.

As Table VI shows, our DEMOS(-) and DEMOS obtained
the highest F1 scores on all datasets except the YTF dataset,
which verifies the effectiveness of our decision graph in cluster
center detection. Besides, DEMOS obtained the highest DGCI
scores on most datasets, which verifies that the decision graphs
of DEMOS are the clearest, and the second is DEMOS(-),
indicating the proposed clarity-enhancing methods are effective.

Fig. 11 presents the decision graph comparisons of DEMOS
and four DPC-based algorithms on the MNIST dataset. As
shown, the decision graphs of DEMOS and PGDPC are more
concise than others, because the two only consider searching for
cluster centers among density peaks; while the decision graphs
of DPC, SNN-DPC, and SSSP-DPC are relatively ambiguous,
because these methods search for cluster centers among data
points. Note that, benefiting from the clear decision graph, only
DEMOS achieved an accurate detection of the ten real cluster
centers.

As verified, DEMOS is more robust in cluster center detection
than the state-of-the-art DPC-based algorithms.

E. The Speed of DEMOS

In dealing with large-scale data clustering, the running speed
is one of the most important factors that need special attention.
As analyzed in Section III-F, DEMOS with computational com-
plexity ofO(n log(n) + nk̃ + |ES

p |) is faster than DPC (O(n2)).
In Fig. 12, while the histogram (left panel) shows the runtime

of different DPC-based algorithms on all the eighteen tested
datasets in Table II, the line chart (right panel) shows the runtime
of DPC, SNN-DPC, and DEMOS on all the tested datasets.

As shown in the histogram, DEMOS is much faster than DPC,
DPC-CE, SSSP-DPC, and SNN-DPC, but is slightly slower than
FastDPeak and PGDPC with a relatively lower computational
complexity of O(n log(n)). Although DEMOS and PGDPC are
both peak-graph-based, the former needs more calculations in
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TABLE VI
THE COMPARISON OF F1 AND DGCI SCORES OF DIFFERENT DPC-BASED ALGORITHMS ON TESTED DATASETS

Fig. 11. The clarity comparison of different decision graphs on MNIST. Cluster centers are marked by red color. The green box marks the correct cluster center
selection, while the blue indicates the wrong selection.

Fig. 12. The runtime of different DPC-based algorithms.
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Fig. 13. The k-AMI (a) and k-DGCI (b) plots of DEMOS on different datasets
with k ∈ [0, 2�√n 
].

density peak similarity estimation. DEMOS is slower but has
higher clustering accuracy. As shown in the line chart, DEMOS
only takes about one second to execute a dataset of 10,000 data.
DEMOS highlights itself (is much faster) on large datasets (such
as YTF and USPS) compared with DPC.

As verified, the proposed DEMOS algorithm with fast speed
is promising for large-scale data clustering.

F. Parameter Insensitivity

Parameter k (i.e., the number of neighbors) is the only key
parameter of DEMOS, k = �√n 
 as default. k is needed for
density estimation, density peak identification, peak graph build-
ing, and decision graph generation. So, the performance of
DEMOS is highly dependent on the setting of k. Therefore, the
parameter insensitivity of k deserves a discussion.

Fig. 13 presents the k-AMI and k- DGCI plots of several
tested datasets, with k ∈ [0, 2�√n 
] and a given correct cluster
number as inputs. As Fig. 13(a) and (b) show, within the range of
[0, 2�√n 
], DEMOS obtains a stable optimal performance over
a wide range around k = �√n 
, which verifies the effectiveness
of the k = �√n 
 setting and the insensitivity of DEMOS to
parameter k.

V. CONCLUSION

A linkage-based clustering by pruning a density-boosting
cluster tree of density mounts—DEnsity MOuntains Separa-
tion clustering algorithm (DEMOS) is proposed following our
own cluster assumption: a cluster is a density-connected area
with multiple (or a single) density mounts and a relatively
large dis-connectivity from density-connected areas of higher
densities. The proposed linkage metric helps DEMOS effec-
tively reflect the dis-connectivity between clusters and exclude
the interference of outliers. Besides, a multi-valley-link-based
connectivity estimation method is designed to achieve a fast

(dis)connectivity estimation of density peaks with high fidelity.
As a result, DEMOS can reasonably reconstruct clusters with
arbitrarily complex shapes and easily find cluster centers in its
clear decision graph. In addition, DEMOS can work well on
large-scale datasets. The clustering performance of DEMOS
is well verified in the conducted comparison experiments on
synthetic datasets and real-world datasets, concerning the com-
plex shape reconstruction, the center detection, and the running
speed. Moreover, our decision graph clarity metric can quantita-
tively measure the clarity of the decision graph, demonstrating
that our decision graph is much clearer than other DPC-based
methods. As verified, our clear decision graph also equips DE-
MOS with robust center detection performance.

Nevertheless, the selection of cluster centers is manual; al-
though DEMOS is not sensitive to the core parameter k, it is
still preset. Therefore, we plan on improving DEMOS to realize
the automatic detection of cluster centers and to get self-tuning
k.
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