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ABSTRACT

Image dehazing faces significant challenges in real-world scenarios due to the
large domain gap between synthetic and real-world hazy images, which often hin-
ders dehazing performance. Collecting real-world datasets is particularly diffi-
cult, as hazy and clean image pairs must be captured under identical conditions.
To address this, we propose a Physics-guided Parametric Augmentation Network
(PANet) that generates realistic hazy and clean training pairs, enhancing dehaz-
ing performance in real-world applications. PANet consists of two components: a
Haze-to-Parameter Mapper (HPM), which projects hazy images into a parametric
space representing haze characteristics, and a Parameter-to-Haze Mapper (PHM),
which converts resampled haze parameters back into hazy images. By resampling
individual haze parameter maps at the pixel level in the parametric space, PANet
generates diverse hazy images with physically explainable haze conditions that
are not present in the training data. Our experimental results show that PANet
effectively enriches existing hazy image benchmarks, significantly improving the
performance of current dehazing models.

1 INTRODUCTION

Images captured in hazy environments often experience significant degradation, resulting in poor
contrast and distorted appearances. In real-world scenarios, these hazy artifacts tend to be dense and
non-uniform, severely affecting both the visual quality and the visibility of scenes. This degradation
also negatively impacts downstream computer vision tasks such as object detection, tracking, and
scene understanding. Image dehazing seeks to recover high-quality, clear images from single hazy
inputs. However, this task is a highly ill-posed inverse problem, made challenging by the substantial
information loss caused by haze-induced degradation.

Recently, image dehazing techniques have seen significant advancements, largely driven by the suc-
cess of deep learning. Numerous studies (Liu et al.,|2019; [Deng et al., 2020; |Cui et al.| 2023 |Guo
et al., [2022; |Song et al.| 2023 |Yu et al.| [2022; [Li et al 2019b; |Qu et al., [2019; [Wu et al.| [2021)
have focused on enhancing dehazing performance through innovative network architecture designs.
Many of these works leverage CNN-based modules to learn haze-specific features, employing tech-
niques such as channel-wise attention (Liu et al.,|2019), haze-aware feature distillation (Deng et al.,
2020)), and dual-domain selection (Cui et al., [2023)). Additionally, inspired by the success of Trans-
formers (Vaswani et al.| 2017)) in various vision tasks (Dosovitskiy et al.| 2021} |Chen et al.,|2021aj
Ranftl et al., [2021), several recent studies have adopted Transformer-based architectures for image
dehazing. Examples include transmission-aware Transformers (Guo et al.,|2022)) and window-based
Transformers (Song et al.,[2023)), further pushing the boundaries of dehazing performance with their
enhanced feature extraction and attention mechanisms.

These methods predominantly rely on synthetic hazy image datasets (Li et al., [2019a), which
are generated using physical scattering models (McCartney, [1976; Nayar & Narasimhan, [1999;
Narasimhan & Nayari, [2003)) to produce homogeneous synthetic hazy images:

I(z) = J(2)t(z) + A(1 — t(2)),

t(z) = e PG), )
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Figure 1: Left: Examples of augmented images produced by PANet (in yellow rectangles) compared
to other augmentation methods (in blue rectangles). Existing non-homogeneous hazy datasets
cuti et al| (2020 2021)) offer only a limited number of training pairs, as indicated by the green
circles. Previous augmentation techniques [Wu et al.| (2023)); [Yang et al.| (2022) struggle to generate
effective non-homogeneous hazy images. In contrast, PANet is capable of producing both realistic

non-homogeneous and homogeneous hazy images, as demonstrated in the yellow rectangles. Right:
A comparison of dehazing results with and without using data augmented by PANet.

where I(z) and J(z) denote the hazy image and its clean version, A and ¢(z) are the atmospheric
light and transmission map, 8 and d(z) are the haze density and depth map, and z is the pixel index.

While physical scattering models can generate abundant pairs of hazy and clean images, the signifi-
cant domain gap between synthetic and real-world hazy image distributions often hampers dehazing
performance in practical settings (Gui et all, [2023; [Zhang et al., 2021}, [Chen et al.| [2021b). Real-
world hazy images typically exhibit dense and non-homogeneous haze (Ancuti et al., 2019} 2020}
2021), which synthetic models struggle to replicate, as shown in Figure[I] This discrepancy limits
the effectiveness of dehazing models trained on synthetic data when applied to real-world conditions.

To tackle this issue, existing works (Ancuti et al.,[2020;[2021)) have focused on collecting real-world
non-homogeneous hazy and clean image pairs for training. However, gathering such datasets is both
difficult and expensive, as it requires capturing both hazy and clean images under identical condi-
tions, including matching moving objects and consistent background lighting. As a result, these
datasets are typically limited in size, which significantly constrains the performance of deep dehaz-
ing models in real-world applications. Some methods have attempted to enhance the diversity of
hazy images via brightness adjustments or global haze density adjustments
2022), as illustrated in Figs.[I{B) and[I{C). Nevertheless, they ignore the above important fact
that real-world haze distributions are often dense and non-homogeneous, making the domain gap
still large. Therefore, it is crucial to propose a new approach to learn to generate additional realistic
non-homogeneous hazy images with various haze conditions from existing hazy and clean image
pairs without heavily relying on a high-cost data collection process.

In this paper, we propose a novel Physics-guided Parametric Augmentation Network (PANet) de-
signed to effectively augment realistic hazy and clean image pairs, thereby improving dehazing per-
formance in real-world scenarios. PANet employs a Haze-to-Parameter Mapper (HPM) to project
the hazy image from a clean and hazy training pair into a parametric space defined by haze char-
acteristics. This is followed by a Parameter-to-Haze Mapper (PHM), which augments the haze
parameters within the parametric space and then uses these augmented parameters to generate new
hazy images, enriching the dataset with realistic variations of haze. Specifically, inspired by the
widely-adopted Physical Scattering Model (PSM) in Eq. (T)), given a hazy/clean image pair, HPM
parameterizes the hazy image into two pixel-wise maps: haze density and atmospheric light. These
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estimated parameters are then modified (or fixed) and used to translate the clean image into its hazy
versions with various haze patterns in a two-step process.First, we apply the haze parameters to the
PSM model in Eq. (I to create an initial, reasonable hazy image. In the second step, we employ
a Data-driven Haze Refiner (DHR) Npyg (+) to refine this initial image, enhancing its realism. De-
spite the guidance from physics, retrieving accurate pixel-wise haze parameters from a clean and
hazy image pair remains a highly ill-posed problem, especially when dealing with dense or non-
homogeneous haze, which can cause severe occlusion and distortion. This inherent ill-posedness
often results in inaccurate parameter estimation, leading to suboptimal visual quality when relying
solely on PSM-based generation (Gui et al., 2023} [Zhang et al., 2021} |Chen et al., [2021b). To mit-
igate this issue, we integrate DHR to refine the hazy image and employ the reconstruction error as
supervision, forming a cyclic haze-parameter-haze learning process that combines both HPM and
DHR, as detailed in Sec. 3.

PANet offers several unique advantages. First, by utilizing scattering model-based physics guidance,
the estimated haze parameters retain physical significance, making both the parametric augmenta-
tion process and the resulting hazy image generation explainable. Second, our haze-parameter-haze
mapping framework establishes a cyclic learning process for haze generation, involving haze param-
eter estimation, parametric augmentation, model-based initialization, and data-driven refinement.
This cyclic learning leads to more accurate haze parameter estimation and realistic hazy image gen-
eration, addressing inaccuracies in model-based methods while simplifying the design of purely
data-driven deep models through meaningful initialization based on scattering models. Third, by
resampling these explainable haze parameters, we can easily generate augmented hazy images with
diverse haze conditions, enhancing the performance of existing deep dehazing models and reducing
the cost of training data collection. The contributions of this work are summarized as follows:

* PANet is a hybrid “physics-guided + data-driven” network that estimates key haze param-
eters from hazy images: pixel-wise haze density and atmospheric light. It then performs
parametric augmentation to generate additional haze patterns, boosting the performance
of dehazing models. With physics-based guidance, its lightweight data-driven modules
can be effectively trained on a small real-world dataset, leveraging the explainability and
efficiency of physics models while minimizing the need for extensive training data.

* PANet operates in two distinct modes for parametric augmentation. In the “learning mode”,
the haze parameters estimated by HPM are passed directly to PHM without modification,
maintaining consistency in the haze-parameter-haze mapping cycle. This minimizes the
discrepancy between the augmented data and real-world training data, ensuring more ac-
curate and reliable augmentation. In the augmentation mode, PANet modifies the haze
parameter maps to generate additional, previously unseen haze patterns in a physically ex-
plainable way, increasing the diversity of training data and improving model generalization.

» Extensive experimental results demonstrate the high efficacy of PANet in boosting state-of-
the-art dehazing models on four real-world image dehazing datasets. Cross-dataset evalua-
tions also validate the generalizability of PANet.

2 RELATED WORK

2.1 IMAGE DEHAZING

Image dehazing techniques have achieved remarkable progress with the fast growth of CNNs.
Specifically, to effectively extract haze-related features, several studies resorted to attention-based
methods using CNNs. For example, Liu et al.|(2019) proposed a multi-scale attention-based network
that utilizes channel-wise attention for feature fusion. |Qin et al.| (2020) proposed a feature fusion
attention network with cascaded channel-attention and pixel-attention modules. [Deng et al.| (2020)
proposed a haze-aware representation distillation module to distill haze-related features through
instance normalization. [Fu et al.|(2021)) utilized discrete wavelet transform with a generative adver-
sarial network (GAN) to preserve high-frequency knowledge in the feature space. |Cui et al.[(2023)
proposed an efficient image restoration network that contains a dual-domain selection mechanism
to emphasize important regions for restoration.

Recently, motivated by Transformers’ powerful ability to model long-range dependencies among
features, several studies have devised transformer-based models for image dehazing. [Song et al.
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(2023) utilized window-based attention (Liu et al., |2021) to design a vision transformer for image
dehazing. \Guo et al.| (2022)) proposed a hybrid architecture that integrates CNN and Transformer
with a transmission-aware 3D position embedding to improve image dehazing performance. Al-
though these methods successfully improve image dehazing performance through elaborate model
designs, they primarily rely on synthetic hazy datasets, which may lead to a performance decrease
when handling real-world hazy images. Instead of concentrating solely on architectural designs to
improve dehazing performance, our goal is to design a haze augmentation method applicable across
various dehazing models and improve dehazing performance in real-world scenarios.

2.2 HAzY IMAGE AUGMENTATION

Besides improving dehazing performance through architectural innovations, some studies have ex-
plored hazy image augmentation strategies to enhance dehazing models. For instance, the method
in (Wu et al.l[2023) incorporates brightness adjustments, color bias, and Gaussian noise into a phys-
ical scattering model to simulate adverse light conditions in real-world scenarios. However, this
approach modifies additional factors rather than leveraging the inductive bias of real-world hazy
images, which are usually non-homogeneous with high opacity. To generate diverse hazy images
with real-world characteristics, [Yang et al.| (2022)) proposed a rehazing model incorporating depth
and haze density with CycleGAN (Zhu et al.l [2017). By globally sampling haze density, they can
generate additional hazy images as a data augmentation operation. However, GAN-based architec-
tures often encounter challenges such as unstable training process (Gulrajani et al.; 2017; Mao et al.,
2017), model collapse (Akash et al., [2017; Mao et al., [2019), and uncontrollable outputs (Kowal-
ski et al., [2020; Shoshan et al., [2021)), which restricts the diversity and usability of the generated
images. Furthermore, their method only allows global haze density adjustment, making it unsuit-
able for real-world hazy images that typically exhibit non-uniformity with high opacity. |Chen et al.
(2024) propose a test-time adaptation strategy by generating visual prompts to simulate the hazy
distribution of the testing set. However, the generated visual prompts often exhibit patch-wise arti-
facts that deviate significantly from real-world haze distributions. In contrast, our PANet leverages
the inherent inductive biases of real-world haze to augment realistic hazy images within a physically
explainable framework. PANet enables pixel-wise adjustments of haze conditions, allowing for gen-
erating non-homogeneous haze with varying densities and spatial distributions. This significantly
enhances the diversity of hazy images, resulting in substantial improvements in the performance of
dehazing models across several real-world hazy image datasets

3 PROPOSED METHOD

3.1 OVERVIEW

In real-world scenarios, haze is often non-homogeneous and exhibits varying degrees of opacity.
To capture these characteristics, PANet is designed to augment photo-realistic hazy images with
diverse haze patterns for individual hazy/clean training pairs. This augmentation strategy enhances
the diversity of training data, significantly improving the performance of image dehazing models
in real-world applications. Figure [2| presents the block diagram of PANet, a cyclic Haze-Parameter-
Haze mapping framework comprising a Haze-to-Parameter Mapper (HPM) and a Parameter-to-Haze
Mapper (PHM). Given a hazy/clean image pair, the HPM maps the hazy image into a learned para-
metric space, characterizing real-world haze conditions with two pixel-wise maps: haze density and
atmospheric light. In the parametric space, these maps are either kept fixed (learning mode) or mod-
ified (augmentation mode). The augmented parameters are then applied to generate an initial hazy
image from the clean image using the physical scattering model (Eq.[I}) To address the inherent
inaccuracies of haze parameter estimation caused by the ill-posed nature of the problem, the Data-
driven Haze Refiner (DHR) Npug(-) is employed to refine the initial hazy image, ensuring more
realistic and accurate haze simulation.

By resampling the pixel-wise haze parameters during the parametric augmentation process, we can
generate additional hazy images beyond those in the original training set. These newly augmented
images feature diverse and physically explainable haze conditions not previously seen in the train-
ing data. This significantly enriches the training set, leading to improved performance of existing
dehazing models in real-world scenarios. Next, we will introduce the core components of PANet,
including HPM, PHM, and the parametric augmentation process.
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Figure 2: Block diagram of PANet. PANet utilizes a cyclic haze-parameter-haze mapping framework
consisting of a Haze-to-Parameter Mapper (HPM) followed by a Parameter-to-Haze Mapper (PHM).
Besides the hazy images in the original training set (green boxes), PANet can augment additional
hazy images with various haze conditions unseen in the training set (yellow boxes).

3.2 HAZE-TO-PARAMETER MAPPER (HPM)

HPM operates in two steps: parametric mapping and augmentation. First, it maps hazy images
into a learned parametric space that captures haze characteristics using two physically interpretable
parameters: haze density and atmospheric light. Then, it augments these parameter maps to generate
diverse haze patterns. HPM comprises an encoder and two decoders, as shown in Figure 3] Given
hazy image I (z) € RTXWX3 where z is the pixel index, the encoder Ey.,.(-) extracts haze-
specific features of Iy (z). Next, the Haze Density Decoder Dyp(-) and the Atmospheric Light
Decoder Dar(+) are used to estimate the pixel-wise haze density map SBegt(z) € RIXWX3 and
atmospheric light map Ag(2) € REXWX1 respectively, as

Best(z) = DHD(Ehaze(IH(Z)))7 (2)
Aest(z) = Dar, (Ehaze(IH (Z))) 3)
To derive d(z) in Eq. , we choose RA-Depth (Mu et al.| |2022) as the pre-trained depth estimator

U(-) similar to RIDCP (Wu et al., 2023). Besides, to bridge the domain gap with the pre-trained
depth estimator, we further use a Depth Refinement Module (DRM) d.¢ to refine the depth map as

d(2) = dret (VY (1c(2))), “)
where the architecture of dye¢(-) is similar to HPM but with only one decoder.

To accurately estimate Sest(z), Aest(z), and d(z) in the “training mode” of HPM, we keep the
estimated parameters unchanged and use them to generate a reconstructed hazy image from the
input clean image using Physical scattering Model (PSM) and DHR in PHM. The fidelity between
the input hazy image and its reconstructed version is then measured to assess the accuracy of the
estimated parameters, providing supervision for training the learnable modules.

3.3 PARAMETER-TO-HAZE MAPPER (PHM)

After retrieving the haze parameters and scene depth, we further utilize PHM to map the haze pa-
rameters back to real hazy images. Specifically, based on the estimated Ses(z) and Aesi(2), we
subsequently translate the input clean image I (z) to the initial hazy image Oj,;(z) € RHE*Wx3
using the following Physical Scattering Model:

Oni(2) = Io(2)t(2) + Aest (2)(1 — t(2)), )
t(z) = e Pest(2)d(z) (6)
where d(z) € RE>*Wx1 denotes the depth map estimated from the clean image I ().

By using the Physical Scattering Model, we can generate initial hazy images Oip;(z) from the clean
image I(z). This model provides physical meanings for the haze parameter estimated by HPM.
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Figure 3: Haze-to-Parameter Mapper (HPM) consists of a shared encoder followed by two parallel
parameter decoders to estimate the haze density map Sest (2) and atmospheric light map Aegst(2).

However, since a scene in a dense, non-homogeneous haze is usually substantially occluded or
distorted, retrieving pixel-wise haze parameters from a hazy image is highly ill-posed, making the
model-based initial hazy images inaccurate and distorted (e.g., incorrect color tone and unrealistic
transparency) (Gui et all, 2023} [Zhang et al 2021}, [Chen et al [2021b). Therefore, we propose a
Data-driven Haze Refiner (DHR) Npug(-) to further refine the initial hazy images to mitigate the
inaccuracy. To this end, we concatenate Ojy;(z) with its corresponding clean image I (z) and feed
them to Npyr(+) to get the real hazy image Ofyai(2) as

Ofinal(2) = Npur(Concate(Oini(2), Io(2))), (7
where Npur (+) has a similar architecture to HPM but with only one decoder.

With the cyclic haze-parameter-haze mapping involving HPM and PHM, PANet can successfully
project hazy images into a parameter space and then generate additional hazy images by pixel-wisely
augmenting the haze density Sest (2) and atmospheric light A (z) with physically-explainable haze
conditions unseen in the training set, as elaborated in the haze augmentation process.

3.4 Loss FUNCTION

We choose Charbonnier loss (Lai et al.,[2017) Lcnar and perceptual loss (Johnson et all 2016) Lperc

for optimizing PANet as follows:
[-:total - ‘Cchar(Oini(Z)y IH (Z)) + ‘Cchar(Oﬁnal(Z)v IH(Z))
+>\£perc(oini(z)7 Iy (Z)) + )\Eperc(oﬁnal(z)v IH(Z))’

where Oip;(2) denotes the model-generated initial hazy image, Onpa1(2) denotes the refined hazy
images, I (z) denotes the ground-truth hazy image, and \ is a weight empirically set to A = 107°.

®)

3.5 PARAMETRIC AUGMENTATION OF HAZE

To generate new hazy images unseen in the training set, given a pair of hazy Iy (z) and clean
Ic(z) images, in the “augmentation mode” of HPM, we modify the estimated haze density map
Best (2) € REXWX3 and atmospheric light map Aegt(z) € RT*WX1 (o obtain their new versions:
B'(z) and A’(z). The two new maps are then used to generate a new hazy image by using PHM.
Specifically, we can alter haze density Sest(z) by a scaling factor « to generate 5'(z) as

ﬂ/(z) :a’ﬂest(z)v (9)

For example, two new hazy images with = 0.5 and a = 2 are illustrated in Figs. EKA) and F_IKB),
respectively. As illustrated in Figure B{C), we can also reverse the location of haze patterns by
altering the atmospheric light map A (z) as

A'(2) =1 — Aest(2), (10)
where Aqgt(2) ranges in [0, 1]. In this case, for those reverse regions that do not contain haze in the

original hazy image, we sample /3'(z) to be in [0.6, 1.25], the range of 3. in the whole training set.
Moreover, we can linearly interpolate Aqs;(2) and 1 — Aqgt(2) to generate A'(z) as

A'(2) = min(yAest (2) + 7(1 — Aest(2)), 1), a1
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Figure 4: Visuals of hazy images generated by PANet. Given a hazy image, we can decrease or
amplify its haze density by 2, as shown in (A) and (B). In addition, we can reverse its haze location
or generate a complex hazy image, as shown in (C) and (D)

where y and 1) denote the weights for Aeg () and 1—Aeg (2), respectively. As shown in Figure[dD),
we generate diverse hazy images for each hazy-clean training pair by modifying the haze density and
spatial distribution through the haze augmentation process. Unlike traditional augmentation tech-
niques applied in the image domain, our parametric space augmentation enables precise, physically
interpretable control over haze patterns, allowing for more realistic and diverse haze conditions.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

PANet. We train PANet on NH-Haze20 (Ancuti et al [2020) consisting of non-homogeneous hazy
and clean image pairs captured in real-world outdoor scenes. Following the settings in (Fu et al.
2021}, [Cui et al] [2023)), we use 50 training pairs and 5 testing pairs. During training, we utilize the
Adam optimizer with an initial learning rate of 5 x 10~5, which is then reduced to 10~7 using a
cosine annealing schedule. PANet is trained for 270 epochs with a batch size of 2. To augment the
data, we apply random cropping of 256 x 256 patches along with random rotations and flips.

Dehazing Models. We adopt three state-of-the-art (SOTA) dehazing models, including DW-
GAN [2021)), DeHamer [2022)), and FocalNet [2023)), to evaluate
the effectiveness of PANet. To make a fair comparison, we utilize the 50 training pairs of NH-
Haze20 to train the SOTA dehazing models as their baseline following the default training setting
in their methods. We then utilize PANet to generate 400 additional training pairs, 8 times larger
than the original 50 training pairs. We use the augmented training set with 450 pairs to retrain
the SOTA dehazing models to obtain the PANet-enhanced version of their baseline. We evaluate
the performances of the above dehazing models on four real-world hazy image datasets, including

NH-Haze20 (Ancuti et al.} [2020) test set, NH-Haze21 (Ancuti et al., 2021) dataset, O-Haze
[2018b) test set, and I-Haze (Ancuti et al., [2018a) test set. Specifically, NH-Haze20 test set

contains 5 testing pairs with non-homogeneous haze. Since NH-Haze21 does not provide a test set,
we use its training set that consists of 25 pairs captured in non-homogeneous hazy environments for
evaluation. In contrast, O-Haze and I-Haze test sets contain 5 outdoor and 5 indoor testing pairs
with homogeneous haze, respectively. Besides, we further utilize RTTS collected
in real-world hazy environments without ground truth clean images to evaluate the performance.

4.2 PERFORMANCE EVALUATIONS

Quantitative Performance Comparison. Table [T| compares the dehazing performances of three
baselines and their PANet-enhanced versions, where ‘“Baseline” and “+PANet” denote the dehazing
performances without and with PANet, respectively. As shown in Table[I} the PANet-augmented
dataset significantly improves the average PSNR performances of the three dehazing models, in-

cluding DW-GAN 2021), DeHamer (Guo et al.l 2022), and FocalNet 2023)
by 0.50 dB, 0.75 dB, 1.57 dB, and 0.48 dB on NH-Haze20 (Ancuti et al., 2020), NH-Haze21

2021), O-Haze (Ancuti et al., 2018b) and, I-Haze (Ancuti et all [2018a), respectively. In
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Table 1: Quantitative performances of different dehazing methods on NH-Haze20 test set, NH-
Haze21 dataset, O-Haze test set, and I-Haze test set. "Baseline” and ”+PANet” represent the dehaz-
ing performance without and with PANet, respectively.

NH-Haze20 NH-Haze21 O-Haze I-Haze
Model PSNR (dB) SSIM | PSNR (dB) SSIM | PSNR (dB) SSIM | PSNR (dB) SSIM
DW-GAN Baseline | 21.50 0.697 | 18.10 0.726 | 18.44 0.574 | 14.88 0.403
+PANet | 21.84 (+0.34)  0.704 | 18.42 (+0.32)  0.708 | 20.15 (+1.71) 0.634 | 15.47 (+0.59)  0.508
DeHamer Baseline | 20.01 0.649 | 16.49 0.612 | 20.01 0.600 | 15.49 0.463
+PANet | 20.73 (+0.72)  0.650 | 17.05 (+0.56)  0.627 | 20.64 (+0.63) 0.650 | 16.22 (+0.73)  0.563
FocalNet  Baseline | 20.31 0.646 | 16.51 0.632 | 18.28 0.622 | 15.29 0.417
+PANet | 20.76 (+0.45)  0.682 | 17.87 (+1.36)  0.700 | 20.64 (+2.36) 0.639 | 1541 (+0.12) 0.374
Average Gain +0.50 +0.015 | +0.75 +0.022 | +1.57 +0.042 | +0.48 +0.054

Table 2: Quantitative performances of different dehazing methods on RTTS dataset.

DW-GAN DeHamer FocalNet
NIQE| PIQE] BRISQUE] | NIQE] PIQE| BRISQUE| | NIQE] PIQE| BRISQUE |
Baseline 3.457 37.097 25.227 3.442 54.924 32.744 3.377 55.832 33.576
+PANet 3.058 34.004 23.989 3.334 50.826 32.099 3.367 52.753 32.017

1

DW-GAN

DeHamer

FocalNet

Hazy Image ’ Hazy Patch Baséline Clbéan Patch'
Figure 5: Qualitative performance comparison on NH-Haze21 (Ancuti et all,[2021) dataset.

Table 2] we demonstrate the effectiveness of PANet on RTTS [2019a). Since RTTS does
not provide ground truth clean images, we utilize three no-reference quality metrics, NIQE (Mittall

2013), PIQE 2015)), BRISQUE (Mittal et al.}[2012)), to evaluate performance. PANet

consistently improves these three dehezing models. These evaluation results demonstrate that PANet
can effectively help boost the performances of deep dehazing models under various haze conditions.

Qualitative Performance Comparison. We demonstrate some dehazed images of the dehazing
models with or without using PANet in [5]and [6] Figure 5] visualizes some dehazed results on NH-
Haze21. Compared to their baselines, PANet-enhanced models achieve significant visual quality
improvements by removing unwanted hazy artifacts or correcting color distortions. In Figure[6] we
visualize dehazed results on RTTS. Again, the PANet-enhanced dataset can also significantly boost
the performances of state-of-the-art models under haze conditions in various real-world scenarios.
These visuals show that PANet is effective in augmenting both homogeneous and non-homogeneous
hazy images in real-world scenarios. We demonstrate more visualization results on NH-Haze20, I-
Haze, O-Haze, and RTTS datasets in the supplementary material.

4.3 ABLATION STUDIES

In the ablation studies, we analyze the impact of PANet on the dehazing performance of FocalNet
on NH-Haze20 test set, where“Baseline” denotes the PSNR performance of FocalNet trained on
NH-Haze20 training set without using the additional training pairs augmented by PANet.

Effect of Data-driven Haze Refiner (DHR). To verify the effectiveness of DHR, as shown in Ta-
ble 3] we compare the dehazing performance enhanced by PANet with and without DHR, denoted
“w/o DHR” and “w/ DHR”, respectively. The results show that PANet without DHR, which gener-



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
a7
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

DeHamer DW-GAN

FocalNet

Hazy Image Hazy Patch Baseline PANet
Figure 6: Qualitative performance comparison on RTTS (Li et al.|[2019a)) dataset.

w/ DHR

w/o DHR

Figure 7: Effect of the Data-driven Haze Refiner (DHR) in PANet. First row: Hazy images generated
by PANet with DHR. Second row: Hazy images generated by PANet without DHR.

Table 3: Effect of the Data-driven Haze Refiner (DHR) Npyg(-) in PSNR in PANet.
FocalNet Baseline w/o DHR with DHR
NH-Haze20 20.31 dB 20.22 dB 20.76 dB

ates hazy images by solely using the physical scattering model, cannot improve the Baseline, due
to the inaccuracy of estimated haze parameters. Besides, the visuals in Figure [7]show that, without
using DHR, the generated hazy images contain unrealistic color tones and transparency compared
to the ones using DHR, demonstrating the importance of DHR in PANet.

Effect of Depth Refinement Module (DRM). The pre-trained depth estimator may suffer from a
domain gap when addressing unseen clean images, thereby degrading the accuracy of the physical
scattering model (Othman & Abdulla, 2022} [Lou et all, 2023). Therefore, we use DRM to refine
the initial depth map. We compare the performance of PANet with and without using DRM in
Table [ denoted “w/o DRM” and “w/ DRM?”, respectively. The results show that PANet without
DRM cannot improve the Baseline, demonstrating the importance of DRM in PANet.

Effect of the Number of Augmented Images. To assess the impact of the PANet-augmented train-
ing set size on dehazing performance, we generate various numbers of augmented pairs to improve
the baseline model trained on 50 original pairs. Table [3] presents the results using additional 200,
400, and 600 augmented pairs, representing 400%, 800%, and 1,200% increases in dataset size,
respectively. The findings indicate that dehazing performance improves as more augmented pairs
are added but tends to plateau when the number reaches 600. Based on this, we opt to augment 400
additional pairs, striking an optimal balance between training time and performance gains

Comparison with different augmentation methods. Finally, we compare PANet with different

haze augmentation methods, including uniform haze method: Physical Scattering Model (PSM),
GAN-based method: D* (Yang et al., 2022), PTTD (Chen et al., [2024), and RIDCP (Wu et al.,
2023), where we use these methods to augment the NH-Haze20 training set to improve FocalNet
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Table 4: Effectiveness of the Depth Refinement Module (DRM) in PSNR in PANet.
FocalNet Baseline w/o DRM w/ DRM
NH-Haze20 20.31 20.31 20.76

Table 5: Effect of the dehazing performance in PSNR versus the number of augmented pairs by
PANet, where the original training set contains 50 training pairs.

FocalNet | Baseline (0%) 200 (400%) 400 (800%) 600 (1200%)
NH-Haze20 20.31 20.51 20.76 20.83

Vis
UL F -
Real Hazy Image PSM D4

Figure 8: Hazy images generated by different augmentation methods, including Physical Scattering
Model (PSM), D* (Yang et al., 2022), RIDCP (Wu et al., [2023), PTTD (Chen et al., 2024), and
PANet.

Table 6: Comparison regarding dehazing performance in PSNR with different augmentation meth-
(Wu et al.|

ods, including Physical Scattering Model (PSM), D* (Yang et al.,[2022)), RIDCP 2023),
PTTD (Chen et al} 2024), and PANet.
FocalNet |Baseline w/PSM w/D* w/RIDCP w/PTTD w/PANet
NH-Haze20| 20.31 2041 20.26  20.57 19.41 20.76

and evaluate on the NH-Haze20 testing set. As shown in Table [6] our PANet achieves the best
performance compared to other augmentation methods. In addition, we compare the hazy images
generated by these methods in Fig.[8] Among these methods, PSM and RIDCP 2023)
solely rely on the physical scattering models to generate hazy images. Although RIDCP can alter
the brightness and color bias, they both cannot generate non-homogeneous hazy images. D*
2022) applies a cycle-GAN-based architecture to generate hazy images. However, the lack of
robustness of GAN increases the difficulty of generating realistic hazy images. In addition, GAN-
based methods cannot pixel-wisely control haze conditions to generate diverse hazy images. The
visual prompt generated by PTTD 2024) exhibits patch-wise artifacts that deviate sig-
nificantly from real-world haze distributions. In contrast, our PANet is a robust network through
the physics-guided learning strategy and can pixel-wisely alter hazy conditions to generate diverse
non-homogeneous hazy images.

Limitations and Future Works In this work, we develop PANet by leveraging the inductive biases
inherent in real-world hazy images, such as haze density and atmospheric light. As a result, PANet is
specifically designed for the dehazing task at this stage. In the future, we plan to extend the concept
of PANEet to other tasks, such as desmoking 2022)), deraining, desnowing, to further benefit
a broader range of image restoration applications.

5 CONCLUSION

We proposed a Parametric Augmentation Network (PANet) to generate diverse non-homogeneous
hazy images, enhancing the performance of dehazing models in real-world scenarios. PANet con-
sists of a Haze-to-Parameter Mapper, which projects hazy images into a parametric space, and a
Parameter-to-Haze Mapper, which maps the augmented parameters back into hazy images. By
modifying the estimated haze parameter maps, PANet generates hazy images with various haze pat-
terns unseen in the training set. This enables the creation of diverse training pairs, improving the
robustness of dehazing models. Extensive experiments demonstrate that PANet effectively boosts
the performance of three SOTA dehazing models across five real-world hazy image benchmarks.

10
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