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ABSTRACT

Generative adversarial networks (GANs) have been successful in synthesizing and
manipulating synthetic but realistic images from latent vectors. However, it is still
challenging for GANs to manipulate real images, especially in real-time. State-of-
the-art GAN-based methods for editing real images suffer from time-consuming
operations in projecting real images to latent vectors. Alternatively, an encoder
can be trained to embed real images to the latent space instantly, but it loses details
drastically. We propose StyleMapGAN, which adopts a novel representation of la-
tent space, called stylemap, incorporating spatial dimension into embedding. Be-
cause each spatial location in the stylemap contributes to its corresponding region
of the generated images, the real-time projection through the encoder becomes ac-
curate as well as editing real images becomes spatially controllable. Experimen-
tal results demonstrate that our method significantly outperforms state-of-the-art
models in various image manipulation tasks such as local editing and image in-
terpolation. Especially, detailed comparisons show that our local editing method
successfully reflects not only the color and texture but also the shape of a reference
image while preserving untargeted regions.

1 INTRODUCTION

Generative adversarial networks (GANs) (Goodfellow et al., 2014) have evolved dramatically in
recent years, enabling high-fidelity image synthesis with models which are learned directly from
data (Brock et al., 2019; Karras et al., 2019; 2020). Recent studies have shown that GANs naturally
learn to encode rich semantics within the latent space, thus changing the latent code leads to manip-
ulating the corresponding attributes of the output images (Jahanian et al., 2020; Shen et al., 2020;
Härkönen et al., 2020; Goetschalckx et al., 2019; Shen & Zhou, 2020; Alharbi & Wonka, 2020).
However, it is still challenging to apply these manipulations to real images, since the GAN itself
lacks an inverse mapping from an image back to its corresponding latent code.

One promising approach for manipulating real images is image-to-image translation (Isola et al.,
2017; Zhu et al., 2017; Choi et al., 2018), where the model learns to directly synthesize an output
image given a user’s input. However, these methods require pre-defined tasks and heavy supervision
(e.g., input-output pairs, class labels) for training, and also limit the user controllability at inference
time. Another approach is to utilize pretrained GAN models, by directly optimizing the latent code
for an individual image (Abdal et al., 2019; Zhu et al., 2016; Ma et al., 2018; Noguchi & Harada,
2019). However, even on high-end GPUs, it requires minutes of computation for each target image,
and it does not guarantee that the optimized code would be placed in the original latent space of
GAN.

A more practical approach is to train an extra encoder which learns to project an image into its
corresponding latent code (Zhu et al., 2020a; Perarnau et al., 2016; Luo et al., 2017). Although
this approach enables real-time projection in a single feed-forward manner, it suffers from the low
fidelity of the projected image (i.e., losing details of the target image). We attribute this limitation
to the absence of spatial dimensions in the latent space. Without the spatial dimensions, an encoder
compresses the local semantics of an image into a vector in an entangled manner, making it difficult
to reconstruct the image (e.g., vector-based or low-resolution bottleneck layer is not capable of
producing high-frequency details (Lample et al., 2017; Chang et al., 2018)).
As a solution to such problems, we propose StyleMapGAN which exploits stylemap, a novel repre-
sentation of the latent space. Our key idea is simple. Instead of learning a vector-based latent repre-
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Figure 1: While a traditional mapping network produces style vectors to control feature maps, we
create a stylemap with spatial dimensions, which not only makes the projection of a real image much
more effective at inference, but also enables local editing. The style map w is resized to w+ through
convolutional layers to match the spatial resolution of each feature in the synthesis network. Here
“A” stands for a learned affine transform, and “Mod” indicates modulation consisting of element-
wise multiplication and addition.

sentation, we utilize a tensor with explicit spatial dimensions. Our proposed representation benefits
from its spatial dimensions, enabling GANs to easily encode the local semantics of images into the
latent space. This property allows an encoder to effectively project an image into the latent space,
thus providing high-fidelity and real-time projection. In addition, our method offers a new capability
to edit specific regions of an image by manipulating the matching positions of the stylemap.

We demonstrate, on multiple datasets, that our stylemap indeed substantially enhances the projection
quality compared to the traditional vector-based latent representation (Section 3.2). Furthermore, we
show the advantage of our method over state-of-the art methods on image projection, interpolation,
and local editing (Section 3.3 & Section 3.4). Finally, we show that our method can transplant
regions even when the regions are not aligned between one image and another (Section 3.5). We will
make our code and pretrained models publicly available for research community.

2 STYLEMAPGAN

Our goal is to accurately project images to a latent space with an encoder in real-time and to lo-
cally manipulate images on the latent space. We propose StyleMapGAN which adopts stylemap,
a novel representation of the intermediate latent space with spatial dimensions. It allows accurate
reconstruction with the encoder by alleviating the spatial discrepancy between images and the latent
space which has been causing the encoder to lose details. Furthermore, local changes in the stylemap
lead to local editing of images thanks to the explicit spatial correspondence between the stylemap
and images. Section 2.1 explains how we design the mapping network and the synthesis network to
incorporate the stylemap. Section 2.2 describes our procedure for the image-to-latent projection and
the local editing.

2.1 STYLEMAP-BASED GENERATOR

Figure 1 compares the traditional style-based generator (Karras et al., 2019) and our stylemap-based
generator. We propose to incorporate a stylemap instead of a style vector and to replace AdaIN
operations with spatially adaptive operations. The stylemap has spatial dimensions as opposed to
the style vector, thus can represent different styles across spatial locations. Accordingly, we revise
SPADE (Park et al., 2019b) which modulates feature maps with spatially varying values.

Since the feature maps in the synthesis network grow larger as getting closer to the output image,
we introduce a stylemap resizer, which consists of convolutions and upsampling, to match the res-
olutions of stylemaps with the feature maps. The stylemap resizer not only resizes the stylemap,
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Figure 2: Our local editing starts with a learned encoder for fast image-to-stylemap projection. We
estimate the stylemaps w and w̃ of the original x and the reference x̃, and transform them to mul-
tiple resolutions through the learned stylemap resizer. For each resolution, we calculate the convex
combination of the two stylemaps using the user-defined binary mask m. Finally, the learned gen-
erator produces the output using the spatially-mixed stylemaps. The right one shows an example
generated using our method.

but also transforms them with learned convolutions to convey more detailed and structured styles.
Figure 1 shows examples of changes of resized stylemaps across layers.

Then, the affine transform A produces parameters for the modulation regarding the resized
stylemaps. The modulation operation of the i-th layer in the synthesis network is as follows:

hi+1 =

(
γi �

hi − µi

σi

)
⊕ βi (1)

where µi, σi ∈ R are the mean and standard deviation of activations hi ∈ RCi×Hi×Wi of the
layer, respectively. γi, βi ∈ RCi×Hi×Wi are modulation parameters. � and ⊕ are element-wise
multiplication and addition with broadcasting, respectively.

We use layer normalization (Ba et al., 2016) instead of instance normalization and find it helpful to
resolve droplet artifacts. In addition, we remove per-pixel noise which is an extra source of variation
because it makes the projection complicated. Instead, β plays the similar role. Note that weight
modulation (Karras et al., 2020) cannot be applied to spatially varying modulation because weights
are shared across all locations in a convolution. Other details about the networks such as a design
choice of mapping network are given in Appendix A and B.

2.2 REAL IMAGE PROJECTION AND LOCAL EDITING

Since the stylemap eases the spatial discrepancy between images and the latent space, we train an
encoder to project real images into its corresponding stylemaps, which accurately reconstructs the
images through the generator. The encoder is jointly trained with the generator and the discriminator.
More training details are described in Appendix A. Now we have access to the accurate projection
of images to the style space which is essential to latent-based editing. Furthermore, local changes in
the stylemap leads to natural local editing of images on the learned semantic manifold. Especially,
we design a procedure for local transplantation which now becomes feasible.

The goal of local editing is to transplant some part of a reference image to an original image with
respect to a mask which indicates the region to be modified. We project the original image and the
reference image through the encoder to obtain stylemaps w and w̃, respectively. In general, the mask
is finer than 8×8, we blend the stylemaps on w+ space to achieve detailed manipulation. The edited
i-th resized stylemap ẅ+ is an alpha blending of w+ and w̃+:

ẅ+
i = mi � w̃+

i + (1−mi)�wi
+ (2)
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where i-th resized mask mi is shrunk by max pooling. If the mask’s shape aligns with the 8 × 8
stylemap, we can do the same alpha blending on the w space instead of the w+ space. Note that
the mask can be in any shape allowing usage of semantic segmentation methods or user scribbles.
On the contrary to SPADE (Park et al., 2019b) or SEAN (Zhu et al., 2020b), even coarse masks as
coarse as 8 × 8 produces plausible images so that the burden for user to provide detailed masks is
lifted. This operation can be further revised for unidentical masks of the two images (Section 3.5).

3 EXPERIMENTS

Our proposed method efficiently projects images into the style space in real-time and effectively
manipulate specific regions of real images. We first describe our experimental setup (Section 3.1) and
show how the proposed spatial dimensions of stylemap affect the image projection and generation
quality (Section 3.2). We then compare our method with the state-of-the art methods on real image
projection (Section 3.3) and local editing (Section 3.4). We finally show a more flexible editing
scenario and usefulness of our proposed method (Section 3.5). Implementation details are described
in Appendix A.

3.1 EXPERIMENTAL SETUP

Datasets and protocols. For evaluation, we train our model on CelebA-HQ (Karras et al., 2018)
and AFHQ (Choi et al., 2020), both at resolution of 256 × 256. We use 500 images for validation,
another 500 images for testing, and the rest for training. Because the optimization methods take an
extremely long time, we limited the test set to 500 images. When we compute Fréchet inception
distance (FID), the numbers of generated samples are matched to the training set. Reconstruction
errors are measured with all test images. For FIDlerp, we choose random numbers between 0 and 1 for
500 random pairs of images from the test set to synthesize 500 interpolated images and compute FID
between those and the test set. For local editing comparison, 250 pairs of test images in CelebA-HQ
are composed with ten semantic masks (e.g., background, hair) (Lee et al., 2020) to produce 2500
images. For local editing on AFHQ, masks are randomly chosen between horizontal and vertical
half-and-half masks to produce 250 images.

Baselines. We compare our method against recent methods. For image projection, Style-
GAN2 (Karras et al., 2020) and Image2StyleGAN (Abdal et al., 2019) infer the per-layer style
vectors (analogous to our w+) via iterative optimization. In-DomainGAN (Zhu et al., 2020a) re-
lies on optimization preceded by initialization using a domain-guided encoder. SEAN (Zhu et al.,
2020b) also includes an encoder but it requires semantic segmentation masks for training. Structured
noise (Alharbi & Wonka, 2020) adds input tensor with spatial dimensions to the synthesis network
of StyleGAN but it does not enhance the rest of the network where the style vector still plays an
important role. Editing in style (Collins et al., 2020) tries to find local semantics in the style vector.

3.2 ANALYSIS OF OUR METHOD

To manipulate an image using a generative model, we first need to accurately project the image into
its latent space. In Table 1, we vary the spatial resolution of stylemap and compare the performance
of reconstruction and generation. As the spatial resolution increases, the reconstruction accuracy
improves significantly. It demonstrates that our stylemap with spatial dimensions is highly effective
for image projection. FID varies differently across datasets, possibly due to different contextual re-
lationship between locations for generation. Note that our method with spatial resolution accurately
preserves small details, e.g., the eyes are not blurred.

We next evaluate the effect of the stylemap’s resolution in editing scenarios, mixing specific parts
of one image and another. Figure 3 shows that the 8×8 stylemap synthesizes the most accurate and
seamlessly blended images. We see that when the spatial resolution is higher than 8×8, the edited
parts are easily detected. We suppose that too large stylemap harms contextual relationship across
locations which is essential for realistic images. Considering the editing quality, we choose the 8×8
resolution as our best model and use it consistently for all subsequent experiments.
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Input 1× 1 4× 4 8× 8 16× 16 32× 32

Method Style CelebA-HQ AFHQ
resolution MSE LPIPS FID MSE LPIPS FID

StyleGAN2 1×1 0.089 0.428 4.97 0.139 0.539 8.59

StyleMapGAN 4×4 0.062 0.351 4.03 0.070 0.394 14.82
StyleMapGAN 8×8 0.024 0.242 4.92 0.037 0.304 11.10
StyleMapGAN 16×16 0.010 0.146 4.71 0.016 0.183 6.71
StyleMapGAN 32×32 0.004 0.076 7.18 0.006 0.090 7.87

Table 1: Comparison on reconstruction and generation quality across different resolutions of the
stylemap. Mean squared error (MSE) is in [-1, 1] scale and learned perceptual image patch similar-
ity (LPIPS) measures reconstruction accuracy with the encoder. Fréchet Inception Distance (FID)
measures the quality of randomly generated samples from the standard Gaussian distribution. The
higher resolution helps accurate reconstruction, validating the effectiveness of stylemap. We observe
that 8 × 8 stylemap already provides accurate enough reconstruction and accuracy gain and after-
ward improvements get visually negligible. Although FID varies differently across datasets, possibly
due to the different contextual relationship between locations for generation, the stylemap does not
seriously harm quality of the images.

Original Reference 4× 4 8× 8 16× 16 32× 32

Figure 3: Local editing comparison across different resolutions of the stylemap. Regions to be dis-
carded are faded on the original and the reference images. 4 × 4 suffers from poor reconstruction.
Resolutions greater than or equal to 16 × 16 result in too heterogeneous images. 8 × 8 resolution
shows the acceptable reconstruction and natural integration.

3.3 REAL IMAGE PROJECTION

In Table 2, we compare our approach with the state-of-the art methods for real image projection.
For both datasets, StyleMapGAN achieves better reconstruction quality (MSE & LPIPS) than all
competitors. Also, it achieves the best FID, which implicitly shows that our manipulation on the
style space leads to the most realistic images. Importantly, our method runs 100× faster than the
optimization-based baselines since a single feedforward pass provides accurate projection thanks to

5



Under review as a conference paper at ICLR 2021

Input A Inversion A Interpolation Interpolation Interpolation Inversion B Input B

Im
2S

ty
le

G
A

N
O

ur
s

Method Runtime (s) CelebA-HQ AFHQ
MSE LPIPS FIDlerp MSE LPIPS FIDlerp

StyleGAN2 80.4 0.079 0.247 55.38 0.091 0.288 30.65
Image2StyleGAN 192.5 0.009 0.203 55.22 0.018 0.282 62.99
Structured Noise 64.4 0.097 0.256 54.71 0.144 0.332 54.61
In-DomainGAN 6.8 0.052 0.340 49.87 0.077 0.414 35.07

SEAN 0.146 0.064 0.334 44.08 N/A N/A N/A
StyleMapGAN 0.080 0.024 0.242 36.71 0.037 0.304 26.97

Table 2: Comparison with the baselines for real image projection. Runtime covers the end-to-end
interval of projection and generation in seconds. Protocols for MSE and LPIPS are the same with
Table 1. FIDlerp measures quality of the images interpolated on the style space as a proxy for potential
quality of the manipulated images. Our method allows real-time manipulation of real images while
achieving the best reconstruction accuracy and the best quality of the interpolated images. Although
Image2StyleGAN produces the smallest reconstruction error, it suffers from minutes of runtime and
poor interpolation quality which are not suitable for a practical editing. Its flaws can be found in the
figure: deviating identity, odd changes on neck and background, and sudden changes on eyes. SEAN
is not applicable to AFHQ due to no existence of segmentation masks for training. The horizontal
line between methods separates optimization-based methods and encoder-based methods.

Method Runtime CelebA-HQ AFHQ
AP MSEsrc MSEref AP MSEsrc MSEref

Structured Noise 64.4 99.16 0.105 0.395 99.88 0.137 0.444
Editing in Style 55.6 98.34 0.094 0.321 99.52 0.130 0.417
In-DomainGAN 6.8 98.72 0.164 0.015 99.59 0.172 0.028

SEAN 0.155 90.41 0.067 0.141 N/A N/A N/A
StyleMapGAN (Ours) 0.099 83.60 0.039 0.105 98.66 0.050 0.050

Table 3: Comparison with the baselines for local image editing. Average precision (AP) is measured
with the binary classifier trained on real and fake images (Wang et al., 2020). The lower AP indicates
that manipulated images are more indistinguishable from real images. MSEsrc and MSEref measure
error from the source image outside the mask and from the reference image inside the mask, respec-
tively. Compared with the baselines, our method seamlessly composes the two images giving better
reconstructions.

the stylemap, which is measured in a single GPU. SEAN also runs with a single feedforward pass,
but it requires ground-truth segmentation masks for training which is a severe drawback for practical
uses. Image2StyleGAN fails to meet requirements for editing in that it produces spurious artifacts
in latent interpolation (FIDlerp and figures) and suffers from minutes of runtime.

3.4 LOCAL EDITING

We evaluate local editing performance regarding three aspects: detectability, faithfulness to the ref-
erence image in the mask and preservation of the source image outside the mask. Figure 4 and Figure
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Original Reference Structured Noise Editing in Style In-DomainGAN SEAN Ours

Figure 4: Local editing comparison on CelebA-HQ. The first two baselines even fail to reconstruct
untouched region. In-Domain GAN inversion poorly blends the two images, leaking colors to faces,
hair, or background, respectively. SEAN locally transfers coarse structure and color but significantly
loses details. Ours seamlessly transplants the target region from the reference to the original.

Original Reference Structured Noise Editing in Style In-DomainGAN Ours

Figure 5: Local editing comparison on AFHQ. Each row blends the two images with vertical, hor-
izontal and custom masks, respectively. Our method seamlessly composes two species with well-
preserved details resulting in non-existing creatures, while others tend to lean towards one species.

5 visually demonstrate that our method seamlessly composes the two images while others struggle.
Since there is no metrics for evaluating the last two aspects, we propose two quantitative metrics:
MSEsrc and MSEref. Table 3 shows that the results from our method are the hardest for the classifier
to detect and both source and reference images are best reflected. Note that MSEs are not the sole
measures but AP should be considered together.

3.5 UNALIGNED TRANSPLANTATION

Here, we demonstrate more flexible use case, unaligned transplantation, showing that our local edit-
ing does not require the masks on the original and the reference images to be aligned. We project the
images to the stylemaps and and replace the designated region of the original stylemap with the crop
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Figure 6: Examples of unaligned transplantation. StyleMapGAN allows composing arbitrary number
of any regions. Note that the size of the tower and eyes are automatically adjusted regarding the
surroundings. The masks are specified on 8× 8 grid and the stylemaps are blended on w space.

of the reference stylemap even though they are on the different locations. Users can specify what to
replace. Figure 6 shows examples.

4 DISCUSSION AND CONCLUSION

Invertibility of GANs has been essential for editing real images with unconditional GAN models
at a practical time and it has not been properly answered yet. To achieve this goal, we propose
StyleMapGAN, which introduces explicit spatial dimensions to the latent space, called a stylemap.
We show, through extensive evaluation, that our method based on the stylemap has a number of
advantages over prior approaches, in that it can accurately project real images in real-time, into the
latent space, and synthesize high-quality output images by both interpolation and local editing. The
proposed latent representation is simple, general, and can be easily integrated into existing GAN
models (e.g., StyleGAN) with wide range of network designs and data modality. We believe that
improving fidelity by applying our latent representation to other methods such as conditional GANs
(e.g., BigGAN) or variational autoencoders (Kingma & Welling, 2013) would be an exciting future
work.
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A IMPLEMENTATION DETAILS

Architecture. We follow StyleGAN2 (Karras et al., 2020) regarding the discriminator architecture
and the feature map counts in the convolution layers of the synthesis network. Our mapping network
is an MLP with eight fully connected layers followed by a reshape layer. The channel sizes are 64
except the last being 4,096. Our encoder adopts the discriminator architecture until the 8 × 8 layer
and without minibatch discrimination.

Training. We jointly train the generator, the encoder and the discriminator. It is simpler and leads
to more stable training and higher performance than separately training the adversarial networks
and the encoder. For the rest, we mostly follow the settings of StyleGAN2, e.g., the discriminator
architecture, Adam optimizer with the same hyperparameters, exponential moving average of the
generator and the encoder, leaky ReLU, equalized learning rate for all layers, random horizontal flip
for augmentation, and reducing the learning rate by two orders of magnitude for the mapping net-
work. Our code is based on unofficial PyTorch implementation of StyleGAN21. All StyleMapGAN
variants on comparison are trained for two weeks on 5M images with two Tesla V100 GPUs using
minibatch size of 16. We note that most cases keep slowly improving until 10M images. Our code
will be publicly available online for reproduction2.

Losses. Here we use G, D and E as short forms of the generator, the discriminator and the Encoder.
The adversarial loss for G and D are non-saturating loss (Goodfellow et al., 2014). R1 regularization
term (Mescheder et al., 2018) is computed every 16 steps for D. G and E are trained with image
reconstruction loss (MSE) and perceptual loss (Johnson et al., 2016). Domain-guiding loss (Zhu
et al., 2020a) is applied to all networks. Table 4 summarizes the losses.

Loss Generator Discriminator Encoder
Adversarial loss 3 3

R1 regularization 3

Latent reconstruction 3

Image reconstruction 3 3

Perceptual loss 3 3

Domain-guided loss 3 3 3

Table 4: Losses for training each network.

B MAPPING NETWORK DESIGN FOR THE STYLEMAP

There are several choices when designing a mapping network. We can easily think of convolutional
layers due to the spatial dimensions of the stylemap. Alternatively, we can remove the mapping
network so that our method does not generate images from the standard Gaussian distribution, and

1https://github.com/rosinality/stylegan2-pytorch
2http://publicurl.com
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Original Reference AutoEncoder Conv MLP

Figure 7: Local editing comparison across different mapping network structures in the generator. The
autoencoder method without a mapping network is most unnatural in a modified image. The mapping
network with convolutional layers has more natural results than the autoencoder. Nevertheless, due
to its bad reconstruction quality, it suffers from preserving the characteristics of original images. Our
MLP mapping network is natural in local editing and preserves the original image well. Also, even
if the eye part is not properly inserted like the animal image, it naturally creates it.

uses only real images for training like autoencoder (Hinton & Salakhutdinov, 2006). As shown in
Figure 3, autoencoder fails to produce realistic images using the projected stylemap. It seems to
copy and paste between two images on RGB space. We give continuous input to the generator from
the standard Gaussian distribution using a mapping network, letting the network generate seamless
images in image space. However, the autoencoder only gives discrete input, which is projected from
the encoder. On the other hand, the mapping network with convolutional layers often struggles in
reconstruction so that the edited results images are quite different from the original images. We
assume that there is such a limit because the convolutional layer’s mapping is bounded to the local
area. In MLP, each weight and input are fully-connected so that it can make a more plausible latent
space.

C RELATED WORK

C.1 LATENT-BASED IMAGE EDITING

There are active studies (Abdal et al., 2019; Collins et al., 2020; Zhu et al., 2020a) on image editing
using latent vector arithmetic where well-trained GANs (Karras et al., 2019; 2020) are adopted for
real-world applications. These studies aim to find a latent vector to reconstruct an original image. In
general, there are two approaches to embed images into latent vectors, learning and optimization-
based ones. The learning-based approach (Zhu et al., 2020a; Perarnau et al., 2016; Zhu et al., 2016)
trains an encoder that maps a given image to a latent vector. This method has a potential of pro-
jecting an image in real time. However, the existing methods suffer from low quality of the recon-
structed images, which indicates the difficulty of embedding real images. The optimization-based
approach (Creswell & Bharath, 2018; Lipton & Tripathi, 2017; Ma et al., 2018; Abdal et al., 2019),
given an input image, aims at optimizing the latent vector to minimize the pixel-wise reconstruction
loss. Though it is not feasible to project images in real time due to its iterative nature, it exhibits
high quality of the reconstructed images while enabling edits include global changes in semantic
attribute, e.g. smiling, beard, etc. Compared with these approaches, our StyleMapGAN can project
images in real time while offering high quality of reconstruction images.

C.2 LOCAL EDITING

Several methods (Collins et al., 2020; Alharbi & Wonka, 2020; Zhu et al., 2020b) tackle locally
editing specific parts (e.g., nose, background) as opposed to the most GAN-based image editing
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methods modifying global appearance. Editing in style (Collins et al., 2020) tries to identify compo-
nents in the style vector which are responsible for specific parts and achieves local editing. It requires
preceding component analysis and the correspondence between the components and regions is lose.
Structured noise injection (Alharbi & Wonka, 2020) replaces the learned constant from StyleGAN
with an input tensor which has spatial dimensions and is a combination of local and global codes.
Though it learns some sense of spatial disentanglement, its applicability is limited due to the sep-
arate source of variation, the style vector. These two methods are limited to editing fake images
while editing real images with them requires projecting the images to the latent space. SEAN (Zhu
et al., 2020b) facilitates editing real images by encoding images into the per-region style codes and
manipulating them. However, per-region style codes do not capture details and it requires seman-
tic segmentation masks for training. On the other hand, our StyleMapGAN captures and controls
fine details of images with a stylemap which has explicit spatial correspondence with images. Our
method does not require segmentation masks for training.

C.3 CONDITIONAL IMAGE SYNTHESIS

Conditional image synthesis models, such as image-to-image translation (Isola et al., 2017; Zhu
et al., 2017; Kim et al., 2020), learn to synthesize an output image given an original image. Thanks to
this framework, many applications have been successfully built, including colorization (Kim et al.,
2019; Larsson et al., 2016; Zhang et al., 2016), image inpainting (Liu et al., 2018; Pathak et al.,
2016; Yang et al., 2017), semantic image synthesis and editing (Wang et al., 2018; Chen & Koltun,
2017; Park et al., 2019a; Portenier et al., 2018). Recent models extend it to multi-domain and multi-
modal (Huang et al., 2018; Lee et al., 2018; Choi et al., 2020). Image-to-image translation and local
edit have been separately studied since they target different objectives, i.e., regarding global and
local levels of detail in image generation. However, our method can be applied to the both tasks
by semantic manipulation of stylemap for image-to-image translation and local manipulation of
stylemap. For example, our StyleMapGAN can make only the eyes laugh or the mouth laugh via
local editing as well as change the domain of generated image via global semantic manipulation.
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