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Abstract

Diffusion models are advancing autonomous driving by enabling realistic data syn-
thesis, predictive end-to-end planning, and closed-loop simulation, with a primary
focus on temporally consistent generation. However, large-scale 3D scene genera-
tion requiring spatial coherence remains underexplored. In this paper, we present
-Scene, a novel framework for large-scale driving scene generation that achieves
geometric intricacy, appearance fidelity, and flexible controllability. Specifically,
X-Scene supports multi-granular control, including low-level layout condition-
ing driven by user input or text for detailed scene composition, and high-level
semantic guidance informed by user intent and LLM-enriched prompts for efficient
customization. To enhance geometric and visual fidelity, we introduce a unified
pipeline that sequentially generates 3D semantic occupancy and corresponding
multi-view images and videos, ensuring alignment and temporal consistency across
modalities. We further extend local regions into large-scale scenes via consistency-
aware outpainting, which extrapolates occupancy and images from previously
generated areas to maintain spatial and visual coherence. The resulting scenes
are lifted into high-quality 3DGS representations, supporting diverse applications
such as simulation and scene exploration. Extensive experiments demonstrate that
X-Scene substantially advances controllability and fidelity in large-scale scene
generation, empowering data generation and simulation for autonomous driving.

1 Introduction

Recent advancements in generative Al have profoundly impacted autonomous driving, with diffusion
models (DMs) emerging as pivotal tools for data synthesis and driving simulation. Some approaches
utilize DMs as data machines, producing high-fidelity driving videos [ 1—14] or multi-modal synthetic
data [15-18] to augment perception tasks, as well as generating corner cases (e.g., vehicle cut-ins)
to enrich planning data with uncommon yet critical scenarios. Beyond this, other methods employ
DMs as world models to predict future driving states, enabling end-to-end planning [19-21] and
closed-loop simulation [22-28]. All these efforts emphasize long-term video generation through
temporal recursion, encouraging DMs to produce coherent video sequences for downstream tasks.

However, large-scale scene generation with spatial expansion, which aims to build expansive and
immersive 3D environments for arbitrary driving simulation, remains an emerging yet underexplored
direction. A handful of pioneering works have explored 3D driving scene generation at scale.
For example, SemCity [29] generates city-scale 3D occupancy grids using DMs, but the lack of
appearance details limits its practicality for realistic simulation. UniScene [ ! 8] and InfiniCube [30]
extend this by generating both 3D occupancy and images, but require a manually defined large-scale
layout as a conditioning input, complicating the generation process and hindering flexibility.
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Figure 1: Overview of .1'-Scene, a unified world generator that supports multi-granular controllability
through high-level text-to-layout generation and low-level BEV layout conditioning. It performs joint
occupancy, image, and video generation for 3D scene synthesis and reconstruction with high fidelity.

In this work, we tackle the problem of large-scale scene generation with spatial expansion, which
presents three key challenges: 1) Flexible Controllability: enabling versatile control through both low-
level conditions (e.g., layouts) for precise scene composition and high-level prompts (e.g., user-intent
text descriptions) for intuitive customization; 2) High-Fidelity Geometry and Appearance: generating
intricate geometry with photorealistic appearance to ensure structural integrity and visual realism in
3D scenes; 3) Large-Scale Consistency: maintaining spatial coherence across extended regions to
ensure global consistency throughout the generated environment.

To address these challenges, we propose X-Scene, a novel framework for large-scale driving scene
generation featuring: 1) Multi-Granular Controllability: It enables users to guide generation at
multiple abstraction levels, supporting fine-grained BEV semantic layouts for precise control and
high-level text prompts for efficient customization. Text prompts are enriched by LLMs into detailed
scene narratives, structured as scene graphs and converted into vector-map layouts via a scene-graph to
layout diffusion module. These layouts provide spatial and semantic cues that guide subsequent scene
synthesis, combining layout-level precision with prompt-based flexibility. 2) Geometric and Visual
Fidelity: X-Scene employs a unified pipeline that sequentially generates 3D semantic occupancy and
corresponding multi-view images and videos, ensuring structural accuracy, photorealistic appearance,
and temporal consistency with cross-modal alignment. 3) Consistent Large-Scale Extrapolation:
To synthesize expansive environments, it progressively extrapolates new scene content conditioned
on adjacent, previously generated regions. The consistency-aware outpainting mechanism preserves
spatial continuity and enables seamless extension beyond local areas.

Furthermore, to support downstream applications such as realistic driving simulation, we reconstruct
the generated occupancy and multi-view images/videos into 3D Gaussian (3DGS) [3 1] representations,
which faithfully preserve geometric detail and visual quality. By unifying controllability, fidelity, and
scalability, X'-Scene advances the state-of-the-art in large-scale, controllable driving scene synthesis,
empowering realistic data generation and simulation for autonomous driving.

The main contributions of our work are summarized as follows:

* We propose X-Scene, a novel framework for large-scale 3D driving scene generation with multi-
granular controllability, geometric and visual fidelity, and consistent large-scale extrapolation,
supporting a wide range of downstream applications.

* We design a flexible multi-granular control mechanism that synergistically combines high-level
semantic guidance (LLM-enriched text prompts) with low-level geometric specifications (user-
provided or text-driven layout), enabling scene creation tailored to diverse user needs.

* We present a unified occupancy—image—video generation pipeline that achieves geometric fidelity,
photorealistic appearance, and temporal coherence, enabling seamless large-scale scene expansion.

* Extensive experiments show X'-Scene achieves superior performance in generation quality and
controllability, enabling diverse applications from data augmentation to driving simulation.
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Figure 2: Pipeline of .I'-Scene for driving scene generation: (a) Multi-granular controllability
supports both high-level text prompts and low-level geometric constraints for flexible specification;
(b) Joint occupancy-image-video generation synthesizes aligned 3D voxels and multi-view images
and videos via conditional diffusion; (c) Large-scale extrapolation enables coherent scene expansion
through consistency-aware outpainting (Fig. 4). Fig. 3 details the scene-graph to layout diffusion.

2 Related Works

Driving Image and Video Generation. Diffusion models [32—-35] have revolutionized image
synthesis by iteratively refining Gaussian noise into high-quality results. Building on this, they have
greatly advanced autonomous driving by enabling realistic image and video generation for various
downstream tasks. Several methods synthesize driving images [1, 36—39] or videos [2—14] from
layout conditions to augment perception data. Others [40, 41] generate rare yet critical events, e.g.,
lane changes or cut-ins, to improve planning under corner cases. Moreover, diffusion-based world
models predict future driving videos for end-to-end planning [19-21] or closed-loop simulation [22—

]. While prior works emphasize temporal consistency, our approach explores the complementary
aspect of spatial coherence for large-scale scene generation.

3D and 4D Driving Scene Generation. Recent advances extend beyond 2D generation to 3D/4D
scene synthesis [42], producing 3D environments from LiDAR point clouds [43-52], occupancy
volumes [53, 54, 29, 55-59], or 3D Gaussian Splatting (3DGS) [60-67], serving as neural simulators
for data generation and driving simulation. The field has futher progressed in two directions: 1)
3D world models that predict future scene representations (e.g., point clouds [68—70] or occupancy
maps [71-76]) to aid planning and pretraining; and 2) multi-modal generators that synthesize aligned
data across modalities, such as image—LiDAR [15, 16] or image—occupancy pairs [17, 18, 24].
Our work explores joint occupancy—image—video generation, constructing scenes that integrate
fine-grained geometry, photorealistic appearance, and temporally coherent dynamics.

Large-Scale Scene Generation. Large-scale city generation has evolved along four main directions:
video-based [77, 78], outpainting-based [79-8 1], PCG-based [$2—-84], and neural-based methods [85—
]. While effective for natural or urban environments, these approaches are not tailored for driving
scenarios requiring accurate street layouts and dynamic agents. Driving-specific methods also face
key limitations: XCube [58] and SemCity [29] model only geometric occupancy without appearance,
while DrivingSphere [24], UniScene [ 8], and InfiniCube [30] depend on manually designed large-
scale layouts, limiting scalability. In contrast, our X'-Scene framework jointly generates geometry
and appearance with flexible, text-driven control, offering efficient and user-friendly customization.

3 Methodology

X-Scene aims to generate large-scale 3D driving scenes within a unified framework addressing
controllability, fidelity, and scalability. As shown in Fig. 2, it consists of three main components: 1)
Multi-Granular Controllability (Sec. 3.1), which integrates high-level user intent with low-level
geometric constraints for flexible scene specification; 2) Joint Occupancy, Image, and Video Gen-
eration (Sec. 3.2), which employs conditioned diffusion models to synthesize 3D voxel occupancy,
multi-view images, and temporally coherent videos with 3D-aware guidance; and 3) Large-Scale
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Figure 3: Pipeline of textual description enrichment and scene-graph to layout generation: (a)
Input prompts are enriched using RAG-augmented LLMs to produce structured scene descriptions;
(b) Spatial relationships are converted into a scene graph and encoded with a graph network, followed
by conditional diffusion that denoises object boxes and lane polylines into the final layouts.

Scene Extrapolation and Reconstruction (Sec. 3.3), which extends scenes via consistency-aware
outpainting and lifts them into 3DGS representations for downstream simulation and exploration.

3.1 Multi-Granular Controllability

X-Scene supports dual-mode scene control through: 1) high-level textual prompts, which are enriched
by LLMs and converted into structured layouts via a text-to-layout generation model (illustrated
in Fig. 3); and 2) direct low-level geometric control for precise spatial specification. This hybrid
approach enables both intuitive creative expression and exacting scene customization.

Text Description Enrichment. Given a coarse user-provided textual prompt 7p, we first enrich it
into a comprehensive scene description D = {S, O, B, L}, comprising: scene style S (weather, light-
ing, environment), foreground objects O (semantics, spatial attributes, and appearance), background
elements 3 (semantics and visual characteristics), and textual scene-graph layout £, representing
spatial relationships among scene entities. The structured description D is generated as:

D= gdescription (7}3’7 RAG(TPv M)) (1)

where M = {m;}¥, denotes the scene description memory. Each entity m; is automatically
constructed using one of the N collected scene datasets by: 1) extracting {S, O, B} using VLMs
on scene images; and 2) converting spatial annotations (object boxes and road lanes) into textual
scene-graph layout £. As shown in Fig. 3, the Retrieval-Augmented Generation (RAG) module
retrieves relevant descriptions similar to 7p from the memory bank M, which are then composed
into a detailed, user-intended scene description by an LLM-based generator Guescription-

This pipeline leverages RAG for few-shot retrieval and composition when processing brief user
prompts, enabling flexible and context-aware scene synthesis. The memory bank M is designed to
be extensible, allowing seamless integration of new datasets to support a broader variety of scene
styles. Additional examples of generated scene descriptions are provided in the appendix.

Textual Scene-Graph to Layout Generation. Given the textual layout £, we transform it into
a detailed layout map through a scene-graph to layout generation pipeline (See Fig. 3). First, we
construct a scene graph G = (V, £), where nodes V = {v; f‘il represent M scene entities (e.g., cars,
pedestrians, road lanes) and edges € = {e;,;|i,j € {1, ..., M }} represent spatial relations (e.g.,
front of, on top of). Each node and edge is then embedded by concatenating semantic features s;,
5;—; (extracted using a text encoder &x;) With learnable geometric embeddings g;, g;—;, resulting
in node embeddings v; = Concat(s;, g;) and edge embeddings e;_,; = Concat(s;_,;, gi—; ).

The graph embeddings are refined using a graph convolutional network, which propagates contextual
information e;_, ; across the graph and updates each node embedding v; via neighborhood aggregation.
Finally, layout generation is formulated as a conditional diffusion process: each object layout is
initialized as a noisy 7-D vector b; € R7 (representing box center, dimensions, and orientation),
while each road lane begins as a set of NV noisy 2D points p; € R¥*2, with denoising process is
conditioned on the corresponding node embeddings v; to produce geometrically coherent placements.



Low-Level Conditional Encoding. We encode fine-grained conditions (such as user-provided or
model-generated layout maps and 3D bounding boxes) into embeddings to enable precise geometric
control. As illustrated in Fig. 2, the 2D layout maps are processed by a ConvNet (Ejuy0ur) to €xtract
layout embeddings €/4y0u:, While 3D box embeddings ey, are obtained via MLPs (&), which fuse
object class and spatial coordinate features. To further enhance geometric alignment, we project
both the scene layout and 3D boxes into the camera view to generate perspective maps, which are
encoded by another ConvNet (&,,,sp,) to capture spatial constraints from the image plane. Additionally,
high-level scene descriptions D are embedded via a TS5 encoder (&), providing rich semantic cues
for controllable generation through the resulting text embeddings ey,

3.2 Joint Occupancy, Image, and Video Generation

We adopt a joint 3D-to-2D generation hierarchy that first models scene geometry via occupancy
diffusion, followed by image synthesis guided by occupancy-rendered maps to ensure geometric
consistency. The pipeline is further extended with a temporal diffusion module for video generation,
producing smooth motion and cross-view temporal coherence.

Occupancy Generation via Triplane Diffusion. We adopt a triplane representation [88] to encode
3D occupancy fields with high geometric fidelity. Given an occupancy volume o € RX*Y*Z 3
triplane encoder compresses it into three orthogonal latent planes h = {h*¥ h** h¥*} with spatial
downsampling. To mitigate information loss due to reduced resolution, we propose a novel triplane
deformable attention mechanism that aggregates richer features for a query point q = (z, y, 2) as:

K
Fo(w.y.2)= > > o(WI PE(x,y,2)), - b (projp(w,5.2) + Apf ) (@)
Pe{zy,xz,yz} k=1

where K is the number of sampling points, PE(-) : R* — R” denotes positional encoding, and
WP € REXD generates attention weights with the softmax function o (-). The projection function
projp maps 3D coordinates to 2D planes (e.g., proj,, (7, y,z) = (z,y)), and the learnable offset
Apl = WP'[k] - PE(z,y, z) € R? uses weights W) € R?*P to shift sampling positions for better
feature alignment. Then the triplane-VAE decoder reconstructs the 3D occupancy field from the
aggregated features Fy.

Building on the latent triplane representation h, we introduce a conditional diffusion model €3 that
synthesizes novel triplanes through iterative denoising. At each timestep ¢, the model refines a noisy
triplane h; toward the clean target h, using two complementary conditioning strategies: 1) additive
spatial conditioning with the layout embedding ejayou; and 2) cross-attention-based conditioning
with C = Concat(epox, €ext), integrating geometric and semantic constraints. The model is trained to

occ occe

predict the added noise € using the denoising objective: Ldiﬁc =E;inge [He — €5°°(hy, t, €layout, C) ||§]

Image Generation with 3D Geometry Guidance. After obtaining the 3D occupancy, we convert
voxels into 3D Gaussian primitives parameterized by voxel coordinates, semantics, and opacity, which
are rendered into semantic and depth maps via tile-based rasterization [31]. To further incorporate
object-level geometry, we generate normalized 3D coordinates for the entire scene and use object
bounding boxes to extract relevant coordinates, which are encoded into object positional embeddings
€p0s t0 provide fine-grained geometric guidance. The semantic, depth, and perspective maps are pro-
cessed by ConvNets and fused with e to form the final geometric embedding ege,. This embedding
is then combined with noisy image latents to enable pixel-aligned geometric guidance. The image

diffusion model eigmg further leverages cross-attention with conditions C (text, camera, and box embed-

dings) for appearance control. The model is trained via: £ = E; ,, . [He — " (%, t, €ge, C)[|3 |-

Video Generation with Motion-Aware Diffusion. After obtaining multi-view images, we extend
the diffusion framework to synthesize temporally coherent videos conditioned on motion cues.
The generated images from preceding clips serve as reference frames to guide the denoising of
subsequent noisy latents x;. The diffusion model eg‘d takes both x; and encoded reference features
F'.t, concatenated along the temporal dimension, and applies a temporal self-attention layer to capture
motion correspondences, with the relative ego poses P also encoded for motion-aware conditioning.



Only the temporal attention layers are fine-tuned from the pre-trained image diffusion model, enabling
efficient transfer from spatial to temporal domains. The training objective follows the denoising
formulation: L% = E; x, c[ll€ — €54(x¢, t, Frer, Pre1, C)||3]. During inference, an autoregressive
strategy is employed for streaming video generation, where previously generated frames are reused

as motion references to ensure smooth transitions and temporal coherence across clips.

3.3 Large-Scale Scene Extrapolation and Reconstruction

Building on single-chunk generation, we propose a progressive extrapolation approach that coherently
expands occupancy and images across multiple chunks, maintaining geometric and visual consistency
with the generated multi-view videos for downstream applications.

Geometry-Consistent Scene Outpainting. We extend the occupancy field via triplane extrapola-
tion [89], which decomposes the task into extrapolating three orthogonal 2D planes, as illustrated
in Fig. 4. The core idea is to generate a new latent plane hg™ by synchronizing its denoising
process with the forward diffusion of a known reference plane h¥f, guided by an overlap mask M.
Specifically, at each denoising step t, the new latent is updated as:

h!™  (VahE + VI — are) © M+ g (h, 1) © (1 — M) )
where € ~ N(0,I) and & is determined
by the noise scheduler at timestep ¢. This Gl

method preserves structural consistency
in overlapping regions while plausibly
extending reference content into unseen
areas, yielding coherent and geometry-
consistent scene extensions.
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sion model €, with explicit conditioning
on xf and camera embeddings e(R, T).
Concretely, xfff is concatenated with the
novel latent x}*¥, and e(R, T') is incorpo-

rated via cross-attention, enabling view-consistent extrapolation with photorealistic visual results.

4 Experiments

4.1 Experimental Settings

We use Occ3D-nuScenes [90] to train the occupancy module and nuScenes [91] for the multi-view
image and video generation modules. Additional implementation details are provided in the appendix.

Experimental Tasks and Metrics. We evaluate X'-Scene across three aspects using a range of
metrics: 1) Occupancy Generation: We evaluate the reconstruction results of the VAE with IoU
and mloU metrics. For occupancy generation, following [59], we report both generative 3D and
2D metrics, including Inception Score, FID, KID, Precision, Recall, and F-Score. 2) Multi-View
Image Generation: We evaluate the quality of the synthesized images using FID. 3) Multi-View
Video Generation: We evaluate video temporal consistency using FVD. 4) Downstream Tasks: We
evaluate the sim-to-real gap by measuring performance on the generated scenes across downstream
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Figure 5: Versatile generation capability of .t'-Scene: (a) Generation of large-scale, consistent
semantic occupancy and multi-view images, which are reconstructed into 3D scenes for multi-view
rendering; (b) User-prompted layout and scene generation, along with scene geometry editing.

Table 1: Comparisons of occupancy reconstruction of the VAE. The downsampled size is reported
in terms of spatial dimensions (H, W) and feature dimension (C).

Method OccSora [72] OccWorld [71] OccLLama [92] UniScene [18] X-Scene (Ours)
(VQVAE) (VQVAE) (VQVAE) (VAE) (Triplane-VAE)
Downsampled Size | (T1/8,25,25,512) (50,50,128) (50,50,128) (50,50,8) (50,50,8)  (100,100,16)
mloU 1 274 66.4 65.9 72.9 73.7 924
ToU 1 37.0 62.3 57.7 64.1 65.1 85.6

Table 2: Comparisons of 3D occupancy generation. We report Inception Score (IS), Fréchet
Inception Distance (FID), Kernel Inception Distance (KID), Precision (P), Recall (R), and F-Score
(F) in both the 2D and 3D domains.  denotes unconditioned generation, while other methods are
evaluated using layout conditions. All methods are implemented using official codes and checkpoints.

Method #Classes Metric”’ Metric™
IS°1 FID, KID” | P’1 R7 K1 |IS1 FID®| KID®] PPt RPT FP1
DynamicCity' [59] 1.008  7.792 8e-3  0.108 0.009 0.017 | 1.269 1890 0.369  0.028 - -
UniScene [ 18] 11 1.015  0.728 Se-4 0295 0.572 0389 | 1.278 495.6  0.027 0.387 0.482 0.429
-Scene (Ours) 1.030 0.275 6e-5  0.744 0.772 0.757 | 1.287 281.3  0.009 0.766 0.785 0.775
UniScene [ 18] 17 1.023  0.770 6e-4 0259 0.588 0.360 | 1.235 529.6  0.024 0.382 0.412 0.396
-Scene (Ours) 1.028 0.262 6e-5 0762 0.811 0.785| 1.276 258.8 0.004 0.769 0.787 0.778

tasks, including semantic occupancy prediction (IoU, mloU), 3D object detection (mAP, NDS), BEV
segmentation (mloU), and end-to-end planning with UniAD (trajectory L2 error and collision rate).

4.2 Qualitative Results

Large-Scale Scene Generation. The upper part of Figure 5 showcases large-scale scene generation
results. By iteratively applying consistency-aware outpainting, X'-Scene effectively expands local
regions into coherent, large-scale driving scenes. The generated scenes can be further reconstructed
into 3D representations, enabling view rendering and supporting downstream perception tasks.
Beyond static environments, our pipeline also produces temporally coherent multi-view videos (see
Sec. 4.3 and Fig. 7 for qualitative and quantitative results).

User-Prompted Generation and Editing. The lower part of Figure 5 demonstrates the flexibility
of X-Scene in interactive scene generation, supporting both user-prompted generation and geometric
editing. Users can provide high-level prompts (e.g., "create a busy intersection"), which are processed
to generate corresponding layouts and scene content. Furthermore, given an existing scene, users can
specify editing intents (e.g., “remove the parked car”) or adjust low-level geometric attributes. Our
pipeline updates the scene graph accordingly and regenerates the scene through conditional diffusion.



Table 3: Comparisons of multi-view image generation. We report FID and evaluate generation
fidelity by performing BEV segmentation [93] and 3D object detection [94] tasks on the generated
data from the validation set. Bold indicates the best, and underline denotes the second-best results.

| | Synthesis | | BEV Segmentation | 3D Object Detection
Method Avenue . FID| :
| | Resolution | | Road mloU 1 Vehicle mIoU 1 | mAP 1 NDS 1
Original nuScenes [91] | - | - |- 73.67 34.82 | 35.54 41.21
BEVGen [30] RA-L’24 224 %400 25.54 50.20 5.89 - -
BEVControl [37] arXiv’23 - 24.85 60.80 26.80 - -
DriveDreamer [3] ECCV’24 256448 26.80 - - - -
MagicDrive [ 1] ICLR 24 224 %400 16.20 61.05 27.01 12.30 23.32
Panacea [5] CVPR’24 256x512 16.96 55.78 22.74 11.58 22.31
Drive-WM [19] CVPR’24 192x384 15.80 65.07 27.19 - -
DreamForge [23] arXiv’25 224 %400 14.61 65.27 28.36 13.01 22.16
Glad [14] ICLR’25 256x512 12.57 - - - -
-Scene (Ours) - 224 %400 11.29 66.48 29.76 16.28 26.26
-Scene (Ours) - 336600 12.83 68.66 32.67 24.92 32.48
-Scene (Ours) - 448800 12.77 69.06 33.27 27.65 34.48

Table 4: Comparison of multi-view video generation. We report FVD and assess generation fidelity
by evaluating end-to-end planning performance using UniAD [94] on the generated validation data.

Data Source \ Synthesis ‘FVD ” 3DOD |  BEV Segmentation mloU (%) | L2 (m) | | Col. Rate (%) |
| Resolution | |mAP 1 NDS 1 |Lanes? Drivablet Dividert Crossingt|1.0s 2.0s 3.0s Avg.|1.0s 2.0s 3.0s Avg.
Ori nuScenes ‘224 X 400‘ - ‘ 31.20 45.22 ‘ 29.19  65.83 23.51 12.99 ‘0.60 1.10 1.85 1.18 ‘0.08 0.28 0.66 0.34
MagicDrive [1] |224 x 400 | 217.9 | 12.92 28.36 | 21.95 51.46 17.10 5.25 0.57 1.14 1.95 1.22/0.10 0.25 0.70 0.35
DreamForge [23] | 224 x 400 | 209.9 | 16.63 30.57 | 26.16 58.98 20.22 8.83 0.55 1.08 1.85 1.16[0.08 0.27 0.81 0.39
-Scene (Ours) 224 x 400 | 179.7 | 20.40 31.76 | 28.04  61.96 22.32 10.48 |0.55 1.08 1.81 1.15|0.03 0.13 0.66 0.27

4.3 Main Result Comparisons

Occupancy Reconstruction and Generation. Table 1 presents the comparative occupancy re-
construction results. The results show that X'-Scene achieves superior reconstruction performance,
significantly outperforming prior approaches under similar compression settings (e.g., +0.8% mloU
and +2.5% IoU compared to UniScene [18]). This improvement is attributed to the enhanced capacity
of our triplane representation to preserve geometric details while maintaining encoding efficiency.

Table 2 presents the quantitative results for 3D occupancy generation. Following the protocol in [59],
we report performance under two settings: (1) a label-mapped setting, where 11 classes are evaluated
by merging similar categories (e.g., car, bus, truck) into a unified "vehicle" class, and (2) the full
17-class setting without label merging. Our approach consistently achieves the best performance
across both 2D and 3D metrics. Notably, in the 17-class setting without label mapping, we observe
substantial improvements, with FID?P reduced by 51.2% (258.8 vs. 529.6), highlighting our method’s
capacity for fine-grained category distinction. Additionally, our method demonstrates strong precision
and recall, reflecting its ability to generate diverse yet semantically consistent occupancy.

Image Generation Fidelity. Table 3 presents the results of multi-view image generation, including
FID scores and downstream task evaluations. Notably, X'-Scene supports high-resolution image
generation with competitive fidelity, which is crucial for downstream tasks like 3D reconstruction.
The results show that X'-Scene achieves the best FID, with a 4.91% improvement over the baseline [1],
indicating superior visual realism. Moreover, X'-Scene consistently outperforms other methods in
BEV segmentation and 3D object detection as resolution increases. For BEV segmentation in
particular, performance on generated scenes at 448 x 800 resolution closely matches that on real data,
showcasing X'-Scene’s strong conditional generation aligned with downstream visual applications.

Video Generation Fidelity. Table 4 presents the results of dynamic video generation and end-to-
end evaluation. X'-Scene is trained on short 7-frame clips using an autoregressive temporal modeling
strategy. It achieves a lower FVD than the 16-frame-trained baseline MagicDrive, indicating stronger
temporal consistency and video realism with higher efficiency. When evaluated on downstream
perception and planning tasks using UniAD, X-Scene consistently outperforms the baseline across
all metrics. These results demonstrate that X'-Scene generates temporally coherent and physically
consistent dynamic scenes, effectively supporting realistic end-to-end simulation.



Table 5: Comparisons of training Table 6: Comparison of training support for BEV segmenta-
support for semantic occupancy pre- tion (Baseline as CVT [93]) and 3D object detection (Baseline
diction (Baseline as CONet [95]). as StreamPETR [96] following the setup in [23, 5]).
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Figure 6: Qualitative comparison of joint voxel-and-image generation. Our method achieves
superior consistency between generated 3D occupancy and 2D images compared to UniScene [18].

Downstream Tasks Evaluation. We evaluate the effectiveness of the generated scene data in
supporting downstream model training. Table 5 reports the results for 3D semantic occupancy
prediction. Fine-tuning with our synthesized 3D occupancy grids notably improves the baseline
performance (+4.9% IoU, +6.8% mloU), as the high-resolution grids provide accurate and detailed
spatial structures that enable better geometric reasoning and feature learning. Moreover, integrating
2D and 3D modalities yields the highest performance, demonstrating the importance of multimodal
alignment. Table 6 presents the results for 3D object detection and BEV segmentation. Our generated
data consistently surpasses all synthetic data baselines, verifying the superior fidelity, realism, and
temporal consistency of our approach. Overall, these results confirm the potential of our synthesized
images and videos to serve as high-quality data augmentation for downstream models.

Qualitative Comparisons. Figure 6 illustrates a comparison of joint voxel-and-image generation
results. X'-Scene produces more realistic and diverse scenes while maintaining tighter geometric
alignment between 3D occupancy and 2D images, leading to improved cross-modal coherence.
Figure 7 further showcases qualitative results of multi-view video generation. X'-Scene generates
temporally coherent sequences with smoother motion transitions and stable object dynamics, while
maintaining accurate cross-view geometry and visual consistency. Together, these results demonstrate
X-Scene’s ability to generate spatially coherent 3D structures and photorealistic, temporally consistent
videos, offering a scalable and reliable foundation for simulation and data generation.

4.4 Ablation Study

Effects of Designs in Occupancy Generation. As shown in Table 7, the proposed triplane de-
formable attention module improves performance, particularly at lower resolutions. For instance, at
a (50, 50, 16) resolution, introducing deformable attention yields gains of +1.9% IoU and +2.4%
mloU, confirming its role in alleviating feature degradation caused by downsampling. We further
examine the impact of conditioning strategies. Removing either the additive layout condition or the
box condition leads to noticeable performance drops, highlighting their complementary contributions.
These conditions provide essential fine-grained geometric cues that guide the model to better capture
scene structure and spatial context, ultimately improving occupancy field accuracy.



Table 7: Ablation study for designs in the oc- Table 8: Ablation study for designs in the multi-

cupancy generation model. view image generation model.
Variants RTriplal'ne ToUt mloUt|FID®| F¥P1 Variant \ - | 3D Detection | BEV Segmentation
esolution ariants
| |mAP 1 NDS 1|Rd. mloU 4 Veh. mloU 1
“Scene (Ours) |(100,100,16)| 85.6 92.4 | 258.8 0.778 Seene Ours) |1129] 16,12 2626|6648 —
w/  VAE deform attn| (50,50,16) | 66.6 76.6 | 436.1 0.522 T
wlo VAE deform attn | (50,50,16) | 64.7 742 | 4624 0510 ~ W/osemanticmap |12.23) 1527 2559 | 65.75 2871
wlo VAE deform attn |(100,100,16)| 849 91.8 | 266.4 0.762  W/o depth map 12.94] 15.61 25.98 | 64.87 29.22
w/o perspective map|16.87| 13.15 22.37 | 63.35 27.13
w/o layout Condition |(100,100,16)| 85.6  92.4 ‘ 1584 0237 /o position embed |11.38| 15.60 26.16 | 66.46 27.88
w/o box Condition  |(100,100,16)[85.6  92.4 | 271.4 0.751 /o text description |12.60| 15.54 26.06 | 66.26 29.47
View View
g &
~ ~

Figure 7: Qualitative comparison of multi-view video generation. Our method demonstrates
superior temporal consistency across frames and spatial coherence among multiple camera views.

Effects of Designs in Image Generation. Table 8 presents the ablation results for various condi-
tioning components in the image generation model. Removing the semantic or depth maps that are
rendered from 3D occupancy significantly degrades FID and downstream performance, highlighting
their importance in providing dense geometric and semantic cues. Excluding the perspective map,
which encodes projected 3D boxes and lanes, also reduces downstream performance (with mAP
dropping by 2.97%), underscoring its role in conveying explicit layout priors. The 3D positional
embedding is particularly critical for object detection, as it enhances localization and spatial represen-
tation. Finally, removing the text description degrades generation fidelity (FID worsening by 1.31%),
showing that rich linguistic context aids fine-grained appearance modeling and scene understanding.

5 Conclusion and Limitations

In this paper, we present X'-Scene, a novel framework for 3D driving scene generation that achieves
high fidelity, flexible controllability, and large-scale spatial and temporal consistency. Leveraging the
multi-granular control mechanism, X-Scene allows intuitive yet precise specification of both high-
level semantic guidance and low-level geometric details. Its unified voxel-image—video generation
pipeline captures detailed 3D geometry, photorealistic appearance, and temporally coherent dynamics,
while consistency-aware outpainting maintains spatial coherence across expansive environments.
Extensive experiments show that X'-Scene outperforms existing approaches in generation quality,
controllability, and scalability, establishing it as a versatile tool for large-scale data generation, driving
simulation, and interactive scene exploration. Future work will explore longer temporal horizons and
multi-agent interactions to further enhance the realism and dynamism of generated driving scenarios.
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reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The detailed implementation procedures have been included in the appendix. To
ensure reproducibility, code and data are committed to be publicly available.
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* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
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¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (
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* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
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¢ At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).
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how they were chosen, type of optimizer, etc.) necessary to understand the results?
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To ensure reproducibility, code and data are committed to be publicly available.

Guidelines:
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7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]
Justification: The details on computing resources have been discussed.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experi-
mental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics ?

Answer: [Yes]
Justification: This research follows the NeurIPS Code of Ethics properly.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
 If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

¢ The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]
Justification: The discussion on societal impacts has been included in the appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.
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* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [Yes]
Justification: The discussion on safeguards has been included in the appendix.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users
adhere to usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]
Justification: The acknowledgments on licenses have been included in the appendix.
Guidelines:
* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.
* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
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rated licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The discussions on new assets have been included in the appendix.
Guidelines:

* The answer NA means that the paper does not release new assets.
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submissions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.
Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
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Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
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* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
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rigorousness, or originality of the research, declaration is not required.
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A Additional Implementation Details

In this section, we provide additional implementation details to facilitate reproducibility. Specifically,
we elaborate on the experimental datasets, model implementation, and the evaluation metrics.

A.1 Datasets

We use Occ3D-nuScenes [90] to train our controllable occupancy generation module, and
nuScenes [91] for the multi-view image and video generation modules. The textual scene graph-
to-layout generation module is also trained using 3D bounding box and HD map annotations from
nuScenes. The dataset comprises 1,000 driving scenes under diverse weather, lighting, and traffic
conditions. Each 20-second scene includes about 40 annotated keyframes, yielding roughly 40,000
samples with 360° multi-view images, 3D occupancy, bounding boxes, and maps. We follow the
standard split of 700 training and 150 validation scenes. For video generation, ASAP interpolation
is applied to upsample the frame rate from 2 Hz to 12 Hz, yielding about 240 frames per scene and
enabling more consistent training for temporally coherent video synthesis. Following DynamicC-
ity [59], we map the original 17 semantic categories to 11 commonly used classes (see Table 9) and
conduct experiments both with and without label mapping to enable comprehensive comparisons.

Table 9: Summary of Semantic Label Mappings. We map the original 17-class nuScenes semantic
labels to 11 classes following the protocol in [59] to enable comprehensive evaluation.
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A.2 Model Implementation Details

Textual Scene Description Generation Module. To construct the scene description memory
bank M, we utilize QWen2.5-VL [97] to extract structured information from nuScenes. For each
frame, six surround-view images are jointly processed to generate holistic scene descriptions, which
are parsed into scene style S, foreground objects O, and background elements 5. Concurrently,
3D bounding boxes and lane markings are converted into textual scene-graph layouts £. These
components collectively form memory entries m; = {S, O, B, L}.

For retrieval, text descriptions are encoded using OpenAl’s text-embedding-3-small model and
indexed with FAISS to enable efficient similarity search. During inference, given a coarse prompt
Tp, we retrieve the top-K relevant entries from M, which are then combined with the prompt and
fed into GPT-40 to generate a detailed and structured scene description D. Please refer to Sec. B for
further details and example illustrations.

Scene-Graph to Layout Generation Module. For the scene-graph to layout generation module,
training and evaluation were conducted on a single NVIDIA A6000 GPU with 48GB of memory. We
employed a batch size of 128 and trained the model for 400 epochs. The optimization was performed
using the AdamW optimizer with an initial learning rate of 1 x 10~ and a cosine annealing scheduler.
To ensure stable training and consistent representation, the 3D bounding boxes were normalized
using dataset-specific parameters. Each bounding box b; was parameterized by its center coordinates
(z,y, z), dimensions (I, w, h), and yaw angle 0. Following standard practices in 3D object detection,
we normalized the box center coordinates to the range [0, 1], applied a logarithmic transformation to
the dimensions, and represented the yaw angle using its sine and cosine components. Each graph
node was augmented with an 8-dimensional noise vector to enhance robustness during training.

24



Occupancy Generation Module. For the occupancy generation module, the triplane-VAE encodes
the original occupancy field with a resolution of 200 x 200 x 16 into a triplane representation
of spatial dimensions (X}, Y%, Z,) = (100,100, 16) and feature dimension C, = 16, reducing
memory consumption while preserving structural details. The triplane-VAE is trained using the Adam
optimizer with an initial learning rate of 1 x 10~3 and a step decay factor of 0.1, over 200 epochs on
4 NVIDIA A6000 GPUs with a batch size of 24 per GPU.

During diffusion, the three orthogonal planes are arranged into a unified square feature map by
zero-padding the uncovered corners, forming a tensor h € RX»+Zn-Ya+2n.Cr - Attention is applied
across this tensor to capture inter-plane correlations. The diffusion model is trained from scratch
using the AdamW optimizer with an initial learning rate of 1 x 10~% and a cosine scheduler, over 300
epochs with a batch size of 12 per GPU. For occupancy outpainting, we adopt the RePaint sampling
strategy with 5 resampling steps and a jump size of 20.

Multi-View Image Generation Module. We initialize the multi-view image generation module
with pretrained Stable Diffusion v2.1 weights, while randomly initializing newly added parameters.
The diffusion model is trained on 4 NVIDIA A6000 GPUs with a mini-batch size of 8, using the
AdamW optimizer with a learning rate of 8 x 107> and a cosine learning rate scheduler over 200
epochs. After initial training at a resolution of 224 x 400, we fine-tune the model for an additional
50K iterations at higher resolutions of 448 x 800 and 336 x 600. During inference, we use the
UniPC [98] scheduler with 20 steps and a Classifier-Free Guidance (CFG) scale of 1.2.

Multi-View Video Generation Module. We initialize the multi-view video generation module
using the pretrained image diffusion U-Net and focus on fine-tuning the newly introduced temporal
attention layers. The training is performed for 100 epochs with a total batch size of 8, where two
reference frames are randomly sampled from the preceding five ground-truth frames, and each training
sample contains 7 frames in total. For higher-resolution settings, we further train the model for 50K
iterations, initializing from the corresponding lower-resolution weights. The temporal module is
trained on eight NVIDIA A100 GPUs using the AdamW optimizer with a learning rate of 8 x 10~°
and a cosine learning rate scheduler.

During inference, the reference frames are drawn from previously generated video clips. For the first
clip, we employ the single-frame image generation model to produce the initial reference frame, after
which the system follows an autoregressive generation strategy. By default, two reference frames
are used to generate the subsequent seven frames, enabling temporally coherent and geometrically
consistent video synthesis across multiple views.

A.3 Evaluation Metrics for Occupancy Generation

Following the evaluation protocol of DynamicCity [59], we adopt two complementary strategies to
assess the quality of occupancy generation:

* 3D Evaluation: We train a sparse convolutional autoencoder based on the MinkowskiUNet [99]
architecture to extract 3D features from generated occupancy fields. Features from the final down-
sampling layer are aggregated via global average pooling and used to compute evaluation metrics
using the Torch-Fidelity library [100].

+ 2D Evaluation: We render the 3D occupancy fields into 2D images for image-based evaluation. To
ensure fair comparison, we standardize the rendering process across all methods using consistent
semantic color mappings and camera parameters. We compute IS, FID, and KID using a standard
pretrained InceptionV3 [101] network, and use a VGG-16 [102] model for precision and recall.
Both networks are fine-tuned on our semantically color-mapped dataset to ensure domain alignment.

To evaluate the quality and diversity of the generated samples, we use several quantitative metrics: 1)
Inception Score (IS) measures both quality and diversity via the KL divergence between each image’s
conditional label distribution and the marginal distribution, with higher scores indicating sharper and
more diverse samples; 2) Fréchet Inception Distance (FID) computes the distance between real and
generated distributions in the Inception feature space, where lower values indicate higher fidelity;
3) Kernel Inception Distance (KID) calculates the squared Maximum Mean Discrepancy (MMD)
between real and generated features using a polynomial kernel, and is unbiased and less sensitive to
sample size; 4) Precision estimates the proportion of generated samples within the support of real
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Algorithm 1: Textual Scene Description Generation via VLM, LLM, and RAG

Input: User prompt Tp; Scene dataset Dycene
Output: Structured scene description D = {S, 0, B, L}

Offline Stage: Build Memory Bank M
for frame f in Dseene do

Load 6 surround-view images Iy ;

dj + viM(If) ; // Generate raw description

S,0,B «+ Parse(d}) ; /I Parse style, objects, and background

Aj < DataAnnotations(f); /l Extract spatial annotations

L + LayoutFrom(Ay) ; // Convert annotations to textual layout

my <+ {S,0,B, L, cff} ; // Assemble memory item
| Add my to memory bank M ;

Online Stage: Generate Structured Description D

zp < Embed(Tp) ; // Embed user prompt
{z;} + Embed(m;.text) for all m; € M ; // Embed memory entries
My  TopK(zp,{zi}) /I Retrieve top-k relevant memories with RAG
Format LLM input using 7p and Mg ; /I Prepare input context
D < Gdescription (TP, MK ) ; /I Generate final description via GPT-40

data; 5) Recall measures how well the generated distribution covers real data; and 6) F1-Score, the
harmonic mean of precision and recall, reflects the balance between generation quality and coverage.

B Additional Details of Scene Description Generation

The scene description module constructs textual scene representations by integrating vision-language
models (VLMs) and large language models (LLMs). As shown in Algorithm 1, a scene memory bank
is first built offline using a VLM. During inference, a RAG pipeline selects the most relevant memory
items based on a user’s coarse prompt, enabling the LLM to generate detailed, context-grounded
scene descriptions. This framework supports flexible and scalable scene description generation.

B.1 Scene Description Memory Construction

To construct the scene description memory bank M, we use QWen2.5-VL [97] to extract structured
scene information from the nuScenes dataset. For each annotated timestamp, the six surround-view
camera images are processed by the VLM to generate a holistic natural language description, which
is parsed into structured components {S, O, B}: scene style (e.g., "a rainy afternoon in an urban
area"), foreground objects with spatial and appearance attributes (e.g., "a red sedan parked alongside
the walkway"), and background elements (e.g., "high-rise buildings in the distance"). In parallel,
nuScenes 3D bounding boxes and lane markings are converted into a textual scene-graph layout £
capturing spatial relationships (e.g., "car A is behind truck B", "pedestrian is on the sidewalk near
lane L1"). Together, these components form each memory item m;.

B.2 Novel Scene Description Generation

During inference, given a coarse user prompt 7p, we employ GPT-40 as the LLM-based generator
Gescription and implement a RAG mechanism to enrich the prompt with relevant memories. Specifically,
both the prompt and the entries in the memory bank M are embedded using a pre-trained sentence
embedding model (i.e., text-embedding-3-small). We then retrieve the top-K most semantically
similar descriptions from M. These retrieved examples serve as contextual references, enabling the
LLM to generate a rich and coherent scene description D = {S, O, BB, L} tailored to the user’s input.

This RAG design is motivated by the need to bridge coarse user prompts and fine-grained scene
representations, enabling few-shot generalization and knowledge transfer from similar scenes in
the memory bank. Furthermore, the memory bank M is modular and extensible, supporting future
inclusion of other datasets with minimal adaptation effort.
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B.3 Prompt Details and Scene Description Examples

The following system prompt is defined for constructing scene description memories. Given two
images capturing the 360-degree surroundings, the VLM is guided to extract and organize key
elements of the driving scene into a comprehensive representation:

( A

System prompt for scene description memory construction with VLM

Given two panoramic images <image>FRONT_IMAGE</image> and <image>BACK_IMAGE</image> that encapsulate the
surroundings of a vehicle in a 360-degree view, your task is to analyze the driving scene.
Your analysis should include the following core information:

¢ Time of the day: Indicate whether it is daytime or nighttime.

¢ Weather: Specify if it is sunny, rainy, cloudy, snowy, or foggy.

¢ Surrounding environment: Classify the environment as downtown, urban expressway, suburban, rural, highway, residential,
industrial, nature, etc.

« Foreground objects: Identify objects in the foreground, such as cars, buses, trucks, pedestrians, bicycles, motorcycles, construction
vehicles, barriers, traffic cones, traffic signs/lights, etc.

* Background elements: Describe background elements, including roads, sidewalks, pedestrian crossings, car parks, terrain,
vegetation, buildings, etc.

¢ Road condition: Characterize the road as an intersection, straight road, narrow street, wide road, pedestrian crossing, etc.

« Abstract Description: Provide a concise summary of the scene, integrating details about scene features, foreground objects,
background information, and road conditions.

Instruction:

¢ Each panoramic image consists of three smaller images. The first image covers the left-front, directly in front, and right-front
views of the vehicle. The second image includes the left-rear, directly behind, and right-rear views.

¢ When describing foreground objects, clearly detail their unique appearance and location. Specify each object’s relative position
to the ego vehicle using terms like front, back, left, right, etc. Avoid referencing terms like “first/second image” or directional
phrases such as “front-left/rear-center view”. If there are multiple objects of the same type, provide a description for each one.

« For background elements, provide descriptions of their notable characteristics.

« Assess the presence of objects from the provided candidate list. If an object exists, describe its attributes briefly. If it does not exist,
omit it from your output. You may also include objects not listed in the candidates.
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The following system prompt is defined for generating novel scene descriptions. Given a coarse
user prompt, the LLM is guided to retrieve semantically relevant scene descriptions from a structured
memory bank. These retrieved references are then used to enrich, clarify, and ground the final
output, resulting in a coherent and contextually accurate scene description:

,

System prompt for novel scene description generation with LLM+RAG

You are an intelligent assistant for detailed driving scene understanding and generation. Given a coarse user prompt and a set of
relevant memory items retrieved from a structured memory bank, your task is to generate a comprehensive, structured description of
the target driving scene.

Input Tokens:
o <text>USER_PROMPT</text>: a high-level, possibly ambiguous user query describing a scene, e.g., "a busy urban street at
night".
¢ <JSON>MEMORY</JSON>: a collection of scene descriptions in JSON format, semantically retrieved as relevant references to
the prompt.

These memory examples should be used to enhance, clarify, and ground your final output. Your output must strictly follow the
specified JSON structure and provide a cohesive and concrete description of the driving scene.

Instructions:
« Leverage relevant entries in <memory> to help expand, clarify, or disambiguate the user’s <prompt>.

¢ When information in the prompt is sparse or vague, infer plausible details based on common patterns from similar memory
entries.

« Be specific in describing the following:
— Spatial relationships between objects (e.g., beside, ahead, behind)
— Object attributes (e.g., color, type, behavior)
— Environmental context (e.g., weather, road type, background elements)
¢ Do not directly copy content from memory items; instead, synthesize a new, coherent scene inspired by them.

¢ Avoid referencing the tokens <prompt> or <memory> in the output.
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Representative examples of the generated scene descriptions, including scene style, foreground
objects, background elements, and scene-graph layouts, are presented below:

Scene Description Example

Scene Style:

¢ Time of the day: daytime, with diffused lighting due to cloud cover

* Weather: light to moderate rain, as indicated by raindrops on the camera lens and wet pavement

¢ Surrounding environment: urban street flanked by mixed-use buildings and parking areas

¢ Road condition: long, straight, two-lane road with clearly marked crosswalks and lane dividers; visibly slick from rainfall
Foreground Objects:

« Cars (left side): a variety of parked vehicles, including a dark pickup truck, compact sedans, SUVs, and so on, aligned parallel
along the sidewalk; some cars have reflections on the wet ground

Cars (right side): several vehicles parked curbside in front of commercial buildings, including economy cars to midsize SUVs

¢ Pedestrian: an individual wearing a bright orange reflective safety vest and holding a red umbrella, standing near a crosswalk,
suggesting a crossing action in progress

¢ Traffic cone: bright orange cone placed on the sidewalk near the edge of a parking entrance, likely for safety or to reserve space

 Traffic sign: a yellow pedestrian crossing sign mounted on a pole; the sign is positioned close to a glass-door building entrance
Background Elements:

¢ Road: appears dark and glossy due to recent rainfall; lane markings and crosswalks are clearly visible

¢ Sidewalk: wide, concrete sidewalks run alongside the road, bordered by planters and lined with trees

¢ Buildings: prominent structures include multi-level modern commercial buildings with large glass facades

¢ Trees: scattered urban landscaping includes small trees planted at regular intervals, offering a touch of greenery

¢ Car Parking: multiple designated parking areas, some directly along the street and others within enclosed lots

« Crosswalk: wide white-striped pedestrian crossings present at intersections

« Streetlights: installed at intervals along the road to provide visibility during low-light conditions
Scene-Graph Layout:

Traffic Light Existing: False

— Crosswalk [(-9.6, -50.1), (-9.4, -43.3), (-12.8, -43.2), (-13.0, -50.0)]

I— Current straight lane [(-0.7, -15.0), (-0.5, -8.2), (-0.3, -1.4), (-0.1, +5.4)]

| | ego vehicle on top of the lane

}— Straight lane with-flow [(-1.5, -45.0), (-1.3, -39.2), (-1.2, -33.4), (-1.0, -27.6)]

snoideinan
selind

| | vehicle.car on top of the lane, same direction as ego in the left back, location: (-1.8, -32.1, +1.1). pa
I— Straight lane allowing from left to right driving [(+6.3, -20.6), (+12.5, -20.5), (+18.7, -20.5), (+24.9, -20.5)] nsn‘\s‘l [ /
}— Straight lane opposite-flow [(-4.8, -37.9), (-4.7, -41.9), (-5.3, -45.9), (-4.8, -49.9)] e )

— Other Lanes/Roadside o

| I— movable_object.trafficcone in the left front location: (-11.4, +9.9, +0.3).length: 0.9, width: 0.4, height: 0.5.
| I— movable_object.trafficcone in the left front location: (-13.4, +10.0, +0.4).length: 0.4, width: 0.3, height: 0.8.
| I— vehicle.car.parked in the left, heading from left to right, location: (-18.6, -0.1, +0.6).length: 4.2, width: 1.9, height: 1.4.

| }— vehicle.car.parked in the left back, heading from left to right, location: (-18.6, -2.6, +0.9) length: 4.6, width: 2.1, height: 1.8.

| I—vehicle.car,parked in the left back, heading from left to right, location: (-18.4, -5.2, +0.6) length: 4.2, width: 1.9, height: 1.5.

| I— human.pedestrian.moving in the right front, opposite direction, location: (+7.2, +20.0, +1.2).length: 0.9, width: 0.7, height: 1.7.

| I— human.pedestrian.standing in the left back, heading from left to right, location: (-13.2, -30.6, +0.8).length: 0.6, width: 0.6, height: 1.7.
| l— human.pedestrian.standing in the left back, heading from left to right, location: (-13.2, -31.3, +0.9).length: 0.5, width: 0.6, height: 1.7.
|

Abstract Description:

¢ The scene shows a rainy day on an urban expressway with wet roads reflecting light. Numerous cars are parked on both sides of
the street, and a pedestrian in a bright orange safety vest is near the crosswalk. The background features multi-story commercial
buildings with large windows, trees lining the sidewalk, and various signage. Streetlights are visible, and the area is marked with
crosswalks and lane lines, creating a realistic and structured urban driving scene.
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Scene Description Example

Scene Style:

Time of the day: bright daytime with clear shadows, indicating direct sunlight and good visibility
Weather: sunny with partly cloudy skies; no signs of precipitation or poor visibility
Surrounding environment: suburban campus or business park-like area with a mix of roadways, pedestrian paths, and landscaped

Road condition: smooth asphalt with a gentle curve transitioning into a straight segment

Foreground Objects:

Barriers (construction zone): bright orange modular barriers clearly indicating a temporarily restricted area

Truck (construction zone): a white construction truck with visible text parked adjacent to the barriers

Stop sign (construction zone): standard red octagonal stop sign mounted on a metallic pole, reinforcing right-of-way rules
Entrance barrier: red and white striped boom barrier at two vehicle access points, indicating controlled entry

Cars: silver sedan (parked at curve near the booth); black sedan (alongside silver); dark-colored sedan (moving towards camera,
on central lane); red and silver vehicles (visible in side/rear view near building and behind the no-entry sign)

Seated pedestrian: a person is resting on the grassy area near the right side of the road, shaded by trees

Background Elements:

Road: dual-lane road with center markings and white directional arrows

Sidewalk: paved pathways flanked by grass and shrubs on both sides of the road

Buildings: main visible structure is a multi-story white facility with large windows and blue signage

Vegetation: tall green trees forming canopy along both sides of the road, sculpted bushes reinforce the planned landscape design
Car Parking: clearly delineated lot visible on the left, populated with multiple parked cars

Traffic Signage: a “No Entry” (red circle with horizontal white bar) sign prominently displayed at an access control gate

Scene-Graph Layout:

Traffic Light Existing: False
I— Current straight lane [(-0.2, -0.6), (-0.1, +2.0), (0.0, +4.6), (+0.1, +7.2)]

}— Straight lane with-flow [(+0.1, +7.2), (+0.2, +10.5), (+0.3, +13.7), (+0.5, +16.9)]

I— Right turning lane allowing from right to left driving [(+5.9, +50.0), (+5.7, +41.4), (-1.4, +34.9), (-9.8, +34.3)]

}— Other Lanes/Roadside

shorter thar
biggerfhan——
P

|— ego vehicle on top of the lane i

|— movable_object.trafficcone in the left front location: (-1.7, +14.3, +0.6).
I— movable_object.trafficcone in the left front location: (-1.7, +15.0, +0.5).

™

[ biggerthan~ |
Iefiront % |

Gller than

|— vehicle.car.moving in the right front, heading from right to left, location: (+0.4, +37.7, +1.3).

front

|— Left turning lane allowing from left to right driving [(-8.8, +44.4), (-5.3, +45.1), (-1.9, +46.9), (+0.1, +50.0)] ‘A‘Qvt\ban

|— vehicle.car.moving in the left back, same direction as ego, location: (-1.2, -29.3. +0.8).

|— movable_object.barrier in the left front location: (-2.7, +12.9, +0.7).length: 0.5, width: 2.3, height: 1.2.

|— movable_object.barrier in the left front location: (-3.7, +13.2, +0.8).length: 0.4, width: 2.4, height: 1.2.

I— movable_object.trafficcone in the left front location: (-3.2, +18.8, +0.7).length: 0.3, width: 0.3, height: 0.7.

|— vehicle.bicycle.without_rider in the right front, opposite direction from ego, location: (+9.7, +9.0, +0.2) Iength: 1.4, width: 0.4, height: 1.1.
I— vehicle.bicycle.without_rider in the right front, opposite direction from ego, location: (+10.3, +8.7, +0.2).length: 1.4, width: 0.5, height: 1.2.
|— vehicle.car.parked in the left front, same direction as ego, location: (-19.3, +4.6, +3.2).length: 4.7, width: 1.9, height: 1.8.

|— vehicle.truck.parked in the left front, heading from left to right, location: (-6.4, +14.5, +2.0).length: 6.5, width: 2.3, height: 3.3.

l— human.pedestrian.adult.sitting_lying_down in the right front, heading from right to left, location: (+9.9, +10.9, +0.2).

|— human.pedestrian.adult.sitting_lying_down in the right front, heading from right to left, location: (+9.5, +11.7, +0.3).

Abstract Description:

The scene shows a sunny day in a suburban area with a mix of urban infrastructure and greenery. The road curves slightly before
straightening out, with construction barriers and a stop sign indicating ongoing work. Several cars are parked along the roadside,
while others are in motion. A pedestrian is seated on the grass near the right-rear view, and there are trees and buildings in the
background. The road appears well-maintained, with clear lane markings and a mix of open spaces and developed areas.
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Table 10: Ablation on text-only generation. Table 11: Ablation on input layout types.

i | 3DOD | BEVSeg mloU (%) | 3DOD | BEVSeg mloU (%)
Variants ‘FIDﬂmAPT NDST [RoadT  Vehicler ~ [Put Layout | FID} - b NS [ Road T Vehiclef
Full Model [ 11.29| 1628 26.26 | 66.48  29.76 Semantic Map | 11.29 | 1628 26.26 | 6648  29.76
TextOnly |20.74| 2.13 534 | 2832  7.49 Vector Map | 12.07| 15.73 25.84 | 6517  28.38

Table 12: Robustness to layout noise. Performance under Table 13: Inference efficiency of

noisy layout shows graceful degradation across stages. each stage on a single RTX A6000.
Layout‘ OccGen  |ImgGen| 3DOD  |BEVSegmloU(%)  Stage | Steps | Time (s) | GPU (GB)
|FID® | F°P 1| FID] |mAPT NDS?|Roadf Vehiclef LayoutGen | 50 015 10
Clean 258.8 0.778| 11.29 | 16.28 26.26 | 66.48 29.76 OccGen 20 3.25 7.7
Noisy | 2763 0.742| 1247 |14.87 25.02| 6528 2844 ImgGen 20 2.30 7.0

C Additional Quantitative Results

C.1 Effect of Spatial Conditioning

We evaluate the role of spatial conditioning using a text-only variant that removes all spatial inputs
(layout maps, object boxes, and perspective maps) while retaining textual prompts. As shown in
Table 10, the absence of spatial cues causes clear degradation in visual realism (FID 1 9.45) and
spatial fidelity (Vehicle mloU | 22.27%), underscoring the importance of spatial conditioning for
maintaining geometric coherence and consistent scene alignment.

C.2 Effect of Layout Type

To examine different layout representations in our dual-mode controllability design, we compare two
layout types: 1) BEV semantic maps for fine-grained spatial control and 2) BEV vector maps of object
boxes and lanes for efficient customization. As shown in Table 11, both yield geometrically accurate
and visually coherent scenes, while semantic maps provide stronger spatial priors with slightly better
realism and downstream performance. This confirms that both layout types are fully compatible with
our pipeline, enabling flexible and effective scene control.

C.3 Robustness and Efficiency

To assess potential error accumulation in our cascaded generation pipeline, we conduct a noise-
injection ablation by applying Gaussian perturbations (25% probability) to the initial layout, including
3D box centers and lane coordinates. As shown in Table 12, the pipeline degrades gracefully under
noise, with only marginal drops in downstream metrics. This robustness arises from the multi-
stage alignment design, where occupancy-rendered semantic and depth priors enforce geometric
consistency, and overlap-aware extrapolation maintains spatial continuity.

We also report inference efficiency in Table 13. Each scene chunk is generated in about 6 seconds on
a single RTX A6000 GPU, showing that our system achieves a strong balance between robustness
and computational efficiency for large-scale scene synthesis.

C.4 Effect of Retrieval-Augmented Generation

RAG enhances text-to-scene generation by expanding Table 14: Human preference study com-
brief prompts into detailed scene descriptions through  paring scene generation w/ and w/o RAG.
retrieving semantically related examples from a mem-

ory bank. This process transfers prior knowledge from  Criterion RAG (%) Non-RAG (%)
similar scenes, improving layout accuracy and reducing  Diversity 87 13
user effort. Table 14 presents a human preference study Realism 82 18
in which ten participants evaluated 100 scene pairs gen-  Controllability 74 26
erated with and without RAG across multiple criteria. ~ Phys. Plaus. 66 34
The results show that RAG-based generation is consis- ~ gyerall 77 23

tently preferred (overall 77% vs. 23%), highlighting its
effectiveness in grounding prompts and producing more diverse, realistic, and controllable scenes.

31



D Additional Qualitative Results

D.1 Conditional Occupancy and Image Generation
Figure 8 presents additional conditional generation results, where layout conditions are used to

synthesize multi-view images and 3D occupancy. These results demonstrate the effectiveness of our
approach in generating coherent multi-modal outputs conditioned on low-level layout inputs.

Input Condition Generated Multi-view Images  Generated Occupancy

-

-

-
-

Figure 8: Additional qualitative results of .t'-Scene on conditional occupancy and image genera-
tion. These results demonstrate the model’s ability to generate semantically consistent and structurally
accurate multi-modal outputs conditioned on layout inputs across diverse urban scenes.
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(a) Textual Scene Description Generation (b) Scene-Graph to Layout Generation
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(a) Text-to-Scene Generation Example: Campus Street Scene

(a) Textual Scene Description Generation (b) Scene-Graph to Layout Generation
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(c) Joint Occupancy and Multiview Image Generation (d) Geometry and Visual Reconstruction

(b) Text-to-Scene Generation Example: Country Road Scene
Figure 9: Qualitative results of the text-to-scene generation pipeline of .*'-Scene. Starting from a

user prompt, the system generates a plausible scene description, constructs the corresponding layout,
synthesizes consistent occupancy and multi-view images, and finally performs 3D reconstruction.
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(a) Textual Scene Description Generation (b) Scene-Graph to Layout Generation
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+ Sidewalk: Paved sidewalks are visible on bothsides of the road.
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« Vegetation: Notable patches of green vines are growing on the wall of buildings.

Scene»&mph Generated Layout

(c) Joint Occupancy and Multiview Image Generation (d) Geometry and Visual Reconstruction
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(c) Text-to-Scene Generation Example: Industrial Narrow Road Scene

Pr

(a) Textual Scene Description Generation (b) Scene-Graph to Layout Generation
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Scene-Graph Generated Layout

(c) Joint Occupancy and Multiview Image Generation (d) Geometry and Visual Reconstruction

(d) Text-to-Scene Generation Example: City Crossroad Scene

Figure 10: Qualitative results of the text-to-scene generation pipeline of .'-Scene. Starting from a
user prompt, the system generates a plausible scene description, constructs the corresponding layout,
synthesizes consistent occupancy and multi-view images, and finally performs 3D reconstruction.
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Figure 11: Qualitative results of large-scale scene generation by .1'-Scene. The model extrapolates
coherent occupancy fields and multi-view images across extended areas, enabling high-fidelity and
complete 3D scene reconstruction. The generated scenes support novel view synthesis of RGB, depth,
and occupancy, demonstrating both geometric consistency and high photorealistic quality at scale.
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D.2 Text-to-Scene Generation

Figure 9 and Figure 10 illustrate examples of the text-to-scene generation pipeline, which primarily
consists of four steps:

» Textual scene description generation: Given a coarse user text prompt, the LLM leverages RAG to
retrieve semantically relevant scene descriptions from the memory bank, then composes a plausible
scene description encompassing scene style, foreground and background elements, and a textual
scene-graph layout.

* Scene-graph to layout generation: The layout diffusion model uses the textual scene-graph to
generate the corresponding layout, including object bounding boxes and lane lines.

* Joint occupancy and multi-view image generation: The occupancy and image diffusion models
leverage the layout for geometry control and the text description for semantic control, generating a
coherent and realistic 3D occupancy field and multi-view images.

* Geometry and visual reconstruction: Given the generated voxels and images, we reconstruct the 3D
scene while preserving intricate geometry and realistic appearance, supporting various downstream
applications.

These results demonstrate that the proposed text-to-scene pipeline is an effective and flexible method
for driving scene generation.

D.3 Large-Scale Scene Generation

Figure 11 illustrates the results of large-scale scene generation. The results show that our method can
generate coherent, large-scale driving scenes through consistency-aware extrapolation. Moreover, the
generated occupancy and images are fused and lifted for large-scale scene reconstruction, preserving
both intricate geometry and realistic visual appearance. The reconstructed scenes support novel RGB,
depth, and occupancy rendering.

E Potential Societal Impact & Limitations

In this section, we discuss the potential societal impact of our work and outline its possible limitations.

E.1 Societal Impact

Our proposed framework, X'-Scene, for large-scale controllable driving scene generation holds
significant potential for real-world societal impact. By unifying fine-grained geometric accuracy with
photorealistic visual fidelity, X-Scene enables the generation of highly realistic and semantically
consistent 3D driving environments. This capability directly supports the development of safer and
more efficient autonomous driving systems by enabling rigorous simulation and validation across
richly diverse scenarios, including rare cases such as complex intersections, unexpected pedestrian
behavior, and unusual road layouts. As a result, X'-Scene can accelerate the development cycle
of autonomous vehicles, reduce reliance on costly and time-consuming real-world data collection,
and improve safety standards, ultimately contributing to a reduction in traffic-related accidents and
fatalities.

E.2 Known Limitations

While /V'-Scene offers a promising framework for large-scale controllable 3D scene generation,
several limitations remain and warrant further investigation.

First, while X-Scene supports dynamic 4D scene generation, the current autoregressive video diffusion
framework is still limited in long-horizon synthesis. As the number of autoregressive iterations
increases, errors in geometry and appearance may accumulate, leading to temporal drift and degraded
motion consistency. Future work will focus on improving long-term temporal stability and mitigating
error accumulation to achieve more robust and extended video generation.

Second, the scene description memory bank is currently built from the nuScenes dataset [91]. While
this dataset provides a solid foundation, its limited geometric and semantic diversity may restrict the
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range and realism of generated scenes. Incorporating additional datasets featuring a broader range of
environments, weather conditions, and traffic patterns would enhance the system’s generalization and
scene richness.

Third, the occupancy generation pipeline depends on a fixed set of semantic categories predefined
in the training data. As a result, introducing new object types or unseen classes requires retraining
the model. This rigidity hinders adaptability in evolving or open-world settings. Future work
could explore more extensible architectures that support incremental learning or open-vocabulary
generation.

Addressing these limitations is essential for enhancing the realism, scalability, and applicability of
X-Scene in real-world simulation and data generation tasks.

F Public Resources Used

In this section, we acknowledge the public resources used, during the course of this work.

F.1 Public Datasets Used

o NUSCENES! ... ... CC BY-NC-SA 4.0
o nuScenes-devKit® .. ... ... Apache License 2.0
o 0CC3D L MIT License

F.2 Public Implementations Used

o MagicDrive® ... .. . Apache License 2.0
o SeMCIEY” .o MIT License
o DynamicCity® ... ... Unknown
o DriveATenal ... ... i Apache License 2.0
o 0CCS0ra® . Apache License 2.0
o X-DriVe Apache License 2.0
» MinkowskiEngine'? ... ... .. .. MIT License
« Torch-Fidelity'' ... .. ... ... . .. . .. Apache License 2.0
o Qwen2.5-VL'2 L Apache License 2.0
o UniScene ... ... . . . Apache License 2.0
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https://www.nuscenes.org/nuscenes
https://github.com/nutonomy/nuscenes-devkit
https://tsinghua-mars-lab.github.io/Occ3D
https://github.com/cure-lab/MagicDrive
https://github.com/zoomin-lee/SemCity
https://github.com/3DTopia/DynamicCity
https://github.com/PJLab-ADG/DriveArena
https://github.com/wzzheng/OccSora
https://github.com/yichen928/X-Drive
https://github.com/NVIDIA/MinkowskiEngine
https://github.com/toshas/torch-fidelity
https://github.com/QwenLM/Qwen2.5-VL
https://github.com/Arlo0o/UniScene-Unified-Occupancy-centric-Driving-Scene-Generation
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